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Quantum and quantum-classical studies of the photoisomerization of a retinal chromophore model

We report an in-depth analysis of the photo-induced isomerization of the 2-cispenta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently-developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic-wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely-used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.

Introduction

The 11-cis retinal protonated Schiff base (rPSB11) is the chromophore of Rhodopsin (Rh), an animal opsin found in the vertebrate retina. [START_REF] Ernst | Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms[END_REF] In the Rh cavity, the photo-induced doublebond isomerization of rPSB11 occurs in less than 200 fs: 2 A process that, ultimately, leads to the stimulation of the optical nerve and vision. Due to its ultrafast speed and photobiological role, the rPSB11 isomerization has been studied for many years experimentally [START_REF] Wang | Vibrationally Rhodopsins: Beyond the One-Dimensional Landau-Zener Model[END_REF][4][5][6][7] and computationally. 5,[7][8][9][10][START_REF] Filatov | Direct Nonadiabatic Dynamics by Mixed Quantum-Classical Formalism Connected with Ensemble Density Functional Theory Method: Application to trans-Penta-2,4-dieniminium Cation[END_REF][START_REF] Schapiro | spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor[END_REF] Atomistic simulations of the light-induced reaction dynamics of rPSB11 in Rh using ab initio electronic structure calculations [START_REF] González-Luque | Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization[END_REF][START_REF] Ferré | Probing the Rhodopsin Cavity with Reduced Retinal Models at the CASPT2//CASSCF/AMBER Level of Theory[END_REF][START_REF] Andruniów | Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level[END_REF][START_REF] Coto | The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution[END_REF][START_REF] Frutos | Tracking the Excitedstate Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry[END_REF][START_REF] Gozem | Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores[END_REF][START_REF] Virshup | Photodynamics in Complex Environments: Ab Initio Multiple Spawning Quantum Mechanical/Molecular Mechanical Dynamics[END_REF][START_REF] Punwong | Direct QM/ MM Simulation of Photoexcitation Dynamics in Bacteriorhodopsin and Halorhodopsin[END_REF] have been accessible since the early 2000s accounting for the effect of the protein environment via hybrid quantummechanics/molecular-mechanics (QM/MM) methods.

When combined with dynamics studies based on classical trajectories, these studies have provided information on both the geometrical and electronic structure time evolution 5,10,17 of the reaction. However, quantum-classical approaches usually employed in atomistic simulations propagate trajectories independently, and purely quantum effects, which would couple the trajectories, are thus neglected. When such effects are of interest, quantum-dynamical studies of low-dimensionality models based on parametrized potential energy surfaces (PESs) have the potential to provide complementary information [START_REF] Seidner | Microscopic modelling of the photoisomerization and internalconversion dynamics[END_REF][START_REF] Hahn | Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin[END_REF][START_REF] Olivucci | A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation[END_REF][START_REF] Tscherbul | Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation[END_REF][START_REF] Farag | Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy[END_REF][START_REF] Farag | The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin[END_REF][START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] (see also the Supporting Information of Ref. [START_REF] Frutos | Tracking the Excitedstate Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry[END_REF] ). In this context, it is interesting to investigate the case of the 2-cispenta-2,4-dieniminium cation (cis-PSB3). PSB3 is a minimal model of rPSB11 which retains certain basic features of the isomerization mechanism documented for the full rPSB11 chromophore even when this is embedded in the Rh cavity. Therefore, PSB3 has been employed for dynamics studies of the cis to trans photoisomerization in isolated conditions. [START_REF] Olivucci | A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation[END_REF][START_REF] Garavelli | The C5H6NH2+ Protonated Schiff Base: An ab Initio Minimal Model for Retinal Photoisomerization[END_REF][START_REF] Vreven | Ab Initio Photoisomerization Dynamics of a Simple Retinal Chromophore Model[END_REF][START_REF] Weingart | Probing the Photochemical Funnel of a Retinal Chromophore Model via Zero-Point Energy Sampling Semiclassical Dynamics[END_REF][START_REF] Weingart | The role of HOOP-modes in the ultrafast photo-isomerization of retinal models[END_REF][START_REF] Barbatti | Nonadiabatic excited-state dynamics of polar p-systems and related model compounds of biological relevance[END_REF][START_REF] Gozem | Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection[END_REF][START_REF] Klaffki | Sampling excited state dynamics: influence of HOOP mode excitations in a retinal model[END_REF][START_REF] Tuna | Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground-and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model[END_REF][START_REF] Gozem | Dynamic electron correlation effects on the ground state potential energy surface of a retinal chromophore model[END_REF][START_REF] Gozem | Mapping the excited state potential energy surface of a retinal chromophore model with multireference and EOM-CC methods[END_REF] Moreover, it is sufficiently small to allow for ab initio (wavefunction-based) multi-state multiconfigurational (MSMC) mapping of the electronic structure of ground (S 0 ) and first singlet excited (S 1 ) states, and for the development of reduced-dimensionality analytical models of PESs that can be used for quantum-dynamics studies. Here, by "reduced dimensionality" we mean the three modes 8,10, [START_REF] Farag | The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin[END_REF][START_REF] Klaffki | Sampling excited state dynamics: influence of HOOP mode excitations in a retinal model[END_REF][START_REF] Gozem | Dynamic electron correlation effects on the ground state potential energy surface of a retinal chromophore model[END_REF][START_REF] Gozem | Mapping the excited state potential energy surface of a retinal chromophore model with multireference and EOM-CC methods[END_REF][START_REF] Johnson | The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit[END_REF] that drive the cis-trans isomerization of rPSB11 after light absorption. The modes are the bond-length-alternation (BLA) stretching, the torsional deformation around the reactive double bond (Tors), and the hydrogen-out-of-plane (HOOP) wagging. The same modes drive the photoisomerization of cis-PSB3, [START_REF] Gozem | Dynamic electron correlation effects on the ground state potential energy surface of a retinal chromophore model[END_REF][START_REF] Gozem | Mapping the excited state potential energy surface of a retinal chromophore model with multireference and EOM-CC methods[END_REF] confirming that this model is particularly suitable for qualitative studies.

In this work, we study the dynamics underlying the ultrafast isomerization of rPSB11like systems triggered by vertical S 0 → S 1 photo-excitation, employing the recently developed three-dimensional PESs (hereafter also called "three-dimensional model") of gas-phase PSB3, [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] based on XMCQDPT2 [START_REF] Granovsky | Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory[END_REF] ab initio MSMC electronic-structure calculations. Our aim is to investigate the ability of the reduced-dimensionality model potentials to capture, at least qualitatively, critical features of the dynamics of Rh, such as its early decay time, 6 vibrational coherence 6, [START_REF] Schnedermann | Mode-Specificity of Vibrationally Coherent Internal Conversion in Rhodopsin during the Primary Visual Event[END_REF] and the probability of formation of the trans photoproduct. 7 The proposed analysis is based on the propagation of vibronic wavepackets using ElVibRot [START_REF] Lauvergnat | ElVibRot-TnumTana Quantum Dynamics Code[END_REF] and on four trajectory-based quantum-classical approaches to excited-state dynamics, namely Ehrenfest, [START_REF] Tully | Mixed quantum-classical dynamics[END_REF] Tully surface hopping (TSH), [START_REF] Tully | Molecular dynamics with electronic transitions[END_REF] TSH with energy decoherence corrections (TSH-EDC), [START_REF] Granucci | Critical appraisal of the fewest switches algorithm for surface hopping[END_REF] and the coupled-trajectory mixed quantum-classical (CT-MQC) approach [START_REF] Min | Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes[END_REF][START_REF] Agostini | Quantum-Classical Nonadiabatic Dynamics: Coupled-vs Independent-Trajectory Methods[END_REF][START_REF] Min | Ab Initio Nonadiabatic Dynamics with Coupled Trajectories: A Rigorous Approach to Quantum (De)Coherence[END_REF][START_REF] Gossel | Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction[END_REF][START_REF] Curchod | CT-MQC -A Coupled-Trajectory Mixed Quantum/Classical method including nonadiabatic quantum coherence effects[END_REF][START_REF] Talotta | Spin-Orbit Interactions in Ultrafast Molecular Processes[END_REF] based on the exact factorization of the electron-nuclear wavefunction. [START_REF] Abedi | Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function[END_REF][START_REF] Agostini | Different flavors of nonadiabatic molecular dynamics[END_REF] On the one hand, quantum-dynamics results for the three-dimensional model [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] are compared to the widely used [START_REF] Hahn | Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin[END_REF][START_REF] Farag | Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy[END_REF][START_REF] Johnson | The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit[END_REF][START_REF] Abe | Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection[END_REF][START_REF] Flores | Model study of Coherent-Control of the Femtosecond Primary Event of Vision[END_REF][START_REF] Tscherbul | Excitation of biomolecules with incoherent light: Quantum yield for the photoisomerization of model retinal[END_REF] two-dimensional model proposed by Hahn and Stock 56 (hereafter also called "two-dimensional model"), in order to highlight the crucial role played by the additional HOOP mode in driving the cis-trans isomerization. The study of the threedimensional model [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] based on various quantum-classical schemes, on the other hand, is essential to put our analysis in perspective to atomistic simulations in full dimensionality. Therefore, it is clear that such an in-depth analysis and validation of the model would not be possible without the complementarity of information obtained based on quantum and quantum-classical dynamics. Furthermore, since our analysis relies on a common "force field" and on the benchmark provided by quantum-dynamics simulations, the findings presented in this work provide novel insight into different quantum-classical schemes, and in particular into the recently-developed CT-MQC approach, which is an analysis seldom reported in the literature. For all these reasons, our study goes beyond previous reports based on two-dimensional and/or empirically determined PES models. [START_REF] Seidner | Microscopic modelling of the photoisomerization and internalconversion dynamics[END_REF][START_REF] Hahn | Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin[END_REF][START_REF] Olivucci | A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation[END_REF][START_REF] Farag | Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy[END_REF][START_REF] Johnson | The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit[END_REF][START_REF] Abe | Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection[END_REF][START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF][START_REF] Humeniuk | Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states[END_REF] The analysis of the results focuses on three main aspects of PSB3 captured dynamics:

