
HAL Id: hal-02994993
https://hal.science/hal-02994993v2

Preprint submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed regularity of N-body Schr’́odinger evolution
equation and corresponding hyperbolic cross space

approximation
Long Meng

To cite this version:
Long Meng. Mixed regularity of N -body Schr’́odinger evolution equation and corresponding hyper-
bolic cross space approximation. 2023. �hal-02994993v2�

https://hal.science/hal-02994993v2
https://hal.archives-ouvertes.fr


MIXED REGULARITY OF N-BODY SCHRÖDINGER EVOLUTION EQUATION AND
CORRESPONDING HYPERBOLIC CROSS SPACE APPROXIMATION

LONG MENG

Abstract. In this paper, we give a mathematical analysis of a time-dependent N -body electronic system in molecu-
lar dynamics. We first prove a mixed regularity of the corresponding wavefunctions. Thanks to this mixed regularity,
we rigorously justify a hyperbolic cross space approximation of the N -body electronic system. The complexity of
this approximation is close to that of a two-electrons problem, thus breaking the curse of dimensionality.

1. Introduction

This paper is devoted to a mathematical study of a hyperbolic cross space approximation of the following time-
dependent N -body electronic system in molecular dynamics:

#

iBtupt, xq “ HN ptqupt, xq, t P r0, T s “: IT , x “ px1, ¨ ¨ ¨ , xN q P pR3qN

up0, xq “ u0pxq
(1.1)

with

HN ptq “

N
ÿ

j“1

´
1

2
∆j ´

N
ÿ

j“1

V pt, xjq `
ÿ

1ďjăkďN

W pxj , xkq (1.2)

where

V pt, xjq “ ´

M
ÿ

µ“1

Zµ

|xj ´ aµptq|
, W pxj , xkq “

1

|xj ´ xk|
.

Here ∆j :“ ∆xj is the Laplacian operator acting on variable xj .

In physics and quantum chemistry, Eq. (1.1) is used to describe the quantum mechanical N -body problem in
which the N P N` electrons and the M P N` nuclei with total charge Z “

řM
µ“1 Zµ interact by Coulomb attraction

and repulsion forces. The Hamiltonian (1.2) acts on wavefunctions with variables x1, ¨ ¨ ¨ , xN P R3, representing the
coordinates of the N electrons. Each moving nucleus µ with charge Zµ P N` is treated in this paper as an object
in classical mechanics that is positioned at aµptq P R3 at any time. This model can be used to study dynamical
phenomena such as chemical reactions. An analogous setting for the time-dependent Hartree–Fock model coupled
with classical nuclear dynamics can be found in [2].

In mathematics, this evolution Schrödinger equation (1.1) is well studied. When HN ptq “ HN p0q is independent
of t, the Stone theorem guarantees the existence and uniqueness of the unitary group U0pt, sq “ expp´ipt´sqHN p0qq

such that for every t, s P R, we have U0pt, sq
`

H2ppR3qN q
˘

Ă H2ppR3qN q. When HN ptq is dependent on t, the problem
(1.1) becomes much more delicate: By using the Duhamel formula and Strichartz’ estimates, local-in-time existence
and uniqueness of solutions in C0pIT , H

2ppR3qN qq has been proved in [12] for the one-body problem and in [13] for
the N -body problem (with T À pZN ` N2q´2´).

In numerical analysis, this electronic configuration space pR3qN is typically high-dimensional for large N P N`.
Conventional discretizations of partial differential equations by finite differences or finite element methods scale
exponentially with respect to the dimension of the configuration space. This is known as the curse of dimensionality.
To overcome this problem, models such as the time-dependent Hartree–Fock model and the multiconfiguration
Hartree–Fock model are used (see e.g., [3] and [1] for the mathematical study of these two models).

In this paper, we attack directly the N -body problem (1.1) by using hyperbolic cross space approximation. The
complexity of our hyperbolic cross space approximation is close to that of a two-electron problem (see Remark
1.6), thus breaking the curse of dimensionality of (1.1). Our method is based on the study of a mixed regularity of
solutions to (1.1) provided u0 is regular enough and satisfies some antisymmetric property (due to Pauli’s principle).
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1.1. Mixed regularity and hyperbolic cross space approximation for eigenvalue problem. For the eigen-
value problem associated with the time-independent operator HN p0q:

HN p0qu˚ “ λu˚ with λ ă 0, (1.3)

the curse of dimensionality can be overcome by using spare grid methods or the hyperbolic cross space approximation
(see, e.g., [5] for its numerical implementation and [7, 9, 14–16] for its mathematical foundation). These results are
based on the observation that the antisymmetry of the wavefunction u˚ can improve its regularity. According to
Pauli’s principle, the antisymmetry of the wavefunction u˚ is a natural physical property for fermions. In this
paper, the antisymmetry is defined as in our previous work [9].

Definition 1.1 (Generalized antisymmetric function). Let I Ă t1, ¨ ¨ ¨ , Nu. When |I| ą 1, a wavefunction u is
antisymmetric with respect to I if and only if, for any j, k P I,

upPj,kxq “ ´upxq,

where

Pj,kp¨ ¨ ¨ , xj , ¨ ¨ ¨ , xk, ¨ ¨ ¨ q :“ p¨ ¨ ¨ , xk, ¨ ¨ ¨ , xj , ¨ ¨ ¨ q.

When |I| “ 1 or I “ H, every wavefunction u is antisymmetric with respect to I.

Due to Pauli’s principle, the electronic wavefunction (with spin t˘ 1
2u) satisfies the following property (see,

e.g., [14, Section 1] for more details).

Proposition 1.2 (Antisymmetry of the electronic wavefunction). For any electronic wavefunction u and for any
fixed spin state, we can find two sets I1 and I2 satisfying I1

Ş

I2 “ H and I1
Ť

I2 “ t1, ¨ ¨ ¨ , Nu such that u is
antisymmetric w.r.t. I1 and I2.

In this paper, we assume the following.

Assumption 1.3. The initial datum u0 is antisymmetric w.r.t. I1 and I2, with I1 and I2 being given as in
Proposition 1.2.

Let I Ă t1, ¨ ¨ ¨ , Nu. The mixed regularity is associated with the following fractional Laplacian operator:

LI “
ź

jPI

p1 ´ ∆jq1{2 (1.4)

that is defined wit the help of Fourier transform (see Section 2.1). In particular, if I “ H, we have LI “ 1.
Relying on the antisymmetry of the wavefunction u˚, it is shown in [14,15] that, any eigenfunction u˚ antisym-

metric w.r.t. I1 and I2 of problem (1.3) satisfies
ÿ

ℓ“1,2

}LIℓu˚}2H1ppR3qN q ă `8. (1.5)

The proof is based on Hardy-type inequalities for Coulomb systems (see (1.8) below with I “ Iℓ, αIℓ “ 1 and
βIℓ “ 0 for ℓ “ 1, 2). Thanks to these Hardy-type inequalities, a hyperbolic cross space approximation of any
eigenfunction of (1.3) and its convergence have been studied in [15].

Later, by using r12-methods and interpolation of Sobolev spaces, Kreusler and Yserentant [7] show that any
eigenfunction u˚ of problem (1.3) satisfies

}Lα
t1,¨¨¨ ,Nuu˚}HsppR3qN q ă `8, (1.6)

for s “ 0 and α “ 1 or s “ 1 and α ă 3{4. This regularity is independent of the antisymmetry of u˚, and
the bound 3{4 is the best possible: It can neither be reached nor surpassed except for the totally antisymmetric
eigenfunctions (i.e., antisymmetric w.r.t. t1, ¨ ¨ ¨ , Nu). However, lacking Hardy-type inequalities associated with this
mixed regularity, they could not prove the convergence of the corresponding hyperbolic cross space approximation
of eigenfunctions.

Recently, we proved a more general mixed regularity of (1.3) for u˚ antisymmetric w.r.t. I1 and I2 (see [9]):
ÿ

ℓ“1,2

}LαIℓ

Iℓ
LβIℓ

Ic
ℓ
u˚}2H1ppR3qN q ă `8. (1.7)

Here Ic “ t1, ¨ ¨ ¨ , NuzI, αI P r0, 5{4q, βI P r0, 3{4q and αI ` βI ă 3{2. One can easily recover (1.5) by setting
αI “ 1 and β “ 0, and (1.6) by setting αI “ βI ă 3

4 . Compared with [14], our proof is based on a more delicate
study of the relationship between the fractional Laplacian operator and Coulomb-type potentials: For αI P r0, 5{4q,
βI P r0, 3{4q and αI ` βI ă 3{2,

›

›

›

›

›

LαI

I LβI

Ic

«

N
ÿ

j“1

V p0, xjq `
ÿ

1ďjăkďN

W pxj , xkq

ff

u˚

›

›

›

›

›

H´1ppR3qN q

ď }LαI

I LβI

Icu˚}L2ppR3qN q. (1.8)
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Based on the above inequality, new hyperbolic cross space approximations of eigenfunctions have been studied in [9].
Let

pPR,Ω,eigen
α,β uqpxq :“

ż

pR3qN
1
R,Ω,eigen
α,β pξqpupξqe2πiξ¨xdξ (1.9)

where 1R,Ω,eigen
α,β is the characteristic function of the hyperbolic cross space Deigen

α,β pR,Ωq

Deigen
α,β pR,Ωq :“

#

pω1, ¨ ¨ ¨ , ωN q P pR3qN ;
ÿ

ℓ“1,2

ź

iPIℓ

ˆ

1 `

ˇ

ˇ

ˇ

ωi

Ω

ˇ

ˇ

ˇ

2
˙α

ź

jPIc

ˆ

1 `

ˇ

ˇ

ˇ

ωj

Ω

ˇ

ˇ

ˇ

2
˙β

ď R2

+

. (1.10)

Then there exists a constant Cmix independent of Z and N such that
‚ for any Ω ě Cmix

?
N maxtZ,Nu,

‚ for any α P r0, 5{4q, β P r0, 3{4q and α ` β ă 3{2,
we have

}u˚ ´ PR,Ω,eigen
α,β u˚}L2ppR3qN q ď

2
?
2πe5{8

R
}u˚}L2ppR3qN q (1.11)

(see [9, Theorem 2.5]). In particular, whenever we take any α “ β ă 3
4 , this new hyperbolic cross space approx-

imation does not rely on the antisymmetry of the wavefunction. Therefore, it also works for the bosonic N -body
system where the wavefunction is no longer (partially) antisymmetric. In addition according to [16, Chp. 8],
|Deigen

1,1 p2L, 1q| À p2Lq1`. Then |Deigen
α,β p2L, 1q| À p2Lq

1`
mintα,βu . This implies that the rate of convergence in (1.11) for

the case αI “ βI « 3
4 does not deteriorate at all with the number of electrons: It behaves almost the same as with

the expansion of a one-electron wavefunction.

