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Abstract

We report an in-depth analysis of the photo-induced isomerization of the 2-cis-

penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff

base chromophore of the dim-light photoreceptor rhodopsin. Based on recently-de-

veloped three-dimensional potentials parametrized on ab initio multi-state multi-con-

figurational second-order perturbation theory data, we perform quantum-dynamical

studies. In addition, simulations based on various quantum-classical methods, among

which Tully surface hopping and the coupled-trajectory approach derived from the ex-

act factorization, allow us to validate their performance against vibronic-wavepacket

propagation and, therefore, a purely quantum treatment. Quantum-dynamics results

uncover qualitative differences with respect to the two-dimensional Hahn-Stock poten-

tials, widely-used as model potentials for the isomerization of the same chromophore,

due to the increased dimensionality and three-mode correlation. Quantum-classical sim-

ulations show, instead, that three-dimensional model potentials are capable of capturing

a number of features revealed by atomistic simulations and experimental observations.

In particular, a recently reported vibrational phase relationship between double-bond

torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency

is correctly reproduced.

1. Introduction

The 11-cis retinal protonated Schiff base (rPSB11) is the chromophore of Rhodopsin (Rh),

an animal opsin found in the vertebrate retina.1 In the Rh cavity, the photo-induced double-

bond isomerization of rPSB11 occurs in less than 200 fs:2 A process that, ultimately, leads

to the stimulation of the optical nerve and vision. Due to its ultrafast speed and photobi-

ological role, the rPSB11 isomerization has been studied for many years experimentally3–7

and computationally.5,7–12 Atomistic simulations of the light-induced reaction dynamics of

rPSB11 in Rh using ab initio electronic structure calculations13–20 have been accessible since
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the early 2000s accounting for the effect of the protein environment via hybrid quantum-

mechanics/molecular-mechanics (QM/MM) methods.

When combined with dynamics studies based on classical trajectories, these studies have

provided information on both the geometrical and electronic structure time evolution5,10,17 of

the reaction. However, quantum-classical approaches usually employed in atomistic simula-

tions propagate trajectories independently, and purely quantum effects, which would couple

the trajectories, are thus neglected. When such effects are of interest, quantum-dynamical

studies of low-dimensionality models based on parametrized potential energy surfaces (PESs)

have the potential to provide complementary information21–27 (see also the Supporting In-

formation of Ref.17). In this context, it is interesting to investigate the case of the 2-cis-

penta-2,4-dieniminium cation (cis-PSB3). PSB3 is a minimal model of rPSB11 which retains

certain basic features of the isomerization mechanism documented for the full rPSB11 chro-

mophore even when this is embedded in the Rh cavity. Therefore, PSB3 has been employed

for dynamics studies of the cis to trans photoisomerization in isolated conditions.23,28–37

Moreover, it is sufficiently small to allow for ab initio (wavefunction-based) multi-state multi-

configurational (MSMC) mapping of the electronic structure of ground (S0) and first singlet

excited (S1) states, and for the development of reduced-dimensionality analytical models of

PESs that can be used for quantum-dynamics studies. Here, by “reduced dimensionality”

we mean the three modes8,10,26,34,36–38 that drive the cis-trans isomerization of rPSB11 after

light absorption. The modes are the bond-length-alternation (BLA) stretching, the torsional

deformation around the reactive double bond (Tors), and the hydrogen-out-of-plane (HOOP)

wagging. The same modes drive the photoisomerization of cis-PSB3,36,37 confirming that

this model is particularly suitable for qualitative studies.

In this work, we study the dynamics underlying the ultrafast isomerization of rPSB11-

like systems triggered by vertical S0 → S1 photo-excitation, employing the recently devel-

oped three-dimensional PESs (hereafter also called “three-dimensional model”) of gas-phase

PSB3,27 based on XMCQDPT239 ab initio MSMC electronic-structure calculations. Our
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aim is to investigate the ability of the reduced-dimensionality model potentials to cap-

ture, at least qualitatively, critical features of the dynamics of Rh, such as its early de-

cay time,6 vibrational coherence6,40 and the probability of formation of the trans photo-

product.7 The proposed analysis is based on the propagation of vibronic wavepackets using

ElVibRot41 and on four trajectory-based quantum-classical approaches to excited-state dy-

namics, namely Ehrenfest,42 Tully surface hopping (TSH),43 TSH with energy decoherence

corrections (TSH-EDC),44 and the coupled-trajectory mixed quantum-classical (CT-MQC)

approach45–50 based on the exact factorization of the electron-nuclear wavefunction.51,52 On

the one hand, quantum-dynamics results for the three-dimensional model27 are compared

to the widely used22,25,38,53–55 two-dimensional model proposed by Hahn and Stock56 (here-

after also called “two-dimensional model”), in order to highlight the crucial role played by

the additional HOOP mode in driving the cis-trans isomerization. The study of the three-

dimensional model27 based on various quantum-classical schemes, on the other hand, is

essential to put our analysis in perspective to atomistic simulations in full dimensionality.

Therefore, it is clear that such an in-depth analysis and validation of the model would

not be possible without the complementarity of information obtained based on quantum and

quantum-classical dynamics. Furthermore, since our analysis relies on a common “force field”

and on the benchmark provided by quantum-dynamics simulations, the findings presented

in this work provide novel insight into different quantum-classical schemes, and in partic-

ular into the recently-developed CT-MQC approach, which is an analysis seldom reported

in the literature. For all these reasons, our study goes beyond previous reports based on

two-dimensional and/or empirically determined PES models.21–23,25,38,53,56,57

The analysis of the results focuses on three main aspects of PSB3 captured dynamics:

(i) the short-time energy distribution among the modes, (ii) the isomerization quantum

efficiency, and (iii) the phase relationship between Tors and HOOP velocities necessary

to achieve the trans product. With regard to point (i), we show that accounting for the

quantum-mechanical character of nuclear dynamics appears to be surprisingly important
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for predicting energy redistribution and S1-to-S0 population transfer at short times after

photo-excitation. Concerning point (ii), the analysis reveals the role of coherent vibrational

motion in the excited state to enhance the funneling process through the S1/S0 conical

intersection (CI) points3,6,7,10,38 (or intersection space37) and to determine the isomerization

quantum efficiency. Finally, while points (i) and (ii) provide information useful to validate

approximate methods, point (iii) examines the quality of the three-dimensional model for

Rh isomerization and confirms the importance of phase matching between Tors and HOOP

motion to access the trans stereochemistry.7,8

Focusing on the technical aspects discussed in this work, the main points are: (iv) the

development of the kinetic energy operator suitable for quantum-dynamics calculations in the

curvilinear coordinates BLA, Tors, and HOOP, and (v) the proposition of suitable analysis

strategies of CT-MQC trajectories, which appears to be necessary since the method lacks,

in general, the intuitive picture in terms of hopping trajectories provided by the widely-used

TSH(-EDC).

The paper is organized as follows. Sections 2 and 3 are devoted to the validation of

approximate (quantum-classical) methods, and Section 4 examines the three-dimensional

model from the application viewpoint. Accordingly, in Section 2, we describe the procedure

to perform quantum dynamics simulations by defining the kinetic energy operator associated

to the BLA, Tors and HOOP modes. In addition, we compare our quantum-dynamics results

with the Hahn-Stock model. In Section 3, we investigate the performance of the quantum-

classical schemes based on the comparison with quantum results for our reference three-

dimensional model PESs. In Section 4, we present an analysis purely based on trajectories

to highlight the capability of the same model PESs to capture dynamical features observed

in rPSB11-like systems from atomistic simulations. Thus, again, in Section 3 our PESs are

consistently employed to validate quantum-classical schemes, while in Section 4 we explore

their chemical significance. Section 5 summarizes our observations and discusses future

developments.
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2. Analysis of the model based on quantum dynamics

simulations

In this section we analyze the quantum vibronic wavepacket dynamics driven by the two-

state three-dimensional model PESs developed in Ref.27 Note that the parametrization of the

PESs has been slightly modified with respect to Ref.,27 and we describe the new potentials

in Appendix A. In the following we describe:

• the curvilinear coordinates that define the three-dimensional model;

• the kinetic energy operator and the metric tensor associated to those curvilinear coor-

dinates.

