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‡ MAP5, Université de Paris, Paris, France.

ABSTRACT

We propose the use of Flat Metric to assess the performance of re-
construction methods for single-molecule localization microscopy
(SMLM) in scenarios where the ground-truth is available. Flat Met-
ric is intimately related to the concept of optimal transport between
measures of different mass, providing solid mathematical founda-
tions for SMLM evaluation and integrating both localization and de-
tection performance. In this paper, we provide the foundations of
Flat Metric and validate this measure by applying it to controlled
synthetic examples and to data from the SMLM 2016 Challenge.

1 Introduction

Single-molecule localization microscopy (SMLM) has boomed over
the past decade, delivering on the promise of breaking the diffrac-
tion limit and giving access to otherwise unreachable cellular struc-
tures [1, 2]. SMLM relies on computational methods that detect
and accurately localize the few fluorescent emitters in each of many
acquired frames, ultimately creating a superresolved image (up to
10nm) [3]. Therefore, it is crucial to have at one’s disposal an ob-
jective evaluation of the recovery performance of available recon-
struction algorithms. The present paper studies this topic, under the
hypothesis that a ground-truth reference for every captured frame is
available. Metrics that do not require ground-truth information also
exist [4–7], even some using optimal transport concepts [8]. How-
ever, these are outside of the scope of this paper, and our proposal is
completely new. Similarly, simpler optimal-transport-based metrics
were used before in other point-source localization problems [9,10].

The localization of point sources is traditionally assessed using
either detection metrics, such as precision, recall, and the Jaccard
index; or localization metrics, such as the root-mean-square error
(RMSE) or the root-mean-square minimum distance (RMSMD) [11].
In the SMLM 2016 Challenge [3], a large panel of metrics was com-
puted for performance assessment. The participating localization
algorithms typically focused on one of two main key metrics: the
Jaccard index (J) or the root-mean-square error (RMSE). To encom-
pass both, Sage et al. proposed the efficiency, a metric born from
the analysis of the empirical results in [3] and designed to evaluate
the SMLM 2016 Challenge. It is computed as

efficiency = 100−
√

(100− J)2 + α2
effRMSE2. (1)
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The parameter αeff was introduced to regulate the tradeoff between
localization and detection. It was set to αeff = 1nm−1 for the two-
dimensional (lateral) efficiency after analysis of the results for the
best algorithms. With this empirical choice, an improvement of 1nm
in RMSE is equivalent to a 1% improvement in J.

In this paper, we propose to use Flat Metric, also known in the
literature as the flat norm or the Kantor-Rubinstein norm [12–15] , to
assess the recovery performance of algorithms for SMLM. This met-
ric has already been used to assess the recovery performance of point
source signals [16]. It can be related to optimal transport which is a
well-studied field both on a theoretical [17, 18] and numerical [13]
standpoint. By using a valid metric on the space of Radon measures,
in which detections and ground-truth data lie, we expose the natural
connection between the localization-detection performance tradeoff
and the radius of tolerance used to judge a detected location as cor-
rect or incorrect. Furthermore, like other metrics introduced recently
for SMLM [11], Flat Metric does not require arbitrary pairing deci-
sions between detected and ground-truth locations. Nonetheless, in
opposition to RMSMD, Flat Metric still resolves pairings implicitly,
thus yielding interpretable and explainable assessments.

The paper is structured as follows: First, we introduce Flat Met-
ric mathematically, expose its link with unbalanced optimal trans-
port and explain how to compute it numerically. Then, we illustrate
its behavior on a simple example. Finally, we compare it to the ef-
ficiency (1) on both synthetic data and the SMLM 2016 challenge
data.