1.2. Mixed regularity and hyperbolic cross space approximation of (1.1). We first study a mixed regularity
for the time-dependent problem (1.1) analogous to (1.5). Then, we consider a hyperbolic cross space approximation
of (1.1). Here we justify the approximation of Eq. (1.1) rather than only the approximation of solutions as in
(1.11).

1.2.1. Mixed regularity. As for (1.6), our mixed regularity is also associated with the operator LI . Our main result
on mixed regularity (i.e., Theorem 2.6) states that under Assumption 1.3, for p “ 3´ and T À pZN `N2q´2´ (see
Remark 2.3), we have

ÿ

ℓ“1,2

}LIℓu}L8pr0,T s,L2ppR3qN qq ď
ÿ

ℓ“1,2

}LIℓu}Xp,T
Àp

ÿ

ℓ“1,2

}LIℓu0}L2ppR3qN q (1.12)

where Xp,T , defined in Section 2.2, is our functional space for the evolution problem (1.1).

Remark 1.4 (Regularity of the initial datum u0). Under Assumption 1.3, the regularity LIℓu0 P L2ppR3qN q, ℓ “ 1, 2
is reasonable. For simplicity, we assume that u0 is totally antisymmetric (i.e., antisymmetric w.r.t. t1, ¨ ¨ ¨ , Nu).
For models such as Hartree–Fock, the initial datum u0 can be written as a Slater determinant upxq “

ŹN
j“1 ϕj with

ϕj P H1pR3q. Then it is not difficult to see that for the Hartree–Fock initial datum, we have Lt1,¨¨¨ ,Nuu0 P L2ppR3qN q.

Remark 1.5. For the evolution problem (1.1), we can not consider the fractional Laplacian operator LαI

I LβI

Ic as in
(1.7). In the proof of (1.7), Eq. (1.8) is used, and the H´1ppR3qN q norm in the left-hand side plays an important
role to balance the operator LαI

I LβI

Ic . Here we rather show that for some θ ą 0 and 2 ă p ă 6,

}LIQu}Xp,T
ď CT θ}LIu}Xp,T

where Q is defined by (2.11) (see the proof of Theorem 2.6 or Section 2.4.2 below).

1.2.2. Hyperbolic cross space approximation of (1.1). With our mixed regularity in hand, we can now study the
corresponding hyperbolic cross space approximation of (1.1) under Assumption 1.3.

Define by DR the following hyperbolic cross space

DR “

#

pω1, ¨ ¨ ¨ , ωN q P pR3qN ;
ÿ

ℓ“1,2

ź

jPIℓ

p1 ` |2πωj |2q1{2 ď R

+

. (1.13)

Let χR : pR3qN Ñ r0, 1s be a function with values χRpωq “ 1 for ω P DR. Then, we can define the following
operator:

pPχR
uqpxq “

ˆ

1
?
2π

˙3N ż

pR3qN
χRpξqFx1,¨¨¨ ,xN

puqpξqexppi2πξ ¨ xq dξ.

Here Fx1,¨¨¨ ,xN
puq is the Fourier transform for N electrons defined in Section 2.1.
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In [15] and [9], only the error bound between the eigenfunctions to (1.3) and the hyperbolic cross space approxi-
mation of these eigenfunctions (i.e., (1.11)) has been considered. Compared with the result (1.11) for the eigenvalue
problem (1.3), we can justify the following hyperbolic cross space approximation of (1.1):

#

iBtuR “ HN,RpuRq, t P IT ,

uRp0, xq “ PχR
pu0qpxq

(1.14)

with

HN,Rpuq “

N
ÿ

j“1

´
1

2
△ju ´

N
ÿ

j“1

M
ÿ

µ“1

PχR
pV pt, xjquq `

N
ÿ

1ďjăkďN

PχR
pW pxj , xkquq.

Then our main result on the hyperbolic cross space approximation (i.e., Theorem 2.8) states that under Assumption
1.3, a solution uR to (1.14) exists in Xp,8. Furthermore, for p “ 3´ and T À pZN ` N2q´2´,

}u ´ uR}L8pr0,T s,L2ppR3qN qq ď }u ´ uR}Xp,T
Àp

1

R

ÿ

ℓ“1,2

}LIℓu0}L2ppR3qN q. (1.15)

Remark 1.6 (Complexity of (1.14)). Notice that |DR| À |Deigen
1,0 pR, 1q|. Then according to [16], the complexity of

our hyperbolic cross space approximation is close to that of a two-electron problem.

Remark 1.7 (N -dependence of the initial datum u0). In above estimate (1.15), the error bound depends on
}LIℓu0}L2ppR3qN q which is also an N -dependent quantity. In molecular dynamics, in many cases, we can assume
that before the nuclei move (i.e., at t “ 0), the electrons are in a stable state (in the ground state). This means
that u0 is the first eigenfunction of (1.3). According to [15, Theorem 9], with the scaling x Ñ x

|Ω|
with Ω given as

in (1.11), we know that there exists C ą 0 such that for any N ě 1,
ÿ

ℓ“1,2

›

›τ´1
Ω LIℓτΩu0

›

›

L2ppR3qN q
ď C}u0}L2ppR3qN q,

where τΩup¨q “ |Ω|
3N
2 up ¨

|Ω|
q. Thus the N -dependence of u0 can be overcome if we replace the operator PχR

by
τ´1
Ω PχR

τΩ. We refer to [5] for its numerical implementation.

Remark 1.8 (Constraints on T ). We shall point out that the constraint T À pZN `N2q´2´ is due to mathematical
techniques. This constraint is not relative to our mixed regularity: We have this constraint even for quantitative
estimates of the existence of solutions (i.e., (2.7)). Indeed, as the Hamiltonian (1.2) is not homogeneous, it is
possible to overcome the constraint of T by using scaling.

Remark 1.9 (Explanation of the construction of PχR
.). The operator PχR

can be regarded as a generalization of
the projector P1DR

where 1DR
is the characteristic function of DR. For the eigenvalue problem (1.3), it is easy to

see that

}p1 ´ PχR
qu˚}L2ppR3qN q ď }p1 ´ P1DR

qu˚}L2ppR3qN q.

However, concerning the evolution problem (1.1), there is no reason to assume that similar inequality holds true on
our functional space Xp,T : for some p, T ą 0,

}p1 ´ PχR
qu}Xp,T

À }p1 ´ P1DR
qu}Xp,T

.

As a result, if we use directly P1DR
, there is no reason to show that the numerical discretization such as wavelet

basis discretization [5] can be considered. To avoid this issue, we have to consider a more general operator PχR

such that we can consider as many as possible numerical discretizations in this paper.

Organisation of this paper. This paper is organised as follows.
In Section 2, we first introduce our functional spaces, and then state our main results. To better understand our

methods, we point out the main difficulties of the proofs and our strategies to handle them in Section 2.4.
Then in Section 3, we introduce the Strichartz estimates and some Sobolev inequalities on our functional spaces.

Section 4 is devoted to the proof of the existence and mixed regularity of (1.1) (i.e., Theorems 2.5-2.6). Then in
Section 5, we rigorously justify our approximation (1.14) (i.e., the proof of Theorem 2.8).

Finally in Appendix A, we adapt the Calderón-Zygmund inequality and the Mikhlin multiplier theorem to our
functional spaces. This is the basis of the proof of our Sobolev inequalities.

2. Set-up and main results

In this section, we first introduce our notations and functional spaces. Then we state the main results. To better
understand this paper and our method, we end this section by explaining the main difficulties and our strategies to
handle them.
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2.1. Some notations. To avoid ambiguity, we first clarify notations used in this paper.
We say a À b, it means that there exists a constant C independent of N and Z such that a ď Cb. We say

a Àp b, it means that there exists a constant Cppq only dependent on p such that a ď Cppqb. We shall point out
that whenever we use a À b (resp. a Àp b), the constant C (resp. Cppq) is always independent of N and Z.

Then we define our convention for the Fourier transform. Let f P L2pR3q and g P L2ppR3qN q, then the Fourier
transforms of f and g are respectively

Fypfqpξyq :“

ż

R3

fpyqe´2πiξy ¨ydy,

and
Fx1,¨¨¨ ,xN

pgqpξq :“ FxN
˝ ¨ ¨ ¨ ˝ Fx1

pgqpξq, ξ :“ pξ1, ¨ ¨ ¨ , ξN q with ξk P R3, k “ 1, ¨ ¨ ¨ , N.

The subscript y or xj is used to indicate on which variable the Fourier transform acts.
For any I Ă t1, ¨ ¨ ¨ , Nu, we define the operator

LI “
ź

jPI

p1 ´ ∆jq1{2. (2.1)

This operator is defined in the Fourier transform sense:

Fx1,¨¨¨ ,xN
pLIgqpξq :“

ź

jPI

p1 ` |2πξi|
2q1{2Fx1,¨¨¨ ,xN

pgqpξq.

Finally, we also need to clarify some notations used in Strichartz estimates: for any 2 ď p ď 6,
(1) p1 is defined as follows

1

p1
`

1

p
“ 1; (2.2)

(2) θp is define by

2

θp
“ 3

ˆ

1

2
´

1

p

˙

. (2.3)

The pair pp, θpq is called Schrödinger admissible on R3. In particular, p6, 2q is the endpoint Schrödinger admissible
pair on R3. The notation θ1

p is also defined by (2.2).

2.2. Functional spaces. For the N -body problem (1.1), one of the main difficulties is the complexity of the
functional space due to the singularity of the Coulomb potentials.

First of all, let H “ L2ppR3qN q. For every set I Ă t1, ¨ ¨ ¨ , Nu, we define the Hilbert space HI :“ L2
IppR3qN q of

the wavefunctions antisymmetric with respect to I by

HI :“ tg P H; u is antisymmetric with respect to Iu. (2.4)

Concerning mixed regularity, we also define

H1
I,mix :“ tg P HI ; LIg P Hu

endowed with the norm

}g}H1
I,mix

:“ }LIg}H.