The crucial step before proceeding with the analysis of the dynamics is the derivation of

the kinetic energy operator associated to the curvilinear coordinates employed in the model:

BLA, Tors and HOOP, schematically represented in Fig. 1. The BLA stretching is defined

Figure 1: Schematic representation of the vibrational modes BLA, Tors, and HOOP. The
relation between HOOP and an additional coordinate, Tau, is shown on the right: Tau =
Tors− HOOP/2 will be used for the analysis presented below.

as the difference between the average length of the single bonds and the average length of

the double bonds in the ground-state PSB3 Lewis formula, 1

r =
dC1C2 + dC3C4

2
− dNC1 + dC2C3 + dC4C5

3
, (1)

1Note that in the reference cis ground-state conformation, PSB3 has two single bonds, i.e., C1C2 and
C3C4, and three double bonds, i.e., NC1, C2C3 and C4C5.
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where dCACB is the distance between the atoms CA and CB, using the indices of the carbon

atoms given in Fig. 1 (similarly, dNC1 is the distance between the nitrogen and the carbon

atom labelled 1); Tors identifies the torsional deformation around the reactive C2 = C3

double bond, thus it is the dihedral angle formed by the carbon atoms C1C2C3C4,

θ = dihedral (C1C2C3C4) ; (2)

the HOOP wagging mode is described by the difference between Tors and the H2C2C3H3

dihedral angle,

φ = dihedral (C1C2C3C4)− dihedral (H2C2C3H3) . (3)

The coordinates BLA, Tors and HOOP are used to calculate numerically the position-

dependent metric tensor following the TNUM scheme.58 First, all 42 coordinates (including

the center of mass degrees of freedom) belonging to PSB3 must be defined via the follow-

ing coordinates transformations: (i) transformation to/from Z-matrix coordinates, (ii) linear

combinations of internal coordinates, (iii) active transformation. Transformation (i) allows

us to define the Z-matrix, relating Cartesian coordinates to the internal coordinates used

in the quantum chemistry calculations for the parametrization of the potentials.27 Transfor-

mation (ii) is used to relate the Z-matrix coordinates to the active coordinates BLA, Tors

and HOOP, such that they can be expressed as linear combinations of internal coordinates,

as given in Eqs. (1), (2) and (3). The remaining linear combinations are generated au-

tomatically by TNUM.58 Transformation (iii) enables to set up the constraints to get the

reduced-dimensionality model, and thus to select the three active coordinates. In the present

study, rigid contraints (values at the cis equilibrium geometry) are defined on all coordinates

except for the three active ones, i.e., Tors, BLA, and HOOP.

Once the relation between the body-fixed Cartesian coordinates and the three active

coordinates is derived based on the above transformations, the contravariant components of
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the metric tensor G are obtained (see the Appendix B and Ref.58 for additional details); its

elements will be indicated as Gij, with i, j labelling the coordinates. As usual, the resulting

metric tensor is non-diagonal and depends on the active coordinates; a possible expression

of (the deformation part of) the kinetic energy operator, K̂def , for n active coordinates

Q = {Q1....Qn}, and for zero total angular momentum, is

K̂def =
∑
i≤j

f ij2 (Q)
∂2

∂Qi∂Qj

+
∑
i

f i1(Q)
∂

∂Qi

+ Vep(Q). (4)

The symbols f ij2 (Q), f i1(Q) and Vep(Q) stand for functions of active coordinates, and they

are obtained from the contravariant components of the metric tensor. Vep(Q) is a scalar term

often called extrapotential58–60 and it may appear when a non-Euclidean volume element,

dτdef = ρ(Q)·dQ1 ·dQ2 · · · dQn, is used, i.e., when ρ(Q) is not the Jacobian of the coordinates

transformation.

The results presented below can be considered complementary to previous dynamical

studies based on model PESs for the isomerization in retinals21,22,25,26 that assume a con-

stant diagonal form of the metric tensor due to the fact that its components are fitted to

reproduce spectroscopy data. In order to be able to directly compare our quantum dynamics

results with the two-dimensional Hahn-Stock model56 and to the quantum-classical simula-

tions performed in the following sections, we construct as well approximate kinetic energy

operators where the metric tensor is either constant or constant and diagonal. The constant

metric tensor is determined by evaluating the position-dependent metric tensor over 45 ge-

ometries, spanning homogeneously the configuration space, and averaging its components;

the constant and diagonal metric tensor is determined by neglecting the off-diagonal compo-

nents of the constant metric tensor. It is worth noting that, due to the symmetry, averaging

the elements Grθ and Grφ yields zero. The diagonal components of the contravariant metric

tensor can be identified as the inverse of an effective mass and moments of inertia associated,

respectively, to the three curvilinear coordinates, BLA, Tors, and HOOP; their values are
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reported in Table 1.

Table 1: Constant components of the contravariant metric tensor obtained by averaging
the exact position-dependent metric tensor over 45 geometries (in atomic units). Only the
non-zero values are given.

Component Value in a.u.
Grr ≡ 1/Mr 7.981 ·10−5

Gθθ ≡ 1/Iθ 2.599 ·10−5

Gφφ ≡ 1/Iφ 40.375 ·10−5

Gθφ 4.025 ·10−5

2.1 Probabilities and quantum yield

In order to easily compare quantum dynamics results based on the three forms of the metric

tensor we focus here on the probabilities of the cis and trans conformers in the S0 and S1

adiabatic states as functions of time. To this end we will analyze the time evolution of:

• the populations of the ground and first-excited states in the three-dimensional model

and in the two-dimensional Hahn-Stock model for the cis and trans conformers;

• the quantum yield in the three-dimensional model and in the two-dimensional Hahn-

Stock model.

The dynamics is initiated in S1 at the cis geometry so as to reproduce the effect of an

ultra-short photo-excitation that takes the molecule from S0 to the first spectroscopic state

without geometrical modifications. Therefore, the initial vibrational wavepacket is a three-

dimensional Gaussian centered at the minimum of the ground-state PES (additional details

are given in Appendix C). We compare our results to the Hahn-Stock model,56 which is based

on the parametrization of the S0 and S1 PESs as functions of a reactive torsion coordinate and

of a collective vibrational coordinate that couples S0 and S1. The protocol illustrated above

for the initialization of the dynamics is employed to compute the corresponding probabilities

in this two-state two-dimensional model. It is worth stressing that the 2D Hahn-Stock model

is not an analytical model for PSB3, but rather for “the photoinduced 11-cis → all-trans
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isomerization of retinal in rhodopsin”.56 Thus, the used coordinates are to be considered as

“effective modes” and do not correspond exactly to the Tors and BLA coordinates of the

three-dimensional model.

The probabilities of finding cis and trans conformations either in the S0 or S1 states are

defined as

P Si
cis(t) =

∫ ∫ ∫
|θ|<90°

∣∣χSi(θ, r, φ, t)∣∣2 dr dφ dθ (5)

P Si
trans(t) =

∫ ∫ ∫
|θ|>90°

∣∣χSi(θ, r, φ, t)∣∣2 dr dφ dθ, (6)

where the nuclear probability density in state Si (with i = 0, 1) is indicated as |χSi(θ, r, φ, t)|2.

A similar expression is used for the two-dimensional model, clearly without the dependence

on the HOOP coordinate (φ in the equations). The population of state Si is given by

P Si(t) = P Si
cis(t) + P Si

trans(t). (7)

Figure 2 shows that all quantum simulations based on the three-dimensional model predict

that in 200 fs the S1 population tends to about 0.5, which is arguably due to the reduced

dimensionality of the system from many (36 in PSB3 and 156 in rPSB11) to 3 modes.

Also, an ultrafast decay of the S1 probability towards the photo-products already at 50 fs38

is common to all results based on the three-dimensional model. We notice quantitative

differences between exact results (black lines) and the two approximations of the metric

tensor, i.e., constant (dark-green lines) and diagonal-constant (light-green lines). However,

qualitatively, the behavior of the probabilities as functions of time is not affected by the

approximations, in particular by the use of a diagonal and constant metric tensor. This

results justifies its use in the quantum-classical simulations presented in Sections 3 and 4.