(i) the short-time energy distribution among the modes, (ii) the isomerization quantum efficiency, and (iii) the phase relationship between Tors and HOOP velocities necessary to achieve the trans product. With regard to point (i), we show that accounting for the quantum-mechanical character of nuclear dynamics appears to be surprisingly important for predicting energy redistribution and S 1 -to-S 0 population transfer at short times after photo-excitation. Concerning point (ii), the analysis reveals the role of coherent vibrational motion in the excited state to enhance the funneling process through the S 1 /S 0 conical intersection (CI) points [START_REF] Wang | Vibrationally Rhodopsins: Beyond the One-Dimensional Landau-Zener Model[END_REF]6,7,10,[START_REF] Johnson | The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit[END_REF] (or intersection space [START_REF] Gozem | Mapping the excited state potential energy surface of a retinal chromophore model with multireference and EOM-CC methods[END_REF] ) and to determine the isomerization quantum efficiency. Finally, while points (i) and (ii) provide information useful to validate approximate methods, point (iii) examines the quality of the three-dimensional model for Rh isomerization and confirms the importance of phase matching between Tors and HOOP motion to access the trans stereochemistry. 7,8 Focusing on the technical aspects discussed in this work, the main points are: (iv) the development of the kinetic energy operator suitable for quantum-dynamics calculations in the curvilinear coordinates BLA, Tors, and HOOP, and (v) the proposition of suitable analysis strategies of CT-MQC trajectories, which appears to be necessary since the method lacks, in general, the intuitive picture in terms of hopping trajectories provided by the widely-used TSH(-EDC).

The paper is organized as follows. Sections 2 and 3 are devoted to the validation of approximate (quantum-classical) methods, and Section 4 examines the three-dimensional model from the application viewpoint. Accordingly, in Section 2, we describe the procedure to perform quantum dynamics simulations by defining the kinetic energy operator associated to the BLA, Tors and HOOP modes. In addition, we compare our quantum-dynamics results with the Hahn-Stock model. In Section 3, we investigate the performance of the quantumclassical schemes based on the comparison with quantum results for our reference threedimensional model PESs. In Section 4, we present an analysis purely based on trajectories to highlight the capability of the same model PESs to capture dynamical features observed in rPSB11-like systems from atomistic simulations. Thus, again, in Section 3 our PESs are consistently employed to validate quantum-classical schemes, while in Section 4 we explore their chemical significance. Section 5 summarizes our observations and discusses future developments.

Analysis of the model based on quantum dynamics simulations

In this section we analyze the quantum vibronic wavepacket dynamics driven by the twostate three-dimensional model PESs developed in Ref. [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] Note that the parametrization of the PESs has been slightly modified with respect to Ref., [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] and we describe the new potentials in Appendix A. In the following we describe:

• the curvilinear coordinates that define the three-dimensional model;

• the kinetic energy operator and the metric tensor associated to those curvilinear coordinates.

The crucial step before proceeding with the analysis of the dynamics is the derivation of the kinetic energy operator associated to the curvilinear coordinates employed in the model: BLA, Tors and HOOP, schematically represented in Fig. 1. The BLA stretching is defined as the difference between the average length of the single bonds and the average length of the double bonds in the ground-state PSB3 Lewis formula,

1 r = d C 1 C 2 + d C 3 C 4 2 - d N C 1 + d C 2 C 3 + d C 4 C 5 3 , (1) 
where d C A C B is the distance between the atoms C A and C B , using the indices of the carbon atoms given in Fig. 1 (similarly, d N C 1 is the distance between the nitrogen and the carbon atom labelled 1); Tors identifies the torsional deformation around the reactive C 2 = C 3 double bond, thus it is the dihedral angle formed by the carbon atoms

C 1 C 2 C 3 C 4 , θ = dihedral (C 1 C 2 C 3 C 4 ) ; (2) 
the HOOP wagging mode is described by the difference between Tors and the H 2

C 2 C 3 H 3 dihedral angle, φ = dihedral (C 1 C 2 C 3 C 4 ) -dihedral (H 2 C 2 C 3 H 3 ) . (3) 
The coordinates BLA, Tors and HOOP are used to calculate numerically the positiondependent metric tensor following the TNUM scheme. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF] First, all 42 coordinates (including the center of mass degrees of freedom) belonging to PSB3 must be defined via the following coordinates transformations: (i) transformation to/from Z-matrix coordinates, (ii) linear combinations of internal coordinates, (iii) active transformation. Transformation (i) allows us to define the Z-matrix, relating Cartesian coordinates to the internal coordinates used in the quantum chemistry calculations for the parametrization of the potentials. [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] Transformation (ii) is used to relate the Z-matrix coordinates to the active coordinates BLA, Tors and HOOP, such that they can be expressed as linear combinations of internal coordinates, as given in Eqs. ( 1), ( 2) and (3). The remaining linear combinations are generated automatically by TNUM. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF] Transformation (iii) enables to set up the constraints to get the reduced-dimensionality model, and thus to select the three active coordinates. In the present study, rigid contraints (values at the cis equilibrium geometry) are defined on all coordinates except for the three active ones, i.e., Tors, BLA, and HOOP.

Once the relation between the body-fixed Cartesian coordinates and the three active coordinates is derived based on the above transformations, the contravariant components of the metric tensor G are obtained (see the Appendix B and Ref. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF] for additional details); its elements will be indicated as G ij , with i, j labelling the coordinates. As usual, the resulting metric tensor is non-diagonal and depends on the active coordinates; a possible expression of (the deformation part of) the kinetic energy operator, Kdef , for n active coordinates

Q = {Q 1 ....Q n }
, and for zero total angular momentum, is

Kdef = i≤j f ij 2 (Q) ∂ 2 ∂Q i ∂Q j + i f i 1 (Q) ∂ ∂Q i + V ep (Q). (4) 
The symbols

f ij 2 (Q), f i 1 (Q) and V ep (Q)
stand for functions of active coordinates, and they are obtained from the contravariant components of the metric tensor. V ep (Q) is a scalar term often called extrapotential [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF][START_REF] Nauts | Momentum, quasi-momentum and hamiltonian operators in terms of arbitrary curvilinear coordinates, with special emphasis on molecular hamiltonians[END_REF][START_REF] Nauts | Numerical on-the-fly implementation of the action of the kinetic energy operator on a vibrational wave function: application to methanol[END_REF] and it may appear when a non-Euclidean volume element,

dτ def = ρ(Q)•dQ 1 •dQ 2 • • • dQ n ,
is used, i.e., when ρ(Q) is not the Jacobian of the coordinates transformation.

The results presented below can be considered complementary to previous dynamical studies based on model PESs for the isomerization in retinals [START_REF] Seidner | Microscopic modelling of the photoisomerization and internalconversion dynamics[END_REF][START_REF] Hahn | Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin[END_REF][START_REF] Farag | Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy[END_REF][START_REF] Farag | The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin[END_REF] that assume a constant diagonal form of the metric tensor due to the fact that its components are fitted to reproduce spectroscopy data. In order to be able to directly compare our quantum dynamics results with the two-dimensional Hahn-Stock model [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] and to the quantum-classical simulations performed in the following sections, we construct as well approximate kinetic energy operators where the metric tensor is either constant or constant and diagonal. The constant metric tensor is determined by evaluating the position-dependent metric tensor over 45 geometries, spanning homogeneously the configuration space, and averaging its components; the constant and diagonal metric tensor is determined by neglecting the off-diagonal components of the constant metric tensor. It is worth noting that, due to the symmetry, averaging the elements G rθ and G rφ yields zero. The diagonal components of the contravariant metric tensor can be identified as the inverse of an effective mass and moments of inertia associated, respectively, to the three curvilinear coordinates, BLA, Tors, and HOOP; their values are reported in Table 1. G θφ 4.025 •10 -5

Probabilities and quantum yield

In order to easily compare quantum dynamics results based on the three forms of the metric tensor we focus here on the probabilities of the cis and trans conformers in the S 0 and S 1 adiabatic states as functions of time. To this end we will analyze the time evolution of:

• the populations of the ground and first-excited states in the three-dimensional model and in the two-dimensional Hahn-Stock model for the cis and trans conformers;

• the quantum yield in the three-dimensional model and in the two-dimensional Hahn-Stock model.