For two functional space A and B, we also need the functional space for bounded operators from A to B which is
defined by the norm:

}T }BpA,Bq :“ sup
}u}A“1

}Tu}B .

If B “ A, then we use the shorthand BpAq “ BpA,Aq.

Now we introduce our functional space for the evolution problem (1.1). Concerning the potential between
electrons and nuclei V p¨, xjq, we need the following functional space: For 1 ă p ă 8,

Lp,2
xj

“ LppR3
xj
, L2ppR3qN´1qq

with the norm

}g}
p

Lp,2
xj

“

ż

R3
xj

˜

ż

pR3qN´1

|g|2 dx1 ¨ ¨ ¨ ydxj ¨ ¨ ¨ dxN

¸p{2

dxj .

The notation ydxj means that the integration over the j-th coordinate is omitted. We also use the shorthand Lp,2
j

for Lp,2
xj

.
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Concerning the potential between electrons and electrons W pxj , xkq, to deal with the potential W pxj , xkq, we
need first to change the variable: Let

rj,k :“
1

2
pxj ´ xkq, Rj,k :“

1

2
pxj ` xkq,

and let Rj,k be a unitary operator defined as follows

Rj,kgprj,k, Rj,k, x1, ¨ ¨ ¨ , xj´1, xj`1, ¨ ¨ ¨ , xk´1, xk`1, ¨ ¨ ¨ , xN q

“ gp¨ ¨ ¨ , xj´1, prj,k ` Rj,kq, xj`1, ¨ ¨ ¨ , xk´1, pRj,k ´ rj,kq, xk`1, ¨ ¨ ¨ q. (2.5)

Then, the functional space for W pxj , xkq is defined by

Lp,2
j,k “ LppR3

rj,k
, L2ppR3qN´1qq

with the norm

}g}
p

Lp,2
j,k

“

ż

R3
rj,k

˜

ż

pR3qN´1

|Rj,kg|2 dRj,kdx1 ¨ ¨ ¨ xdxi ¨ ¨ ¨ ydxj ¨ ¨ ¨ dxN

¸p{2

drj,k.

Obviously,

}g}Lp,2
j,k

“ }Rj.kg}Lp,2
rj,k

. (2.6)

For future convenience, we will use the notation Lp,2
D with D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2 to above functional

space. More precisely, if D “ tju Ă t1, ¨ ¨ ¨ , Nu, we have

Lp,2
D “ Lp,2

j ;

if D “ tj, ku Ă t1, ¨ ¨ ¨ , Nu, we have

Lp,2
D “ Lp,2

j,k .

For the time-dependent problem (1.1), the full functional space that we use is the following: for some p ą 2,

Xp,T “ L8
t pIT ,Hq

č

DĂt1,¨¨¨ ,Nu

1ď|D|ď2

L
θp
t pIT , L

p,2
D q

with the norm

}u}Xp,T
“ max

$

’

&

’

%

}u}L8
t pIT ,Hq, max

DĂt1,¨¨¨ ,Nu

1ď|D|ď2

}u}
L

θp
t pIT ,Lp,2

D q

,

/

.

/

-

.

Remark 2.1 (Dual space). It is easy to see that for any D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2, the dual space of

L
θp
t pIT , L

p,2
D q is L

θ1
p

t pIT , L
p1,2
D q.

Concerning mixed regularity for the time-dependent problem (1.1), we also need the following functional space

X1
I,p,T “ tu P Xp,T

č

L8
t pIT ,HIq; LIu P Xp,T u

with the norm

}u}X1
I,p,T

“ }LIu}Xp,T
.

2.3. Main results. Now we can state our main results. Before going further, we need the following assumption.

Assumption 2.2. Let α, p ą 0 and T ą 0 be chosen such that
(1) 6

3´2α ă p ă 6 and 0 ă α ă 1
2 ;

(2) 1{θp ă 1{θ1
rp for some 6

1`2α ă rp ă 6;
(3) CT,1pZ`NqNT 1{θ1

rp´1{θp ă 1
2 with CT :“ maxtCT,1, CT,2, CT,3u ě 1. Here CT,1, CT,2 and CT,3 are constants

only dependent on α, p, rp given by (4.12), (4.31) and (5.7) respectively.

Remark 2.3 (Nonemptiness of Assumption 2.2 and estimate on T ). In Assumption 2.2, we can take α “ 1
2´, p “

3´ and rp “ 3`. Under this choice, 1{θ1
rp ´ 1{θp “ 1

2´. Thus Assumption 2.2 is not empty and T À pZN `N2q´2´.

Remark 2.4 (Endpoint Schrödinger admissible). For Theorem 2.5 and Theorem 2.6 below, the condition (1) and
(2) in Assumption 2.2 on p, rp can be relaxed: One can reach p “ 6 or rp “ 6 for these two results. However, due to
Corollary 3.5, p “ 6 and rp “ 6 is excluded for Theorem 2.8.

Concerning the existence of solutions to (1.1), we have
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Theorem 2.5 (Existence of solutions). Let aµ P H. For every u0 P H, the problem (1.1) has a unique global-in-time
solution u P Xp,8.

Furthermore, under Assumption 2.2 on p and T , we have

}u}Xp,T
Àp }u0}H. (2.7)

Indeed, this result can be found in [13] in a more complicated setting. Here we modify the proof to make it
compatible with Theorem 2.6 and Theorem 2.8 below. The details of its proof can be found in Section 4.1.

Concerning the mixed regularity of solutions to (1.1), we have

Theorem 2.6 (Mixed regularity). Let I Ă t1, ¨ ¨ ¨ , Nu. For every u0 P H1
I,mix, under Assumption 2.2, the problem

(1.1) has a unique solution u P X1
I,p,T and

}u}X1
I,p,T

Àp }u0}H1
I,mix

. (2.8)

The proof of Theorem 2.5 is provided in Section 4.2.

Remark 2.7. Compared with Theorem 2.5, we do not know if u P X1
I,p,8. This is because that u satisfies the

conservation law (i.e., }uptq}H “ }u0}H for any t P R) while LIu does not.

Finally, concerning the justification of the hyperbolic cross space approximation (1.14), we have

Theorem 2.8 (Justification of hyperbolic cross space approximation). Let aµ P L8pRq, and I1, I2 be the set given
as in Proposition 1.2. For every u0 P H1

I1,mix

Ş

H1
I2,mix, the problem (1.14) has a unique global-in-time solution

uR P Xp,8

Furthermore, under Assumption 2.2, we have

}u ´ uR}Xp,T
Àp

1

R

ÿ

ℓ“1,2

}u0}H1
Iℓ,mix

. (2.9)

This proof is provided in Section 5.

2.4. Main difficulties and strategies. Before giving the proof, to better understand this paper and our method,
we shall explain the main difficulties and our strategies to handle them.

2.4.1. Basic idea of the proof of Theorem 2.5. We recall the free propagator U0ptq “ expt 1
2 it

řN
j“1 △u, and denote

the integral operator S and Q respectively by

Suptq :“

ż t

0

U0pt ´ τqupτq dτ (2.10)

and

Quptq :“
N
ÿ

j“1

S
´

V p¨, xjqup¨, xq

¯

ptq `
ÿ

1ďjăkďN

S
´

W pxj , xkqup¨, xq

¯

ptq. (2.11)

By Duhamel’s formula, solutions u to (1.1) satisfy

uptq “ U0ptqu0 ´ iQuptq. (2.12)

As in [13], the basic idea for Theorem 2.5 is to show the invertibility of 1 ` iQ on Xp,T for T small enough. This
follows from the fact that for some θ ą 0, 2 ă p ď 6 and 0 ă T ă 1,

}Qu}Xp,T
ď CT θ}u}Xp,T

.

Then for CT θ ď 1
2 , we have }Qu}Xp,T

ď 1
2}u}Xp,T

. Thus it is easy to see that 1 ` iQ is invertible on Xp,T . Finally
from (2.12), we infer that

uptq “ p1 ` iQq´1U0u0 P Xp,T .

2.4.2. Main difficulties and strategies for the proof of Theorem 2.6. Concerning mixed regularity of the evolution
equation (1.1), we use the same strategy as explained in Section 2.4.1: We are going to show that 1` iQ is invertible
on X1

I,p,T . The main difficulty of this paper is to show that

}Qu}X1
I,p,T

ď CT θ}u}X1
I,p,T

.

Its proof is much more delicate than the one for the existence (i.e., Theorem 2.5).

Let

LI,j “
ź

mPIztju

p1 ´ ∆jq1{2, LI,j,k “
ź

mPIztj,ku

p1 ´ ∆jq1{2. (2.13)



8 LONG MENG

In particular, if j R I, we have Iztju “ I. Before going further, we first give a glimpse into LIQu:

LIQu “

N
ÿ

j“1

S
´

p1 ´ ∆jqγj
“

V p¨, xjqLI,ju
‰

¯

ptq

`
ÿ

1ďjăkďN

S
´

p1 ´ ∆jqγj p1 ´ ∆kqγj
“

W pxj , xkqLI,j,ku
‰

¯

ptq, (2.14)

where γj “ 1{2 if j P I, otherwise γj “ 0. It is not difficult to see that we have two main difficulties: The fractional
Laplacian operator p1 ´ ∆jq1{2 on the functional space Lp,2

D , and the singularity of Coulomb-type potentials.
Operator LI on Lp,2

D . For the eigenvalue problem (1.3), there is no problem: Thanks to the Plancherel theorem
on Hilbert space H, we have

}LIv}2H “
ÿ

JĂI

›

›

›

›

›

â

jPJ

∇j v

›

›

›

›

›

2

H

.

