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ABSTRACT

We consider the mixing of a viscous fluid by the rotation of a pitched blade turbine inside an open,
cylindrical tank, with air as the lighter fluid above. To examine the flow and interfacial dynamics,
we utilise a highly-parallelised implementation of a hybrid front-tracking/level-set method that em-
ploys a domain-decomposition parallelisation strategy. Our numerical technique is designed to capture
faithfully complex interfacial deformation, and changes of topology, including interface rupture and
dispersed phase coalescence. As shown via transient, three-dimensional direct numerical simulations,
the impeller induces the formation of primary vortices that arise in many idealised rotating flows as
well as several secondary vortical structures resembling Kelvin-Helmholtz, vortex breakdown, blade
tip vortices, and end-wall corner vortices. As the rotation rate increases, a transition to ‘aeration’ is
observed when the interface reaches the rotating blades leading to the entrainment of air bubbles into
the viscous fluid and the creation of a bubbly, rotating, free surface flow. The mechanisms underlying
the aeration transition are probed as are the routes leading to it, which are shown to exhibit a strong
dependence on flow history.

1. Introduction
Flowmixing inside a stirred vessel occurs in a large array

of industrial applications and produces complex dynamical
structures. These structures, such as those seen in the work
of Batels et al. (2002) for single-phase flow, exert a strong
influence on the mixing efficiency. Many fast-moving con-
sumer goods involve the manufacturing of so-called struc-
tured products (e.g., foods, creams, detergents), which, in
turn, result from the multiphase mixing of several types of
base products in an open stirred vessel similar to the one
shown schematically in Fig. 1. Some viscous products re-
quire rapid mixing but in the absence of bubble creation that
lead to undesirable partial bottle-filling and process ineffi-
ciencies. In contrast, for other processes, such as those that
deploy bioreactors, for instance, the promotion of ‘aeration’
is essential. Thus it is crucial to predict the mixing patterns
in stirred vessels, and to demarcate the aeration threshold as
a function of the relevant system parameters, such as fluid
properties, and impeller geometry and rotational speed.

Given the broad range of applications, there have been
numerous studies within the fluid mechanics mixing which
have focused on flow sandwiched between a rotating disk
at the base of a cylinder and a free surface. These studies
have covered steady and unsteady, axisymmetric and three-
dimensional, and flat as well as deoformable free surface
flows. The visualisations of Spohn (1991) demonstrated de-
velopment of an intriguing variety of secondary toroidal struc-
tures, which form even under steady, laminar, and axisym-
metric conditions. Spohn (1991) and Spohn et al. (1993,
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1998) reported that the secondary circulation was not always
located along the rotating axis, as for an enclosed cavity, but
could also be attached to the interface. Daube (1991) per-
formed the first axisymmetric direct numerical simulation
assuming a flat, stress-free, free surface, which was later ex-
tended by Lopez (1995).

The deformation of the free surface created by the ro-
tating disk was explored experimentally by Vatistas (1990).
The interface shape initially forms an inverted bell, and as
the rotation rate increases, the free surface descends to the
rotating disk producing a dry region on the disk in the form
of a periodic pattern in the azimuthal direction. Experiments
for flows creating sloshing (Vatistas et al., 1992) have pro-
vided a flow pattern map that highlights the most unstable
azimuthal modes as a function of the fluid height at rest as a
function of the disk angular velocity.

The experimental work of Suzuki et al. (2006) and Jans-
son et al. (2006) studied the variation of the height of the free
surface at the axis of symmetry as a function of the Reynolds
number (defined using the disk rotational speed and diame-
ter). Four states are described by increasing the Reynolds
number: an axisymmetric and steady-state where the inter-
face resembles an inverted bell; a switching state where the
interface reaches the rotating disk and dries it from its centre;
an asymmetric state with the interface assuming the shape
of two rotating concave surfaces; and a state in which the
interface regains its symmetrical shape forming a single ax-
isymmetric concavity. Jansson et al. (2006) provided a flow
regime map that highlights the unstable azimuthal mode as
a function of the disk speed and the flow aspect ratio (fluid
height/tank radius). Piva and Meiburg (2005) proposed a
first numerical approximation to detect the free surface de-
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flection but this is limited to small deformations. Kahouadji
and Martin Witkowski (2014) performed a numerical study
that takes into account the axisymmetric interfacial defor-
mation using curvilinear coordinates.