The dynamics is initiated in S 1 at the cis geometry so as to reproduce the effect of an ultra-short photo-excitation that takes the molecule from S 0 to the first spectroscopic state without geometrical modifications. Therefore, the initial vibrational wavepacket is a threedimensional Gaussian centered at the minimum of the ground-state PES (additional details are given in Appendix C). We compare our results to the Hahn-Stock model, [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] which is based on the parametrization of the S 0 and S 1 PESs as functions of a reactive torsion coordinate and of a collective vibrational coordinate that couples S 0 and S 1 . The protocol illustrated above for the initialization of the dynamics is employed to compute the corresponding probabilities in this two-state two-dimensional model. It is worth stressing that the 2D Hahn-Stock model is not an analytical model for PSB3, but rather for "the photoinduced 11-cis → all-trans isomerization of retinal in rhodopsin". [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] Thus, the used coordinates are to be considered as "effective modes" and do not correspond exactly to the Tors and BLA coordinates of the three-dimensional model.

The probabilities of finding cis and trans conformations either in the S 0 or S 1 states are defined as

P S i cis (t) = |θ|<90° χ S i (θ, r, φ, t)
2 dr dφ dθ (5)

P S i trans (t) = |θ|>90° χ S i (θ, r, φ, t) 2 dr dφ dθ, (6) 
where the nuclear probability density in state S i (with i = 0, 1) is indicated as

|χ S i (θ, r, φ, t)| 2 .
A similar expression is used for the two-dimensional model, clearly without the dependence on the HOOP coordinate (φ in the equations). The population of state S i is given by

P S i (t) = P S i cis (t) + P S i trans (t). (7) 
Figure 2 shows that all quantum simulations based on the three-dimensional model predict that in 200 fs the S 1 population tends to about 0.5, which is arguably due to the reduced dimensionality of the system from many (36 in PSB3 and 156 in rPSB11) to 3 modes.

Also, an ultrafast decay of the S 1 probability towards the photo-products already at 50 fs [START_REF] Johnson | The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit[END_REF] is common to all results based on the three-dimensional model. We notice quantitative differences between exact results (black lines) and the two approximations of the metric tensor, i.e., constant (dark-green lines) and diagonal-constant (light-green lines). However, qualitatively, the behavior of the probabilities as functions of time is not affected by the approximations, in particular by the use of a diagonal and constant metric tensor. This results justifies its use in the quantum-classical simulations presented in Sections 3 and 4.

We notice oscillations in the probabilities of S 1 -trans (upper right panel of Fig. 2), S 0 -cis (lower left panel of Fig. 2) and S 0 -trans (lower right panel of Fig. 2) that appear as soon as the curves (black, green and light-green) increase from zero at around 50 fs. This feature will be discussed later on, since an analogous behaviour will be observed as well in the plot of the quantum yield (in Fig. 3) and in the plot of the kinetic energy along the HOOP coordinate (in Fig. 4) as functions of time.

The results of the two-dimensional model (purple lines) are qualitatively different from the results of the three-dimensional model. The decay of the S 1 -cis probability (mainly) in favour of the S 0 -trans is delayed if compared to the results of the three-dimensional potentials (in the three-dimensional model, S 1 -to-S 0 relaxation through the CI is clearly ultrafast). More specifically, the two-dimensional model ignores the effect of the HOOP mode, and in particular of the correlation between HOOP and Tors (see analysis presented in Section 4) in preventing/favouring the photo-product formation.

Based on the probabilities just analyzed, we can estimate the quantum efficiency, or quantum yield, of the process. Here, we define the quantum yield as the ratio between the trans products and all products of the reaction, that is

QY (t) = P S 0 trans (t) + P S 1 trans (t) P S 0 cis (t) + P S 0 trans (t) + P S 1 trans (t) . ( 8 
)
The quantum efficiency as function of time is shown in Fig. 3, where quantum results based 8). The color code is the same as in Fig. 2.

on our three-dimensional model 27 are compared to the Hahn-Stock model. [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] Once again we observe a qualitative difference between the two models, whereas a qualitative agreement clearly persists between exact and approximate (quantum) predictions for the threedimensional model PESs, from which we can extract a long-time estimate of the quantum efficiency of about 0.6.

Nuclear kinetic energy

It is instructive to further analyze quantum dynamics based on the three-dimensional model [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] by looking at the average nuclear kinetic energy along BLA, Tors and HOOP as function of time evaluated numerically with TNUM. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF] This analysis

• confirms that using a diagonal-constant metric tensor is a good approximation for the exact dynamics;

• relates the oscillations observed in Section 2.1 in the probabilities of S 1 -trans, S 0 -cis, and S 0 -trans to the oscillations along HOOP;

• highlights similarities and differences between the BLA mode of the three-dimensional model and the effective stretching mode of the two-dimensional model;

• points out a qualitative different behavior of the reactive modes in the two models.

The first observation is crucial to validate the following comparison of the nuclear kinetic energy between quantum and quantum-classical results. In fact, the general expression of the nuclear kinetic energy operator contains "off-diagonal" contributions describing the coupling between the modes. Those couplings are completely neglected when the diagonal-constant form of the metric tensor is used, as is the case in quantum-classical simulations presented later on. 

diagonal contributions (f ij 2 (Q) ∂ 2 ∂Q i ∂Q j for i = j in Eq. ( 4 
)) arising from the coupling of the modes: continuous lines refer to exact calculations; the dashed line refers to the calculations based on the constant metric tensor.

Figure 4 shows the expectation value of the kinetic energy operator Kdef on the instantaneous vibronic state decomposed into its "diagonal" BLA, Tors and HOOP contributions for exact (black lines) calculations, and for the two approximations based on the constant metric tensor (dark-green lines) and diagonal-constant metric tensor (light-green lines). The overall agreement between exact and approximate results is satisfactory to justify the use of a diagonal-constant metric tensor in the following calculations based on trajectories, even though a small dephasing is observed between 50 and approximately 120 fs along the BLA coordinate. When the metric tensor is non-diagonal, kinetic energy contributions arising from the coupling between the modes are observed (off-diagonal terms in Fig. 4). In particular, all modes are coupled in the exact treatment, even though not strongly, as the continuous lines in the right panel of Fig. 4 show, whereas only Tors and HOOP are weakly coupled when the constant metric tensor is used, as shown by the dashed line in the right panel of Fig. 4 (the coupling with BLA is identically zero in this case, since the components G rθ and G rφ of the constant metric tensor are zero). Nonetheless, these additional (off-diagonal) contributions are negligible if compared to the diagonal terms. Note, also, that each term of the nuclear kinetic energy operator of Eq. ( 4) is in general not Hermitian and, therefore, its expectation value can be complex. It is only the sum of all terms that is real. However, all imaginary parts are close to zero in all cases and, thus, they are not shown here.

As pointed out in Section 2.1, characteristic oscillations are observed in Figs. 2 and3 when the curves corresponding to the three-dimensional model increase from zero at around 50 fs. A similar behavior is observed in the curves representing the kinetic energy along HOOP as function of time. Therefore, it is plausible to conclude that those oscillations in the probabilities (Fig. 2) are induced by the HOOP motion. Furthermore, the oscillations persist in the three forms of the metric tensor, even when the kinetic coupling between modes is switched off, indicating that they are solely an effect of the PESs.

As for the results shown in Section 2.1, dynamics performed with the Hahn-Sock twodimensional model shows qualitative differences with respect to our model when analyzing the kinetic energy as function of time. In Fig. 4 we directly compare the kinetic energy along BLA with the kinetic energy along the coupling mode of the two-dimensional model (left panel). This choice is justified based on the definition of the coupling mode given in Ref.: [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] "a delocalized stretching motion of the polyene chain, whereby single and double bonds interchange". The kinetic energy along this coupling mode oscillates with a period of about 10 fs and increases after 100 fs, with amplitudes that are damped at long times. Such a behavior suggests that vibrational coherence is lost while the nuclear wavepacket is transferred from S 1 to S 0 acquiring kinetic energy along the reactive torsional coordinate (Tors Kinetic Energy panel in Fig. 4). However, the increase of kinetic energy along the coupling mode is delayed in comparison to the increase along BLA, appearing just after 50 fs, 6 while the period of the oscillations is similar (about 13 fs for the three-mode dynamics). The comparison of the Tors kinetic energy for the two models shows another qualitative difference: in the two-dimensional model the curve does not reach a plateau within the simulated 200 fs.

In Section 2.1 and in the present section, we have shown that the two-dimensional model PESs yield, in general, different dynamics from the three-dimensional model. Therefore, in the following sections, we will not pursue the comparison between the two models based on quantum-classical simulations.

To conclude this section, let us define the expression of the nuclear kinetic energy operator when the diagonal-constant metric tensor is used, namely

Kdef = P 2 r 2M r + P 2 θ 2I θ + P 2 φ 2I φ , (9) 
which will be used below when comparing quantum and quantum-classical results. As defined in Table 1, M r , I θ , I φ are the mass and moments of inertia associated to BLA, Tors and HOOP, respectively.