For each ∇j , we can use directly the Leibniz rule: ∇ypf1pyqf2pyqq “ f2pyq∇yf1pyq ` f1pyq∇yf2pyq. However, due
to our functional space Lp,2

D , this identity no longer holds in our problem.
To overcome this problem, we use the fact that

p1 ´ ∆jq1{2 “
1

p1 ´ ∆jq1{2
´

∇j

p1 ´ ∆jq1{2
¨ p∇jq. (2.15)

It remains to study the operators 1
p1´∆jq1{2 and ∇j

p1´∆jq1{2 on the functional space Lp,2
D for some p ą 0, especially

on Lp,2
j and Lp,2

j,k . This can be studied by using the Calderón-Zygmund inequality and Mikhlin’s multiplier theorem
(see Appendix A). Theorem 3.6 shows that for any 1 ă p ă 8,

1

p1 ´ ∆jq1{2
,

∇j

p1 ´ ∆jq1{2
P BpLp,2

D q (2.16)

with j P D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2.

Singularity of Coulomb-type potentials. With Eq. (2.16) in hand, in order to prove (2.14), it suffices to
study the terms such as

S
´

∇jrV p¨, xjqLI,jus

¯

and

S
´

∇j b ∇krW pxj , xkqLI,j,kus

¯

.

In particular,

∇j b ∇krW pxj , xkqLI,jus “ r∇j b ∇k|xj ´ xk|´1su ` r∇j |xj ´ xk|´1s b ∇ku

` ∇ju b r∇k|xj ´ xk|´1s ` |xj ´ xk|´1r∇j b ∇kus.

Terms like ∇j b ∇k|xj ´ xk|´1 „ |xj ´ xk|´3 have very high singularities at xj “ xk.
To overcome this problem, as the study of the eigenvalue problem (1.3) in [9, 14], we would like to use the

property that u0 P H1
I,mix is antisymmetric w.r.t. I. This implies that u P HI (see (4.14)). From [9, Lemma 3.7

and Corollary 3.8], we have

Lemma 2.9. [9, Lemma 3.7] Let a P R3. Denote the functional space YspR3q by

YspR3q :“ tfpyq P L2pR3q; |y ´ a|2s´2∇yf P L2pR3qu.

Then for s P r0, 3{2q and f P Ys,antipR3 ˆ R3q, we have
›

›

›

›

f

| ¨ ´a|s

›

›

›

›

L2pR3q

ď
2

|2s ´ 3|

›

›

›

›

∇yf

| ¨ ´a|s´1

›

›

›

›

L2pR3q

.

and

Lemma 2.10. [9, Corollary 3.8] Denote the functional space Yanti,spR3 ˆ R3q by

Ys,antipR3 ˆ R3q :“ tf P L2pR3 ˆ R3q; fpy, zq “ ´fpz, yq, |y ´ z|s´2∇y b ∇zf P L2pR3 ˆ R3qu.

Then for s P r2, 5{2q and f P Ys,antipR3 ˆ R3q, we have
›

›

›

›

f

|y ´ z|s

›

›

›

›

L2pR3ˆR3q

ď
4

|2s ´ 5||2s ´ 3|

›

›

›

›

∇y b ∇zf

|y ´ z|s´2

›

›

›

›

L2pR3ˆR3q

.
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However, similar property can not be used if we calculate directly the terms like Sp|xj ´ xk|´3LI,j,kuq as for the
standard dispersive problem (see e.g., [12, 13]): Applying Strichartz estimates for N -body problem (i.e., Lemma
3.2) as the standard dispersive problem, we will have

}Sp|xj ´ xk|´3LI,j,kuq}Xp,T
À }|xj ´ xk|´3

1|xj´xk|ď1LI,j,ku}
L

θ1
rp pIT ,L rp1,2

j,k q
` }|xj ´ xk|´3

1|xj´xk|ą1LI,j,ku}L1pIT ,Hq

for some 2 ď p, rp ď 6 and 1
p1 ` 1

p “ 1. Here to deal with terms associated with the potential W pxj , xkq, we have to

consider the functional space Lrp1,2
j,k . Notice that

}|xj ´ xk|´3
1|xj´xk|ď1LI,j,kupt, ¨q}

rp1

L rp1,2
j,k

“

ż

R3
rj,k

}Rj,kLI,j,kupt, rj,k, ¨q}
rp1

L2ppR3qN´1q

|rj,k|3rp
1 1|rj,k|ď2drj,k,

Notice that for any 2 ď rp ď 6, |rj,k|´3rp1

R L1
locpR3

rj,k
q since 3rp1 ě 18

5 ą 3. Thus we may obtain

}|xj ´ xk|´3
1|rj,k|ď2LI,j,kupt, ¨q}

rp1

L rp1,2
j,k

“ 8

even for functions upt, ¨q P C8
0 ppR3qN q. This is the reason why we can not calculate directly terms like Sp|xj ´

xk|´3LI,j,kuq.
Nevertheless, we can study LIQu in scalar product: For any D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2, and for any

upt, xq P Xp,T and vpt, xq P L
θ1
p

t pIT , L
p1,2
D q or vpt, xq P L8

t pIT ,Hq, we are going to prove
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xSp|xj ´ xk|´3LI,j,kuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

À T θ}u}X1
I,p,T

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L8
t pIT ,Hqu (2.17)

for some θ ą 0. The advantage of this method is that the above problem can be studied on H:
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xSp|xj ´ xk|´3LI,j,kuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

x|xj ´ xk|´2´αLI,j,kupsq, |xj ´ xk|α´1S˚vpsqy ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

}|xj ´ xk|´2´αLI,j,kupsq}H}|xj ´ xk|α´1S˚vpsq}H ds.

When 0 ď α ă 1
2 , we can use Lemma 2.10. However, α “ 0 shall be excluded: In the proof, we will use the following

inequality

}|xj ´ xk|α´1S˚vpsq}H ď }| ¨ |α´1
1|¨|ď1}LrpR3q}S˚vpsq}Lp,2

j,k
` }S˚vpsq}H. (2.18)

Here 2 ď p ď 6 and 1
r ` 1

p “ 1
2 . This implies that r ě 3. However when α “ 0, we have }| ¨ |´1

1|¨|ď1}LrpR3q “ 8 for
any r ě 3. Thus α “ 0 shall be excluded.

2.4.3. Basic idea of the proof of Theorem 2.8. Concerning the hyperbolic cross space approximation, our main
difficulty comes from the operator PχR

on Xp,T . For general function g P Xp,T , we even do not know if there exists
a functional space rX such that

}PχR
g}Xp,T

À }g}
ĂX
.

However, we mainly study PχR
Qu or p1 ´ PχR

qQu: The H-bounded operator PχR
can be absorbed by operator S

(defined by (2.10)). This is the purpose of Proposition 3.3 and Corollary 3.5.
Let u and uR be the unique solution to the evolution equation (1.1) and its hyperbolic cross space approximation

(1.14) respectively. Concerning the study of the error bound between u and uR, we split u ´ uR into two parts:
u ´ PχR

u and PχR
u ´ uR. We will see in the proof of Theorem 2.8 that for T small enough

}u ´ uR}Xp,T
ď }u ´ PχR

u}Xp,T
` }PχR

u ´ uR}Xp,T
ď }u ´ PχR

u}Xp,T
`

1

2
}u ´ uR}Xp,T

.

On the other hand, Lemma 5.1 shows that }u ´ PχR
u}Xp,T

À 1
R

ř

ℓ“1,2 }u0}1HIℓ,mix
. As a result,

}u ´ uR}Xp,T
À

1

R

ÿ

ℓ“1,2

}u0}1HIℓ,mix
.

3. Preliminary

We start with introducing some fundamental tools used in this paper.
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3.1. Strichartz estimates. In this subsection, we introduce the Strichartz estimates used for the study of the
N -body problem in [13] on the functional space Xp,T .

The following two lemmas (i.e., Lemma 3.1 and Lemma 3.2) about the dispersive estimates and standard
Strichartz estimates can be found in [13, Lemma 2.2 and Lemma 2.3]. However, compared with [13], our Lemma
3.1 and Lemma 3.2 are global-in-time. This is because in [13], an additional time-dependent magnetic potential
Apt, xq is added, which complicates the arguments.

Lemma 3.1 (Dispersive estimate). Let D Ă t1, ¨ ¨ ¨ , Nu, 1 ď |D| ď 2, then

}U0ptqg}L8,2
D

Àp |t|´3{2}g}L1,2
D

.

Proof. For the reader’s convenience, we provide the detail of the proof.
For the case D “ tju (i.e., |D| “ 1), it is just the normal dispersive estimate inequality (see, e.g., [11, Eq. (2.22)]):

}U0ptqg}L8,2
D

“ }e
1
2 it∆jg}L8,2

D
Àp |t|´3{2}g}L1,2

D
.

For the other case, let D “ tj, ku (i.e., |D| “ 2). Note that

Rj,k∇j “
1

2
p∇rj,k ` ∇Rj,k

qRj,k, Rj,k∇k “
1

2
p∇Rj,k

´ ∇rj,kqRj,k (3.1)

and

´Rj,k△x ´ Rj,k△y “ ´△rj,kRj,k ´ △Rj,k
Rj,k. (3.2)

Then, we know
Rj,kU0ptqu “ rU0ptqRj,ku.

with rU0ptq “ exp p 1
2 ip

ř

m‰j,k △m ` △rj,k ` △Rj,k
qq.

Therefore,
}U0ptqg}L8,2

j,k
“ }Rj,kU0ptqg}L8,2

rj,k
“ }rU0ptqRj,kg}L8,2

ri,j

Àp |t|´3{2}Rj,kg}L1,2
rj,k

Àp |t|´3{2}g}L1,2
j,k

.

Hence the lemma. □

Then, using the above dispersive estimates, we have the following Strichartz estimates:

Lemma 3.2 (Strichartz estimate). For D,D1 Ă t1, ¨ ¨ ¨ , Nu, 1 ď |D|, |D1| ď 2 and 2 ď p, rp ď 6, we have

}U0ptqg}
L

θp
t pR,Lp,2

D q
Àp }g}H, (3.3a)

›

›

›

›

ż

R
Upsq˚upsqds

›

›

›

›

H
À

rp }u}
L

θ1
rp

t pR,Lp1,2

D1 q
, (3.3b)

}Su}
L

θp
t pR,Lp,2

D q
Àp,rp }u}

L
θ1
rp

t pR,L rp1,2

D1 q
. (3.3c)

Here 2
θp

“ 3p 1
2 ´ 1

p q.

This is the standard Strichartz estimate. One can easily obtain these estimates by using [6].
Normally, operators bounded on H can not be bounded on Lp,2

D . However, the following tells us that after adding
the operator S, the bounded operator P on H is also bounded on Lp,2

D if rP,U0s “ 0. This is an essential ingredient
for the study of our hyperbolic cross space approximation.