We notice oscillations in the probabilities of S1-trans (upper right panel of Fig. 2), S0-cis

(lower left panel of Fig. 2) and S0-trans (lower right panel of Fig. 2) that appear as soon as
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Figure 2: Probabilities of the cis (left panels) and trans (right panels) conformers in the
ground state S0 (lower panels) and in the excited state S1 (upper panels) as functions of
time. Exact quantum results for the three-dimensional model, using a non-diagonal position-
dependent metric tensor (MT), are shown in black. Quantum results using a constant MT
are shown in dark green, and quantum results using a diagonal constant MT are shown
in light green. The corresponding probabilities determined based on the Hahn-Stock two-
dimensional model56 are shown in purple.

the curves (black, green and light-green) increase from zero at around 50 fs. This feature will

be discussed later on, since an analogous behaviour will be observed as well in the plot of the

quantum yield (in Fig. 3) and in the plot of the kinetic energy along the HOOP coordinate

(in Fig. 4) as functions of time.

The results of the two-dimensional model (purple lines) are qualitatively different from

the results of the three-dimensional model. The decay of the S1-cis probability (mainly)

in favour of the S0-trans is delayed if compared to the results of the three-dimensional

potentials (in the three-dimensional model, S1-to-S0 relaxation through the CI is clearly

ultrafast). More specifically, the two-dimensional model ignores the effect of the HOOP
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mode, and in particular of the correlation between HOOP and Tors (see analysis presented

in Section 4) in preventing/favouring the photo-product formation.

Based on the probabilities just analyzed, we can estimate the quantum efficiency, or

quantum yield, of the process. Here, we define the quantum yield as the ratio between the

trans products and all products of the reaction, that is

QY (t) =
P S0

trans(t) + P S1
trans(t)

P S0
cis (t) + P S0

trans(t) + P S1
trans(t)

. (8)

The quantum efficiency as function of time is shown in Fig. 3, where quantum results based
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Figure 3: Quantum yield as function of time estimated from Eq. (8). The color code is the
same as in Fig. 2.

on our three-dimensional model27 are compared to the Hahn-Stock model.56 Once again

we observe a qualitative difference between the two models, whereas a qualitative agree-

ment clearly persists between exact and approximate (quantum) predictions for the three-

dimensional model PESs, from which we can extract a long-time estimate of the quantum

efficiency of about 0.6.

2.2 Nuclear kinetic energy

It is instructive to further analyze quantum dynamics based on the three-dimensional model27

by looking at the average nuclear kinetic energy along BLA, Tors and HOOP as function of
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time evaluated numerically with TNUM.58 This analysis

• confirms that using a diagonal-constant metric tensor is a good approximation for the

exact dynamics;

• relates the oscillations observed in Section 2.1 in the probabilities of S1-trans, S0-cis,

and S0-trans to the oscillations along HOOP;

• highlights similarities and differences between the BLA mode of the three-dimensional

model and the effective stretching mode of the two-dimensional model;

• points out a qualitative different behavior of the reactive modes in the two models.

The first observation is crucial to validate the following comparison of the nuclear kinetic

energy between quantum and quantum-classical results. In fact, the general expression of the

nuclear kinetic energy operator contains “off-diagonal” contributions describing the coupling

between the modes. Those couplings are completely neglected when the diagonal-constant

form of the metric tensor is used, as is the case in quantum-classical simulations presented

later on.
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Figure 4: Nuclear kinetic energy (diagonal) contributions along BLA, Tors and HOOP as
functions of time. The color code is the same as in Fig. 2. The right panel shows the off-
diagonal contributions (f ij2 (Q) ∂2

∂Qi∂Qj
for i 6= j in Eq. (4)) arising from the coupling of the

modes: continuous lines refer to exact calculations; the dashed line refers to the calculations
based on the constant metric tensor.

Figure 4 shows the expectation value of the kinetic energy operator K̂def on the instan-

taneous vibronic state decomposed into its “diagonal” BLA, Tors and HOOP contributions
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for exact (black lines) calculations, and for the two approximations based on the constant

metric tensor (dark-green lines) and diagonal-constant metric tensor (light-green lines). The

overall agreement between exact and approximate results is satisfactory to justify the use of

a diagonal-constant metric tensor in the following calculations based on trajectories, even

though a small dephasing is observed between 50 and approximately 120 fs along the BLA co-

ordinate. When the metric tensor is non-diagonal, kinetic energy contributions arising from

the coupling between the modes are observed (off-diagonal terms in Fig. 4). In particular, all

modes are coupled in the exact treatment, even though not strongly, as the continuous lines

in the right panel of Fig. 4 show, whereas only Tors and HOOP are weakly coupled when the

constant metric tensor is used, as shown by the dashed line in the right panel of Fig. 4 (the

coupling with BLA is identically zero in this case, since the components Grθ and Grφ of the

constant metric tensor are zero). Nonetheless, these additional (off-diagonal) contributions

are negligible if compared to the diagonal terms. Note, also, that each term of the nuclear

kinetic energy operator of Eq. (4) is in general not Hermitian and, therefore, its expectation

value can be complex. It is only the sum of all terms that is real. However, all imaginary

parts are close to zero in all cases and, thus, they are not shown here.

As pointed out in Section 2.1, characteristic oscillations are observed in Figs. 2 and 3

when the curves corresponding to the three-dimensional model increase from zero at around

50 fs. A similar behavior is observed in the curves representing the kinetic energy along

HOOP as function of time. Therefore, it is plausible to conclude that those oscillations in

the probabilities (Fig. 2) are induced by the HOOP motion. Furthermore, the oscillations

persist in the three forms of the metric tensor, even when the kinetic coupling between modes

is switched off, indicating that they are solely an effect of the PESs.

As for the results shown in Section 2.1, dynamics performed with the Hahn-Sock two-

dimensional model shows qualitative differences with respect to our model when analyzing

the kinetic energy as function of time. In Fig. 4 we directly compare the kinetic energy

along BLA with the kinetic energy along the coupling mode of the two-dimensional model
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(left panel). This choice is justified based on the definition of the coupling mode given in

Ref.:56 “a delocalized stretching motion of the polyene chain, whereby single and double

bonds interchange”. The kinetic energy along this coupling mode oscillates with a period

of about 10 fs and increases after 100 fs, with amplitudes that are damped at long times.

Such a behavior suggests that vibrational coherence is lost while the nuclear wavepacket is

transferred from S1 to S0 acquiring kinetic energy along the reactive torsional coordinate

(Tors Kinetic Energy panel in Fig. 4). However, the increase of kinetic energy along the

coupling mode is delayed in comparison to the increase along BLA, appearing just after 50 fs,6

while the period of the oscillations is similar (about 13 fs for the three-mode dynamics). The

comparison of the Tors kinetic energy for the two models shows another qualitative difference:

in the two-dimensional model the curve does not reach a plateau within the simulated 200 fs.

In Section 2.1 and in the present section, we have shown that the two-dimensional model

PESs yield, in general, different dynamics from the three-dimensional model. Therefore, in

the following sections, we will not pursue the comparison between the two models based on

quantum-classical simulations.

To conclude this section, let us define the expression of the nuclear kinetic energy operator

when the diagonal-constant metric tensor is used, namely

K̂def =
P̂ 2
r

2Mr

+
P̂ 2
θ

2Iθ
+
P̂ 2
φ

2Iφ
, (9)

which will be used below when comparing quantum and quantum-classical results. As defined

in Table 1, Mr, Iθ, Iφ are the mass and moments of inertia associated to BLA, Tors and

HOOP, respectively.
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3. Analysis of the model based on quantum-classical sim-

ulations

In Section 2, our three-dimensional model has been analyzed based on the propagation of

vibronic wavepackets. We have compared those results with the two-dimensional Hahn-

Stock model,56 pointing out some qualitative/quantitative differences, in the probabilities

and quantum efficiency. Furthermore, we have validated the use of a diagonal-constant metric

tensor in the quantum simulations, justifying its suitability in quantum-classical simulations

as well.

In this section, we will

• comment on the quantum, i.e., vibronic wavepacket, dynamics, based on the analysis

of the topology of the adiabatic PESs;

• evaluate the ability of CT-MQC trajectories to reproduce the quantum evolution.

Later on, in Section 3.1, we will compute time-dependent probabilities, quantum yields,

and nuclear kinetic energy, based on the trajectory-based schemes Ehrenfest, TSH, TSH-

EDC and CT-MQC. This extensive comparison of quantum and quantum-classical results,

together with the analysis of the trajectories presented in Section 4, will provide further

insights into the capability of the three-dimensional PESs to capture critical features of the

microscopic mechanism of the cis-trans isomerization in PSB3 (and potentially in rPSB11),

since it allows us to make connections with results from the literature based on atomistic

simulations. In addition, we will be able to shed light on the properties of the used quantum-

classical, approximate schemes, since the same “force field” is employed for all calculations.

