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MIXED REGULARITY OF N-BODY SCHRODINGER EVOLUTION EQUATION AND
CORRESPONDING HYPERBOLIC CROSS SPACE APPROXIMATION

LONG MENG

ABSTRACT. In this paper, we give a mathematical analysis of a time-dependent N-body electronic system in molecu-
lar dynamics. We first prove a mixed regularity of the corresponding wavefunctions. Thanks to this mixed regularity,
we rigorously justify a hyperbolic cross space approximation of the N-body electronic system. The complexity of
this approximation is close to that of a two-electrons problem, thus breaking the curse of dimensionality.

1. INTRODUCTION

This paper is devoted to a mathematical study of a hyperbolic cross space approximation of the following time-
dependent N-body electronic system in molecular dynamics:

{iatu(t,x) = Hy(ult,z), te[0,T) = Iy, z = (z1, - ,zn) € (R} 4D
u(0, z) = up(x) '

with
N 1 N
=, 58 =DVt + > Wiy, a) (1.2)
j=1 ji=1 1<j<k<N
where
M 1
V(t,z;) : Wi(xj,xp) = ———.
) g - au |z — au(t)] ! |z — @

Here Aj := A, is the Laplacian operator acting on variable x;.

In physics and quantum chemistry, Eq. is used to describe the quantum mechanical N-body problem in
which the N € N7 electrons and the M € Nt nuclei with total charge Z = nyzl Z,, interact by Coulomb attraction
and repulsion forces. The Hamiltonian acts on wavefunctions with variables x1,--- ,zn € R3, representing the
coordinates of the N electrons. Each moving nucleus p with charge Z,, € NT is treated in this paper as an object
in classical mechanics that is positioned at a,(t) € R? at any time. This model can be used to study dynamical
phenomena such as chemical reactions. An analogous setting for the time-dependent Hartree—Fock model coupled
with classical nuclear dynamics can be found in [2].

In mathematics, this evolution Schrodinger equation is well studied. When Hy (t) = Hx(0) is independent
of ¢, the Stone theorem guarantees the existence and uniqueness of the unitary group Uy (¢, s) = exp(—i(t—s)Hn(0))
such that for every ¢, s € R, we have Uy(¢, s) (H?((R*)™)) < H?((R*)™). When Hy (¢) is dependent on ¢, the problem
becomes much more delicate: By using the Duhamel formula and Strichartz’ estimates, local-in-time existence
and uniqueness of solutions in C°(I7, H2((R?)")) has been proved in [12] for the one-body problem and in [13] for
the N-body problem (with T' < (ZN + N?)=27).

In numerical analysis, this electronic configuration space (R®)¥ is typically high-dimensional for large N € N*.
Conventional discretizations of partial differential equations by finite differences or finite element methods scale
exponentially with respect to the dimension of the configuration space. This is known as the curse of dimensionality.
To overcome this problem, models such as the time-dependent Hartree—Fock model and the multiconfiguration
Hartree-Fock model are used (see e.g., [3] and |1] for the mathematical study of these two models).

In this paper, we attack directly the N-body problem by using hyperbolic cross space approximation. The
complexity of our hyperbolic cross space approximation is close to that of a two-electron problem (see Remark
7 thus breaking the curse of dimensionality of . Our method is based on the study of a mixed regularity of
solutions to provided ug is regular enough and satisfies some antisymmetric property (due to Pauli’s principle).
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1.1. Mixed regularity and hyperbolic cross space approximation for eigenvalue problem. For the eigen-
value problem associated with the time-independent operator Hy (0):

Hy(0)uy = Auy with A <0, (1.3)

the curse of dimensionality can be overcome by using spare grid methods or the hyperbolic cross space approximation
(see, e.g., [] for its numerical implementation and [7,|9}|14H16| for its mathematical foundation). These results are
based on the observation that the antisymmetry of the wavefunction u, can improve its regularity. According to
Pauli’s principle, the antisymmetry of the wavefunction w, is a natural physical property for fermions. In this
paper, the antisymmetry is defined as in our previous work [9].

Definition 1.1 (Generalized antisymmetric function). Let I < {1,--- ,N}. When |I| > 1, a wavefunction u is
antisymmetric with respect to I if and only if, for any j, ke I,

u(P; px) = —u(z),
where
Py, Ty ) o= (oo e gy )
When |I| =1 or I = J, every wavefunction u is antisymmetric with respect to I.

Due to Pauli’s principle, the electronic wavefunction (with spin {i%}) satisfies the following property (see,
e.g., |14, Section 1| for more details).

Proposition 1.2 (Antisymmetry of the electronic wavefunction). For any electronic wavefunction u and for any
fized spin state, we can find two sets Iy and I satisfying I (\Io = & and I; | JI> = {1,--- ,N} such that u is
antisymmetric w.r.t. Iy and I5.

In this paper, we assume the following.

Assumption 1.3. The initial datum ug is antisymmetric w.r.t. Iy and Is, with Iy and Iy being given as in

Proposition[1.9

Let I < {1,---,N}. The mixed regularity is associated with the following fractional Laplacian operator:
Lr=[Ja—-a)v (1.4)
jel

that is defined wit the help of Fourier transform (see Section [2.1)). In particular, if [ = ¢, we have £; = 1.
Relying on the antisymmetry of the wavefunction wuy, it is shown in [14,/15] that, any eigenfunction wu, antisym-
metric w.r.t. I; and I5 of problem (1.3 satisfies

2 Hﬁleu*”ill((]l@)N) < +00. (1.5)
£=1,2
The proof is based on Hardy-type inequalities for Coulomb systems (see below with [ = I, oy, = 1 and
Br, = 0 for £ = 1,2). Thanks to these Hardy-type inequalities, a hyperbolic cross space approximation of any
eigenfunction of and its convergence have been studied in |15].
Later, by using r12-methods and interpolation of Sobolev spaces, Kreusler and Yserentant [7] show that any
eigenfunction wu, of problem satisfies

H‘C({ll,m,N}u* s (msyny < +00, (1.6)

for s = 0 and @ = 1 or s = 1 and o < 3/4. This regularity is independent of the antisymmetry of uy, and
the bound 3/4 is the best possible: It can neither be reached nor surpassed except for the totally antisymmetric
eigenfunctions (i.e., antisymmetric w.r.t. {1,---, N}). However, lacking Hardy-type inequalities associated with this
mixed regularity, they could not prove the convergence of the corresponding hyperbolic cross space approximation
of eigenfunctions.

Recently, we proved a more general mixed regularity of for u, antisymmetric w.r.t. I; and I (see [9]):

ar, B
Z ||£IZZ£1§ZU*H%JI((R3)N) < +0. (1.7)
=12
Here I¢ = {1,--- ,N}\I, ay € [0,5/4),8r € [0,3/4) and a; + 1 < 3/2. One can easily recover (1.5) by setting
ay =1 and 8 =0, and (L.6) by setting oy = 8 < %. Compared with [14], our proof is based on a more delicate

study of the relationship between the fractional Laplacian operator and Coulomb-type potentials: For «; € [0,5/4),
Br €10,3/4) and ay + Br < 3/2,

N
ZV(o,xj)+ > W(Ij,xk)]u*

1<j<k<N

£y Lyt < L5 L | ooy (1.8)

H=(R)N)
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Based on the above inequality, new hyperbolic cross space approximations of eigenfunctions have been studied in [9].
Let

(P55 ) (x) = J(RS)N LS (€)(e) e dg (1.9)

where ]lfy’g’eigen is the characteristic function of the hyperbolic cross space Dzigen(R, Q)

DIEM (R, Q) = {(wl,--- o oY (1+‘ ) | ( ‘ > } (1.10)

0=1,24ely

Then there exists a constant Ch,ix independent of Z and N such that
e for any 2 > C’mixx/ﬁmax{Z, N},
e for any a €[0,5/4),8 € [0,3/4) and o + 8 < 3/2,

we have

igon 24/27ed/8
Hu* — 'Pf’vBQve ge U*HL2((R3)N) < THU*HLQ((RLS)N) (1.11)

(see |9, Theorem 2.5]). In particular, whenever we take any @ = 8 < %, this new hyperbolic cross space approx-

imation does not rely on the antisymmetry of the wavefunction. Therefore, it also works for the bosonic N-body
system where the wavefunction is no longer (partially) antisymmetric. In addition according to [16, Chp. 8],

1
|Delgen(2L D < (2L)1Jr Then |Delgen(2L D < (2L)mi"<:«ﬁ}. This implies that the rate of convergence in (1.11]) for
the case ay = Br ~ does not deteriorate at all with the number of electrons: It behaves almost the same as with
the expansion of a one—electron wavefunction.