Analysis of the model based on quantum-classical simulations

In Section 2, our three-dimensional model has been analyzed based on the propagation of vibronic wavepackets. We have compared those results with the two-dimensional Hahn-Stock model, [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] pointing out some qualitative/quantitative differences, in the probabilities and quantum efficiency. Furthermore, we have validated the use of a diagonal-constant metric tensor in the quantum simulations, justifying its suitability in quantum-classical simulations as well.

In this section, we will

• comment on the quantum, i.e., vibronic wavepacket, dynamics, based on the analysis of the topology of the adiabatic PESs;

• evaluate the ability of CT-MQC trajectories to reproduce the quantum evolution.

Later on, in Section 3.1, we will compute time-dependent probabilities, quantum yields, and nuclear kinetic energy, based on the trajectory-based schemes Ehrenfest, TSH, TSH-EDC and CT-MQC. This extensive comparison of quantum and quantum-classical results, together with the analysis of the trajectories presented in Section 4, will provide further insights into the capability of the three-dimensional PESs to capture critical features of the microscopic mechanism of the cis-trans isomerization in PSB3 (and potentially in rPSB11), since it allows us to make connections with results from the literature based on atomistic simulations. In addition, we will be able to shed light on the properties of the used quantumclassical, approximate schemes, since the same "force field" is employed for all calculations.

Quantum (with diagonal-constant metric tensor) and quantum-classical dynamics are initiated in S 1 , and classical initial conditions are Wigner-sampled from the quantummechanical nuclear probability distribution (see the Appendix C for details). After the initial photo-excitation, the resulting reduced nuclear densities and CT-MQC trajectories are shown in Fig. 5 as functions of the Tors-BLA (left panels) and Tors-HOOP (right panels) coordinates, projected on the two electronic states. The Tors-BLA reduced nuclear probability density in the S i (i = 0, 1) electronic state |χ S i red (θ, r, t)| 2 is determined from the full probability density |χ S i (θ, r, φ, t)| 2 in that state as

χ S i red (θ, r, t) 2 = χ S i (θ, r, φ, t) 2 dφ, (10) 
and a similar expression is used for the Tors-HOOP reduced nuclear probability density

|χ S i red (θ, φ, t)| 2 .
We recall here that the full density is simply the sum of the contributions in S 0 and in S 1 . In CT-MQC calculations, in order to establish if a trajectory is associated to S 0 or S 1 , we look at the values of the electronic coefficients along that trajectory. In CT-MQC, the time-dependent electronic state along a nuclear trajectory R α is represented in the adiabatic basis

|S i ; R α , |Φ Rα (t) = C S 0 α (t) |S 0 ; R α + C S 1 α (t) |S 1 ; R α . (11) 
The above-mentioned electronic coefficients are C S 0 α (t) and C S 1 α (t), whose squared moduli give information about the electronic populations along the trajectory α. We have used the symbol R α for (θ α , r α , φ α ), i.e., the values of the nuclear coordinates for the trajectory α.

To associate a trajectory to an electronic state in Fig. 5, we made the following choice: if

|C S i α (t)| 2 ≥ 0.
6, the trajectory α at time t is associated to the state S i ; if 0.4 < |C S i α (t)| 2 < 0.6, the trajectory α at time t is associated to both states.

The adiabatic PESs, shown in Fig. 5 as contour plots, have mirror-plane symmetry with respect to the clockwise and couterclockwise Tors directions when the energies are plotted along Tors-BLA with HOOP = 0 (they are 2π-periodic and symmetric with respect to Tors = 0). It has instead an inversion-point symmetry (HOOP = 0, Tors = ±n • 180°with n integer) when the energy is plotted along the Tors-HOOP for any BLA value. Also notice that the equilibrium conformations of PSB3 at the reactant and product minima of the S 0 In Fig. 5, the vibrational wavepacket is shown at three time steps during the evolution, with CT-MQC trajectories following closely the (reduced) densities. On the left panels, the Tors-BLA reduced density on S 1 shows long-lasting vibrations along the BLA coordinate accompanied, already before 50 fs, by fast funneling towards the trans product 38 through the CIs located in the region Tors = ±90°, BLA = 0. The model does not take into consideration either additional (internal) vibrational modes or the environment, and due to the reactant planarity, population transfer from S 1 to S 0 takes place symmetrically along the clockwise and counterclockwise directions Tors > 0 and Tors < 0. Furthermore, the energy pumped into the system via the initial electronic excitation cannot be dissipated, causing the nuclear wavepacket to remain localized in the CI region. The effect is that S 1 population decay is slower than that expected in the fully-atomistic PSB3 system with 36 vibrational degrees of freedom, and continuous transfer from S 1 to S 0 and S 0 to S 1 eventually stabilizes the S 1 and S 0 populations at long times around 0.5. [START_REF] Schoenlein | The first step in vision: Femtosecond isomerization of rhodopsin[END_REF] The observed motion along the Tors and HOOP modes is correlated. [START_REF] Gozem | Mapping the excited state potential energy surface of a retinal chromophore model with multireference and EOM-CC methods[END_REF] Once the torsional mode is activated, the wagging helps the S 1 population to reach the intersection space by breaking the bonding character of the π-system along the C 2 = C 3 reactive double bond. In fact, the most favorable path towards the degeneracy points is the path that sets to zero the π-system overlap, which is approximately proportional to the geometrical variable Tau = Tors -HOOP/2 (see Fig. 1, right panel). The overlap is thus assumed to be zero at Tau = ±90°, and reaches a maximum at Tau = 0 and Tau = ±180°. The Tors-HOOP reduced probability density transfers from S 1 to S 0 following the encounter with the intersection space located at values close to Tau = ±90°. We noticed that the density/trajectories moving towards Tors = ±180°(as shown in Fig. 5, the S 0 PES reactant and product minima have HOOP = 0) are able to reach the trans-PSB3 product only when certain relationships between the phase of the Tors and HOOP velocities are satisfied when passing through the decaying region. This point will be discussed later on the basis of a trajectory analysis.

Probabilities and quantum yield

Detailed information about the S 1 -to-S 0 relaxation mechanism accompanying the cis-trans isomerization can be extracted from the analysis of the time-dependent probabilities, as done for quantum-dynamics simulations in Fig. 2. We report here the corresponding results obtained from the quantum-classical propagations and we point out some differences • in early-time dynamics between quantum and quantum-classical results;

• among the quantum-classical schemes themselves.

In Ehrenfest and CT-MQC calculations, the cis and trans configuration, i.e., the reactant and product structure, probabilities of Eqs. ( 5) and (6) are estimated as

P S i cis (t) 1 N traj N traj α=1 C S i α (t) 2 1 -H |θ α | -90° (12) 
P S i trans (t) 1 N traj N traj α=1 C S i α (t) 2 H |θ α | -90° , (13) 
respectively, while in TSH and TSH-EDC we simply count the number of trajectories in S i either with values |Tors| < 90°(cis) or with values |Tors| > 90°(trans). In Eqs. ( 12) and (13) the symbol H stands for the Heaviside step function, that is equal to 1 if its argument is positive and equal to 0 if its argument is negative (H(x) = 1 if x > 0 and H(x) = 0 if x < 0). the trans conformer in the ground state at around 80 fs (lower right panel of Fig. 6). The larger population of the trans conformer produced in S 0 predicted by the trajectory-based schemes is somehow compensated at around 80 fs by an inversion of that behavior in the cis conformer in S 0 . At long times, Ehrenfest and CT-MQC seem to capture the behavior of the probabilities in better agreement with quantum results than TSH/TSH-EDC: for Ehrenfest and CT-MQC, the trans-S 1 and cis-S 0 probabilities stabilize around the quantum result, whereas the oscillations in the trans-S 0 probabilities have slightly smaller amplitude than in TSH(-EDC). Note also that, despite the inclusion of decoherence corrections in TSH-EDC, the oscillations of the probability of the trans conformer in S 0 persist. Such oscillations are significantly reduced in CT-MQC. 8). The color code is the same as in Fig. 6. Numerical values at 80 fs are explicitly indicated (dashed vertical line).

The overestimation -with respect to the quantum results -of the probability of forming the trans-PSB3 product in S 0 at around 80 fs, i.e., immediately after reaching the intersection space region at about 50 fs delay, is common to all quantum-classical methods. [START_REF] Wang | Vibrationally Rhodopsins: Beyond the One-Dimensional Landau-Zener Model[END_REF] It appears that trajectories are funneled through the intersection space at a higher rate than the quantum wavepacket, resulting in a significantly overestimated quantum efficiency at short time scales. To show this, we present in Fig. 7 the quantum efficiency, or quantum yield, from Eq. (8). The computed quantum-classical quantum yield is overestimated at short time, by about 25 -35% depending on the method (see the values at 80 fs reported in Fig. 7), if compared to quantum predictions. Since QM/MM simulations are usually performed based on TSH-EDC, this result might suggest a similar overestimation of the quantum efficiency in fully-atomistic studies. However, we also expect that taking into account larger number of vibrational degrees of freedom might severely suppress the trans product thermal backisomerization as well as the return to the S 1 state, which, according to the data in Fig. 5, contribute to decrease the formation of the product. It is interesting to notice that, while the quantum yield predicted by TSH and TSH-EDC is lower than the expected -quantum -value at around 120 fs, Ehrenfest and CT-MQC predict a rather good behavior towards the value of 0.6 at the same time.