Quantum (with diagonal-constant metric tensor) and quantum-classical dynamics are

initiated in S1, and classical initial conditions are Wigner-sampled from the quantum-

mechanical nuclear probability distribution (see the Appendix C for details). After the

initial photo-excitation, the resulting reduced nuclear densities and CT-MQC trajectories
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are shown in Fig. 5 as functions of the Tors-BLA (left panels) and Tors-HOOP (right pan-

els) coordinates, projected on the two electronic states. The Tors-BLA reduced nuclear

probability density in the Si (i = 0, 1) electronic state |χSired(θ, r, t)|2 is determined from the

full probability density |χSi(θ, r, φ, t)|2 in that state as

∣∣χSired(θ, r, t)
∣∣2 =

∫ ∣∣χSi(θ, r, φ, t)∣∣2 dφ, (10)

and a similar expression is used for the Tors-HOOP reduced nuclear probability density

|χSired(θ, φ, t)|2. We recall here that the full density is simply the sum of the contributions in

S0 and in S1. In CT-MQC calculations, in order to establish if a trajectory is associated

to S0 or S1, we look at the values of the electronic coefficients along that trajectory. In

CT-MQC, the time-dependent electronic state along a nuclear trajectory Rα is represented

in the adiabatic basis |Si;Rα〉,

|ΦRα(t)〉 = CS0
α (t) |S0;Rα〉+ CS1

α (t) |S1;Rα〉 . (11)

The above-mentioned electronic coefficients are CS0
α (t) and CS1

α (t), whose squared moduli

give information about the electronic populations along the trajectory α. We have used the

symbol Rα for (θα, rα, φα), i.e., the values of the nuclear coordinates for the trajectory α.

To associate a trajectory to an electronic state in Fig. 5, we made the following choice: if

|CSi
α (t)|2 ≥ 0.6, the trajectory α at time t is associated to the state Si; if 0.4 < |CSi

α (t)|2 < 0.6,

the trajectory α at time t is associated to both states.

The adiabatic PESs, shown in Fig. 5 as contour plots, have mirror-plane symmetry with

respect to the clockwise and couterclockwise Tors directions when the energies are plotted

along Tors-BLA with HOOP = 0 (they are 2π-periodic and symmetric with respect to

Tors = 0). It has instead an inversion-point symmetry (HOOP = 0, Tors = ±n · 180° with

n integer) when the energy is plotted along the Tors-HOOP for any BLA value. Also notice

that the equilibrium conformations of PSB3 at the reactant and product minima of the S0
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Figure 5: Adiabatic reduced nuclear densities (green areas) and distribution of CT-MQC
trajectories (blue-white dots). Adiabatic PESs are represented via grey iso-contours, for
HOOP = 0 on the left and for BLA = 0 on the right. Left panels: nuclear densities in the
reduced Tors-BLA space in the S0 (left column) and S1 (right column) states, after 10 fs
(top), 50 fs (middle), and 100 fs (bottom) from the photo-excitation. The crosses indicate the
positions of the minimum-energy CIs. Right panels: same as the left panels, with densities
and trajectories represented in the reduced Tors-HOOP space. The intersection space is
shown as dashed lines, for which the condition Tors− HOOP/2± 90 = 0 holds.

PES are planar (HOOP = 0, Tors = 0 or Tors = ±180°). Those features are responsible

for the different and symmetric behavior during the relaxation process observed for the

PSB3 model here when compared to the dynamics of rPSB11 which occurs in a completely

asymmetric (actually chiral) Rh environment, pushing the entire molecular population along

an exclusively counterclockwise torsional motion (see for instance Ref.7).

In Fig. 5, the vibrational wavepacket is shown at three time steps during the evolution,

with CT-MQC trajectories following closely the (reduced) densities. On the left panels, the

Tors-BLA reduced density on S1 shows long-lasting vibrations along the BLA coordinate
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accompanied, already before 50 fs, by fast funneling towards the trans product38 through

the CIs located in the region Tors = ±90°, BLA = 0. The model does not take into

consideration either additional (internal) vibrational modes or the environment, and due to

the reactant planarity, population transfer from S1 to S0 takes place symmetrically along the

clockwise and counterclockwise directions Tors > 0 and Tors < 0. Furthermore, the energy

pumped into the system via the initial electronic excitation cannot be dissipated, causing

the nuclear wavepacket to remain localized in the CI region. The effect is that S1 population

decay is slower than that expected in the fully-atomistic PSB3 system with 36 vibrational

degrees of freedom, and continuous transfer from S1 to S0 and S0 to S1 eventually stabilizes

the S1 and S0 populations at long times around 0.5. 2

The observed motion along the Tors and HOOP modes is correlated.37 Once the torsional

mode is activated, the wagging helps the S1 population to reach the intersection space

by breaking the bonding character of the π-system along the C2 = C3 reactive double

bond. In fact, the most favorable path towards the degeneracy points is the path that

sets to zero the π-system overlap, which is approximately proportional to the geometrical

variable Tau = Tors − HOOP/2 (see Fig. 1, right panel). The overlap is thus assumed

to be zero at Tau = ±90°, and reaches a maximum at Tau = 0 and Tau = ±180°. The

Tors-HOOP reduced probability density transfers from S1 to S0 following the encounter

with the intersection space located at values close to Tau = ±90°. We noticed that the

density/trajectories moving towards Tors = ±180° (as shown in Fig. 5, the S0 PES reactant

and product minima have HOOP = 0) are able to reach the trans-PSB3 product only when

certain relationships between the phase of the Tors and HOOP velocities are satisfied when

passing through the decaying region. This point will be discussed later on the basis of a

trajectory analysis.
2Note that an analogous stabilization of the populations around 0.5 is observed as well for the two-

dimensional model discussed in Section 2 towards 500 fs.
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3.1 Probabilities and quantum yield

Detailed information about the S1-to-S0 relaxation mechanism accompanying the cis-trans

isomerization can be extracted from the analysis of the time-dependent probabilities, as

done for quantum-dynamics simulations in Fig. 2. We report here the corresponding results

obtained from the quantum-classical propagations and we point out some differences

• in early-time dynamics between quantum and quantum-classical results;

• among the quantum-classical schemes themselves.

In Ehrenfest and CT-MQC calculations, the cis and trans configuration, i.e., the reactant

and product structure, probabilities of Eqs. (5) and (6) are estimated as

P Si
cis(t) '

1

Ntraj

Ntraj∑
α=1

∣∣CSi
α (t)

∣∣2 (1−H
(
|θα| − 90°

))
(12)

P Si
trans(t) '

1

Ntraj

Ntraj∑
α=1

∣∣CSi
α (t)

∣∣2H( |θα| − 90°
)
, (13)

respectively, while in TSH and TSH-EDC we simply count the number of trajectories in Si

either with values |Tors| < 90° (cis) or with values |Tors| > 90°(trans). In Eqs. (12) and (13)

the symbol H stands for the Heaviside step function, that is equal to 1 if its argument is

positive and equal to 0 if its argument is negative (H(x) = 1 if x > 0 and H(x) = 0 if x < 0).

Figure 6 shows the comparison between quantum results, employing the diagonal-constant

metric tensor (light-green lines), and quantum-classical results obtained based on Ehrenfest

dynamics (purple lines), CT-MQC (blue lines), TSH (red lines), and TSH-EDC (orange

lines). While the decay of the probability of the cis conformer in S1 (upper left panel of

Fig. 6) is well captured by all quantum-classical schemes, some disagreement is observed be-

tween quantum and TSH/TSH-EDC results in the behavior of the probability of producing

the trans conformer in the excited state already after 50 fs (upper right panel of Fig. 6), as

well as between quantum and all quantum-classical schemes in the probability of producing
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Figure 6: Probabilities of the cis (left panels) and trans (right panels) conformers in the
ground state S0 (lower panels) and in the excited state S1 (upper panels) as functions of
time. Quantum-classical results based on Ehrenfest dynamics (purple lines), CT-MQC (blue
line), TSH (red lines) and TSH-EDC (orange lines) are compared to quantum results using
the diagonal-constant metric tensor (light-green lines).

the trans conformer in the ground state at around 80 fs (lower right panel of Fig. 6). The

larger population of the trans conformer produced in S0 predicted by the trajectory-based

schemes is somehow compensated at around 80 fs by an inversion of that behavior in the cis

conformer in S0. At long times, Ehrenfest and CT-MQC seem to capture the behavior of the

probabilities in better agreement with quantum results than TSH/TSH-EDC: for Ehrenfest

and CT-MQC, the trans-S1 and cis-S0 probabilities stabilize around the quantum result,

whereas the oscillations in the trans-S0 probabilities have slightly smaller amplitude than in

TSH(-EDC). Note also that, despite the inclusion of decoherence corrections in TSH-EDC,

the oscillations of the probability of the trans conformer in S0 persist. Such oscillations are

significantly reduced in CT-MQC.
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Figure 7: Quantum yield as function of time estimated from Eq. (8). The color code is the
same as in Fig. 6. Numerical values at 80 fs are explicitly indicated (dashed vertical line).