1.2. Mixed regularity and hyperbolic cross space approximation of (L.1). We first study a mixed regularity

for the time-dependent problem (|1.1)) analogous to (1.5)). Then, we consider a hyperbolic cross space approximation
of (1.1)). Here we justify the approximation of Eq. (1.1)) rather than only the approximation of solutions as in
(1),

1.2.1. Mized regularity. As for (1.6)), our mixed regularity is also associated with the operator £;. Our main result
on mixed regularity (i.e., Theorem [2.6|) states that under Assumption for p=3—and T < (ZN + N?)72~ (see
Remark , we have

Z ||£hu||1:°C [0,T],L2((R3)N 2 HEIeUHXpT Sp Z HﬁIzUOHL?((RB)N (1.12)
0=1,2 0=1,2 0=1,2

where X, 7, defined in Section is our functional space for the evolution problem (1.1)).

Remark 1.4 (Regularity of the initial datum ug). Under Assumption the reqularity L1,ug € L2(RH)N), £ =1,2
is reasonable. For simplicity, we assume that ug is totally antisymmetric (i.e., antisymmetric w.r.t. {1,--- /N}).
For models such as Hartree—Fock, the initial datum ug can be written as a Slater determinant u(x) = /\;-\;1 ¢; with
¢; € H(R®). Then it is not difficult to see that for the Hartree—Fock initial datum, we have Ly ... yyug € L*((R3)N).

Remark 1.5. For the evolution problem (1.1), we can not consider the fractional Laplacian operator L]’ E?C’, as in
. In the proof of (L.7] , Eq. (1.8)) is used, and the H1((R®*)N) norm in the left-hand side plays an important
role to balance the opemtor Eo‘fﬁ . Here we rather show that for some 8 >0 and 2 < p < 6,

I1£1Qu|x, . < CT°|Lrulx,

where Q is defined by (2.11)) (see the proof of Theorem or Section below).

1.2.2. Hyperbolic cross space approximation of (1.1). With our mixed regularity in hand, we can now study the
corresponding hyperbolic cross space approximation of (L.1) under Assumption
Define by D the following hyperbolic cross space

Dp = {(wl, cown) e RN T T+ 2w )2 < R} . (1.13)

0=1,2 jeT,

Let xr : (R®)" — [0,1] be a function with values xg(w) = 1 for w € Dr. Then, we can define the following
operator:

1

P =|—= -
( XRU’)(J:) <\/ﬂ N

Here Fg, ... oy (u) is the Fourier transform for N electrons defined in Section
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In [15] and [9], only the error bound between the eigenfunctions to (1.3]) and the hyperbolic cross space approxi-
mation of these eigenfunctions (i.e., (1.11])) has been considered. Compared with the result (1.11)) for the eigenvalue
problem (1.3)), we can justify the following hyperbolic cross space approximation of (|1.1J):

i@tuR = HN,R(U/R>7 te IT, (114)
ur(0, ) = Py (uo)(z)
with
N N M N
Hy g(u) = ), —*A U — Z D PVt aju) + Y, Pou(W(xy,zx)u).
=1 =1p=1 1<j<k<N

Then our main result on the hyperbolic cross space approximation (i.e., Theorem [2.8)) states that under Assumption
a solution up to (1.14) exists in X, ;. Furthermore, for p = 3— and T < (ZN + N?)72—,

lw = wrllzgo,r,L2 (o)) < lu = urlx,» Sp 3 Z I1£1,woll L2 ((rs)~)- (1.15)
0=1,2

Remark 1.6 (Complexity of (1.14))). Notice that |Dg| < |D?%QH(R, 1)|. Then according to [16], the complexity of
our hyperbolic cross space approrimation is close to that of a two-electron problem.

Remark 1.7 (N-dependence of the initial datum wg). In above estimate , the error bound depends on
[L1,u0l L2 sy~ which is also an N-dependent quantity. In molecular dynamics, in many cases, we can assume
that before the nuclei move (i.e., at t = 0), the electrons are in a stable state (in the ground state). This means
that ug is the first eigenfunction of . According to [15, Theorem 9], with the scaling © — ﬁ with 0 given as

in (1.11), we know that there exists C > 0 such that for any N > 1

2. It L rauo] 1o sy < Cluolzaeayy).
0=1,2

where Tqu(-) = |Q|%u(@) Thus the N-dependence of ug can be overcome if we replace the operator P, , by

T 1PXRTQ. We refer to [J] for its numerical implementation.

Remark 1.8 (Constraints on T'). We shall point out that the constraint T < (ZN + N?)72~ is due to mathematical
techniques. This constraint is not relative to our mized regqularity: We have this constraint even for quantitative
estimates of the existence of solutions (i.e., ) Indeed, as the Hamiltonian is not homogeneous, it is
possible to overcome the constraint of T' by using scaling.

Remark 1.9 (Explanation of the construction of P, ,.). The operator Py, can be regarded as a generalization of
the projector Py, . where 1p, is the characteristic function of Dgr. For the eigenvalue problem (1.3)), it is easy to
see that '

11— XR)U*HLQ((R3)N < |- PHDR)U* HL2((]R3)N)~

However, concerning the evolution problem (|1.1] , there is no reason to assume that similar inequality holds true on
our functional space X, r: for some p,T > 0,

(1 = Peg)ullxpe 10— Prg, Julx, -

As a result, if we use directly PJIDR: there is no reason to show that the numerical discretization such as wavelet
basis discretization [5] can be considered. To avoid this issue, we have to consider a more general operator Py,
such that we can consider as many as possible numerical discretizations in this paper.

Organisation of this paper. This paper is organised as follows.

In Section |2 we first introduce our functional spaces, and then state our main results. To better understand our
methods, we point out the main difficulties of the proofs and our strategies to handle them in Section [2.4]

Then in Section [3] we introduce the Strichartz estimates and some Sobolev inequalities on our functional spaces.
Section [4|is devoted to the proof of the existence and mlxed regularity of . (i.e., Theorems . Then in
Section |5 we rigorously justify our approximation (1.14]) (i.e., the proof of Theorem [2.8]).

Finally in Appendix [A] we adapt the Calderén—Zygmund inequality and the Mikhlin multiplier theorem to our
functional spaces. This is the basis of the proof of our Sobolev inequalities.

2. SET-UP AND MAIN RESULTS

In this section, we first introduce our notations and functional spaces. Then we state the main results. To better
understand this paper and our method, we end this section by explaining the main difficulties and our strategies to
handle them.
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2.1. Some notations. To avoid ambiguity, we first clarify notations used in this paper.

We say a < b, it means that there exists a constant C independent of N and Z such that a < Cb. We say
a <, b, it means that there exists a constant C'(p) only dependent on p such that a < C(p)b. We shall point out
that whenever we use a < b (resp. a <, b), the constant C' (resp. C(p)) is always independent of N and Z.