Proposition 3.3. If 2 ď p, rp ă 6, for any operator P acting on H, if rP,U0s “ 0 and }Pf0}L2 ď }f}H, then

}PSup¨, xq}
L

θp
t pR,Lp,2

D q
Àp,rp }u}

L
θ1
rp

t pR,L rp1,2

D1 q
.

Remark 3.4. Let P “ PχR
. As PχR

is a Fourier multiplier, it is possible to reach the endpoint acse p, rp “ 6 in
Proposition 3.3 by repeating the arguments in [6].

Proof. We are going to use the Christ-Kiselev lemma [4] to prove this lemma.
Since P and U0 commute, we have

›

›

›

›

P

ż

R
U0pt ´ squps, xqds

›

›

›

›

L
θp
t pR,Lp,2

D q

“

›

›

›

›

U0ptqP

ż

R
U0psq˚ups, xqds

›

›

›

›

L
θp
t pR,Lp,2

D q

.

By (3.3a) and rP,U0s “ 0, we have
›

›

›

›

P

ż

R
U0pt ´ squps, xqds

›

›

›

›

L
θp
t pR,Lp,2

D q

Àp

›

›

›

›

P

ż

R
U0psq˚ups, xqds

›

›

›

›

H
.
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Then, by }Pu0}H ď }u}H and (3.3b), we have
›

›

›

›

P

ż

R
U0pt ´ squps, xqds

›

›

›

›

L
θp
t pR,Lp,2

D q

Àp

›

›

›

›

ż

R
U0psq˚ups, xqds

›

›

›

›

H
Àp,rp }u}

L
θ1
rp

t pR,L rp1,2

D1 q
.

Then by Christ-Kiselev lemma, for any 2 ď p, rp ă 6 we have
›

›

›

›

P

ż

R
U0pt ´ squps, xqds

›

›

›

›

L
θp
t pR,Lp,2

D q

Àp,rp }u}
L

θ1
rp

t pR,L rp1,2

D1 q
.

□

Corollary 3.5. For D,D1 Ă t1, ¨ ¨ ¨ , Nu, 1 ď |D|, |D1| ď 2 and 2 ď p, rp ă 6, we have

}PχR
Su}

L
θp
t pR,Lp,2

D q
Àp,rp }u}

L
θ1
rp

t pR,L rp1,2

D1 q
, (3.4a)

›

›

›

›

›

›

˜

ÿ

1ďℓď2

LIℓ

¸´1

p1 ´ PχR
qSu

›

›

›

›

›

›

L
θp
t pR,Lp,2

D q

Àp,rp
1

R
}u}

L
θ1
rp

t pR,L rp1,2

D1 q
. (3.4b)

Proof. By the definition of PχR
, we have

rPχR
, U0s “ 0

and

}PχR
u}H ď }u}H.

Let P “ PχR
, then we get (3.4a).

Concerning (3.4b), we have

}p1 ´ PχR
qu}H ď }1Dc

R
Fx1,¨¨¨ ,xN

puq}H

For all wave vector ω outside the domain DR, we have

1 ď
1

R

ÿ

1ďℓď2

ź

iPIl

p1 ` |2πωi|
2q1{2.

By definition of χR, we know

R

›

›

›

›

›

›

˜

ÿ

1ďℓď2

LIℓ

¸´1

p1 ´ PχR
qu

›

›

›

›

›

›

H

ď R

›

›

›

›

›

›

˜

ÿ

1ďℓď2

LIℓ

¸´1

p1 ´ P1DR
qu

›

›

›

›

›

›

H

ď }u}H. (3.5)

Given rLIℓ , U0s “ 0, then take P “ Rp1 ´ PχR
q

´

ř

ℓ“1,2 LIℓ

¯´1

, we get conclusion. □

3.2. Sobolev inequalities. For the study of mixed regularity, we need some Sobolev inequalities on functional
space Lp,2

D . To do so, we study the Calderón-Zygmund inequality and Mikhlin multiplier theorem to our functional
space Lp,2

j in Section A. Then we generalize these results to the functional space Lp,2
j,k .

Theorem 3.6. For 1 ă p ă 8, and D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2, we have

}∇jg}Lp,2
D

Àp }p1 ´ △jq1{2g}Lp,2
D

, (3.6a)

}g}Lp,2
D

Àp }p1 ´ △jq1{2g}Lp,2
D

. (3.6b)

Proof. We first consider the case j R D. By the Plancherel theorem on variable xj , it is easy to see that (3.6a)-(3.6b)
hold.

Now we assume that j P D. If |D| “ 1, then D “ tju. In this case, we use Theorem A.2. For the first inequality,
we only need to study equivalently the following inequality

}∇jp1 ´ △jq´1{2g}Lp,2
j

Àp }g}Lp,2
j

. (3.7)

Then Theorem A.2 with n “ 3 and

apξq “
ξ

p1 ` |ξ|2q1{2
for ξ P R3.

implies (3.7). The second and third estimates can be treated in the same manner.
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Finally, we assume that j P D and |D| “ 2. We can assume that D “ tj, ku with k P t1, ¨ ¨ ¨ , Nuztju. We study
first (3.6a). By the Plancherel theorem on variable Rj,k, (2.6), (3.1) and (3.7),

}∇jg}Lp,2
j,k

“
1

2
}p∇rj,k ´ ∇Rj,k

qRj,kg}Lp,2
rj,k

“
1

2
}p∇rj,k ´ i2πξRj,k

qFRj,k
Rj,kg}Lp,2

rj,k

“
1

2
}∇rj,k exp p´i2πrj,k ¨ ξRj,k

qFRj,k
Rj,kg}Lp,2

rj,k

Àp }p1 ´
1

4
△rj,kq1{2 exp p´i2πrj,k ¨ ξRj,k

qFRj,k
Rj,kg}Lp,2

rj,k

“ }p1 ´
1

4
|∇rj,k ´ i2πξRj,k

|q1{2FRj,k
Rj,kg}Lp,2

rj,k

“ }p1 ´
1

4
|∇rj,k ` ∇Rj,k

|2q1{2Rj,kg}Lp,2
rj,k

“ }p1 ´ ∆jq1{2g}Lp,2
j,k

.

Here we have the fact that for any function fpyq with y P R3, we have

p1 ´
1

4
△yq1{2 exp p´i2πa ¨ ξyqfpyq

“ F´1
y

”

p1 ´ π2|ξy|2q1{2Fy

`

exp p´i2πa ¨ ξyqf
˘

pξyq

ı

pyq

“ F´1
y

”

p1 ´ π2|ξy|2q1{2Fy

`

f
˘

pξy ` aq

ı

pyq “ p1 ´
1

4
|∇y ´ i2πa|2q1{2fpyq;

and in the last identity, we use (3.2). This gives (3.6a) for |D| “ 2 and j P D. Eq. (3.6b) can be studied analogously.
Now the proof is completed. □

4. Existence and mixed regularity of solutions

In this section, we are going to study the existence and mixed regularity of solutions to (1.1). We shall point
out that the proof of the existence and uniqueness of solution can be regarded as an adjustment of [13] under our
setting, and we mainly focus on our mixed regularity of the solution.

4.1. Existence of solutions. In this subsection, we are going to study the existence of solutions to (1.1) in Xp,T .
As mentioned above, the study of mixed regularity of solutions is our main object rather than existence. So we
prove the existence of solutions by using the same method as for mixed regularity. It will help us to understand the
proof of mixed regularity. In addition, we shall point out that this method is not the best way for the proof of the
existence of solutions, but as explained in Section 2.4.2, it is necessary for our study of mixed regularity.

Proof of Theorem 2.5. As explained in Section 2.4.1, we are going to show that }Qu}Xp,T
ď CT θ}u}Xp,T

for some
θ ą 0, 2 ă p ď 6 and T ą 0. Here we use the method for mixed regularity and consider this problem in the
scalar product: For any D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2, and for any upt, xq P Xp,T and vpt, xq P L

θ1
p

t pIT , L
p1,2
D q or

vpt, xq P L1
t pIT ,Hq, we are going to prove

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xpQuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

À T θ}u}Xp,T
mint}v}

L
θ1
p

t pIT ,Lp1,2
D q

, }v}L8
0 pIT ,Hqu

for some θ ą 0.
To do so, we split the study into the case of potentials between electrons and nuclei, and the case of potentials

between electrons and electrons.

Step 1. Study of the potentials electrons and nuclei. For any 0 ă α ă 1
2 , we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
´ 1

|xj ´ aµp¨q|
up¨, xq

¯

ptq, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A 1

|xj ´ aµpsq|α
ups, xq,

1

|xj ´ aµpsq|1´α
S˚

`

vp¨, xq
˘

psq

E

ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

›

›

›

›

1

|xj ´ aµpsq|α
ups, xq

›

›

›

›

H

›

›

›

›

1

|xj ´ aµpsq|1´α
S˚

`

vp¨, xq
˘

psq

›

›

›

›

H
ds. (4.1)



MIXED REGULARITY OF N-BODY SCHRÖDINGER EVOLUTION EQUATION 13

According to the Hölder inequality, for any 2 ď r ă 3
α and 1

r ` 1
p1

“ 1
2 ,

›

›

›

1

|xj ´ aµpsq|α
ups, xq

›

›

›

H
“

›

›

›

1

|xj ´ aµpsq|α
}ups, xj , ¨q}L2ppR3qN´1q

›

›

›

L2
j pR3q

ď }upsq}H `

›

›

›

›

1

|xj ´ aµpsq|α
1|xj´aµpsq|ď1

›

›

›

›

Lr
R3

}upsq}
L

p1,2
j

Àα,p1 }upsq}H ` }upsq}
L

p1,2
j

, (4.2)

and for any 2 ď rr ă 3
1´α and 1

rr ` 1
rp “ 1

2 ,
›

›

›

1

|xj ´ aµpsq|1´α
pS˚vqpsq

›

›

›

H
Àα,rp }pS˚vqpsq}H ` }pS˚vqpsq}

L rp,2
j

. (4.3)

Now we are going to apply the dual form of the Strichartz estimate (3.3c) to S˚v. Before going further, we
have to add the restriction 2 ď rp ď 6 to use the Strichartz estimates. Then gathering together 2 ď rr ă 3