The overestimation – with respect to the quantum results – of the probability of forming

the trans-PSB3 product in S0 at around 80 fs, i.e., immediately after reaching the intersection

space region at about 50 fs delay, is common to all quantum-classical methods. 3 It appears

that trajectories are funneled through the intersection space at a higher rate than the quan-

tum wavepacket, resulting in a significantly overestimated quantum efficiency at short time

scales. To show this, we present in Fig. 7 the quantum efficiency, or quantum yield, from

Eq. (8). The computed quantum-classical quantum yield is overestimated at short time, by

about 25 − 35% depending on the method (see the values at 80 fs reported in Fig. 7), if

compared to quantum predictions. Since QM/MM simulations are usually performed based

on TSH-EDC, this result might suggest a similar overestimation of the quantum efficiency

in fully-atomistic studies. However, we also expect that taking into account larger number

of vibrational degrees of freedom might severely suppress the trans product thermal back-

isomerization as well as the return to the S1 state, which, according to the data in Fig. 5,

contribute to decrease the formation of the product. It is interesting to notice that, while
3Similar disagreements have been ascribed in the literature to the incorrect account of geometric-phase

effects.61 Even though quantum calculations are performed in the diabatic basis and quantum-classical
simulations in the adiabatic basis, we believe that geometric-phase effects are not at the origin of the
disagreement. In fact, even if geometric-phase effects are not accounted for in trajectory-based schemes,
the local nature of the trajectories somehow helps in circumventing issues that can be related to them, as
explicitly proven for Ehrenfest and TSH dynamics in recent studies.62,63
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the quantum yield predicted by TSH and TSH-EDC is lower than the expected – quantum

– value at around 120 fs, Ehrenfest and CT-MQC predict a rather good behavior towards

the value of 0.6 at the same time.

We notice that TSH results reported in Figs. 6 and 7 are very similar to TSH-EDC results,

while they are different form Ehrenfest and CT-MQC. The decoherence-correction strategy

used in TSH-EDC44 damps exponentially the electronic population that is not associated to

the active state along each trajectory over a certain characteristic time. However, due to the

nature of the model PESs, at long times the trajectories remain localized in the vicinity of

the intersection space, therefore, the decoherence correction is not able to “stabilize” to zero

the electronic population associated to the non-active state far from the intersection region.

Here, by “nature of the model PESs”, we mean the extent of the degeneracy regions of the

S0 and S1 PESs along Tors and HOOP coordinates. We expect, however, that this kind

of decoherence correction performs better as the dimensionality of the problem increases.

For similar reasons, it is not surprising that Ehrenfest results are close to CT-MQC results.

CT-MQC equations are basically Ehrenfest equations plus a decoherence term that tracks

the delocalization of the wavepackets associated to different electronic state.45 Since the S0

and S1 wavepackets delocalize over all configuration space, these decoherence effects are not

strong in this case.

The “common” disagreement in early-time dynamics of all quantum-classical methods

when compared to quantum results will be commented on in Section 3.2. Here, we will

discuss the disagreement between Ehrenfest/CT-MQC dynamics and TSH(-EDC) dynamics.

We believe that the nature of the model PESs itself is responsible for the differences in: the

trans-S1 population after 50 fs; the cis-S0 population after 80 fs; the trans-S0 population

mainly between 50 and 100 fs; the quantum yield between 80 and 120 fs. It has been shown in

an early work on TSH,64 that Ehrenfest – mean-field – dynamics performs slightly better than

TSH when a system presents delocalized non-adiabatic couplings; in the three-dimensional

model PESs, the trajectories are found at long times in the coupling region, thus essentially
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experiencing the effect of the non-adiabatic couplings as if they were delocalized in space.

Furthermore, as stated above, (i) CT-MQC equations resemble Ehrenfest equations (the

difference is a term that couples CT-MQC trajectories inducing decoherence), while (ii) TSH

and TSH-EDC results are similar since the used decoherence corrections are not remarkably

effective in this case. These observations explain the better agreement of Ehrenfest/CT-MQC

results with quantum results than TSH(-EDC).

Detailed information about the quantum-classical S1 reaction pathways can be extracted

by analyzing the trajectories. Based on such an analysis, we have observed four possible

trends: (i) some trajectories remain in the cis-S1 state; (ii) some trajectories decay from

S1 to S0 towards the photo-product, but they reach the minimum of the S0 PESs with

large kinetic energy, such that the rotation around the reactive C2 = C3 bond continues,

eventually bringing the system through a CI region and back to S1 either in the cis or in

the trans geometry; (iii) some trajectories reach a CI region, but the combination of the

Tors and HOOP velocities (see discussion in Section 4) prevents the formation of the photo-

product and delay the S0 relaxation, such that they go back to S1 in the cis geometry;

(iv) some trajectories reach a CI region and decay to S0, however, the combination of the

Tors and HOOP velocities yields the formation of the cis conformer rather than the trans

conformer. Paths (ii) and (iv) are discussed in more detail in Section 4, where the trajectoires

are explicitly shown. The combination of paths (i)-(iii) yields the S1 population of the cis

conformer with the largest probability for all methods, as observed in Fig. 6, with cis-PSB3

mainly populating the S1 state. If we instead exclusively look at the S0 population, one can

see a more similar development of the cis-PSB3 and trans-PSB3 conformations.

3.2 Nuclear kinetic energy

In this section we compare the nuclear kinetic energy from quantum and quantum-classical

calculations in order to

• investigate the relation between the larger probability of the trans-PSB3 conformer
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formed in S0 at short time as predicted by the quantum-classical schemes with respect

to the benchmark quantum results;

• discuss the excitation energy distribution among the vibrational modes considered in

the three-dimensional model.

The classical nuclear kinetic energy is averaged over the trajectories and it is decomposed

along the three nuclear modes according to the expression

K(cl)(t) =
1

Ntraj

Ntraj∑
α=1

K(cl)
α (t) =

1

Ntraj

Ntraj∑
α=1

(
P 2
r,α

2Mr

+
P 2
θ,α

2Iθ
+
P 2
φ,α

2Iφ

)
, (14)

where Pr,α, Pθ,α, Pφ,α are the momenta of the trajectory α along BLA, Tors and HOOP.
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Figure 8: Nuclear kinetic energy along the BLA (left), Tors (center), and HOOP (right)
coordinates, as function of time. The color code is the same as in Fig. 6.

Kinetic energy values from quantum and quantum-classical calculations are shown in

Fig. 8. Within the first 50 fs of dynamics the amplitude of the oscillations in BLA kinetic

energy described at the quantum level is damped while the wavepacket, centered around

Tors = 0, spreads towards the CIs at Tors = ±90°. The plots indicate that the kinetic

energy is mainly transferred from BLA to Tors, and in fact, in the same time interval, the

Tors component increases. Afterwards, the BLA kinetic energy change can be decomposed

into two contributions: a monotonic increasing contribution and an oscillating contribution

with decreasing amplitude. The former can be explained by the wavepacket funneling down
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the CIs towards S0, with following loss in potential energy. The latter is the result of the

loss of vibrational coherence in the BLA direction, with the wavepacket spreading along Tors

(see Fig. 5 and the Supporting Information animation of the wavepacket dynamics). It is

also apparent that the funneling process is accompanied by an increase of Tors and HOOP

kinetic energies, until a plateau is reached.