Then we define our convention for the Fourier transform. Let f € L?(R®) and g € L?((R?)"), then the Fourier
transforms of f and g are respectively

D) = | Fe ey,

and
-Fxl,n-,zN(g)(g) = —FxN Oofxl(g)(g)u 5:: (517"' 7£N) with fk ER37 k= 17 7N~

The subscript ¥ or x; is used to indicate on which variable the Fourier transform acts.
For any I — {1,---, N}, we define the operator

Lr=]Ja—-an" (2.1)
jel
This operator is defined in the Fourier transform sense:
Fai o an (L1g)(§) = H(l + ‘27T§i|2)1/2]:w1,'" Y IN (g)(E)
jel
Finally, we also need to clarify some notations used in Strichartz estimates: for any 2 < p < 6,

(1) p’ is defined as follows

= 1; (2.2)

;-:(1-3)

The pair (p,6,) is called Schrédinger admissible on R3. In particular, (6,2) is the endpoint Schrodinger admissible
pair on R3. The notation 6}, is also defined by (2.2).

(2) 6, is define by

2.2. Functional spaces. For the N-body problem (1.1)), one of the main difficulties is the complexity of the
functional space due to the singularity of the Coulomb potentials.
First of all, let H = L2((R*)"). For every set I < {1,---, N}, we define the Hilbert space H; := L3((R*)") of
the wavefunctions antisymmetric with respect to I by
H; = {g € H; u is antisymmetric with respect to I}. (2.4)
Concerning mixed regularity, we also define
H} i = {9 € Hr; Lrg € H}

endowed with the norm

lgle: . = |L1glln-

I,mix

For two functional space A and B, we also need the functional space for bounded operators from A to B which is
defined by the norm:

IT|5ca,By := sup [Tu|z.

\u ‘A=1
If B = A, then we use the shorthand B(A4) = B(A, A).

Now we introduce our functional space for the evolution problem (1.1)). Concerning the potential between
electrons and nuclei V' (-, z;), we need the following functional space: For 1 < p < o,

2 3 2 3\N—-1
LE® = LP(R; , L*((R*)7 7))

p/2
ol = | (J |g|2dx1...dxj...dm> u
B Jey sy

The notation Ex\j means that the integration over the j-th coordinate is omitted. We also use the shorthand Lé’ 2
for L2,

with the norm
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Concerning the potential between electrons and electrons W (x;, xy), to deal with the potential W(x;, xy), we
need first to change the variable: Let

Tig = %(z] — k), Rjk = %(xj + k),
and let R; ; be a unitary operator defined as follows
Rjkg(Tjhs Rk T1ye o Tj1, Tja1, 0 ko1, Tha 150 5 TN)
=g, xj—1, (i + Rik)s@iet, 5 Te—1, (Byk — T5k), Tht1, 7). (2.5)
Then, the functional space for W (x;, xy) is defined by
Ly = IP(RY,, LP(RH)N )

Tj,k’

with the norm

p =
Il = |

"3,

p/2
<£R3)N1 'R xgl* dRj pdxy - dw; - - - dxj - - -de> dr; k.
k

Obviously,
lglp2 = IR kgl 22 - (2.6)
Js gk
For future convenience, we will use the notation L% with D < {1,---, N} and 1 < |D| < 2 to above functional
space. More precisely, if D = {j} < {1,---, N}, we have
)2 2.
L™ =19
if D={j,k} c{1,---,N}, we have
2 _ P2
L™ =Ly

For the time-dependent problem (1.1}, the full functional space that we use is the following: for some p > 2,

Xpr = LE(Ir,H) () Lir(r, L%)
Dc{1,-,N}
1<|D|<2

with the norm

lulix, = max 4 ful g ez, | max | ful o, pp)

1<|D|<2
Remark 2.1 (Dual space). It is easy to see that for any D < {1,--- N} and 1 < |D| < 2, the dual space of
.0 !

LY (I, IB?) is Ly? (Ip, LE?).

Concerning mixed regularity for the time-dependent problem (|1.1)), we also need the following functional space

X o =1{ue Xpr [\ L¥Ir. Hi); Liue X7}
with the norm
lulx , = 1erulx, -

2.3. Main results. Now we can state our main results. Before going further, we need the following assumption.

Assumption 2.2. Let a, p > 0 and T > 0 be chosen such that

(1) 5= <p<6and0<a < 3;
(2) 1/0, < 1/6} for some 5a <P <6;
(3) CT,l(Z—l—N)NTl/%*l/eP < % with Cp := max{Cr,1,Crg2,Crs} = 1. Here Cr1, Cr 2 and Cr 3 are constants
only dependent on o, p,p given by , and respectively.
Remark 2.3 (Nonemptiness of Assumption and estimate on 7). In Assumption we can toke o = %—, p=
3— and p = 3+. Under this choice, 1/9%— 1/6, = %—. Thus Assumption is not empty and T < (ZN + N?)~2~.

Remark 2.4 (Endpoint Schrédinger admissible). For Theorem and Theorem below, the condition and
n Assumption on p,p can be relaxed: One can reach p =6 or p = 6 for these two results. However, due to
Corollary[3.5, p =6 and p = 6 is excluded for Theorem[2.8

Concerning the existence of solutions to (|1.1]), we have
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Theorem 2.5 (Existence of solutions). Let a, € H. For every ug € H, the problem (1.1) has a unique global-in-time
solution u € X, o.
Furthermore, under Assumption[2.3 on p and T, we have

lulx, » Sp luoll- (2.7)

Indeed, this result can be found in [13] in a more complicated setting. Here we modify the proof to make it
compatible with Theorem [2.6] and Theorem [2.8 below. The details of its proof can be found in Section [£.1]

Concerning the mixed regularity of solutions to (1.1)), we have

Theorem 2.6 (Mixed regularity). Let I < {1,--- ,N}. For every ug € H}mix, under Assumption the problem
([L1) has a unique solution ue Xi, o and

lulxy . <p luola; (2.8)
I,p, T

I,mix
The proof of Theorem [2.5]is provided in Section

Remark 2.7. Compared with Theorem we do not know if u € X}’p’oo. This is because that u satisfies the
conservation law (i.e., |u(t)|y = |uollz for any t € R) while Liu does not.

Finally, concerning the justification of the hyperbolic cross space approximation (1.14)), we have

Theorem 2.8 (Justification of hyperbolic cross space approximation). Let a, € L*(R), and I, I be the set given
as in Proposition . For every ug € Hy, i (VH], mixs the problem (L.14) has a unique global-in-time solution
UR € Xp,oo
Furthermore, under Assumption[2.3, we have
1
o~ urlx, e o 5 3 luol; (2.9)
0=1,2

0 mix

This proof is provided in Section [5}

2.4. Main difficulties and strategies. Before giving the proof, to better understand this paper and our method,
we shall explain the main difficulties and our strategies to handle them.