2 Flat Metric for SMLM

2.1 Mathematical Definition
Without loss of generality, we assume that the ground-truth and de-
tected locations are in X = [0, 1]D , for D ∈ {2, 3}. We use the
Euclidean distance d(x,y) = ‖x− y‖2 to measure the distances
between two points. We denote byM(X ) the space of Radon mea-
sures defined on X . Mathematically,M(X ) is the continuous dual
of the space C(X ) of continuous functions on X endowed with the
uniform norm ‖ · ‖∞. The canonical norm onM(X ) is thus

∀µ ∈M(X ), ‖µ‖M , sup
f∈C(X ),‖f‖∞≤1

∫
X
fdµ, (2)

and is known as the total-variation norm orM norm. The Banach
spaceM(X ) contains point-source signals, referred to as the Dirac
masses δx , δ( · − x) for x ∈ X . This makes it particularly well-
suited for SMLM because individual fluorescent emitters can be seen
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Fig. 1: a) Flat Metric (low: good). b) Efficiency (low: bad). These metrics take into account a continuum in both localization and detection
errors in SMLM. Locations (100) were uniformly drawn to create ground-truth points and modified to create artificial sets of detections with
100% precision, recall ranging from 0% to 100%, and localization errors uniformly sampled in a circle of a given radius. c) High degree of
correlation between efficiency and Flat Metric on four datasets from the SMLM 2016 Challenge.

as Dirac masses, which suggests the representation of SMLM data
as sums of Dirac masses.

The total-variation norm is not a good candidate metric for
SMLM because, for all x 6= y, ‖δx − δy‖M = 2. Instead, we build
our metric from the flat norm onM(X ) given in Definition 1.

Definition 1 (Flat norm [14]). The flat norm of a given µ ∈ M(X )
is defined as

‖µ‖ , sup

({∫
X
fdµ :f ∈ C(X ), ‖f‖∞ ≤ λ,Lip(f) ≤ 1

})
,

(3)

where Lip(f) is the Lipschitz constant of f . This definition induces
a norm onM(X ).

Using the flat norm to measure the difference between two
Radon measures leads to Flat Metric.

Definition 2 (Flat Metric). Flat Metric is defined for any two µ, ν ∈
M(X ) as

Fλ(µ, ν) , ‖µ− ν‖ . (4)

Flat Metric is linked to unbalanced optimal transport [13, 19].
This makes Flat Metric interpretable, which is key for its application
to SMLM.

Proposition 1 (Interpretation of Flat Metric - [19], Prop. 2.26). For
all µ, ν ∈M(X ),

Fλ(µ, ν) = min
π∈M+(X×X )

{∫
X×X

d(x,y)dπ(x,y) (5)

+ λ
∥∥∥µ− prx#π

∥∥∥
M

+ λ
∥∥∥ν − pry#

π
∥∥∥
M

}
,

where π ∈ M+(X × X ) is a nonnegative Radon measure over
[0, 1]D × [0, 1]D that specifies the transport plan between the
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Fig. 2: a) Example of two discrete measures in X = [0, 1]2,
µ = a1δx1 and ν = b1δy1 , where a1 and b1 are represented by
the opacity of the •marks. b) Dependence of the metric Fλ(µ, ν) on
‖x1 − y1‖2 from a) for fixed values a1 > b1, growing linearly with
‖x1 − y1‖2 and saturating at ‖x1 − y1‖2 = 2λ.

marginals prx#π =
∫
X dπ( · ,y) and pry#

π =
∫
X dπ(x, · ) of

π (which can be made arbitrary close to µ and ν, respectively, by
setting λ→ +∞).

The first term in the minimization problem (5) penalizes the cost
of transporting prx#π to pry#

π (or vice versa). This is, in fact, the
same cost function as in the 1-Wasserstein distance, one of the classi-
cal optimal-transport problems. Optimal-transport metrics quantify
how different two measures are by assessing the cost of transforming
(in other words, transporting) one measure onto the other. Unlike in
standard optimal transport, the marginals prx#π to pry#

π need not
be equal to the measures of interest µ and ν. Instead, the constraints
are relaxed using the second and third discrepancy terms in (5) which
involve the total-variation norm. This relaxation allows for the cre-
ation and destruction of mass before transport and, therefore, for an
optimal transport between measures with different total mass. This
key feature is essential for SMLM, as it accounts for the errors both
of localization (by the cost of transport) and of detection (by the cost
of creation or destruction of mass). Their balance is controlled by
the physically interpretable parameter λ > 0 [nm], as illustrated in
Figure 2. When the two Dirac masses are at the same position, the
cost is proportional to the difference of weights. Then, it grows lin-
early with ‖x1 − y1‖2 as the Dirac mass b1δy1 is transported to the
position x1. This keeps happening until ‖x1 − y1‖2 ≥ 2λ, where



the masses are no longer moved and the cost results from the pure
creation and destruction of mass.