We notice that TSH results reported in Figs. 6 and 7 are very similar to TSH-EDC results, while they are different form Ehrenfest and CT-MQC. The decoherence-correction strategy used in TSH-EDC 44 damps exponentially the electronic population that is not associated to the active state along each trajectory over a certain characteristic time. However, due to the nature of the model PESs, at long times the trajectories remain localized in the vicinity of the intersection space, therefore, the decoherence correction is not able to "stabilize" to zero the electronic population associated to the non-active state far from the intersection region.

Here, by "nature of the model PESs", we mean the extent of the degeneracy regions of the S 0 and S 1 PESs along Tors and HOOP coordinates. We expect, however, that this kind of decoherence correction performs better as the dimensionality of the problem increases.

For similar reasons, it is not surprising that Ehrenfest results are close to CT-MQC results.

CT-MQC equations are basically Ehrenfest equations plus a decoherence term that tracks the delocalization of the wavepackets associated to different electronic state. [START_REF] Min | Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes[END_REF] Since the S 0 and S 1 wavepackets delocalize over all configuration space, these decoherence effects are not strong in this case.

The "common" disagreement in early-time dynamics of all quantum-classical methods when compared to quantum results will be commented on in Section 3.2. Here, we will discuss the disagreement between Ehrenfest/CT-MQC dynamics and TSH(-EDC) dynamics.

We believe that the nature of the model PESs itself is responsible for the differences in: the trans-S 1 population after 50 fs; the cis-S 0 population after 80 fs; the trans-S 0 population mainly between 50 and 100 fs; the quantum yield between 80 and 120 fs. It has been shown in an early work on TSH, [START_REF] Kohen | Model studies of nonadiabatic dynamics[END_REF] that Ehrenfest -mean-field -dynamics performs slightly better than TSH when a system presents delocalized non-adiabatic couplings; in the three-dimensional model PESs, the trajectories are found at long times in the coupling region, thus essentially experiencing the effect of the non-adiabatic couplings as if they were delocalized in space.

Furthermore, as stated above, (i) CT-MQC equations resemble Ehrenfest equations (the difference is a term that couples CT-MQC trajectories inducing decoherence), while (ii) TSH and TSH-EDC results are similar since the used decoherence corrections are not remarkably effective in this case. These observations explain the better agreement of Ehrenfest/CT-MQC results with quantum results than TSH(-EDC).

Detailed information about the quantum-classical S 1 reaction pathways can be extracted by analyzing the trajectories. Based on such an analysis, we have observed four possible trends: (i) some trajectories remain in the cis-S 1 state; (ii) some trajectories decay from S 1 to S 0 towards the photo-product, but they reach the minimum of the S 0 PESs with large kinetic energy, such that the rotation around the reactive C 2 = C 3 bond continues, eventually bringing the system through a CI region and back to S 1 either in the cis or in the trans geometry; (iii) some trajectories reach a CI region, but the combination of the Tors and HOOP velocities (see discussion in Section 4) prevents the formation of the photoproduct and delay the S 0 relaxation, such that they go back to S 1 in the cis geometry;

(iv) some trajectories reach a CI region and decay to S 0 , however, the combination of the Tors and HOOP velocities yields the formation of the cis conformer rather than the trans conformer. Paths (ii) and (iv) are discussed in more detail in Section 4, where the trajectoires are explicitly shown. The combination of paths (i)-(iii) yields the S 1 population of the cis conformer with the largest probability for all methods, as observed in Fig. 6, with cis-PSB3 mainly populating the S 1 state. If we instead exclusively look at the S 0 population, one can see a more similar development of the cis-PSB3 and trans-PSB3 conformations.

Nuclear kinetic energy

In this section we compare the nuclear kinetic energy from quantum and quantum-classical calculations in order to • investigate the relation between the larger probability of the trans-PSB3 conformer formed in S 0 at short time as predicted by the quantum-classical schemes with respect to the benchmark quantum results;

• discuss the excitation energy distribution among the vibrational modes considered in the three-dimensional model.

The classical nuclear kinetic energy is averaged over the trajectories and it is decomposed along the three nuclear modes according to the expression

K (cl) (t) = 1 N traj N traj α=1 K (cl) α (t) = 1 N traj N traj α=1 P 2 r,α 2M r + P 2 θ,α 2I θ + P 2 φ,α 2I φ , ( 14 
)
where P r,α , P θ,α , P φ,α are the momenta of the trajectory α along BLA, Tors and HOOP. the CIs towards S 0 , with following loss in potential energy. The latter is the result of the loss of vibrational coherence in the BLA direction, with the wavepacket spreading along Tors (see Fig. 5 and the Supporting Information animation of the wavepacket dynamics). It is also apparent that the funneling process is accompanied by an increase of Tors and HOOP kinetic energies, until a plateau is reached.

The largest deviation of quantum-classical results from the quantum result is observed in the Tors kinetic energy. After 50 fs the classical Tors motion acquires too much kinetic energy if compared to its quantum counterpart with a peaked difference reached at 80 fs delay. This excess energy gain is partially compensated by a parallel loss in BLA and HOOP kinetic energy, as shown in Fig. 8 (left and right panels, respectively), and partially by the potential energy decrease (not shown here) relative to the quantum result. The disagreement in the potential energy is related to the larger amount of population in the trans-S 0 state between 50 fs and 100 fs predicted by quantum-classical calculations if compared to the quantum results. A possible reason for the disagreement can be found in the nature of the quantum-classical propagation scheme itself. Initial conditions are sampled according to the quantum harmonic Wigner distribution, but classical-like equations of motion are used for the dynamics. The redistribution of the excitation energy among the modes and excess energy in Tors can be affected by this inconsistency between the preparation of the initial state and the subsequent evolution, especially in the studied conditions where the system is isolated and no channels for energy loss are considered. This issue might be reminiscent of the zero-point energy leakage observed in condensed-phase simulations accounting for nuclear quantum effects, [START_REF] Habershon | Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water[END_REF][START_REF] Brieuc | Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations[END_REF] namely the incorrect energy transfer between high-frequency and low-frequency modes.

Analyzing Fig. 8 further, we notice oscillations of BLA energy persisting at long times when described at the quantum level, but are captured by the classical methods only up to 120 fs. Tors kinetic energy predicted by CT-MQC seems to reach a plateau at long times, in agreement with quantum results; Ehrenfest, TSH and TSH-EDC, instead, present low-frequency oscillations up to the end of the simulated dynamics. Motion along the Tors coordinate appears to be less coherent than along BLA and HOOP, a feature that is captured by CT-MQC slightly better than the other trajectory-based methods. In fact, in CT-MQC the trajectories are coupled, which is the main difference with respect to the other quantum-classical schemes, but, as pointed out above, one sees significant Tors low frequency oscillations. Nevertheless, the coupling ensures a "more quantum" behavior of CT-MQC trajectories. [START_REF] Min | Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes[END_REF][START_REF] Agostini | Quantum-Classical Nonadiabatic Dynamics: Coupled-vs Independent-Trajectory Methods[END_REF][START_REF] Min | Ab Initio Nonadiabatic Dynamics with Coupled Trajectories: A Rigorous Approach to Quantum (De)Coherence[END_REF][START_REF] Gossel | Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction[END_REF][START_REF] Talotta | Spin-Orbit Interactions in Ultrafast Molecular Processes[END_REF][START_REF] Agostini | An exact-factorization perspective on quantum-classical approaches to excited-state dynamics[END_REF] 

Analysis of the correlation between Tors and HOOP

The comparison of the dynamics generated by the two-dimensional Hahn-Stock model potentials [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] and by our three-dimensional model, [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] discussed in Section 2, highlighted the qualitative changes induced by the HOOP coordinate in the relaxation from S 1 to S 0 from cis-PSB3 to trans-PSB3. In order to investigate this effect further, in the following analysis, we will

• select representative CT-MQC trajectories to define the idea of "correlation" between motion along HOOP and along Tors for the three-dimensional model;

• point out the qualitative similar tendency of the trajectories, across methods, i.e., CT-MQC and TSH-EDC, and across systems, i.e., PSB3 and a simplified rPSB11 in Rh, to successfully yield the trans-S 0 conformation mainly when the "correct" combination of Tors and HOOP velocities is achieved.

Last observation suggests that a two-state three-dimensional model is able to capture qualitatively the correlation between Tors and HOOP modes seen in simulations where the full set of degrees of freedom are considered. However, only certain basic topographic features of the PSB3 three-dimensional model are found in the PESs of rPSB11 in Rh. Common features are: (i) the initial S 1 gradient mainly directed along the BLA coordinate and only partially along the HOOP coordinate, (ii) the existence of a barrierless isomerization path and a nearly peaked minimum-energy CI point along the intersection space. On the other hand, as also mentioned above, the three-dimensional model features a force field that is symmetric with respect to both Tors and HOOP. This symmetry is completely lost in Rh.

The consequences of such strong asymmetry is that in Rh the trajectories all relax in a counterclockwise direction rather than splitting in two equal populations relaxing in the clockwise and counterclockwise direction with identical probabilities.