2.4.1. Basic idea of the proof of Theorem . We recall the free propagator U (t) = exp{3it Zjvzl A}, and denote
the integral operator S and @ respectively by

Su(t) := L Uo(t — m)u(r) dr (2.10)

and
Qu(t) := i S(V(~,$J~)u(-,x))(t) + Z S(W(mj,xk)u(-,x))(t). (2.11)

By Duhamel’s formula, solutions u to (1.1f) satisfy
u(t) = Up(t)ug — iQu(t). (2.12)

As in [13], the basic idea for Theorem [2.5]is to show the invertibility of 1 + iQ on X,, 7 for T small enough. This
follows from the fact that for some # > 0,2 <p<6and 0 < T <1,

|Qullx, » < CT’|lulx, »-
Then for CT? < 1, we have |Qulx, , < 3|u|x, .. Thus it is easy to see that 1 + i@ is invertible on X, 7. Finally
from , we infer that
u(t) = (1 +4Q) Uguo € X, 1.
2.4.2. Main difficulties and strategies for the proof of Theorem [2.6. Concerning mixed regularity of the evolution

equation (|1.1)), we use the same strategy as explained in Section We are going to show that 1+¢@Q is invertible
on X7 p. The main difficulty of this paper is to show that

6
L <CTuly; .

IQulx;
Tts proof is much more delicate than the one for the existence (i.e., Theorem [2.5)).
Let
Loy= [] a=2a)"  Lige= ] (-2 (2.13)

mel\{5} mel\{j,k}
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In particular, if j ¢ I, we have I\{j} = I. Before going further, we first give a glimpse into £;Qu:
N
£1Qu= Y, 8((1 =87 [V () Lru] ) (1
j=1

£ S( =85 A= AW (gm0 Lrsu] ) (0, (2.14)
1<j<k<N
where v; = 1/2 if j € I, otherwise v; = 0. It is not difficult to see that we have two main difficulties: The fractional
Laplacian operator (1 — Aj)l/ 2 on the functional space LZB2, and the singularity of Coulomb-type potentials.
Operator £; on LIBQ. For the eigenvalue problem (1.3]), there is no problem: Thanks to the Plancherel theorem

on Hilbert space H, we have
2

Lol = D,

JcI

X)Vj v

jeJ

H
For each V;, we can use directly the Leibniz rule: V,(fi(y)f2(v)) = f2(y)Vyfi(y) + f1(y)Vyf2(y). However, due
to our functional space L%’27 this identity no longer holds in our problem.

To overcome this problem, we use the fact that

1/2 _ 1 VJ'

(-8 = = xym o agm (V) (2.15)

7z on the functional space LZBQ for some p > 0, especially

It remains to study the operators (1_A1j)1/2 and (1_2)

on L 2 and Ly 2. This can be studied by using the Calderon-Zygmund inequality and Mikhlin’s multiplier theorem
(see Appendix. Theorem shows that for any 1 < p < o0,

1 V;
(1= 2127 (1= A2
with je Dc{l,---,N}and 1 <|D| < 2.

Singularity of Coulomb-type potentials. With Eq. (2.16) in hand, in order to prove (2.14)), it suffices to
study the terms such as

e B(LY?) (2.16)

S(VilV () Lrgul)
and
S(V5 ® VilW (a5, 20) L1 jpu ).
In particular,
Vi @ Vi[W(zj, ax)Lrju] = [V; @ Vilzy — x| u + [Vla; — 2| ] @ Viu
+ Viu® [Vile; — x| 7' + |25 — 21 7 [V; ® Viul.

Terms like V; ® Vi|z; — 25| ~! ~ |2; — 21| have very high singularities at z; = zy.

To overcome this problem, as the study of the eigenvalue problem in |9,|14], we would like to use the
property that ug € H}!mix is antisymmetric w.r.t. I. This implies that v € H; (see (4.14))). From |9, Lemma 3.7
and Corollary 3.8], we have

Lemma 2.9. [9, Lemma 3.7] Let a € R3. Denote the functional space Ys(R3) by
Yo(R?) == {f(y) € L*(R®); |y — a** 72V, f € L*(R?)}.

Then for s € [0,3/2) and f € Ys anti(R® x R3), we have

=

_a|s

<2 H Vyf
rerey 128 =3[ |- —al*7t

L2(R?) .
and
Lemma 2.10. [9, Corollary 3.8] Denote the functional space Yonti s(R® x R3) by
Yanti(R? x R?) := {f € L*(R® x R?); f(y,2) = —f(2,9), [y — 2|* >V, ® V. f € L*(R? x R®)}.
Then for s € [2,5/2) and f € Ys anti(R? x R3), we have

4 ’ Vy®V.f
L2(R3xR3) T [2s = 5[[2s = 3] | ly — 22

=
ly — 2|

L2(R3 xR3)
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However, similar property can not be used if we calculate directly the terms like S(|z; — x| 3L j xu) as for the
standard dispersive problem (see e.g., [12,[13]): Applying Strichartz estimates for N-body problem (i.e., Lemma
as the standard dispersive problem, we will have

1S(l2j = 2l P Lrjnw)lx, o S Mg — 2l g, —ep<1 Lrgpul o + s = 21l " Lo, —ap 51 L1 g kull L (1020)

IT,L?’vQ)
for some 2 < p,p < 6 and 2 rd —|— < = 1. Here to deal with terms associated with the potential W (z;, zx), we have to

consider the functional space Lp . Notice that

B HRj,k»CI,j,kU(t, Tjk> .)HZZ,Q((RS»)N—I)
H|‘TJ - zk| 3]]‘|wj71k|<1£11j7ku( )Hiﬁ' 2 = JRd |7"j k|3§f \Tj,k|<2drj7k’
ijk ’
Notice that for any 2 < p <6, |rj |~ 3p' ¢ Lloc( ) since 3p’ > %8 > 3. Thus we may obtain

~f
Ij — «Ik|73]]'|7"j,k|<2£17jvku(t7 Moo=
J.k

even for functions u(t,-) € CF((R?)V). This is the reason why we can not calculate directly terms like S(|z; —
k| 2L k).
Nevertheless, we can study £;Qu in scalar product: For any D < {1,--- ,N} and 1 < |D| < 2, and for any

u(t,z) € Xpr and v(t,x) € Lf’“ (I, Lp/’2) or v(t,z) € L¥ (I, H), we are going to prove

[ <810~ aul> 2150000000

< Tlulxs, min{o] o

L% gy 1lEE a0} (2.17)

for some 6 > 0. The advantage of this method is that the above problem can be studied on H:

[[ ¢80 — a1 £aga@ e a

T
= || s =l o) ey — o570 ds
0

< j 2y — 22 Lr (s e lle; — 2ol S0 (s) |5 ds.
0

When 0 < a < %, we can use Lemma However, a = 0 shall be excluded: In the proof, we will use the following
inequality

[lj = l‘kl”lS*v(S)HH <11yl o @) 1% 0(9) | o2 + 150 (8) - (2.18)

Here 2 <p <6 and 1 + 1 = 1. This implies that 7 > 3. However when o = 0, we have || - [ 1< r-(rs) = o0 for
any r > 3. Thus o = 0 shall be excluded.

2.4.3. Basic idea of the proof of Theorem [2.8 Concerning the hyperbolic cross space approximation, our main
difficulty comes from the operator Py, on X, r. For general function g € X,, 7, we even do not know if there exists

a functional space X such that

[ Pxrglx,» < lglz

However, we mainly study P, ,Qu or (1 — P, ,)Qu: The H-bounded operator P,, can be absorbed by operator S
(defined by ) This is the purpose of Proposition and Corollary

Let u and ugr be the unique solution to the evolution equation and its hyperbolic cross space approximation
respectively. Concerning the study of the error bound between u and ug, we split 4 — ugr into two parts:
u — Pyyu and Py ,u —ug. We will see in the proof of Theorem [2.8| that for 7" small enough

1
[ = urlx,r < lu—=Pepulx,r + 1Peat = urlx,r < v = Peulx,r + 5lu—urlx,
On the other hand, Lemma shows that |u — Py ulx, » < % D 10 HUOH}{M . As aresult,

1

lu—urlx, < 5 luollkr, -
! R =12 -

3. PRELIMINARY

We start with introducing some fundamental tools used in this paper.
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3.1. Strichartz estimates. In this subsection, we introduce the Strichartz estimates used for the study of the
N-body problem in [13] on the functional space X, 7.

The following two lemmas (i.e., Lemma and Lemma about the dispersive estimates and standard
Strichartz estimates can be found in [13, Lemma 2.2 and Lemma 2.3]. However, compared with [13]|, our Lemma
and Lemma are global-in-time. This is because in [13]|, an additional time-dependent magnetic potential
A(t,z) is added, which complicates the arguments.