1´α and
1
rr ` 1

rp “ 1
2 , we have

6

1 ` 2α
ă rp ď 6. (4.4)

Then for any D Ă t1, ¨ ¨ ¨ , Nu and 0 ď |D| ď 2 and for any rp satisfying (4.4) and p satisfying 2 ă p ď 6,

}pS˚vqpsq}L8
t pIT ,Hq Àp,rp mint}v}

L
θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu (4.5)

and

}pS˚vqpsq}
L

θ
rp

t pIT ,L rp,2
j q

Àp,rp mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu. (4.6)

To make the mapping Q from Xp,T to itself, we need to set p1 “ p. Thus, 2 ď p1 “ p ď 6. This and 2 ď r ă 3
α ,

1
r ` 1

p1
“ 1

2 imply that

6

3 ´ 2α
ă p ď 6. (4.7)

As a result, from (4.1)-(4.3) and (4.5)-(4.6) we infer that, under condition (1)-(2) in Assumption 2.2 on α, p, rp,
for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
´ 1

|xj ´ aµp¨q|
up¨, xq

¯

ptq, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

›

›

›

›

1

|xj ´ aµpsq|α
ups, xq

›

›

›

›

H

›

›

›

›

1

|xj ´ aµpsq|1´α
S˚

`

vp¨, xq
˘

psq

›

›

›

›

H
ds

Àα,p,rp

´

}u}L1
t pIT ,Hq ` }upsq}L1

t pIT ,Lp,2
j q

¯

}S˚v}L8pIT ,Hq

`

´

}u}
L

θ1
rp

t pIT ,Hq
` }u}

L
θ1
rp

t pIT ,Lp,2
j q

¯

}S˚v}
L

θ
rp

t pIT ,L rp,2
j q

Àα,p,rp T 1{θ1
rp´1{θp

´

}u}L8
t pIT ,Hq ` }u}

L
θp
t pIT ,Lp,2

j q

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu. (4.8)

Here we also use the assumption that 1{θ1
rp ´ 1{θp ą 0. As u P Xp,T , by duality, for any 0 ă T ă 1 and any

D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

max

#

›

›

›

›

S
´ 1

|xj ´ aµp¨q|
up¨, xq

¯

›

›

›

›

L8
t pIT ,Hq

,

›

›

›

›

S
´ 1

|xj ´ aµp¨q|
up¨, xq

¯

›

›

›

›

L
θp
t pIT ,Lp,2

D q

+

Àα,p,rp T θ1
rp´θ

rp}u}Xp,T
.

As a result, we infer that under under condition (1)-(2) in Assumption 2.2 on α, p, rp and 0 ă T ă 1,

}SpV p¨, xjquq}Xp,T
Àα,p, rp ZT 1{θ1

rp´1{θp}u}Xp,T
(4.9)

Step 2. Study of the potentials between electrons and electrons. The proof of Step 2 is essentially the
same as for Step 1. So we just point out the difference.

For 1
|xj´xk|

, the estimates (4.2) and (4.3) become: For any 2 ď r ă 3
α and 1

r ` 1
p1

“ 1
2 ,

›

›

›

›

1

|xj ´ xk|α
upsq

›

›

›

›

H
Àα,p }upsq}H ` }upsq}Lp,2

j,k
,
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and for any 2 ď rr ă 3
1´α and 1

rr ` 1
rp “ 1

2 ,
›

›

›

›

1

|xj ´ xk|1´α
pS˚vqpsq

›

›

›

›

H
Àα,rp }pS˚vqpsq}H ` }pS˚vqpsq}

L rp,2
j,k

.

Then arguing as for Step 1, we need to set p1 “ p, and p satisfies (4.7). Then under condition (1)-(2) in Assumption
2.2 on α, p, rp, for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
´ 1

|xj ´ xk|
up¨, xq

¯

ptq, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

›

›

›

›

1

|xj ´ xk|α
ups, xq

›

›

›

›

H

›

›

›

›

1

|xj ´ xk|1´α
pS˚vp¨, xqqpsq

›

›

›

›

H
ds

Àα,p,rp T 1{θ1
rp´1{θp

´

}u}L8
t pIT ,Hq ` }u}

L
θp
t pIT ,Lp,2

j,kq

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu. (4.10)

As a result under condition (1)-(2) in Assumption 2.2 on α, p, rp and 0 ă T ă 1,

}SpW pxj , xkquq}Xp,T
Àα,p,rp T 1{θ1

rp´1{θp}u}Xp,T
. (4.11)

Step 3. Conclusion. From (4.1) and (4.11), we infer that under condition (1)-(2) in Assumption 2.2 on α, p, rp
and 0 ă T ă 1, there exists a constant CT,1 :“ CT,1pα, p, rpq ě 1 such that

}Qu}Xp,T
ď CT,1pZ ` NqNT 1{θ1

rp´1{θp}u}Xp,T
. (4.12)

Now let CT,1pZ ` NqNT 1{θ1
rp´1{θp ď 1

2 , we get

}Qu}Xp,T
ď

1

2
}u}Xp,T

.

Note that T ă 1 under the condition CT,1pZ ` NqNT 1{θ1
rp´1{θp ď 1

2 . Thus under Assumption 2.2 on p, T , we know
1 ` iQ is invertible on Xp,T . As a result,

u “ p1 ` iQq´1pU0p¨qu0q (4.13)

and

}u}Xp,T
“ }p1 ` iQq´1pU0p¨qu0q}Xp,T

ď 2}U0p¨qu0}Xp,T
Àp }u0}H.

This gives (2.7) and shows the uniqueness of the solution u P Xp,T . Besides, it is easy to see that }u}L8
t pR,Hq “ }u0}H.

The standard continuation procedure for the solutions to (1.1) yields a unique global-in-time solution u P Xp,8.
This completes the proof of Theorem 2.5. □

4.2. Mixed regularity. Now we can study the mixed regularity of the unique solution.

Proof of Theorem 2.6. Before going further, we first show that upt, xq is antisymmetric w.r.t. I for any t P IT with
under condition (3) in Assumption 2.2 on T . Let j, k P I, then we know that u0 “ ´Pj,ku0. Under Assumption
2.2, from (4.13) we infer

u “ ´p1 ` iQq´1pU0p¨qPj,ku0q “ ´Pj,kp1 ` iQq´1pU0p¨qu0q “ ´Pj,ku.

Here we use the fact that U0p¨qPj,k “ Pj,kU0 and QPj,k “ Pj,kQ. As a result, we infer that under Assumption 2.2
on p, T ,

u “ ´Pj,ku in Xp,T . (4.14)

Hence u is antisymmetric w.r.t. I for any t P IT .
As explained in Section 2.4.2, we are going to show: For any D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2, and for any

upt, xq P X1
I,p,T and vpt, xq P L

θ1
p

t pIT , L
p1,2
D q or vpt, xq P L8

t pIT ,Hq, we are going to prove
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xpLIQuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

À T θ}u}X1
I,p,T

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L8
0 pIT ,Hqu

for some θ ą 0 and 2 ă p ď 6. We also split the study into the case of potentials between electrons and nuclei, and
the case of potentials between electrons and electrons.

Step 1. Study of the potentials electrons and nuclei. First of all, we assume j R I. Then we have

LI
1

|xj ´ aµptq|
u “

1

|xj ´ aµptq|
LIu.

According to (4.9), we infer that under condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1,

}SLIpV p¨, xjquq}X1
I,p,T

“ }SpV p¨, xjqLIuq}X1
I,p,T

Àα,p, rp ZT 1{θ1
rp´1{θp}u}X1

I,p,T
. (4.15)
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Now we consider the case j P I. By (2.15) we have

LI
1

|xj ´ aµptq|
u “ p1 ´ ∆jq1{2 1

|xj ´ aµptq|
LI,ju

“ p1 ´ ∆jq´1{2

„

1

|xj ´ aµptq|
LI,ju

ȷ

´
“

p1 ´ ∆jq´1{2∇j

‰

¨ ∇j

„

1

|xj ´ aµptq|
LI,ju

ȷ

(4.16)

where LI,j is defined by (2.13). For the first term on the right-hand side of (4.16), from (4.8), we infer that under
condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

Sp1 ´ ∆jq´1{2
´ 1

|xj ´ aµp¨q|
LI,jup¨, xq, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
´ 1

|xj ´ aµp¨q|
LI,jup¨, xq, p1 ´ ∆jq´1{2vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα,p,rp T 1{θ1
rp´1{θp

´

}u}L8
t pIT ,Hq ` }u}

L
θp
t pIT ,Lp,2

j q

¯

ˆ mint}p1 ´ ∆jq´1{2v}
L

θ1
p

t pIT ,Lp1,2
D q

, }p1 ´ ∆jq´1{2v}L8
0 pIT ,Hqu

Àα,p,rp T 1{θ1
rp´1{θp

´

}u}L8
t pIT ,Hq ` }u}

L
θp
t pIT ,Lp,2

j q

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L8
0 pIT ,Hqu. (4.17)

Here we use the fact that rS, p1 ´ ∆jq1{2s “ 0 in the first equation and Theorem 3.6 in the last inequality.

For the second term on the right-hand side of (4.16), notice that

∇j

” 1

|xj ´ aµp¨q|
LI,jup¨, xq

ı

“
1

|xj ´ aµp¨q|
LI,j∇jup¨, xq `

”

∇j
1

|xj ´ aµp¨q|

ı

LI,jup¨, xq,

and by Lemma 2.9,
›

›

›

›

|xj ´ aµp¨q|1´α
”

∇j
1

|xj ´ aµp¨q|

ı

LI,jup¨, xq

›

›

›

›

H

À

›

›

›

›

1

|xj ´ aµp¨q|1`α
LI,jup¨, xq

›

›

›

›

H
Àα

›

›

›

›

1

|xj ´ aµp¨q|α
LI,j∇jup¨, xq

›

›

›

›

H
.