In all of the work reviewed in the forgoing, the motion
is driven by a rotating disk rather than an impeller with far
fewer studies focusing on the detailed fluid dynamics as-
sociated with the latter. With the added complexity of a
bladed impeller, we expect to see flow regimes reminiscent
of this complex behaviour. Ciofalo et al. (1996) performed a
three-dimensional turbulent flow simulation, where the flow
equations are in the rotating reference frame of the impeller
with the addition of a conventional linear logarithmic “wall
function" as in Launder and Spalding (1974). Brucato et al.
(1998) compared alternative computationalmethods: the first
replaced the impeller by suitable boundary conditions, and
the second consisted of dividing the computational domain
into two concentric and partially-overlapping parts; the in-
ner region, containing the impeller, where the flow is simu-
lated in a rotating reference frame of the latter, while in the
outer region, simulations are conducted in the laboratory ref-
erence frame. This technique requires information exchange
between the two regions. More recently, Li et al. (2017) cou-
pled a volume-of-fluid method with a Reynolds stress model
in order to capture the gas-liquid interface and the turbulent
flow agitated by pitched blade turbines where the interface
deflection reached the impeller hub.

To the best of our knowledge, studies involving direct
numerical simulation of unsteady, deformable free surface
flows have been restricted to situations wherein the interface
deflection does not descend beyond the impeller blades. As a
result, these studies are unable to analyse, in detail, the rich
and complex vortical structures accompanying such flows.
Furthermore, the phenomenon of aeration has not yet been
studied in detail via numerical simulations, despite its ob-
vious importance to industrial applications as highlighted
above. Aeration involves the development of sufficiently large
interfacial deformations that lead to the interaction of the
free surface with the rotating impeller. This, in turn, brings
about the entrainment and dispersion of the lighter phase into
the underlying denser phase; for gas (air)-liquid systems, the
dispersed phase corresponds to bubbles (of air). Our aim in
the present paper is to study the intricacies of the two-phase
mixing flows in a stirred vessel via three-dimensional direct
numerical simulations by coupling Direct-Forcing Methods
for the impeller Fadlun et al. (2000); Mohd-Yusof (1997)
with a front-tracking technique for the interface Shin et al.
(2017, 2018). Our results will elucidate the transition to
aeration and its dependence on flow history (e.g., ramping
up impulsively from from a stationary state vs increasing
the impeller rotational speed following the achievement of
a steady-state at lower speeds).

The rest of this article is organised as follows. Sec.2 de-
scribes the configuration, sets out the governing equations,
and summarises the computationalmethods. Section 3 presents
results for both laminar and turbulent regimes highlighting
the vortical structures occurring in such flows; the mecha-

Figure 1: Schematic illustration of the computational domain:
a stirred vessel configuration defined by an open cylindrical
container, partially-filled with a viscous liquid, with a pitched-
blade turbine immersed within it. The domain which is of size
8.6×8.6×13 cm3, and is divided into 3×3×4 subdomains. The
Cartesian structured grid per subdomain is 643, which gives a
global structured mesh grid of 192 × 192 × 256.

nisms leading to aeration are described, followed by a dis-
cussion of the turbulent aeration regime. Finally, concluding
remarks are provided, and ideas for future work are outlined.