Lemma 3.1 (Dispersive estimate). Let D < {1,--- | N}, 1 < |D| < 2, then
e < 13732
U@ gl Lz <p [t lgl 12

Proof. For the reader’s convenience, we provide the detail of the proof.
For the case D = {j} (i.e., |D| = 1), it is just the normal dispersive estimate inequality (see, e.g., [11, Eq. (2.22)]):

LA —
[Us(®)gl2 = 32 g] o2 <y [t~ 12

For the other case, let D = {j,k} (i.e., |D| = 2). Note that

1 1
RjxVi= 5 (Ve + Ve )Rik,  RinVie = 5 (VR = Vi, )Rk (3.1)

and
~Rjrlz —RjxDy ==L Rjk — DR, Rk (3.2)
Then, we know
RchUo(t)U = Uo(t)Rjyku.
with Uy (t) = exp (3i(X, 50 Lm + Doy + Dr, L))

Therefore,
U0l 22 = IRsxUo(B)gl 22 = 1T0(R;al 2
Sp 72 R kglps Sp [H721gl 522
Hence the lemma. g

Then, using the above dispersive estimates, we have the following Strichartz estimates:

Lemma 3.2 (Strichartz estimate). For D, D' < {1,--- ,N},1 < |D|,|D'| <2 and 2 < p,p < 6, we have

”UO(t)gHLfI’ (R,LISQ) SP Hg||7'[7 (333‘)
U(s)*u(s)ds| <plul op 0 (3.3b)

J]R w P e L)

Il 0 g2y 0 I 5 e (3:30)

Here % =3(3 — %)

This is the standard Strichartz estimate. One can easily obtain these estimates by using [6].

Normally, operators bounded on H can not be bounded on L’BQ. However, the following tells us that after adding
the operator S, the bounded operator P on H is also bounded on LIBQ if [P,Up] = 0. This is an essential ingredient
for the study of our hyperbolic cross space approximation.

Proposition 3.3. If 2 < p,p < 6, for any operator P acting on H, if [P,Uy] = 0 and |Pfollrz < |f|xn, then

IPSuC Dt gy S0 182

Remark 3.4. Let P = P,,,. As Py, is a Fourier multiplier, it is possible to reach the endpoint acse p,p = 6 in
Propositz'on by repeating the arguments in [6).

Proof. We are going to use the Christ-Kiselev lemma [4] to prove this lemma.
Since P and Uy commute, we have

PJ;a Uo(t — s)u(s, x)ds

_ ‘Uo(t)PJR Us(s)*u(s, z)ds

L0 (R,13?) L{” ®,LE?)

By (3.34) and [P, Up] = 0, we have

P JR Uo(t — s)u(s,x)ds <

0 »,2 ~P
L" (R,L57)

P J}R Uo(s)*u(s, z)ds

H
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<p JR Uo(s)*u(s, z)ds

Then, by | Pug|# < |lul# and (8.3b), we have

Spoi lul o

HPJR Uo(t — s)u(s, z)ds

Ly? (R,LY?) H L @,LY?)
Then by Christ-Kiselev lemma, for any 2 < p,p < 6 we have
P | Uilt = sju(s.a)ds Solel g
H R L (R,L%?) mr PR, L2y
O
Corollary 3.5. For D,D’' c {1,--- ,N},1 < |D|,|D'| €2 and 2 < p,p < 6, we have
H SU” QP(R P 2) NPP HU’HL p(R Lf,/ 2) (34&)

-1
1
<1§<2 £12> (1= Pyy)Su . Srd R HUHL%(R,U]’D’E) : (3.4b)
Proof. By the definition of P, ,, we have
[Py Uo] =
and
[ Prrtillre < .

Let P = Py, then we get (3.4a).
Concerning (3.4b)), we have

[(1 = Pyp)ulla < Mpg, Fay o o () |1
For all wave vector w outside the domain DR, we have
Z H (1 + |27w;|?) V2.
1<e<2 €T

By definition of xr, we know

-1 -1
R (Z .cfl> (1-P)ul <R ( > ,ch) (1= Py u| < Jula. (3.5)

1<(<2 ” 1<0<2 “
-1
Given [Ly,,Up] = 0, then take P = R(1 — P, ) (Ze 12 Eh) , we get conclusion. O

3.2. Sobolev inequalities. For the study of mixed regularity, we need some Sobolev inequalities on functional
space L'BQ. To do so, we study the Calderén-Zygmund inequality and Mikhlin multiplier theorem to our functional
space L? 2 in Section [Al Then we generalize these results to the functional space L?”,z.

Theorem 3.6. For 1 <p <, and D < {1,--- ,N} with 1 < |D| < 2, we have
IViglee <p (1= 25) gl e, (3.6a)
l9l ez Sp 11— 27) g ne. (3.6b)

Proof. We first consider the case j ¢ D. By the Plancherel theorem on variable z;, it is easy to see that (3.6a)-([3.6b)
hold.

Now we assume that j € D. If |D| = 1, then D = {j}. In this case, we use Theorem For the first inequality,
we only need to study equivalently the following inequality

1951 = 8) g1 30 Sy il @)
Then Theorem [A2] with n = 3 and
§ 3
a(g) = W fOI'fER .

implies (3.7). The second and third estimates can be treated in the same manner.
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Finally, we assume that j € D and |D| = 2. We can assume that D = {j, k} with k€ {1,--- , N}\{j}. We study
first (3.6al). By the Plancherel theorem on variable R;x, (2.6), (3.1) and (3.7),

1
I3l 122 = 31T, = Vi, )Rkl 2,
1 .
= §|‘(Vrj’k - ZQTrgRj,k)‘FRj,kRj)kgHLffk

1 .
= §HVTJI< exp (_7’27”"]',16 . gRj,k)ij,kRj,kgHLﬁfk

1 .
Sp (U= 380, )" exp (—i2mr k- €r, ) F R Rikg a2,
1 .
= ”(1 - Z|VTJ‘,IC - 7’27T§Rj,k|)1/2FRj,k:Rj,kguLffk
1
10— H 19+ Vi PR gl = 10 )]

2
Jik

Here we have the fact that for any function f(y) with y € R3, we have

(1 - 30,)" exp (~i2ma- &) (1)
= @ =2l ) 2F, (exp (—izna - ,)F) (&) | )
= 7 0= I P2 E ()6 + )| ) = (1 119, - i2mal?) 2 f(y);

and in the last identity, we use (3.2]). This gives (3.6a]) for |[D| = 2 and j € D. Eq. (3.6b)) can be studied analogously.
Now the proof is completed. O

4. EXISTENCE AND MIXED REGULARITY OF SOLUTIONS

In this section, we are going to study the existence and mixed regularity of solutions to (1.1). We shall point
out that the proof of the existence and uniqueness of solution can be regarded as an adjustment of |13] under our
setting, and we mainly focus on our mixed regularity of the solution.

4.1. Existence of solutions. In this subsection, we are going to study the existence of solutions to in Xp 7.
As mentioned above, the study of mixed regularity of solutions is our main object rather than existence. So we
prove the existence of solutions by using the same method as for mixed regularity. It will help us to understand the
proof of mixed regularity. In addition, we shall point out that this method is not the best way for the proof of the
existence of solutions, but as explained in Section [2.4.2] it is necessary for our study of mixed regularity.

Proof of Theorem[2.5, As explained in Section we are going to show that [Qu|x, , < CT|ulx, . for some
0 >0 2<p<6andT > 0. Here we use the method for mixed regularity and consider this problem in the

scalar product: For any D < {1,--- ,N} and 1 < |D| < 2, and for any u(t,z) € X, v and v(t,z) € Lf” (IT,L%/’Q) or
v(t,x) € L} (I7,H), we are going to prove

T
L (Qu)(b). vlt)) dt

"] .
S Tl g minglol g e [0l rr.00)

for some 6 > 0.