Figure 9: Left panels: profiles of the adiabatic S 0 (blue lines) and S 1 (red lines) potentials as functions of time, along two selected trajectories. The black curve is the TDPES of the CT-MQC method. Central panels: trajectories in the reduced Tors-BLA space starting at the point indicated with t 0 and ending after 120 fs at the point t 120 . Dashed vertical lines separate the cis from the trans conformations. Colors indicate the absolute value of the energy gap between S 1 and S 0 along the trajectories. Right panels: trajectories in the reduced Tors-HOOP space, with the straight arrows indicating the velocity at the point where the S 1 /S 0 energy gap is minimum. In the central and right panels, the dashed arrows indicate the direction of time.

Figure 9 reports the potential energy profiles (left panels) along the CT-MQC dynamics of two selected representative trajectories together with their corresponding paths up to 120 fs.

The trajectory geometrical paths are reported in the reduced Tors-BLA (central panels) and Tors-HOOP (right panels) space. Note that a single trajectory is not physically meaningful, especially in a coupled-trajectory scheme like CT-MQC. However, in our simulations we have identified a number of trajectories close to the two selected examples, and we will thus describe their behavior in detail. In CT-MQC, the potential energy driving the nuclear dynamics is the time-dependent potential energy surface (TDPES), which is basically the electronic Hamiltonian averaged over the instantaneous electronic state. The TDPES for the selected trajectories are compared in Fig. 9 (left panels) with the corresponding S 0 and S 1 profiles. Note that in the upper panel the trajectory shows a steep descent from S 1 to S 0 around 65 fs, and ends in a region of configuration space where S 0 decreases while S 1 increases with time. Conversely, in the lower panel, after switching from S 1 to S 0 , the trajectory moves in a region where S 0 and S 1 have similar slopes (notice the in-phase oscillations of S 0 and S 1 between 60 fs and 100 fs). Clearly, trajectories visiting different portion of the PESs have different behaviors, as it is shown in Fig. 9 (central panels). The trajectory depicted in the upper panel oscillates along BLA but propagates along Tors towards the trans-PSB3 product with values of Tors of -180°, reaching the S 0 product in about 100 fs. The trajectory shown in the lower panel, instead, does not move towards the product, but it goes back to cis-PSB3 after a first passage through the CI region.

To understand the different reactive and non-reactive behaviors described above, we show the same two trajectories in the Tors-HOOP reduced configuration space (right panels). The velocity of the reactive trajectory (upper panel) at the hop point is directed towards increasing values of HOOP (positive HOOP velocity) and towards the photo-product (negative Tors velocity), as indicated by the straight arrow at the crossing point, whereas the velocity of the non-reactive trajectory (lower panel) at the crossing point has the opposite direction along HOOP (the Tors component still points towards trans-PSB3), as again indicated by the arrow. This analysis points to the existence of a phase relationship between Tors and HOOP velocities whose signs at the hop point, i.e., S 1 decay, determine the success of the isomerization. Such relationship, which has been previously documented using atomistic PSB3 [START_REF] Weingart | The role of HOOP-modes in the ultrafast photo-isomerization of retinal models[END_REF] and Rh models 7,8,68 and probed experimentally 7 implies that reactive trajectories are associated with negative (positive) Tors velocities and with positive (negative) HOOP velocities. In order to present results that can be directly compared with atomistic simulations found in the literature, 7 in Fig. 10 we plot the velocity of the variable Tau = Tors-HOOP/2 (panel A) and of the variable HOOP (panel B) against the velocity of Tors based on CT-MQC.

We recall here that Tau stands for the overlap of the π-system orthogonal to the reactive double bond. The analysis is restricted to short-time dynamics after the first trajectory-"hop" from S 1 to S 0 . We designate that a CT-MQC trajectory switches from S 1 to S 0 if (i) it enters a region where the energy gap between S 1 and S 0 is less than 10 kcal/mol4 , and (ii) for at least 3 consecutive time steps the TDPES is closer to S 0 than to S 1 . The identification of these conditions becomes necessary because, as stated above, CT-MQC trajectories do not hop from one PESs to the other, but follow the TDPES. The velocities reported in Fig. 10 are computed at the hop point, and only the trajectories evolving from Tors = 0 towards Tors = -180°are analyzed for consistency with the results of Fig. 9.

After the hop, that takes place in the vicinity of Tors = -90°, as soon as a trajectory enters a region where Tors ≥ -30°it becomes a non-reactive trajectory because it goes back to the cis geometry, whereas as soon as it enters a region where Tors ≤ -150°it is identified as a reactive trajectory because it continues the isomerization process towards the trans geometry. Figure 10 (panels A-B) shows that over 147 analyzed trajectories, 130 are reactive (red dots) and 17 are non-reactive (green dots) suggesting a large quantum efficiency of about 0.88 (in agreement with the quantum yield estimated in Fig. 7 for CT-MQC in the time interval 50 -100 fs). In panel A of Fig. 10 we show that all non-reactive trajectories have a positive value of the π-system overlap, i.e., Tau, velocity and a negative value of the Tors velocity; for 112 reactive trajectories, the velocities of the overlap and Tors have the same sign. Note that the variable HOOP enters with minus sign in the definition of Tau.

All non-reactive trajectories have a negative HOOP velocity, as shown in panel B of Fig. 10.

Here, the dominating role of the HOOP velocity in directing the trajectories towards the product conformation is displayed. Again, the described interplay between Tors and HOOP just analyzed confirms a mechanism for the S 1 to S 0 population decay well beyond the usually adopted one-dimensional Landau-Zener model, 7-10 despite the fact that the large energy gap between the electronic states in PSB3 (of the order of 4 eV, thus about 1.5 eV larger than the one of Rh) gives rise to very steep slopes towards peaked CIs along which one would expect the trajectories to display a one-dimensional-like dynamics.

To put our observations in a broader perspective, and validate the results provided by CT-MQC, we conclude this analysis including the model-based results (panels C-D) and the atomistic results (panels E-F) using TSH-EDC. This last set of results has been extracted from Ref. 7 where a QM/MM study of a simplified rPSB11 inserted in the protein cavity has been reported. The pattern in panels A-B is similar to those in panels C-D and E-F, even though in the latter a lower isomerization quantum efficiency can be extracted (of 0. 

Conclusions

In the extensive analysis reported in this work on the photoisomerization of a retinal chromophore model, we have • presented how to perform vibronic wavepacket dynamics driven by the curvilinear coordinates BLA, Tors and HOOP in Section 2;

• discussed the contribution of the HOOP mode on the dynamics (probabilities and nuclear kinetic energy) by comparing our three-dimensional model with the two-dimensional Hahn-Stock model 56 in Sections 2.1 and 2.2;

• studied nuclear quantum dynamics and CT-MQC trajectories, and their relation with the topology of the adiabatic PESs in Section 3;

• pointed out differences and similarities between quantum and quantum-classical simulations, as well as among the studied quantum-classical methods themselves in Sections 3.1 and 3.2;

• identified qualitative analogies between CT-MQC and TSH-EDC, as well as between PSB3 and a rPSB11-like system in Rh, in capturing the correlation between Tors and HOOP velocities to yield the trans-S 0 conformation in Section 4.

In summary, recently parametrized analytical three-dimensional PESs 27 have allowed to employ CT-MQC and other quantum-classical methods to study the isomerization of PSB3. The recently-developed CT-MQC scheme provided a description of the excited-state dynamics in slightly better agreement with quantum dynamics calculations with respect to other quantum-classical schemes. Based on our combined quantum and quantum-classical analysis, we validated some observations that have been previously reported in the literature for atomistic models of Rh employing the affordable TSH-EDC method, 5,7,8,17 concerning (i) the three-dimensional nature of the isomerization coordinate, (ii) the coherent vibrational motion, (iii) the correlation between HOOP and Tors velocities to reach the photo-products, and (iv) the nature of the non-adiabatic crossing.

When comparing the three-dimensional model PESs 27 with a two-dimensional model, [START_REF] Hahn | Quantum-mechanical modeling of the femtosecond isomerization in rhodopsin[END_REF] we have shown the suppression of the efficient S 1 decay within the 200 fs simulated dynamics. This observation might indicate the critical role played by additional intramolecular degrees of freedom in reaching and stabilizing the photo-products. Instead, the similarities between dynamics based on the three-dimensional model PESs 27 and atomistic QM/MM results 7 suggest that the correlation between HOOP (or Tau) and Tors velocities is a general, essential property to steer the isomerization of rPSB11-like systems towards the photo-product formation independently on the environment.