2. Problem formulation
The configuration we consider is shown in Fig. 1 and

consists of a cylindrical vessel of diameter Db = 8.5 cm
filled with a viscous fluid up to a height ℎ = 7 cm. The
fluid is taken to be water or glycerine with air above in all
simulations. The impeller consists of a cylindrical shaft of
0.5 cm diameter, a cylindrical hub of 1 cm diameter and
0.9 cm height, and four blades of 2.5 cm length, 1 cm height,
0.2 cm width, and inclined at � = 45o. The impeller is im-
mersed inside the vessel with clearanceC = 3.5 cm from the
bottom of the vessel, and rotating at frequency f . The im-
peller diameter is Di = 5 cm giving a ratio of radii between
the vessel and the impeller Db∕Di = 1.7. The characteristic
length, velocity, and pressure scales are the impeller diame-
ter, Di, blade tip speed, �fDi, and �

(

�fDi
)2, respectively

Kahouadji et al.: Preprint submitted to Int. J. Multiphase Flow Page 2 of 13



The transition to aeration in two-phase mixing

that determine the Reynolds, Froude, and Weber numbers
given by:

Re =
�l�fDi

2

�l
, F r =

�2f 2Di
g

, W e =
�l�2f 2Di

3

�
.

(1)

We solve the Navier-Stokes equations, assuming incom-
pressible and immiscible viscous fluids in a three-dimensional
Cartesian domain x = (x, y, z) ∈ [0, 8.6]2 × [0, 13] cm:

∇ ⋅ u = 0,

�
()u
)t
+ u ⋅ ∇u

)

= −∇p + ∇ ⋅ �
(

∇u + ∇uT
)

+ �g + F + Ffsi.

(2)

In Eqs. 2, u is the fluid velocity, t the time, p, the pressure,
g the gravitational acceleration, F, the local surface tension
force, and Ffsi is the solid-fluid interaction force. We define
F using a hybrid formulation (Shin et al., 2017, 2018):

F = ��
H
∇I, (3)

where �, the surface tension coefficient, is assumed con-
stant, and � is an indicator function, equal to zero/unity for
the gas/liquid phases. Numerically, this sharp transition is
resolved across 3 to 4 grid cells with a steep, but smooth,
numerical Heaviside function generated using a vector dis-
tance function computed directly from the tracked interface
(Shin, 2007; Shin and Juric, 2009). In Eq. (3), �

H
is twice

the mean interface curvature field calculated on an Eulerian
grid using:

�
H
=

F
L
⋅ G

�G ⋅ G
, (4)

in which F
L
and G are respectively given by:

F
L
= ∫Γ(t) ��f n

f
�
f

(

x − x
f

)

ds

G = ∫Γ(t) n
f
�
f

(

x − x
f

)

ds.
(5)

In these formulae, x
f
is a parameterisation of the interface,

Γ(t), and �
f
(x − x

f
) is a Dirac distribution that is non-zero

only when x = x
f
, n

f
is the unit normal vector to the in-

terface, and ds is the length of the interface element; �
f
is

twice the mean interface curvature, but obtained from the
Lagrangian interface structure. The geometric information
corresponding to the unit normal, n

f
, and length of the in-

terface element, ds, in G are computed directly from the
Lagrangian interface and then distributed onto an Eulerian
grid using the discrete delta function. The details follow Pe-
skin’s (Peskin, 1977) well-known immersed boundary ap-
proach using our procedure for calculating the force and con-
structing the function field G.

The Lagrangian interface is advected by integrating

dx
f

dt
= V, (6)

with a second-order Runge-Kutta method where the inter-
face velocity, V, is interpolated from the Eulerian velocity.
Incorporating the complex geometry of the impeller and its
rotation requires the implementation of the so-called Direct
Forcing Method (Mohd-Yusof, 1997; Fadlun et al., 2000),
which is done by incorporating a fluid-solid interaction force
Ffsi in Eq. (2). This force is defined numerically using the
latest step of the temporal integration of (2),

�un+1 − un
Δt

= localn + Fnfsi, (7)

where “local” stands for the right-hand-side terms of Eq. (2)
that contain the convective, pressure gradient, viscous, grav-
itational, and surface tension force terms. Here, the super-
scripts denote the discrete temporal step in the computation.