It is also important to note that Flat Metric is homogeneous to
nanometers so that it can be physically associated to a specific scale
(in nanometers for the SMLM problem). Hence, when the number
of locations is estimated correctly, Flat Metric represents the mean
error in terms of localization, similar to the RMSE (see Figure 1).
When λ→ +∞ and µ and ν have the same mass, we recover the 1-
Wasserstein distance (‖ · ‖W1 ). Finally, when λ→ 0, we recover the
total-variation norm. Consequently, Flat Metric is an interpolating
distance between ‖ · ‖W1 and ‖ · ‖M.

2.2 How to Compute Flat Metric
The ground-truth data can be represented as the discrete Radon mea-
sure

µ =

N∑
n=1

anδxn ∈M(X ) with an > 0,xn ∈ X , (6)

which contains the locations of the fluorescent emitters in a frame.
The reconstructed locations given by any software can also be rep-
resented as the discrete Radon measure

ν =

M∑
m=1

bmδym ∈M(X ) with bm > 0,ym ∈ X . (7)

In this discrete setting, we simplify the computation of Flat Metric
Fλ(µ, ν) in (4) as detailed in Proposition 2.

Proposition 2. When µ and ν are discrete Radon measures, one can
compute (4) as

Fλ(µ, ν) = − min
f∈RN+M s.t. Lf∈B×C

〈f , −c〉 , (8)

where L : RN+M → RN×M × RN+M is defined by

Lf =
((

fn − fN+m

)
1≤n≤N,1≤m≤M , f

)
, (9)

where c = (a,−b) ∈ RN+M , and B and C are hyper-rectangles
such that B = {G ∈ RN×M ; |Gn,m| ≤ d(xn,ym)} and C =
{f ∈ RN+M : ∀k ∈ {1, 2, . . . , N +M}, |fk| ≤ λ}.

In fact, (8) holds because the dual problem of that minimization
is exactly the unbalanced optimal transport problem (5) for discrete
measures, and strong duality holds.

Therefore, to compute Fλ(µ, ν), one simply needs to solve the
minimization problem given in (8), which is a finite-dimensional lin-
ear program. This problem is then solved using any standard linear
programming toolbox.

Note that if one considers only the first part of the operator L
in (9) then (8) is exactly the dual problem of the 1-Wasserstein op-
timal transport problem, see [13, ch. 6]. The second part accounts
for the relaxation allowing creation and destruction of mass, as ex-
plained above.

3 Numerical Experiments
In this section, we first propose an example to illustrate the behavior
of Flat Metric. Then, we detail how we generated Figure 1, which

confirms that Flat Metric has a behavior similar to that of the effi-
ciency [3] and that it provides a continuum between detection and
localization errors. Finally, we report Flat Metric as obtained by 31
participants of the SMLM 2016 Challenge on the 2D dataset and
compare it with their efficiency and RMSMDs. Note that, in all our
experiments, the weights of the ground-truth are uniform and the ob-
tained scale is applied for the reconstruction, with an = bm = 1/N .
We use the normalizing scaling of the ground-truth for the recon-
struction as it provides a coherent way to compare different software
which do not detect the same number of point sources.

3.1 Interpretation of Flat Metric
We show in Figure 3 an example of a ground-truth dataset ( ), and
its reconstructed dataset ( ), and how Flat Metric accounts for the
difference between these two measures. Ground-truth locations were
chosen randomly in the rectangle [0, 1]× [0, 0.5] with weights an =
bm = 1/N with N = 15. Here, λ = 0.1, which constrains the
maximal transport distance between two isolated point sources to 0.2
(see Figure 2). Our interpretation of Flat Metric comes from its link
with unbalanced optimal transport (see Proposition 1). As a metric,
it is symmetric. Therefore, we arbitrarily choose to interpret it as the
cost of transporting the estimation towards the ground truth (GT). As
a result, we have the following behaviors.