To reveal quantum effects, we have compared vibronic wavepacket dynamics and trajectorybased schemes, only accessible in reduced-dimensionality PES models. In particular, at short times after the photo-excitation the trans conformer in S 0 is predicted to be produced with higher probability, i.e., with a higher quantum efficiency, when using quantum-classical trajectory propagations rather than quantum dynamics. This behavior appears to be the consequence of a too fast funneling process through the CIs leading the trajectories to acquire a large amount of kinetic energy along the low-frequency Tors mode, with corresponding loss of potential energy, BLA and HOOP kinetic energy. TSH-EDC is widely used in atomistic simulations, thus the disagreement with respect to quantum dynamics discussed in this work might suggest that TSH-EDC is not fully adequate to describe the photo-induced isomerization in rPSB11-like systems. However, we expect that inclusion of additional degrees of freedom and/or an environment might be the key to induce a more classical-like behavior that is better captured by the trajectory-based scheme. Another feature that indeed plays a role in the formation of the photo-products is the broken symmetry and augmented slope along Tors of the PESs acting on the rPSB11 chromophore of Rh, due to the chiral protein environment hosting the chromophore, that steers the isomerization exclusively in the counterclockwise direction. The effect of both factors will be the focus of future studies on the dynamics of PSB3.

An important aspect of the photo-isomerization process that has not been addressed in this work is the effect of natural, incoherent light excitation. Natural light excitation prepares the system in a mixture of eigenstates of the total Hamiltonian, whose time evolution is expected to proceed incoherently. Therefore, the predicted quantum yield is potentially affected by such an incoherent dynamics. Thanks to developments of theoretical approaches able to account for incoherent light excitation adopting quantum [START_REF] Tscherbul | Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation[END_REF][START_REF] Tscherbul | Excitation of biomolecules with incoherent light: Quantum yield for the photoisomerization of model retinal[END_REF][START_REF] Dodina | Light-induced processes in nature: Coherences in the establishment of the nonequilibrium steady state in model retinal isomerization[END_REF][START_REF] Axelrod | Multiple time scale open systems: Reaction rates and quantum coherence in model retinal photoisomerization under incoherent excitation[END_REF][START_REF] Brumer | Shedding (incoherent) light on quantum effects in light-induced biological processes[END_REF] 

K = 1 2 J(Q) ρ(Q) i,j J(Q) -1 Pi J(Q)G ij (Q) Pj ρ(Q) J(Q) (23) 
where: Pi 's are the conjugated momenta to the active coordinates including the three components, Ĵα , of the total angular momentum; G ij (Q) are the contravariant components of the metric tensor; J(Q) is defined as 1/ det(G(Q)) and is the Jacobian of the coordinate transformation when the molecular system is unconstrained (n = 3N -6); There exist several procedures to derive the expression of the metric tensor. Usually, for the numerical approach, as in Tnum, 58 the so-called x(Q) approach [START_REF] Nauts | Hamiltonians for constrained N-particle systems[END_REF] is used for which the covariant components of the metric tensor, g ij (Q), are obtained first, then the contravariant components, G ij (Q), are calculated. The corresponding matrix G is expressed as

G(Q) = g(Q) -1 =    S(Q) C t (Q) C(Q) I(Q)    -1 , (24) 
where, S(Q), C(Q) and I(Q) are, respectively, the deformation contribution, the Coriolis contribution, and the inertia tensor. Their expressions are

S ij (Q) = k m k ∂R k ∂Q i • ∂R k ∂Q j (25) 
C αj (Q) = k m k R k × ∂R k ∂Q j α (26) 
I αβ (Q) = k m k (R k • R k )δ αβ -[R k ] α [R k ] β (27) 
where R k and m k are, respectively, the body fixed Cartesian vector positions and the mass of atom k. Furthermore, the α-th component (α = {x, y, z}) of a vector X is denoted [X] α .

Equation ( 23) can be transformed to give Eq. (4) for the deformation part of the KEO. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF][START_REF] Nauts | Numerical on-the-fly implementation of the action of the kinetic energy operator on a vibrational wave function: application to methanol[END_REF] Numerically, the functions, f ij 2 (Q), f i 1 (Q) and V ep (Q), can be obtained exactly to working precision resorting to automatic differentiation. [START_REF] Lauvergnat | Exact numerical computation of a kinetic energy operator in curvilinear coordinates[END_REF][START_REF] Yachmenev | Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame[END_REF] 

C. Computational details

The initial wavepacket is represented as product of uni-dimensional Gaussians. More specifically, for the i-th coordinate Q i , the unnormalized expression of the Gaussian is given by exp -(Q i -Q i 0 ) 2 /∆Q i 2 , where Q i 0 is the value of Q i at the cis geometry and ∆Q i is width of the Gaussian. ∆Q i is computed as

√ 2/ 4 k i /G ii cis
where k i and G ii cis are the force constant and the metric tensor component at the photo-reactant geometry, respectively.

For the quantum-dynamics simulations, the nuclear wavepacket has been expanded in a 3D-basis set formed by the direct-product of three uni-dimensional basis sets for each diabatic state. The harmonic-oscillator (HO) basis set has been used for BLA and HOOP, while Fourier-series periodic basis set has been used for Tors. The consistency of the grid point and the basis function numbers has been tested increasing, progressively, the basis set sizes until convergence of propagation was reached.

Table 4: Parameters in atomic units of the uni-dimensional basis sets for each coordinate, Q i . nb and nq are, respectively, the numbers of basis functions and grid points. The HO basis functions are expressed as:

H m [Sc i (Q i -Q i 0 )] • exp [-1/2 • (Sc i (Q i -Q i 0 )) 2 ]
where, H m is the normalized m-th Hermite polynomial, Sc i (= 4 k i /G ii cis ) is a scaling parameter and Q i 0 is the center of basis set. The propagation was performed with the Chebychev scheme for which the evolution operator is expanded on Chebychev polynomials. [START_REF] Tal-Ezer | An accurate and efficient scheme for propagating the time dependent Schrödinger equation[END_REF] The Hamiltonian needs to be renormalized so that its spectral range lies between [-1, 1]. Finally, the wavepacket has been propagated for 200 fs using a time step of 1 fs with the initial wavepacket starting on S 1 .

The used trajectory-based methods are: the Ehrenfest scheme, [START_REF] Tully | Mixed quantum-classical dynamics[END_REF] the CT-MQC approach [START_REF] Min | Ab Initio Nonadiabatic Dynamics with Coupled Trajectories: A Rigorous Approach to Quantum (De)Coherence[END_REF][START_REF] Gossel | Coupled-Trajectory Mixed Quantum-Classical Algorithm: A Deconstruction[END_REF] derived from the exact factorization of the electron-nuclear wavefunction, fewestswitches Tully surface hopping (TSH), [START_REF] Tully | Molecular dynamics with electronic transitions[END_REF] including its version with energy decoherence corrections (TSH-EDC). [START_REF] Granucci | Critical appraisal of the fewest switches algorithm for surface hopping[END_REF] For all methods, the bundle of trajectories at the initial time has been generated from a (harmonic) Wigner distribution determined from the initial quantum wavepacket. The variances (∆Q 2 i / √ 2) of the initial Gaussians can be determined from the values of the force constants and the masses (or of the elements of the metric tensor) given in Table 3.

Quantum-classical simulations are run in the adiabatic basis. The adiabatic PESs are determined by diagonalizing the Hamiltonian (15). The non-adiabatic couplings have been computed analytically with the usual Hellmann-Feynman theorem [START_REF] Feynman | Forces in molecules[END_REF][81][START_REF] Worth | Beyond Born-Oppenheimer: molecular dynamics through a conical intersection[END_REF] from the eigenvectors of the Hamiltonian (15). This procedure is implemented for all potentials in the ModelLib library, [START_REF] Lauvergnat | QuantumModelLib[END_REF] and in particular for the three-dimensional PSB3 model.

A set of N traj = 600 initial conditions have been generated and used for all quantumclassical methods. For TSH and TSH-EDC calculations, each initial condition has been used to generate 10 trajectories by varying the random seed for the stochastic jumps, yielding a total of 6000 trajectories.

All simulations have been carried out for 200 fs with a time step of 0.0025 fs. Periodic boundary conditions are used for Tors and HOOP, with periodicity 2π and 4π, respectively.

In CT-MQC simulations, the effect of the quantum momentum has been switched off when the trajectories are completely distributed all over the available configuration space, namely at 120 fs. The code used for quantum-classical simulations is a modified, developer version of the CTMQC code. [START_REF] Agostini | CTMQC[END_REF] 

Figure 1 :

 1 Figure 1: Schematic representation of the vibrational modes BLA, Tors, and HOOP. The relation between HOOP and an additional coordinate, Tau, is shown on the right: Tau = Tors -HOOP/2 will be used for the analysis presented below.

Figure 2 :

 2 Figure 2: Probabilities of the cis (left panels) and trans (right panels) conformers in the ground state S 0 (lower panels) and in the excited state S 1 (upper panels) as functions of time. Exact quantum results for the three-dimensional model, using a non-diagonal positiondependent metric tensor (MT), are shown in black. Quantum results using a constant MT are shown in dark green, and quantum results using a diagonal constant MT are shown in light green. The corresponding probabilities determined based on the Hahn-Stock twodimensional model 56 are shown in purple.

Figure 3 :

 3 Figure 3: Quantum yield as function of time estimated from Eq. (8). The color code is the same as in Fig. 2.

Figure 4 :

 4 Figure4: Nuclear kinetic energy (diagonal) contributions along BLA, Tors and HOOP as functions of time. The color code is the same as in Fig.2. The right panel shows the offdiagonal contributions (f ij 2 (Q) ∂ 2 ∂Q i ∂Q j for i = j in Eq. (4)) arising from the coupling of the modes: continuous lines refer to exact calculations; the dashed line refers to the calculations based on the constant metric tensor.