In the solid part of the domain corresponding to the im-
peller, Fnfsi the forced rotational motion Vn+1 is enforced:

un+1 = Vn+1 = 2�f
((

y − y0
)

,−
(

x − x0
))

, (8)

where (x
0
, y

0
) = (4.3, 4, 3) cm are the position of the im-

peller axis. Hence Ffsi is

Fnfsi = �
Vn+1 − un

Δt
− localn. (9)

The no-slip condition is applied for the velocity and the in-
terface at the edge of the impeller parts except for the shaft
where we impose a solid rotating motion and axial free-slip
condition )u∕)z = 0. Otherwise the interface will remain
attached to the shaft.

The computational domain (see Fig. 1) is a rectangular
parallelepiped where the entire domain is discretized by a
uniform fixed three-dimensional finite-difference mesh and
has a standard staggeredMAC cell arrangement (Harlow and
Welch, 1965). The velocity components u, v, and w are de-
fined on the corresponding cell faces while the scalar vari-
ables (pressure p, and the distance function �) are located
at the cell centers. All spatial derivatives are approximated
by standard second-order centred differences. The veloc-
ity field is solved by a parallel generalized minimal residual
(GMRES) method (Saad, 2003) and the pressure field by a
modified parallel 3D Vcycle multigrid solver based on the
work of Kwak and Lee (2004) and described in Shin et al.
(2017). Parallelisation is achieved using domain-decomposition
where communication across processes is handled by Mes-
sage Passing Interface (MPI) protocols.

The chosen pitched-blade turbine shown in Fig. 1 and
described in the beginning of this section is built using a
combination of primitive geometric objects (planes, cylin-
ders, and rectangular blocks) where each object is defined
by a static distance function  (x, y, z), positive in the fluid
and negative in the solid. The resulting shape in Fig. 1-(c)
corresponds to the iso-value  (x, y, z) = 0. Details on how
to construct similar complex objects are described in Ka-
houadji et al. (2018).

For Eqs. (2), (7), and (9), we use the single-field formu-
lation for the density � and viscosity �:

�(x, t) = �g +
(

�l − �g
)

�(x, t)
�(x, t) = �g +

(

�l − �g
)

�(x, t) (10)
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(a) (b)

0 × T 0.125 × T 0.25 × T 0.375 × T 0.5 × T 0.625 × T

0.75 × T 0.875 × T 1 × T 1.125 × T 1.25 × T 1.375 × T
(c)

Figure 2: Laminar mixing flow for the case of glycerine with a rotational frequency f = 1∕T = 8 Hz. The corresponding
dimensionless numbers are Re ∼ 56, F r ∼ 3.22, and W e ∼ 1.55 × 103. Flow visualisation of the streamlines in the horizontal
plane located at z = 3.95 cm, (a), and vertical plane y = 0, (b). Panel (c) shows snapshots of the streamlines in the y = 0 plane
that illustrate the temporal evolution of the flow starting from rest (see Supplementary Material "Animation-Fig2.avi").

where the subscripts g and l designate the gas and liquid
phases, respectively. The gas phase is considered as air, with
constant physical properties at 20 oC (�g = 1.205 kg/m3

and �g = 1.825 × 10−5 Pa.s). The liquid phase corresponds
to either water or glycerine with the following properties:
�l = 1000 kg/m3, �l = 10−3 Pa.s, and � = 0.0725 N/m
or �l = 1261.08 kg/m3 and �l = 1.4 Pa.s, and � = 0.064
N/m, respectively. Simulations with glycerine and water al-
low us to compare the two-phase mixing phenomena associ-
ated with laminar and turbulent flow regimes, respectively.

3. Results and discussions
We begin by describing the flow associated with the case

of glycerine (Sec. 3.1) wherein the interface is slightly de-
formed. In section 3.2, we change the liquid from glycerine
to water and highlight the emergence of complex vortical
structures and a highly deformed surface; a large range of
rotating frequencies, from f = 5 Hz to 9.5 Hz, is covered.
The mechanisms leading to aeration are studied in Sec. 3.3
by close examination of the transition boundary between the
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separated and dispersed flows. Finally, Sec. 3.4 focuses on
the situation wherein air is entrained into the water across a
highly deformed interface leading to bubbly mixing.