Thus,
›

›

›

›

|xj ´ aµp¨q|1´α∇j

” 1

|xj ´ aµp¨q|
LI,jup¨, xq

ı

›

›

›

›

H
Àα

›

›

›

›

1

|xj ´ aµp¨q|α
LI,j∇ju

›

›

›

›

H
. (4.18)

Then we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

Srp1 ´ ∆jq´1{2∇js ¨

ˆ

∇j

” 1

|xj ´ aµp¨q|
LI,jup¨, xq

ı

˙

, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα

ż T

0

›

›

›

›

” 1

|xj ´ aµpsq|α
LI,j∇jups, xq

ı

›

›

›

›

H

›

›

›

›

1

|xj ´ aµpsq|1´α
S˚

`

p1 ´ ∆jq´1{2∇jvp¨, xq
˘

psq

›

›

›

›

H
ds. (4.19)

Proceeding as for (4.8) and (4.17), we infer that for under condition (1)-(2) in Assumption 2.2,for any 0 ă T ă 1
and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

Srp1 ´ ∆jq´1{2∇js ¨

ˆ

∇j

” 1

|xj ´ aµp¨q|
LI,jup¨, xq

ı

˙

, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα,p,rp T 1{θ1
rp´1{θp

´

}∇jLI,ju}L8
t pIT ,Hq ` }∇jLI,ju}

L
θp
t pIT ,Lp,2

j q

¯

ˆ min
␣

}p1 ´ ∆jq´1{2∇jv}
L

θ1
p

t pIT ,Lp1,2
D q

, }p1 ´ ∆jq´1{2∇jv}L1
t pIT ,Hq

(

Àα,p,rp T 1{θ1
rp´1{θp

´

}LIu}L8
t pIT ,Hq ` }LIu}

L
θp
t pIT ,Lp,2

j q

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu. (4.20)

Here in the last inequality, we use Theorem 3.6 again. As a result, (4.16), (4.17) and (4.20) show that under
condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1 and j P I,

}LISpV p¨, xjquq}X1
I,p,T

Àα,p, rp ZT 1{θ1
rp´1{θp}u}X1

I,p,T
.

Finally, this and (4.15) imply that for under condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1,

}LISpV p¨, xjquq}X1
I,p,T

Àα,p, rp ZT 1{θ1
rp´1{θp}u}X1

I,p,T
. (4.21)
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Step 2. Study of the potentials between electrons and electrons. Now we consider the potentials such
as W pxj , xkq. We have to split the study into three cases: tj, ku

Ş

I “ H, |tj, ku
Ş

I| “ 1 or tj, ku
Ş

I “ tj, ku.
Case 1. When tj, ku

Ş

I “ H, it means that

LI
1

|xj ´ xk|
u “

1

|xj ´ xk|
LIu.

From (4.11), we infer that under under condition (1)-(2) in Assumption 2.2 and 0 ă T ă 1,

›

›SLIp|xj ´ xk|´1uq
›

›

Xp,T
“
›

›Sp|xj ´ xk|´1LIuq
›

›

Xp,T
Àα,p, rp T 1{θ1

rp´1{θp}u}X1
I,p,T

(4.22)

Case 2. For the case |tj, ku
Ş

I| “ 1, we can assume that j P I but k R I. The case j R I but k P I can be
treated in the same manner. For j P I and k R I, we have

LI
1

|xj ´ xk|
u “ p1 ´ ∆jq1{2 1

|xj ´ xk|
LI,ju.

Indeed, this proof is essentially the same as for Step 1. in this proof: By replacing aµptq by xk, from (4.19) we will
have

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

Srp1 ´ ∆jq´1{2∇js ¨

ˆ

∇j

” 1

|xj ´ xk|
LI,jup¨, xq

ı

˙

, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα

ż T

0

›

›

›

›

” 1

|xj ´ xk|α
LI,j∇jups, xq

ı

›

›

›

›

H

›

›

›

›

1

|xj ´ xk|1´α
S˚

`

p1 ´ ∆jq´1{2∇jvp¨, xq
˘

psq

›

›

›

›

H
ds.

Then proceeding as for (4.10), we infer that that under under condition (1)-(2) in Assumption 2.2 and 0 ă T ă 1,

›

›SLIp|xj ´ xk|´1uq
›

›

Xp,T
Àα,p, rp T 1{θ1

rp´1{θp}u}X1
I,p,T

(4.23)

Case 3. Finally, we consider the case tj, ku Ă I. In this case, we have

LI
1

|xj ´ xk|
u “ p1 ´ ∆jq1{2p1 ´ ∆kq1{2 1

|xj ´ xk|
LI,j,ku.

According to (2.15), we have

LI
1

|xj ´ xk|
u “

1

p1 ´ ∆jq1{2

1

p1 ´ ∆kq1{2

1

|xj ´ xk|
LI,j,ku

`
∇j

p1 ´ ∆jq1{2

1

p1 ´ ∆kq1{2
¨ ∇j

“ 1

|xj ´ xk|
LI,j,ku

‰

`
1

p1 ´ ∆jq1{2

∇k

p1 ´ ∆kq1{2
¨ ∇k

“ 1

|xj ´ xk|
LI,j,ku

‰

`
“ ∇j

p1 ´ ∆jq1{2
b

∇k

p1 ´ ∆kq1{2

‰

¨

ˆ

∇j b ∇k

“ 1

|xj ´ xk|
LI,j,ku

‰

˙

. (4.24)

Now the study of SLIp|xj ´xk|´1uq is split into the study of the above four terms on the right-hand side of (4.24).
Concerning the first term, from (4.11), we infer that, under condition (1)-(2) in Assumption 2.2 and for any

0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,
›

›

›

›

S
1

p1 ´ ∆jq1{2

1

p1 ´ ∆kq1{2

´ 1

|xj ´ xk|
LI,j,ku

¯

›

›

›

›

Xp,T

Àp

›

›

›

›

S
´ 1

|xj ´ xk|
u
¯

›

›

›

›

Xp,T

Àα,p, rp T 1{θ1
rp´1{θp}LI,j,ku}Xp,T

Àα,p, rp T 1{θ1
rp´1{θp}LIu}Xp,T

. (4.25)

Here in the first inequality and the last inequality, we use (3.6b).
The second term on the right-hand side of (4.24) can be studied as for (4.18) by replacing aµ by xj :

›

›

›

›

|xj ´ xk|1´α∇j

” 1

|xj ´ xk|

ı

LI,j,kup¨, xq

›

›

›

›

H
À

›

›

›

›

1

|xj ´ xk|α
LI,j,k∇ju

›

›

›

›

H
.
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Then proceeding as for (4.10) and using Theorem 3.6, we infer that under condition (1)-(2) in Assumption 2.2 and
for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
∇j

p1 ´ ∆jq1{2

1

p1 ´ ∆jq1{2
¨

ˆ

∇j

” 1

|xj ´ xk|
LI,jup¨, xq

ı

˙

, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα

ż T

0

›

›

›

›

” 1

|xj ´ xk|α
LI,j,k∇jups, xq

ı

›

›

›

›

H

ˆ

›

›

›

›

1

|xj ´ xk|1´α
S˚

ˆ

∇j

p1 ´ ∆jq1{2

1

p1 ´ ∆jq1{2
vp¨, xq

˙

psq

›

›

›

›

H
ds

Àα,p,rp T 1{θ1
rp´1{θp

´

}LIu}L8
t pIT ,Hq ` }LIu}

L
θp
t pIT ,Lp,2

j,kq

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu.

Hence, under condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,
›

›

›

›

S
∇j

p1 ´ ∆jq1{2

1

p1 ´ ∆kq1{2

´ 1

|xj ´ xk|
LI,j,ku

¯

›

›

›

›

Xp,T

Àα,p, rp T 1{θ1
rp´1{θp}LIu}Xp,T

. (4.26)

Analogously, for the third term on the right-hand side of (4.24), we have that under condition (1)-(2) in As-
sumption 2.2 and for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

›

›

›

›

S
1

p1 ´ ∆jq1{2

∇k

p1 ´ ∆kq1{2

´ 1

|xj ´ xk|
LI,j,ku

¯

›

›

›

›

Xp,T

Àα,p, rp T 1{θ1
rp´1{θp}LIu}Xp,T

. (4.27)

It remains to study the last term on the right-hand side of (4.24) where we will use Lemma 2.10 and (4.14) (i.e.,
u is antisymmetric w.r.t. tj, ku). We have

∇j b ∇k

” 1

|xj ´ xk|
LI,j,ku

ı

“
1

|xj ´ xk|
∇j b ∇kLI,j,ku `

“

∇j
1

|xj ´ xk|

‰

b ∇kLI,j,ku

`
“

∇k
1

|xj ´ xk|

‰

b ∇jLI,j,ku `
“

∇j b ∇kLI,j,k
1

|xj ´ xk|

‰

u.

Thus, from Lemma 2.9, Lemma 2.10 and (4.14),
›

›

›

›

|xj ´ xk|1´α∇j

” 1

|xj ´ xk|

ı

LI,j,kup¨, xq

›

›

›

›

H

À

›

›

›

›

1

|xj ´ xk|α
LI,j,k∇j b ∇ku

›

›

›

›

H
`

›

›

›

›

1

|xj ´ xk|1`α
LI,j,k∇ju

›

›

›

›

H

`

›

›

›

›

1

|xj ´ xk|1`α
LI,j,k∇ku

›

›

›

›

H
`

›

›

›

›

1

|xj ´ xk|2`α
LI,j,ku

›

›

›

›

H

À

›

›

›

›

1

|xj ´ xk|α
LI,j,k∇j b ∇ku

›

›

›

›

H
.

Now proceeding as for (4.10) and using Theorem 3.6, we infer that under condition (1)-(2) in Assumption 2.2 and
for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with 1 ď |D| ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

A

S
” ∇j

p1 ´ ∆jq1{2
b

∇k

p1 ´ ∆jq1{2

ı

¨

ˆ

∇j b ∇k

” 1

|xj ´ xk|
LI,jup¨, xq

ı

˙

, vpt, xq

E

dt

ˇ

ˇ

ˇ

ˇ

ˇ

Àα

ż T

0

›

›

›

›

1

|xj ´ xk|α
LI,j,k∇j b ∇kups, xq

›

›

›

›

H

ˆ

›

›

›

›

1

|xj ´ xk|1´α
S˚

ˆ

∇j

p1 ´ ∆jq1{2
b

∇k

p1 ´ ∆jq1{2
vp¨, xq

˙

psq

›

›

›

›

H
ds

Àα,p,rp T 1{θ1
rp´1{θp

´

}LIu}L8
t pIT ,Hq ` }LIu}

L
θp
t pIT ,Lp,2

j,kq

¯

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L1
t pIT ,Hqu.