The largest deviation of quantum-classical results from the quantum result is observed

in the Tors kinetic energy. After 50 fs the classical Tors motion acquires too much kinetic

energy if compared to its quantum counterpart with a peaked difference reached at 80 fs

delay. This excess energy gain is partially compensated by a parallel loss in BLA and HOOP

kinetic energy, as shown in Fig. 8 (left and right panels, respectively), and partially by the

potential energy decrease (not shown here) relative to the quantum result. The disagreement

in the potential energy is related to the larger amount of population in the trans-S0 state

between 50 fs and 100 fs predicted by quantum-classical calculations if compared to the

quantum results. A possible reason for the disagreement can be found in the nature of the

quantum-classical propagation scheme itself. Initial conditions are sampled according to the

quantum harmonic Wigner distribution, but classical-like equations of motion are used for

the dynamics. The redistribution of the excitation energy among the modes and excess

energy in Tors can be affected by this inconsistency between the preparation of the initial

state and the subsequent evolution, especially in the studied conditions where the system

is isolated and no channels for energy loss are considered. This issue might be reminiscent

of the zero-point energy leakage observed in condensed-phase simulations accounting for

nuclear quantum effects,65,66 namely the incorrect energy transfer between high-frequency

and low-frequency modes.

Analyzing Fig. 8 further, we notice oscillations of BLA energy persisting at long times

when described at the quantum level, but are captured by the classical methods only up

to 120 fs. Tors kinetic energy predicted by CT-MQC seems to reach a plateau at long

times, in agreement with quantum results; Ehrenfest, TSH and TSH-EDC, instead, present
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low-frequency oscillations up to the end of the simulated dynamics. Motion along the Tors

coordinate appears to be less coherent than along BLA and HOOP, a feature that is cap-

tured by CT-MQC slightly better than the other trajectory-based methods. In fact, in

CT-MQC the trajectories are coupled, which is the main difference with respect to the other

quantum-classical schemes, but, as pointed out above, one sees significant Tors low frequency

oscillations. Nevertheless, the coupling ensures a “more quantum” behavior of CT-MQC tra-

jectories.45–48,50,67

4. Analysis of the correlation between Tors and HOOP

The comparison of the dynamics generated by the two-dimensional Hahn-Stock model po-

tentials56 and by our three-dimensional model,27 discussed in Section 2, highlighted the

qualitative changes induced by the HOOP coordinate in the relaxation from S1 to S0 from

cis-PSB3 to trans-PSB3. In order to investigate this effect further, in the following analysis,

we will

• select representative CT-MQC trajectories to define the idea of “correlation” between

motion along HOOP and along Tors for the three-dimensional model;

• point out the qualitative similar tendency of the trajectories, across methods, i.e., CT-

MQC and TSH-EDC, and across systems, i.e., PSB3 and a simplified rPSB11 in Rh,

to successfully yield the trans-S0 conformation mainly when the “correct” combination

of Tors and HOOP velocities is achieved.

Last observation suggests that a two-state three-dimensional model is able to capture qual-

itatively the correlation between Tors and HOOP modes seen in simulations where the full

set of degrees of freedom are considered. However, only certain basic topographic features

of the PSB3 three-dimensional model are found in the PESs of rPSB11 in Rh. Common

features are: (i) the initial S1 gradient mainly directed along the BLA coordinate and only
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partially along the HOOP coordinate, (ii) the existence of a barrierless isomerization path

and a nearly peaked minimum-energy CI point along the intersection space. On the other

hand, as also mentioned above, the three-dimensional model features a force field that is

symmetric with respect to both Tors and HOOP. This symmetry is completely lost in Rh.

The consequences of such strong asymmetry is that in Rh the trajectories all relax in a coun-

terclockwise direction rather than splitting in two equal populations relaxing in the clockwise

and counterclockwise direction with identical probabilities.

Figure 9: Left panels: profiles of the adiabatic S0 (blue lines) and S1 (red lines) potentials
as functions of time, along two selected trajectories. The black curve is the TDPES of
the CT-MQC method. Central panels: trajectories in the reduced Tors-BLA space starting
at the point indicated with t0 and ending after 120 fs at the point t120. Dashed vertical
lines separate the cis from the trans conformations. Colors indicate the absolute value of
the energy gap between S1 and S0 along the trajectories. Right panels: trajectories in the
reduced Tors-HOOP space, with the straight arrows indicating the velocity at the point
where the S1/S0 energy gap is minimum. In the central and right panels, the dashed arrows
indicate the direction of time.

Figure 9 reports the potential energy profiles (left panels) along the CT-MQC dynamics of

two selected representative trajectories together with their corresponding paths up to 120 fs.

The trajectory geometrical paths are reported in the reduced Tors-BLA (central panels) and

Tors-HOOP (right panels) space. Note that a single trajectory is not physically meaningful,

especially in a coupled-trajectory scheme like CT-MQC. However, in our simulations we
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have identified a number of trajectories close to the two selected examples, and we will thus

describe their behavior in detail. In CT-MQC, the potential energy driving the nuclear

dynamics is the time-dependent potential energy surface (TDPES), which is basically the

electronic Hamiltonian averaged over the instantaneous electronic state. The TDPES for

the selected trajectories are compared in Fig. 9 (left panels) with the corresponding S0 and

S1 profiles. Note that in the upper panel the trajectory shows a steep descent from S1 to S0

around 65 fs, and ends in a region of configuration space where S0 decreases while S1 increases

with time. Conversely, in the lower panel, after switching from S1 to S0, the trajectory moves

in a region where S0 and S1 have similar slopes (notice the in-phase oscillations of S0 and S1

between 60 fs and 100 fs). Clearly, trajectories visiting different portion of the PESs have

different behaviors, as it is shown in Fig. 9 (central panels). The trajectory depicted in the

upper panel oscillates along BLA but propagates along Tors towards the trans-PSB3 product

with values of Tors of −180°, reaching the S0 product in about 100 fs. The trajectory shown

in the lower panel, instead, does not move towards the product, but it goes back to cis-PSB3

after a first passage through the CI region.

To understand the different reactive and non-reactive behaviors described above, we show

the same two trajectories in the Tors-HOOP reduced configuration space (right panels). The

velocity of the reactive trajectory (upper panel) at the hop point is directed towards increas-

ing values of HOOP (positive HOOP velocity) and towards the photo-product (negative Tors

velocity), as indicated by the straight arrow at the crossing point, whereas the velocity of

the non-reactive trajectory (lower panel) at the crossing point has the opposite direction

along HOOP (the Tors component still points towards trans-PSB3), as again indicated by

the arrow. This analysis points to the existence of a phase relationship between Tors and

HOOP velocities whose signs at the hop point, i.e., S1 decay, determine the success of the

isomerization. Such relationship, which has been previously documented using atomistic

PSB331 and Rh models7,8,68 and probed experimentally7 implies that reactive trajectories

are associated with negative (positive) Tors velocities and with positive (negative) HOOP
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velocities.

Figure 10: Panel A: Velocity of the overlap coordinate Tau vs. Tors velocities from CT-MQC.
Panel B: Velocity of HOOP vs. Tors velocities from CT-MQC. The velocities are computed
at the “hopping” time/position. Panels C-D: Same as in A-B, but for TSH-EDC. Panels E-F:
Same as in A-B, but the results are extracted from TSH-EDC-based atomistic simulations
of bovine Rh model with a simplified rPSB11 chromophore.7 Red dots refer to reactive
trajectories, whereas green dots refer to trajectories that go back to the cis conformation.

In order to present results that can be directly compared with atomistic simulations found
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in the literature,7 in Fig. 10 we plot the velocity of the variable Tau = Tors−HOOP/2 (panel

A) and of the variable HOOP (panel B) against the velocity of Tors based on CT-MQC.

We recall here that Tau stands for the overlap of the π-system orthogonal to the reactive

double bond. The analysis is restricted to short-time dynamics after the first trajectory-

“hop” from S1 to S0. We designate that a CT-MQC trajectory switches from S1 to S0 if

(i) it enters a region where the energy gap between S1 and S0 is less than 10 kcal/mol 4,

and (ii) for at least 3 consecutive time steps the TDPES is closer to S0 than to S1. The

identification of these conditions becomes necessary because, as stated above, CT-MQC

trajectories do not hop from one PESs to the other, but follow the TDPES. The velocities

reported in Fig. 10 are computed at the hop point, and only the trajectories evolving from

Tors = 0 towards Tors = −180° are analyzed for consistency with the results of Fig. 9.