Figure 5 :

 5 Figure 5: Adiabatic reduced nuclear densities (green areas) and distribution of CT-MQC trajectories (blue-white dots). Adiabatic PESs are represented via grey iso-contours, for HOOP = 0 on the left and for BLA = 0 on the right. Left panels: nuclear densities in the reduced Tors-BLA space in the S 0 (left column) and S 1 (right column) states, after 10 fs (top), 50 fs (middle), and 100 fs (bottom) from the photo-excitation. The crosses indicate the positions of the minimum-energy CIs. Right panels: same as the left panels, with densities and trajectories represented in the reduced Tors-HOOP space. The intersection space is shown as dashed lines, for which the condition Tors -HOOP/2 ± 90 = 0 holds.

Figure 6 Figure 6 :

 66 Figure6shows the comparison between quantum results, employing the diagonal-constant metric tensor (light-green lines), and quantum-classical results obtained based on Ehrenfest dynamics (purple lines), CT-MQC (blue lines), TSH (red lines), and TSH-EDC (orange lines). While the decay of the probability of the cis conformer in S 1 (upper left panel of Fig.6) is well captured by all quantum-classical schemes, some disagreement is observed between quantum and TSH/TSH-EDC results in the behavior of the probability of producing the trans conformer in the excited state already after 50 fs (upper right panel of Fig.6), as well as between quantum and all quantum-classical schemes in the probability of producing

Figure 7 :

 7 Figure 7: Quantum yield as function of time estimated from Eq. (8). The color code is the same as in Fig.6. Numerical values at 80 fs are explicitly indicated (dashed vertical line).

Figure 8 :

 8 Figure 8: Nuclear kinetic energy along the BLA (left), Tors (center), and HOOP (right) coordinates, as function of time. The color code is the same as in Fig. 6.

Figure 10 :

 10 Figure 10: Panel A: Velocity of the overlap coordinate Tau vs. Tors velocities from CT-MQC. Panel B: Velocity of HOOP vs. Tors velocities from CT-MQC. The velocities are computed at the "hopping" time/position. Panels C-D: Same as in A-B, but for TSH-EDC. Panels E-F: Same as in A-B, but the results are extracted from TSH-EDC-based atomistic simulations of bovine Rh model with a simplified rPSB11 chromophore. 7 Red dots refer to reactive trajectories, whereas green dots refer to trajectories that go back to the cis conformation.

  72) if compared to panels A-B and panels C-D (quantum efficiency of 0.84). Qualitatively, CT-MQC and TSH-EDC estimate of the quantum efficiency from Fig. 10 agrees with the trend shown in Fig. 7 just after 80 -100 fs.These final observations, together with the early 50 fs decay and vibrational coherence seen above, strongly support the interest in developing model PESs allowing for in-depth analysis of the origin of certain critical features of the cis-trans isomerization in rPSB11-like systems and of similarities/differences between quantum and quantum-classical schemes.

  and quantumclassical[START_REF] Barbatti | Simulation of excitation by sunlight in mixed quantum-classical dynamics[END_REF] perspectives, future work in this direction on the three-dimensional model might provide valuable information.reduce the number of parameters, and improve the agreement of the model when compared with the dataset used for the fitting. The model potentials used in this work along with the original potentials of Ref.,[START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] the Hahn-Stock potentials and the constant metric tensor used in Section 2 are available for download.[START_REF] Lauvergnat | QuantumModelLib[END_REF] 

  ρ(Q) is the normalization weight associated to the deformation part of the volume elementdτ def = ρ(Q) • dQ 1 • dQ 2 • • • dQ n and it means that a non-Euclidean normalization convention is used (ρ(Q) = J(Q)).

  

Table 1 :

 1 Constant components of the contravariant metric tensor obtained by averaging the exact position-dependent metric tensor over 45 geometries (in atomic units). Only the non-zero values are given.

	Component Value in a.u.
	G rr ≡ 1/M r 7.981 •10 -5
	G θθ ≡ 1/I θ	2.599 •10 -5
	G φφ ≡ 1/I φ 40.375 •10 -5

Table 2 :

 2 Potential parameters.

	H cov2D		H corr	H cp
	kf 1	3733 kcal.mol -1 .Å -2	h 1	155.7 kcal.mol -1 k 1 24.04 kcal.mol -1
	d 2	54.63 kcal.mol -1		
	d 3	3.801 kcal.mol -1		
	kf 4	1097 kcal.mol -1 .Å -2		
	d r	2000 kcal.mol -1		
	r T S	0.02508 Å		
	r min	0.09126 Å		
	B. Kinetic energy Operator	

For a molecular system composed by N atoms, the Kinetic Energy Operator (KEO) in terms of n curvilinear coordinates Q = {Q 1 ....Q n }, can be expressed as

[START_REF] Nauts | Momentum, quasi-momentum and hamiltonian operators in terms of arbitrary curvilinear coordinates, with special emphasis on molecular hamiltonians[END_REF][START_REF] Nauts | Numerical on-the-fly implementation of the action of the kinetic energy operator on a vibrational wave function: application to methanol[END_REF][START_REF] Podolsky | Quantum-mechanically correct form of Hamiltonian function for conservative systems[END_REF][START_REF] Wilson | Molecular vibrations: The theory of infrared and Raman vibrational spectra[END_REF][START_REF] Fábri | Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia[END_REF] 

Table 3 :

 3 Parameters in atomic units used for the initial wavepacket: force constants, metric tensor's contravariant components, width ∆Q i , and center Q i 0 of the initial Gaussian.

	Force constant		G cis diagonal values	∆Q i	Q i 0
	k r	0.4896	G rr cis ≡ 1/M r	6.965 •10 -5 0.1544 0.1725
	k θ k φ	0.1198 0.06098	G θθ cis ≡ 1/I θ G φφ cis ≡ 1/I φ	3.381 •10 -5 0.1833 41.48 •10 -5 0.4061	0.0 0.0

Note that in the reference cis ground-state conformation, PSB3 has two single bonds, i.e., C 1 C

and C

C

, and three double bonds, i.e., NC 1 , C 2 C 3 and C 4 C

.

Note that an analogous stabilization of the populations around 0.5 is observed as well for the twodimensional model discussed in Section 2 towards 500 fs.

Similar disagreements have been ascribed in the literature to the incorrect account of geometric-phase effects.[START_REF] Ryabinkin | When do we need to account for the geometric phase in excited state dynamics?[END_REF] Even though quantum calculations are performed in the diabatic basis and quantum-classical simulations in the adiabatic basis, we believe that geometric-phase effects are not at the origin of the disagreement. In fact, even if geometric-phase effects are not accounted for in trajectory-based schemes, the local nature of the trajectories somehow helps in circumventing issues that can be related to them, as explicitly proven for Ehrenfest and TSH dynamics in recent studies.[START_REF] Gherib | Why Do Mixed Quantum-Classical Methods Describe Short-Time Dynamics through Conical Intersections So Well? Analysis of Geometric Phase Effects[END_REF][START_REF] Ryabinkin | Geometric phase effects in nonadiabatic dynamics near conical intersections[END_REF] 

Analyses with the values

and 7 kcal/mol have been performed as well, but the considerations remain the same.
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• Dynamics_Adia_Tors_BLA.mp4: it contains an animation showing the quantummechanical evolution of the Tors-BLA reduced densities in S 0 and in S 1 along with classical dynamics based on the CT-MQC scheme up to 200 fs.

• Dynamics_Adia_Tors_HOOP.mp4: it contains an animation showing the quantummechanical evolution of the Tors-HOOP reduced densities in S 0 and in S 1 along with classical dynamics based on the CT-MQC scheme up to 200 fs.

A. Analytical model potentials

The electronic Hamiltonian in the diabatic basis including the two lowest states of PSB3 as functions of the three vibrational modes Tors, BLA, HOOP = θ, r, φ is

The expressions we used for H cov (θ, r, φ) and H ct (θ, r, φ) are similar to those in Ref., [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] namely

with H ct2D (θ, r, φ) having the same expression as in Ref. [START_REF] Marsili | Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model[END_REF] In this work, we have slightly modified H corr (φ), H cov2D (θ, r, φ) and H cp (θ, r, φ), and the new expressions, with angle variables indicated in radians, are

and

Note that H cp (θ, r, φ) = H cp (θ, φ) is independent of r. In Eq. ( 19) the Morse potential has replaced the harmonic potential of the original model, and we have

with d 1 = kf 1 /(2d r ) and d 4 = kf 4 /(2d r ). The parameter kf 1 is the BLA force constant evaluated at the position of the covalent character transition state (T S COV ), whereas kf 4

is the BLA force constant evaluated for the cis or the trans isomers (the force constants are considered the same for both isomers). Finally, the depth well, d r as been fixed at a value of 2000 kcal.mol -1 , while r T S =0.02508 Å and r min =0.09126 Å are the optimal BLA values at the T S COV for cis and trans geometries, respectively. Here, we assume, that the optimal BLA values are the same for the both cis and trans isomers.