To do so, we split the study into the case of potentials between electrons and nuclei, and the case of potentials
between electrons and electrons.

Step 1. Study of the potentials electrons and nuclei. For any 0 < o < %, we have

LT <S<|xj_1au(')u(-7 x)) (t), v(t, CL‘)> dt
T
L <mu(s,x),Ws* (U(.,x))(5)> ds

T
<J
0

1

|25 — an(s)]*

1

lzj — au(s)

ds. (4.1)
H

u(s, )

= S* (v(~7 x)) (s)

H
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According to the Holder inequality, for any 2 < r < % and % + p% = %,

(s, 2)] = |t 2] |
lzj —au(s)le 7 ln |z —au(s)]® P JILA (RN L2(R3)
1
= O]y m—— N I O
xj —au(s)|® |z —a,.(s)|<1 I, L
S [(3) e+ [(3)] (12)
andforany2<?<%and%+%:%,
1
e (5*0)(9)| S (S + (8% - 43
e @), 50 1S D@+ 15 D)@l (43)

Now we are going to apply the dual form of the Strichartz estimate (3.3c) to S*v. Before going further, we
have to add the restriction 2 < p < 6 to use the Strichartz estimates. Then gathering together 2 < 7 < % and

%+%=%,Wehave
6 ~
—- <P <6 (4.4)
Then for any D < {1,--- , N} and 0 < |D| < 2 and for any p satisfying (4.4) and p satisfying 2 < p < 6,
I5* 006wty g minllol g e olstion o) (45)
and
150055 3y S Il e Dolascan ) (4.6)

To make the mapping ) from X, r to itself, we need to set p1 = p. Thus, 2 <p; =p < 6. Thisand 2 <r < 3

o’
1 1 1
el T2 imply that

6
3 — 2«

As a result, from ([{.1)-(4.3) and (£.5)-(4.6) we infer that, under condition (I)-(2) in Assumption on «,p,p,
forany 0 <T <1and any D = {1,--- , N} with 1 < |D| < 2,

OT <S<|xj—1au(-)|u(" .73)) (t),v(t, x)> dt

<p<6. (4.7)

T
1 1
< ——u(s, ) — 5% (v(-,2))(s)| ds
Jy e e =augr=e" 0]
Sows (1t e + 10y 1y pr) )IS*0ll om0
+ ( Ul o + . ) S*v
R LTy | JE s
Saps TV (Jul e 1 30y + uuupr(,T,Lf,z)) minffol o, e ol 0)- (48)

Here we also use the assumption that 1/05 —1/6, > 0. As u € X, 1, by duahty7 for any 0 < T < 1 and any
Dc{l,-- ,N}with1<|D| <2
1 .
5 T |l x, -

1
max {HS<|$1 — au(')|U(.’x)) , S(Fj — au(.)‘u(-,x)) LfP(IT,L‘g2)} Sa.pp

As a result, we infer that under under condition — in Assumption ona,p,pand 0 < T < 1,

ISV o)), , Saps 2%l x, - (4.9)

L (Ir,H)

Step 2. Study of the potentials between electrons and electrons. The proof of Step 2 is essentially the
same as for Step 1. So we just point out the difference.

For W’ the estimates ) and (4.3)) become: For any 2 < r < % and % + p% = %,
1
m“(s) N Sap [uls)|x + HU(S>||L§;:’
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andforany?<17<%and%—k%:%7
1
T STS)| Sap [(SF0)()a + [(S*0)(s)] o2
|xJ mk' H Lk

Then arguing as for Step 1, we need to set p; = p, and p satisfies (4.7). Then under condition — in Assumption
on a,p,p, forany 0 <T < 1 and any D < {1,--- , N} with 1 < |D| < 2,

R

T 1 1 .
<[ |t _mau(s,m‘H STt s
S T (Jul e + Vel gy o) w000l o Ioligapan) (410
As a result under condition — in Assumption ona,p,pand 0 < T < 1,
ISW (220wl Saps T/l x, . (4.11)

Step 3. Conclusion. From (4.1) and (4.11]), we infer that under condition — in Assumptionon a,p,p
and 0 < T < 1, there exists a constant Cr 1 := Cr1(«a,p,p) = 1 such that

|Quly, , < Cra(Z + N)NTY% =Y || x .. (4.12)
Now let Cp1(Z + N)NTY%=1/% < 1, we get

|Qullx,» < HUHXP T

Note that 7" < 1 under the condition Cr1(Z + N)NTl/eﬁfl/GP <4

5- Thus under Assumption on p, T, we know
1 +1Q is invertible on X, 7. As a result,

w=(1+iQ)~" (Uo(-)uo) (4.13)
and
lullx, » = (1 +iQ) ™" (Uo(-)uo) | x, » < 2I1Uo(uolx, r Sp luoln-

This gives (2.7) and shows the uniqueness of the solution u € X, 7. Besides, it is easy to see that |u e r ) = |luoll-
The standard continuation procedure for the solutions to (L.1)) yields a unique global-in-time solution u € X, .
This completes the proof of Theorem O

4.2. Mixed regularity. Now we can study the mixed regularity of the unique solution.

Proof of Theorem[2.6 Before going further, we first show that u(¢, ) is antisymmetric w.r.t. I for any ¢ € I7 with
under condition in Assumption on T. Let j,k € I, then we know that uwy = —P;j yup. Under Assumption

from we infer
—(14+iQ) M (Up(-)Pj xuo) = —Pj (1 +iQ) " (Uo(-)ug) = — P} u.
Here we use the fact that Uy(-)Pjx = PjrUp and QP;, = Pj Q. As a result, we infer that under Assumption
onp, T,
u=—PjLu in Xp,r. (4.14)
Hence u is antisymmetric w.r.t. I for any ¢ € Ip.

As explained in Section we are going to show: For any D < {1,--- ,N} and 1 < |D| < 2, and for any
u(t,x) € Xj , p and v(t,z) € Lf” (IT,L%’Q) or v(t,x) € L¥(Ir,H), we are going to prove

HUHLSO(IT;H)}

f (L1Qu)(t),v(t)) dt| £ T°|ullx;  min{|v] o

P([ LP

for some 6§ > 0 and 2 < p < 6. We also split the study into the case of potentials between electrons and nuclei, and
the case of potentials between electrons and electrons.

Step 1. Study of the potentials electrons and nuclei. First of all, we assume j ¢ I. Then we have

1 1
[:] u = /J[u.
lzj — au(t)] |25 — au(t)]

According to (4.9), we infer that under condition — in Assumption E 2.2 and for any 0 < T < 1,
ISEH VGl = ISVC)Erlys  Saps 2775Vl

Ip.T’

(4.15)
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Now we consider the case j € I. By (2.15)) we have

1
Li——————u=(1-AN)—— L/ u
Mo —ao~ A e el
1 1
—(1-ANY2 | = roaulTi=ANVY2V ] V| ——— ..
S [|xjau<t>|£f’f“] (0= 277 Vf[xjam“”“] (416

where L ; is defined by (2.13). For the first term on the right-hand side of (4.16)), from (4.8]), we infer that under
condition (I)-(2) in Assumption [2.2]and for any 0 < T < 1 and any D < {1,--- ,N} with 1 < |D| <2

JOT <S(1 - Aj)_l/Q(Wﬁl,ju(',w), v(t,x)> dt

LT <S(M£1Ju(~7m), (1- Aj)_l/2v(t,x)> dt

05—1/6
Sops T/ (Jul o aran + [l oo 1y 102

comin(1= A7) g 0= 807 g0
t D

Sapp T (HUHL?’(IT,H) + HUHpr(IT’L.z;JJ min{HUHLfg(I%Lg,z)a vl e (rr,20) }- (4.17)