• Transport: A Dirac mass δy/N of the reconstruction is
moved towards one in the ground-truth data δx/N . The cost
of this transport is d(x,y)/N .

• Destruction of mass: A Dirac mass δy/N of the reconstruc-
tion is destroyed because there is no corresponding ground-
truth location nearby. The cost of this destruction of mass is
λ ‖δy/N‖M = λ/N .

• Creation of mass: A Dirac mass δy/N is created at a position
y to match a ground-truth location when there is no corre-
sponding Dirac mass in the reconstruction. This cost is λ/N .

Note that we have only these three alternatives because of our
choice of weights. To have more complex phenomena such as simul-
taneous transport, creation, and destruction of mass, discrete mea-
sures with Dirac masses of different weights should be used. This
could certainly be of interest to the evaluation of other point-source
localization problems.

3.2 Synthetic Experiments on Flat Metric and
Efficiency

We show in Figure 1 how Flat Metric, just as efficiency, interpo-
lates between detection and localization metrics. To its benefit, Flat
Metric has strong foundations in the theory briefly presented in Sec-
tion 2, by contrast with the efficiency measure which is based on
empirical results. Consistently, Flat Metric is also well-defined for
0% recall, thus being a robuster tool for any use-case.

In order to exhibit this link in conditions relevant to SMLM, we
chose to focus on recall as a detection metric. Indeed, recall is typi-
cally the most relevant factor to characterize detection in SMLM, as
most leading algorithms achieve very high precision [3]. We mod-
eled this situation by randomly sampling 100 ground-truth locations
uniformly in a square of (6.4 × 6.4) µm, and simply removing the
corresponding percentage of locations to initialize the set of recov-
ered locations.

For the joint evaluation of detection and localization effects,
we modeled localization errors in detected locations as independent
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Fig. 3: Illustration of how Flat Metric (here equal to 0.125) is com-
puted. When an estimated location ( ) is linked by a line to a
ground-truth location ( ), the cost (d(x,y)/N ) comes from mov-
ing the former to the latter. The presence of a cross (×) means that
the point has been destroyed, at the cost of λ/N . A ground-truth
location with a plus sign (+) means a mass has been created at this
position to match it, also at the cost of λ/N .

and identically distributed uniform vectors in disks of radius up to
250 nm.

The results in Figure 1 were generated by averaging 50 ran-
domized trials for each combination of radius and recall, using λ =
125 nm. Finally, the expectations of Flat Metric and efficiency are
shown on the planes with 100% recall and vanishing perturbation
radius, respectively. They are related to the expectations of J and
RMSE in those cases, where c = 2/3

√
2.

3.3 Application to the 2016 Challenge

We compare efficiency, a thoroughly validated empirical metric for
SMLM, to both Flat Metric and RMSMD, on four 2D datasets from
the SMLM 2016 Challenge1. As shown in Figures. 1 and 4, Flat
Metric is strongly correlated with efficiency, while RMSMD is not.
Indeed, one only observes few outliers on the efficiency vs. Flat Met-
ric comparison, mainly for reconstruction methods that work rather
poorly on the datasets MT3 and MT4.

4 Conclusion

We propose Flat Metric to quantitate SMLM reconstruction errors
when ground-truth data are available. Here, we present and exem-
plify the strong links between Flat Metric and unbalanced optimal
transport problems, which underpin this robust metric. We also pro-
vide exhaustive evidence that Flat Metric is conceptually similar to
efficiency, a very well established empirical metric designed in the
organization of the SMLM 2016 Challenge. Consequently, we pro-
vide a robust and practical metric for SMLM evaluation. We have
also exemplified and explained how Flat Metric works internally,
providing intuition on how this optimal assessment is obtained. Fur-
ther, we have emphasized the interpretability of Flat Metric, which
can be read as an equivalent localization accuracy.

1http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results

ER1.N3.LD ER2.N3.HD
MT3.N2.LD MT4.N2.HD

0

500

1,000

1,500

0 20 40 60

0

500

1,000

1,500

Efficiency
R

M
SM

D
0 20 40 60

Fig. 4: Low degree of correlation between efficiency and the
RMSMD on four datasets from the SMLM 2016 Challenge.
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