As a result, under condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1 and any D Ă t1, ¨ ¨ ¨ , Nu with
1 ď |D| ď 2,

›

›

›

›

S
” ∇j

p1 ´ ∆jq1{2
b

∇k

p1 ´ ∆jq1{2

ı

¨

ˆ

∇j b ∇k

” 1

|xj ´ xk|
LI,jup¨, xq

ı

˙
›

›

›

›

Xp,T

Àα,p, rp T 1{θ1
rp´1{θp}LIu}Xp,T

. (4.28)

Now we conclude from (4.25)-(4.28) that under condition (1)-(2) in Assumption 2.2 and for any 0 ă T ă 1,
›

›

›

›

S
´ 1

|xj ´ xk|
up¨, xq

¯

›

›

›

›

X1
I,p,T

Àα,p, rp T 1{θ1
rp´1{θp}u}X1

I,p,T
. (4.29)



18 LONG MENG

Conclusion for all cases. Finally we can conclude from (4.22), (4.23) and (4.29) that under condition (1)-(2)
in Assumption 2.2 and for any 0 ă T ă 1,

›

›

›

›

S
´ 1

|xj ´ xk|
up¨, xq

¯

›

›

›

›

X1
I,p,T

Àα,p, rp ZT 1{θ1
rp´1{θp}u}X1

I,p,T
. (4.30)

Step 3. Conclusion. From (4.21) and (4.30), we infer that for any 0 ă T ă 1, p satisfying (4.7) and rp satisfying
(4.4), there exists a constant CT,2 :“ CT,2pα, p, rpq ě 1 such that

}Qu}X1
I,p,T

ď CT,2pZ ` NqNT 1{θ1
rp´1{θp}u}X1

I,p,T
. (4.31)

Now let CT,2pZ ` NqNT 1{θ1
rp´1{θp ď 1

2 , we get

}Qu}X1
I,p,T

ď
1

2
}u}X1

I,p,T
.

Thus under Assumption 2.2, we have that 1 ` iQ is invertible on X1
I,p,T . As a result,

}u}X1
I,p,T

“ }p1 ` iQq´1pU0p¨qu0q}X1
I,p,T

ď 2}U0p¨qu0}X1
I,p,T

Àq }u0}H1
I,mix

.

This gives (2.8) and shows the uniqueness of the solution u in X1
I,p,T . Hence the theorem. □

5. Justification of the hyperbolic cross space approximation (1.14)

Now we are going to prove Theorem 2.8, in particular (2.9). Before going further, we need the following result
which can be regarded as an evolution version of (1.11).

Lemma 5.1. Let u0 P H1
I1,mix

Ş

H1
I2,mix. Under Assumption 2.2 we have

}p1 ´ PχR
qu}Xp,T

Àp
1

R

ÿ

ℓ“1,2

}u0}H1
Iℓ,mix

. (5.1)

Proof. By Duhamel formula (2.12), we know

p1 ´ PχR
quptq “ p1 ´ PχR

qU0ptqu0 ` ip1 ´ PχR
qQuptq.

Thus, by (3.3a),

}p1 ´ PχR
qu}Xp,T

ď }U0ptqp1 ´ PχR
qu0}Xp,T

` }p1 ´ PχR
qQuptq}Xp,T

Àp }p1 ´ PχR
qu0}H ` }p1 ´ PχR

qQuptq}Xp,T
.

According to (3.5), we have

}p1 ´ PχR
qu0}H ď

1

R

›

›

ÿ

ℓ“1,2

LIℓu0

›

›

H ď
1

R

ÿ

ℓ“1,2

}u}H1
Iℓ,mix

. (5.2)

Thus,

}p1 ´ PχR
qu}Xp,T

ď }U0ptqp1 ´ PχR
qu0}Xp,T

` }p1 ´ PχR
qQuptq}Xp,T

Àp
1

R

ÿ

ℓ“1,2

}u0}H1
Iℓ,mix

` }p1 ´ PχR
qQuptq}Xp,T

. (5.3)

It remains to show that }p1 ´ PχR
qQuptq}Xp,T

Àp
1
R

ř

ℓ“1,2 }u0}H1
Iℓ,mix

. To do so, here we are going to prove

}p1 ´ PχR
qQuptq}Xp,T

Àp
1

R

ÿ

ℓ“1,2

}uptq}X1
Iℓ,p,T

. (5.4)

Then by (2.8), under Assumption 2.2 we have

}p1 ´ PχR
qQuptq}Xp,T

Àp
1

R

ÿ

ℓ“1,2

}u0}H1
Iℓ,mix

.

This and (5.3) give (5.1). Hence this lemma.

Now to end the proof, we prove (5.4) by using Corollary 3.5. As for the mixed regularity, we consider this
problem in the scalar product: For any D Ă t1, ¨ ¨ ¨ , Nu and 1 ď |D| ď 2, and for any upt, xq P X1

I,p,T and

vpt, xq P L
θ1
p

t pIT , L
p1,2
D q or vpt, xq P L8

t pIT ,Hq, we are going to prove
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xp1 ´ PχR
qQuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

À T θ
ÿ

ℓ“1,2

}u}X1
Iℓ,p,T

mint}v}
L

θ1
p

t pIT ,Lp1,2
D q

, }v}L8
y pIT ,Hqu

for some θ ą 0 and p ą 2.
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Indeed, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xp1 ´ PχR
qQuqptq, vptqy dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ℓ“1,2

N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

C

LIℓV ps, xjqupsq, S˚
”´

ÿ

ℓ“1,2

LIℓ

¯´1

p1 ´ PχR
qv
ı

psq

G

ds

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

ℓ“1,2

ÿ

1ďjăkďN

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

C

LIℓW pxj , xkqupsq, S˚
”´

ÿ

ℓ“1,2

LIℓ

¯´1

p1 ´ PχR
qv
ı

psq

G

ds

ˇ

ˇ

ˇ

ˇ

ˇ

. (5.5)

The proof of the terms on the right-hand side of (5.5) is essentially the same as Step 1. and Step 2. of the proof of
Theorem 2.6: We only need to replace the Strichartz estimate (3.3c) used in the proof of Theorem 2.6 by Strichartz
estimate (3.4b). Then under Assumption 2.2, we obtain (5.4). □

Proof of Theorem 2.8. We first consider the existence of solutions to (1.14). The proof is essentially the same as
for Theorem 2.5, but we need the following modification: replace the Strichartz estimate (3.3c) used in the proof
of Theorem 2.6 by Strichartz estimate (3.4a) as for Lemma 5.1. Then we know that for every u0 P H, the problem
(1.14) has a unique global-in-time solution uR P Xp,8.

Now we consider (2.9). Indeed, we have

}u ´ uR}Xp,T
ď }u ´ PχR

u}Xp,T
` }PχR

u ´ uR}Xp,T
. (5.6)

Now we are going to study PχR
u ´ uR. By the Duhamel formula (2.12), we have

PχR
u ´ uR “ ´iPχR

Qpu ´ uRq.

Replacing Strichartz estimate (3.3c) by (3.4a) and proceeding as for Step 1. and Step 2. in the proof of Theorem
2.5, we infer that under condition (1)-(2) in Assumption 2.2 and 0 ă T ă 1, there exists a constant CT,3 :“
CT,3pα, p, rpq ě 1 such that

}PχR
Qpu ´ uRq}Xp,T

ď CT,3pZ ` NqNT 1{θ1
rp´1{θp}u ´ uR}Xp,T

. (5.7)

Then under Assumption 2.2,

}PχR
u ´ uR}Xp,T

ď }PχR
Qpu ´ uRq}Xp,T

ď
1

2
}u ´ uR}Xp,T

Inserting this into (5.6), we infer that under Assumption 2.2,

}u ´ uR}Xp,T
ď }u ´ PχR

u}Xp,T
`

1

2
}u ´ uR}Xp,T

.

Thus, from Lemma 5.1 under Assumption 2.2,

}u ´ uR}Xp,T
ď 2}u ´ PχR

u}Xp,T
Àp

ÿ

ℓ“1,2

1

R
}u0}H1

Iℓ,mix
.

This ends the proof. □

Appendix A. Calderón-Zygmund inequality

This appendix is devoted to the study of the Calderón-Zygmund inequality and Mikhlin multiplier theorem on
our functional space Lp,2

j . Indeed, this is a special case of the Calderón-Zygmund inequality for operator-valued
kernels:

Theorem A.1. [8, Theorem 2.1.9] Let A and B be two reflexive Banach spaces. Let T is a bounded operator from
L2pRn, Aq to L2pRn, Bq defined by

Tfpxq “

ż

Rn

Kpx ´ yqfpyqdy

with K being a BpA,Bq-valued function defined on Rnzt0u and satisfying
ż

|x|ě2|y|

}Kpx ´ yq ´ Kpxq}BpA,Bqdx ď C.

Then T is bounded from LppAq to LppBq with 1 ă p ă 8.
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To apply this Calderón-Zygmund inequality to our problem for the fractional Laplacian operator, we have to use
the Mikhlin multiplier theorem.

If a : Rn Ñ C is a bounded measurable function, it determines a bounded linear operator

Ta : L2pRn,Cq Ñ L2pRn,Cq

given by
Tau :“ |apu

for u P L2pRn ˆ Rm,Cq. Here pupξx, yq :“
ş

Rn e´2πix¨ξxupx, yqdx is the Fourier transform and qupx, yq is the corre-
sponding inverse Fourier transform.

Theorem A.2 (Mikhlin multiplier). Let m,n P N0. Let a : Rnzt0u Ñ C be a Cn`2 function that satisfies the
inequality

|Bαapξq| ď
C

|ξ|α

for every ξ P Rnzt0u and every multi-index α “ pα1, ¨ ¨ ¨ , αnq P Nn
0 with |α| ď n ` 2. Then for any 1 ă p ă 8,

}Taf}LppRn,L2pRmqq Àn }f}LppRn,L2pRmqq.

The proof of Theorem A.2 is exactly the same as the standard Mikhlin multiplier theorem (see, e.g., [10, Theorem
8.2]). The only difference is that we use Theorem A.1 with A “ B “ L2pRmq instead of the normal Calderón-
Zygmund inequality.
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