Here we use the fact that [S, (1 — A;)/?] = 0 in the first equation and Theorem in the last inequality.
For the second term on the right-hand side of (4.16]), notice that

1 1 1
Vi| ———— L u(-,z)| = Lr;iViu(-,x) 4+ |Vj————— | L1 ju(-, x),
e =a et = eVt + Vo oy ennte)
and by Lemma |2.9
1
z;—a,( )| YV ——m | L gu(-, )
| J iz | [ J|xj—aﬂ(')|] I,j ”
1 1
< |———————Lrju,z So |———=L1;Vju(,z)| .
55— au (e b Se i e Vo]
Thus,
1 1
\xj_au(.)|1—avj[7glju(.,x)] Sa Lr;Viu| . (4.18)
lzj —au()] H lzj —au,()]> ey
Then we have
T 1
_ANY2g 7. ) e
-[0 <S[(1 A;) Vil (vj[|$j — aH(-)\El’Ju( ,x)]) 7U(t7x)> dt
T 1 1
< - Ava [ B o A2 (.
NQJ:) [zjau(S)laﬁl’iju(s’x)]H Izjfau(8)|17as (1= 270500, 2))(6) n o (4.19)

Proceeding as for (£.8) and (4.17)), we infer that for under condition (I)-(2) in Assumption 2.2for any 0 < T < 1
and any D < {1,--- , N} with 1 <|D| < 2,

LT (511~ a,)72v,]. (vj [lwcf,ju(-,x)D ot o) ) de

[zj —ap

0.—1/0
Saps TV ‘”(HVjﬁI,jUHL?(IT,H) + ijﬁz,juHpr(ImL?,z))

xmin {[(1 = A,) 72V 0] (1= 2)"2V0l L ap30)}

ra |
,L%%)

Sans T (1Lrul o apiny + €10l oo gy oy ) mindlol g s Woligan o) (4.20)
t t D

Here in the last inequality, we use Theorem again. As a result, (4.16), (4.17) and (4.20) show that under
condition — in Assumption and for any 0 < T <1 and j € I,

Hﬁ]S(V(7 xj)u)”X},p,T Smpﬁ ZT1/95—1/9p ||u||X1

IpT’

Finally, this and (4.15)) imply that for under condition — in Assumption and for any 0 < T < 1,

I£1S(V(a)uly | Sapp 2% ulxy (4.21)

T
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Step 2. Study of the potentials between electrons and electrons. Now we consider the potentials such
as W(xj,zr). We have to split the study into three cases: {j,k} (I =&, |{7,k}(I| =1or {j,k} (I = {j, k}.
Case 1. When {j,k} (I = &, it means that

1 1
u =
z; —anl |z — @

ACI E[’u.

From (4.11)), we infer that under under condition — in Assumption and 0 <T < 1,

< N T1/9%71/0

|SLi(lw; — il =[S — w7 Lrw) . Saws Plulxy (4.22)

u) HXP,T

Case 2. For the case |{j,k}[)I| = 1, we can assume that j € I but k ¢ I. The case j ¢ I but k € I can be
treated in the same manner. For j € I and k ¢ I, we have

1
u
|zj — x|

1
lzj — 2kl

£1 = (1—Aj)1/2 £I7ju.

Indeed, this proof is essentially the same as for Step 1. in this proof: By replacing a,(t) by x, from (4.19)) we will
have

LT (10— 2,72V, (vj [ Lr - x)]) ot o)) de

|zj — g
T
o
0

Then proceeding as for (4.10)), we infer that that under under condition — in Assumption and 0 < T < 1,

1

|z — zp |t

S*((1— A2V 0(,2))(s)|  ds.

H

[#ﬁl’jvju(s, :c)] N

|z — k|

ISl — 2l 7w Saws TP ulxy (4.23)

Case 3. Finally, we consider the case {j,k} — I. In this case, we have

e L (1—A)"2(1 - Ak)l/“‘xjimﬁf,j,ku.
According to , we have
1 1 1 1
£I|xj — xk|u . (1= A2 (1= A2 [z ka|£1’j’ku
T —vAjj)l/Q (1- ik)l/Q ‘vj[\%‘ i$k|£]’j’ku]
i (1— ij)l/Q (1 —Zkk)l/z .Vk[\%‘ iivk|£1’j’ku]
+ [(1 _VA]'J_)W ® 4 —Zkk)w] : (vj ®vk[|xj_1$k|£1,j,ku]> . (4.24)

Now the study of SL;(|z; —xx| ') is split into the study of the above four terms on the right-hand side of (4.24]).
Concerning the first term, from (4.11), we infer that, under condition (I)-(2) in Assumption and for any
0<T<landany Dc {1,---,N} with 1 < |D| <2,
1
(e
|j — @

Saws TV V%L1 s nulx, » Saps TV V% | Lrulx, .. (4.25)

Sp

1 1 1
S L1kt
‘ (1= A2 (1= Ag)'2 <|$j e ) )XP,T

Xp, T

Here in the first inequality and the last inequality, we use (3.6b).
The second term on the right-hand side of (4.24) can be studied as for (4.18]) by replacing a, by ;:

1

lzj — 2k

Lr1kVju

~

H

|z — $k|1_avj[ ]51,j,ku(v$)

|zj — 2| ”
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Then proceeding as for (4.10) and using Theorem we infer that under condition — in Assumption and
forany 0 <T <1 and any D < {1,--- , N} with 1 < |D| < 2,

J <S 1-A % 072 Zj)1/2 ' (Vj[xjimﬁf,ju(ux)]) ,v(t,x)> dt
T
g

1

1 * vj
|xj —xk|1_0‘S ((I—A»)l/Q (1—A»)1/QU( ,x)) (s)
_1/05=1/6,

'\’a7p7p

[*CI,jkaju(s,x)]

|zj — k|

H

ds
H

P(ruli g + 1L gy o ) w0l o, s Wi ara0)

Hence, under condition (I)-(2) in Assumption[2.2)and for any 0 < T < 1 and any D < {1,--- , N} with 1 < |[D| < 2,
V; 1 1
Si=a (T=agtros)
(1—A)Y2 (1 — Ap)V2 \|zj — x| hakt X, ¢
Analogously, for the third term on the right-hand side of (4.24)), we have that under condition — in As-
sumption 2.2 and for any 0 <7 < 1 and any D < {1,--- , N} with 1 < |D| <2,
(1—Aj)Y2 (1 — Ag)l/2 Y .

It remains to study the last term on the right-hand side of (4.24) where we will use Lemma and (4.14) (i.e.,
w is antisymmetric w.r.t. {j,k}). We have

|zj — k]

Sop b TV 10 ILrulx, - (4.26)

Logen)|  Saws TV |Lrulx, . (4.2

;

|zj — i

o
T — Tkl
1
+ [Vk:‘ ] ® Vjﬁj’j’ku + [Vj @Vkﬁj’j}k
) — @
Thus, from Lemma Lemma and (4.14)),

—a 1
‘xj_xk|1 vj[|x._l,k|]‘cfyjﬁku("w)
J

1
Vj ® Vkﬁj’jyku + [ij
J

| ® Vil jpu

u.

|zj — x|

H

£]7j7ij®vku LLMVju

H |; — @l
1
) — wg[*e

|zj — wp|® ”

L1k Viu

|z; — x|t Lrjku

H H

LrxV;®Viu

|zj — 2| 2"

Now proceeding as for (4.10) and using Theorem we infer that under condition — in Assumption and
forany 0 <T <1 and any D c {1,--- ,N} with 1 < |D| < 2,

f <S[ j 1/2 (1 _vAkj)l/z] ‘ <Vj ®Vk[xixk|£1,ju(-,x)]> ,v(t,x)> dt

o ;