After the hop, that takes place in the vicinity of Tors = −90°, as soon as a trajectory

enters a region where Tors ≥ −30° it becomes a non-reactive trajectory because it goes

back to the cis geometry, whereas as soon as it enters a region where Tors ≤ −150° it is

identified as a reactive trajectory because it continues the isomerization process towards the

trans geometry. Figure 10 (panels A-B) shows that over 147 analyzed trajectories, 130 are

reactive (red dots) and 17 are non-reactive (green dots) suggesting a large quantum efficiency

of about 0.88 (in agreement with the quantum yield estimated in Fig. 7 for CT-MQC in the

time interval 50 − 100 fs). In panel A of Fig. 10 we show that all non-reactive trajectories

have a positive value of the π-system overlap, i.e., Tau, velocity and a negative value of the

Tors velocity; for 112 reactive trajectories, the velocities of the overlap and Tors have the

same sign. Note that the variable HOOP enters with minus sign in the definition of Tau.

All non-reactive trajectories have a negative HOOP velocity, as shown in panel B of Fig. 10.

Here, the dominating role of the HOOP velocity in directing the trajectories towards the

product conformation is displayed. Again, the described interplay between Tors and HOOP

just analyzed confirms a mechanism for the S1 to S0 population decay well beyond the usually
4Analyses with the values 5 and 7 kcal/mol have been performed as well, but the considerations remain

the same.
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adopted one-dimensional Landau-Zener model,7–10 despite the fact that the large energy gap

between the electronic states in PSB3 (of the order of 4 eV, thus about 1.5 eV larger than

the one of Rh) gives rise to very steep slopes towards peaked CIs along which one would

expect the trajectories to display a one-dimensional-like dynamics.

To put our observations in a broader perspective, and validate the results provided by

CT-MQC, we conclude this analysis including the model-based results (panels C-D) and the

atomistic results (panels E-F) using TSH-EDC. This last set of results has been extracted

from Ref.7 where a QM/MM study of a simplified rPSB11 inserted in the protein cavity has

been reported. The pattern in panels A-B is similar to those in panels C-D and E-F, even

though in the latter a lower isomerization quantum efficiency can be extracted (of 0.72) if

compared to panels A-B and panels C-D (quantum efficiency of 0.84). Qualitatively, CT-

MQC and TSH-EDC estimate of the quantum efficiency from Fig. 10 agrees with the trend

shown in Fig. 7 just after 80− 100 fs.

These final observations, together with the early 50 fs decay and vibrational coherence

seen above, strongly support the interest in developing model PESs allowing for in-depth

analysis of the origin of certain critical features of the cis-trans isomerization in rPSB11-like

systems and of similarities/differences between quantum and quantum-classical schemes.

Conclusions

In the extensive analysis reported in this work on the photoisomerization of a retinal chro-

mophore model, we have

• presented how to perform vibronic wavepacket dynamics driven by the curvilinear

coordinates BLA, Tors and HOOP in Section 2;

• discussed the contribution of the HOOP mode on the dynamics (probabilities and nu-

clear kinetic energy) by comparing our three-dimensional model with the two-dimensional

Hahn-Stock model56 in Sections 2.1 and 2.2;
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• studied nuclear quantum dynamics and CT-MQC trajectories, and their relation with

the topology of the adiabatic PESs in Section 3;

• pointed out differences and similarities between quantum and quantum-classical sim-

ulations, as well as among the studied quantum-classical methods themselves in Sec-

tions 3.1 and 3.2;

• identified qualitative analogies between CT-MQC and TSH-EDC, as well as between

PSB3 and a rPSB11-like system in Rh, in capturing the correlation between Tors and

HOOP velocities to yield the trans-S0 conformation in Section 4.

In summary, recently parametrized analytical three-dimensional PESs27 have allowed

to employ CT-MQC and other quantum-classical methods to study the isomerization of

PSB3. The recently-developed CT-MQC scheme provided a description of the excited-state

dynamics in slightly better agreement with quantum dynamics calculations with respect to

other quantum-classical schemes. Based on our combined quantum and quantum-classical

analysis, we validated some observations that have been previously reported in the literature

for atomistic models of Rh employing the affordable TSH-EDC method,5,7,8,17 concerning (i)

the three-dimensional nature of the isomerization coordinate, (ii) the coherent vibrational

motion, (iii) the correlation between HOOP and Tors velocities to reach the photo-products,

and (iv) the nature of the non-adiabatic crossing.

When comparing the three-dimensional model PESs27 with a two-dimensional model,56

we have shown the suppression of the efficient S1 decay within the 200 fs simulated dynamics.

This observation might indicate the critical role played by additional intramolecular degrees

of freedom in reaching and stabilizing the photo-products. Instead, the similarities between

dynamics based on the three-dimensional model PESs27 and atomistic QM/MM results7

suggest that the correlation between HOOP (or Tau) and Tors velocities is a general, essen-

tial property to steer the isomerization of rPSB11-like systems towards the photo-product

formation independently on the environment.
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To reveal quantum effects, we have compared vibronic wavepacket dynamics and trajectory-

based schemes, only accessible in reduced-dimensionality PES models. In particular, at short

times after the photo-excitation the trans conformer in S0 is predicted to be produced with

higher probability, i.e., with a higher quantum efficiency, when using quantum-classical tra-

jectory propagations rather than quantum dynamics. This behavior appears to be the con-

sequence of a too fast funneling process through the CIs leading the trajectories to acquire a

large amount of kinetic energy along the low-frequency Tors mode, with corresponding loss

of potential energy, BLA and HOOP kinetic energy.

TSH-EDC is widely used in atomistic simulations, thus the disagreement with respect

to quantum dynamics discussed in this work might suggest that TSH-EDC is not fully

adequate to describe the photo-induced isomerization in rPSB11-like systems. However, we

expect that inclusion of additional degrees of freedom and/or an environment might be the

key to induce a more classical-like behavior that is better captured by the trajectory-based

scheme. Another feature that indeed plays a role in the formation of the photo-products is

the broken symmetry and augmented slope along Tors of the PESs acting on the rPSB11

chromophore of Rh, due to the chiral protein environment hosting the chromophore, that

steers the isomerization exclusively in the counterclockwise direction. The effect of both

factors will be the focus of future studies on the dynamics of PSB3.

An important aspect of the photo-isomerization process that has not been addressed in

this work is the effect of natural, incoherent light excitation. Natural light excitation prepares

the system in a mixture of eigenstates of the total Hamiltonian, whose time evolution is

expected to proceed incoherently. Therefore, the predicted quantum yield is potentially

affected by such an incoherent dynamics. Thanks to developments of theoretical approaches

able to account for incoherent light excitation adopting quantum24,55,69–71 and quantum-

classical72 perspectives, future work in this direction on the three-dimensional model might

provide valuable information.

34



Acknowledgement

Xuchun Yang is gratefully acknowledged for providing the atomistic data. E. M., D. L., F. A.

thank CNRS for financial support via the International Emerging Action. M.O. acknowledges

partial funding from grant NSF CHE-CLP-1710191 and MIUR PRIN 2015.

Supporting Information Available

The following files are available free of charge.
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mechanical evolution of the Tors-BLA reduced densities in S0 and in S1 along with

classical dynamics based on the CT-MQC scheme up to 200 fs.

• Dynamics_Adia_Tors_HOOP.mp4: it contains an animation showing the quantum-

mechanical evolution of the Tors-HOOP reduced densities in S0 and in S1 along with

classical dynamics based on the CT-MQC scheme up to 200 fs.

A. Analytical model potentials

The electronic Hamiltonian in the diabatic basis including the two lowest states of PSB3 as

functions of the three vibrational modes Tors, BLA, HOOP= θ, r, φ is

Ĥel(θ, r, φ) =

 Hcov(θ, r, φ) Hcp(θ, r, φ)

Hcp(θ, r, φ) Hct(θ, r, φ).