ﬁ[vj’kvj' X Vku(s, .’E)

|33]—x | H

1 * Vi Vi
e (TR O agm ) ©

S TV M0 (Ll ) + 1l gy o ) Il g, o Wl airan}

ds

H

As a result, under condition (I)-(2) in Assumption and for any 0 < T < 1 and any D < {1,---, N} with
1< |D| <2,

slgmemaml (Denlg=agrmeal)], <

Now we conclude from (4.25)-(4.28) that under condition — in Assumption and for any 0 < T < 1,

(=)

Saps TV V% | Lrulx, .. (4.28)

0,—1/6
Sapp TV el (4.29)
‘L »
Lp,T




18 LONG MENG

Conclusion for all cases. Finally we can conclude from ([4.22)), (4.23) and (4.29) that under condition (T])-(2)
in Assumption and for any 0 < T < 1,

1 _
‘S(u(»x))H Sops 2TV Vo fulxy . (4.30)

) — @il Xt

Step 3. Conclusion. From (4.21)) and (4.30), we infer that for any 0 < T' < 1, p satisfying (4.7) and p satisfying
(4.4), there exists a constant Cp 2 := Cro(a,p,p) = 1 such that

Qully; . < Cra(Z + NINTV = jul ;. (4.31)
Now let Cpo(Z + N)NTY%=1/0% < 1, we get
IQulx, , < 5lulx, -
Thus under Assumption we have that 1 + 4@ is invertible on X},p,T. As a result,
lulx = (1 +iQ)~ UoCuo)lxy , , < 200sCuolxy <o ol -
This gives and shows the uniqueness of the solution u in X},p,T. Hence the theorem. g

5. JUSTIFICATION OF THE HYPERBOLIC CROSS SPACE APPROXIMATION (|1.14)

Now we are going to prove Theorem in particular (2.9)). Before going further, we need the following result
which can be regarded as an evolution version of ([1.11]).

Lemma 5.1. Let ug € Hj i (VH], iy Under Assumption we have
1= Pen)ulx,.r <p 5 Z luoll s ... (5.1)
=12
Proof. By Duhamel formula (2.12)), we know
(1= Pypult) = (1= Pyp)Uo(t)uo + i(1 = Py )Qu(t).
Thus, by (3.3a)),
(1= Pyr)ulx, » < U)X = Pypuolx, - + (1 = Pygp)Qut)] x, »
Sp (1= Pyp)uola + (1 = Pyp)Qu(t)] x, -
According to (3.5), we have

I(1 = Peo)uol < % P = 3l . (5.2)
RS 2
Thus,
(1= Pypulx, r < |Uo(®)(1 = Pyypluolx, » + [(1 = Pp)Qut)|x, r
1
o 2 ol + 11— P)Qu(t)|x, .- (5.3)
=12
It remains to show that ||(1 — Py, )Qu(t)|x, » <p & =12 HU0HH1 . To do so, here we are going to prove
|1 = Pe)Qu(t)x,» p RZEILHU Olxz , . (5.4)

Then by (2.8, under Assumption [2.2| we have

0= Po)@uit)lx,r 5 5 ) Tl

(=1,2

This and (5.3) give (5.1). Hence this lemma.

Now to end the proof, we prove (5.4) by using Corollary As for the mixed regularity, we consider this
problem in the scalar product: For any D < {l1,--- N} and 1 < |D| < 2, and for any u(t,z) € X}’p’T and

v(t,z) € Lf” (IT,L%’Q) or v(t,x) € L¥(Ir,H), we are going to prove

L<(1—PXR)QU)(t)7v(t)> dt| <T° )] ulxy , , min{lv] o

=12

L% (1 22y’ llzee (27,20}

for some 6 > 0 and p > 2.
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Indeed, we have

T
L (1= P)Qu)(t), o(t)) dt
N

<Y JT<cUV(s,xj)u(s),s*[( 5 ,cu)l(1—PXR)v](s)> ds

¢=1,2j=1 |70 0=1,2

+ LT </;1[W(xj,zk)u(s),S*KZ;QLIz)1(1 —PXR)’U](S)> ds

0=1,21<j<k<N
The proof of the terms on the right-hand side of ([5.5)) is essentially the same as Step 1. and Step 2. of the proof of
Theorem We only need to replace the Strichartz estimate (3.3c|) used in the proof of Theorem [2.6| by Strichartz
estimate (3.4b|). Then under Assumption we obtain ([5.4)). O

. (5.5)

Proof of Theorem[2.8 We first consider the existence of solutions to . The proof is essentially the same as
for Theorem [2.5] but we need the following modification: replace the Strichartz estimate used in the proof
of Theorem by Strichartz estimate as for Lemma Then we know that for every ug € H, the problem
has a unique global-in-time solution ug € X, «.

Now we consider . Indeed, we have

Ju—urlx, < Ju— Pegulx, o + | P —uglx, o (5.6)
Now we are going to study P, u — ug. By the Duhamel formula (2.12), we have
P u—ur=—iP,,Q(u—ug).

Replacing Strichartz estimate (3.3¢c) by (3.4a) and proceeding as for Step 1. and Step 2. in the proof of Theorem
we infer that under condition 1} in Assumption and 0 < T < 1, there exists a constant Cr 3 :=
Crs(a,p,p) = 1 such that

1Py Q= up)lx , < Crs(Z + N)NTY% =0 o — gy, . (5.7)

Then under Assumption [2.2]

1
[Perte = urlx,r < [Per@Qu—ur)ly, , < 5lu—urlx,.

Inserting this into (5.6]), we infer that under Assumption

1
lu—urlx,, <llu—Prulx, , + 5”“ —ur|x, -

Thus, from Lemma [5.1] under Assumption [2.2)
1
= urlx, » < 20u=Poul,. <5 Y Fluols
£=1,2

This ends the proof. g

¢ mix

APPENDIX A. CALDERON-ZYGMUND INEQUALITY

This appendix is devoted to the study of the Calderén-Zygmund inequality and Mikhlin multiplier theorem on
our functional space L§ 2, Indeed, this is a special case of the Calderén-Zygmund inequality for operator-valued
kernels:

Theorem A.1. ,@ Theorem 2.1.9] Let A and B be two reflexive Banach spaces. Let T is a bounded operator from
L?(R", A) to L*(R", B) defined by

Tf(x) = . K(z —y)f(y)dy
with K being a B(A, B)-valued function defined on R™\{0} and satisfying

f 1K (x —y) — K(2)|samde < C.
|z|=2]y|

Then T is bounded from LP(A) to LP(B) with 1 <p < o0.
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To apply this Calderén-Zygmund inequality to our problem for the fractional Laplacian operator, we have to use
the Mikhlin multiplier theorem.

If a : R — C is a bounded measurable function, it determines a bounded linear operator

T, : L*(R",C) — L*(R",C)
given by
T,u = at

for u € L*(R" x R™,C). Here 4(&,y) = (g, e @S u(z, y)dz is the Fourier transform and (z,y) is the corre-
sponding inverse Fourier transform.

Theorem A.2 (Mikhlin multiplier). Let m,n € Ng. Let a : R™\{0} — C be a C"*2 function that satisfies the
inequality

o C
l0%a(§)] < €l
for every & e R™\{0} and every multi-index o = (a1, , ) € Ni with |a] < n +2. Then for any 1 <p < oo,

|Taf e ®n,L2®m))y Sn I flle@e,L2@m))-

The proof of Theorem is exactly the same as the standard Mikhlin multiplier theorem (see, e.g., [10, Theorem
8.2]). The only difference is that we use Theorem with A = B = L?(R™) instead of the normal Calderén-

Zygmund inequality.
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