 . (15)

The expressions we used forHcov(θ, r, φ) andHct(θ, r, φ) are similar to those in Ref.,27 namely

Hcov(θ, r, φ) = Hcov2D(θ, r, φ) +Hcorr(φ) (16)

Hct(θ, r, φ) = Hct2D(θ, r, φ) +Hcorr(φ) (17)
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withHct2D(θ, r, φ) having the same expression as in Ref.27 In this work, we have slightly mod-

ified Hcorr(φ), Hcov2D(θ, r, φ) and Hcp(θ, r, φ), and the new expressions, with angle variables

indicated in radians, are

Hcorr(φ) = h1 sin2

(
φ

4

)
(18)

Hcov2D(θ, r, φ) = (VMorse1(r) + d2) sin2

(
θ − φ

2

)
+ d3 cos2

(
θ

2
− φ

4

)
+ VMorse2(r) cos2

(
θ − φ

2

)
(19)

and

Hcp(θ, r, φ) = k1 sin (2θ − φ) . (20)

Note that Hcp(θ, r, φ) = Hcp(θ, φ) is independent of r. In Eq. (19) the Morse potential has

replaced the harmonic potential of the original model, and we have

VMorse1(r) = dr
(
−1 + e−d1(r−rTS)

)2
(21)

VMorse2(r) = dr
(
−1 + e−d4(r−rmin)

)2
(22)

with d1 =
√
kf1/(2dr) and d4 =

√
kf4/(2dr). The parameter kf1 is the BLA force constant

evaluated at the position of the covalent character transition state (TSCOV ), whereas kf4

is the BLA force constant evaluated for the cis or the trans isomers (the force constants

are considered the same for both isomers). Finally, the depth well, dr as been fixed at a

value of 2000 kcal.mol−1, while rTS=0.02508 Å and rmin=0.09126 Å are the optimal BLA

values at the TSCOV for cis and trans geometries, respectively. Here, we assume, that the

optimal BLA values are the same for the both cis and trans isomers. Table 2 indicates the

values of the parameters used in the new model potentials. The modifications just described

36



reduce the number of parameters, and improve the agreement of the model when compared

with the dataset used for the fitting. The model potentials used in this work along with the

original potentials of Ref.,27 the Hahn-Stock potentials and the constant metric tensor used

in Section 2 are available for download.73

Table 2: Potential parameters.

Hcov2D Hcorr Hcp

kf1 3733 kcal.mol−1.Å−2 h1 155.7 kcal.mol−1 k1 24.04 kcal.mol−1
d2 54.63 kcal.mol−1
d3 3.801 kcal.mol−1

kf4 1097 kcal.mol−1.Å−2
dr 2000 kcal.mol−1

rTS 0.02508 Å
rmin 0.09126 Å

B. Kinetic energy Operator

For a molecular system composed by N atoms, the Kinetic Energy Operator (KEO) in terms

of n curvilinear coordinates Q = {Q1....Qn}, can be expressed as59,60,74–76

K̂ =
1

2

√
J(Q)

ρ(Q)

∑
i,j

J(Q)−1P̂iJ(Q)Gij(Q)P̂j

√
ρ(Q)

J(Q)
(23)

where: P̂i’s are the conjugated momenta to the active coordinates including the three

components, Ĵα, of the total angular momentum; Gij(Q) are the contravariant compo-

nents of the metric tensor; J(Q) is defined as 1/
√
det(G(Q)) and is the Jacobian of the

coordinate transformation when the molecular system is unconstrained (n = 3N − 6);

ρ(Q) is the normalization weight associated to the deformation part of the volume element

dτdef = ρ(Q) ·dQ1 ·dQ2 · · · dQn and it means that a non-Euclidean normalization convention

is used (ρ(Q) 6= J(Q)).

There exist several procedures to derive the expression of the metric tensor. Usually, for

the numerical approach, as in Tnum,58 the so-called x(Q) approach77 is used for which the
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covariant components of the metric tensor, gij(Q), are obtained first, then the contravariant

components, Gij(Q), are calculated. The corresponding matrix G is expressed as

G(Q) = g(Q)−1 =

 S(Q) Ct(Q)

C(Q) I(Q)


−1

, (24)

where, S(Q), C(Q) and I(Q) are, respectively, the deformation contribution, the Coriolis

contribution, and the inertia tensor. Their expressions are

Sij(Q) =
∑
k

mk
∂Rk

∂Qi

· ∂Rk

∂Qj

(25)

Cαj(Q) =
∑
k

mk

[
Rk ×

∂Rk

∂Qj

]
α

(26)

Iαβ(Q) =
∑
k

mk(Rk ·Rk)δαβ − [Rk]α [Rk]β (27)

where Rk and mk are, respectively, the body fixed Cartesian vector positions and the mass

of atom k. Furthermore, the α-th component (α = {x, y, z}) of a vector X is denoted [X]α.

Equation (23) can be transformed to give Eq. (4) for the deformation part of the KEO.58,60

Numerically, the functions, f ij2 (Q), f i1(Q) and Vep(Q), can be obtained exactly to working

precision resorting to automatic differentiation.58,78

C. Computational details

The initial wavepacket is represented as product of uni-dimensional Gaussians. More specif-

ically, for the i-th coordinate Qi, the unnormalized expression of the Gaussian is given by

exp
[
−(Qi −Qi

0)
2/∆Qi2

]
, where Qi

0 is the value of Qi at the cis geometry and ∆Qi is width

of the Gaussian. ∆Qi is computed as
√

2/
(

4
√
ki/Gii

cis

)
where ki and Gii

cis are the force

constant and the metric tensor component at the photo-reactant geometry, respectively.

For the quantum-dynamics simulations, the nuclear wavepacket has been expanded in a
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Table 3: Parameters in atomic units used for the initial wavepacket: force constants, metric
tensor’s contravariant components, width ∆Qi, and center Qi

0 of the initial Gaussian.

Force constant Gcis diagonal values ∆Qi Qi
0

kr 0.4896 Grr
cis ≡ 1/Mr 6.965 ·10−5 0.1544 0.1725

kθ 0.1198 Gθθ
cis ≡ 1/Iθ 3.381 ·10−5 0.1833 0.0

kφ 0.06098 Gφφ
cis ≡ 1/Iφ 41.48 ·10−5 0.4061 0.0

3D-basis set formed by the direct-product of three uni-dimensional basis sets for each dia-

batic state. The harmonic-oscillator (HO) basis set has been used for BLA and HOOP, while

Fourier-series periodic basis set has been used for Tors. The consistency of the grid point

and the basis function numbers has been tested increasing, progressively, the basis set sizes

until convergence of propagation was reached.

Table 4: Parameters in atomic units of the uni-dimensional basis sets for each coordinate,
Qi. nb and nq are, respectively, the numbers of basis functions and grid points. The HO
basis functions are expressed as: Hm [Sci(Qi −Qi

0)] · exp [−1/2 · (Sci(Qi −Qi
0))

2] where, Hm

is the normalized m-th Hermite polynomial, Sci(= 4
√
ki/Gii

cis) is a scaling parameter and Qi
0

is the center of basis set.

Qi type nb nq Qi
0 Sci

r HO 20 32 0.1725 9.157
θ Fourier 128 136
φ HO 24 60 0.0 3.482

The propagation was performed with the Chebychev scheme for which the evolution op-

erator is expanded on Chebychev polynomials.79 The Hamiltonian needs to be renormalized

so that its spectral range lies between [−1, 1]. Finally, the wavepacket has been propagated

for 200 fs using a time step of 1 fs with the initial wavepacket starting on S1.

The used trajectory-based methods are: the Ehrenfest scheme,42 the CT-MQC ap-

proach47,48 derived from the exact factorization of the electron-nuclear wavefunction, fewest-

switches Tully surface hopping (TSH),43 including its version with energy decoherence cor-

rections (TSH-EDC).44 For all methods, the bundle of trajectories at the initial time has

been generated from a (harmonic) Wigner distribution determined from the initial quantum
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wavepacket. The variances (∆Q2
i /
√

2) of the initial Gaussians can be determined from the

values of the force constants and the masses (or of the elements of the metric tensor) given

in Table 3.

Quantum-classical simulations are run in the adiabatic basis. The adiabatic PESs are

determined by diagonalizing the Hamiltonian (15). The non-adiabatic couplings have been

computed analytically with the usual Hellmann-Feynman theorem80–82 from the eigenvectors

of the Hamiltonian (15). This procedure is implemented for all potentials in the ModelLib

library,73 and in particular for the three-dimensional PSB3 model.

A set of Ntraj = 600 initial conditions have been generated and used for all quantum-

classical methods. For TSH and TSH-EDC calculations, each initial condition has been used

to generate 10 trajectories by varying the random seed for the stochastic jumps, yielding a

total of 6000 trajectories.

All simulations have been carried out for 200 fs with a time step of 0.0025 fs. Periodic

boundary conditions are used for Tors and HOOP, with periodicity 2π and 4π, respectively.

In CT-MQC simulations, the effect of the quantum momentum has been switched off

when the trajectories are completely distributed all over the available configuration space,

namely at 120 fs. The code used for quantum-classical simulations is a modified, developer

version of the CTMQC code.83
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