3.1. Laminar vortex mixing
The typical flow in the laminar regime is summarised

in Fig. 2. Here, glycerine is chosen as the liquid phase and
the rotation frequency is restricted to f = 1∕T = 8 Hz so
that the flow regime remains laminar, and the free surface
deformation small, characterised by the following values of
the relevant dimensionless numbers: Re ∼ 56, F r ∼ 3.22,
and W e ∼ 1.55 × 103. The free surface deformation is
defined as ‘small’ provided the amplitude of the deflection
to the horizontal, divided by the characteristic length scale
Di, does not exceed 10%.

When the impeller blades are in motion, a centrifugal
force is generated in the vicinity of the blades making the
glycerine solution spiral out toward the tank periphery (see
Fig. 2-(a)). This spiral motion reaches the fixed vessel wall,
inducing the formation of two Stewartson boundary layers
(Kahouadji andMartinWitkowski, 2014; Poncet, 2005; Stew-
artson, 1953) (at the top and bottom peripheries). The fluid
motion reaches the free surface (bottom of the tank), it then
decelerates by a centripetal spiral motion toward the rotat-
ing shaft (rotation axis) above (below) the impeller; this is
analogous to the behaviour reported previously in the litera-
ture for the rotating disks (Daube, 1991; Spohn, 1991; Spohn
et al., 1993, 1998; Piva and Meiburg, 2005; Kahouadji and
MartinWitkowski, 2014). The flow is not axisymmetric, and
one can see in Fig. 2-(a) and (b) that the position of the ro-
tating blades matter in terms of understanding the reasons
underlying the flow patterns (see Supplementary Material
"Animation-Fig2.avi"). Under the pumping effect generated
by the rotating blades, the fluid returns toward the rotating
hub and blades by an upward swirling motion around the z-
axis from the bottom, and by a downward swirling motion
around the rotating shaft (see Fig. 2-(a) and (b)).

The temporal evolution, from a static initial condition
t = 0 × T up to t = 1.375 × T , is shown in Fig. 2-(c), which
depicts the streamlines in the horizontal plane immediately
below the hub, as well as in the y = 0 plane. From this
figure, we can see that the free surface shape becomes es-
sentially steady for t > T . This has similarity with the work
of Kahouadji and Martin Witkowski (2014) who studied the
free surface rotating flow generated by a rotating disk located
at the bottom of a fixed cylindrical tank by solving the steady
and axisymmetric Navier-Stokes equations using a vorticity-
streamfunction formulation. Assuming a developed steady
state, Kahouadji and Martin Witkowski (2014) considered
the interface as a streamline. In the present case, as shown
in Fig. 2(c), the streamlines cross the interface for t < T in-
dicating there is motion of the interface, whereas, for t > T ,
the interface becomes a streamline, and remains steady. It is
also noteworthy that although the interface shape is steady
and axisymmetric for t > T , the liquid flow is periodic in its
azimuthal direction with a periodicity mode of 4, reflecting
the fact that the impeller comprises four blades. Finally, we

draw attention to the time required to make the entire flow
quasi-steady: t ∼ T = 1∕f = 1∕8 (s); this is in contrast to
the cases which will be discussed below where, typically, 10
or 20 × T are required to reach a quasi-steady state.

3.2. Turbulent vortex mixing
We replace the highly viscous glycerine with water and

keep the frequency at f = 8 Hz so that the flow is char-
acterised by Re = 6.28 × 104, F r = 3.22, and W e =
1.08 × 103, which indicates that it is expected to be turbu-
lent, and accompanied by large interfacial deformations. We
show in Fig. 3 the spatio-temporal behaviour of the flow for
f = 1∕T = 8 Hz from a static initial state until reaching a
steady state for t = 20 × T . It is seen that the free surface
shape remains quasi-flat until the impeller has rotated 1.5 cy-
cles (see Fig. 3-(a-e)). However, even though the interface
is flat, the velocity magnitude on the interface Fig. 3-(d-j)
shows that the velocity disturbance experiences a periodic
distribution along its azimuthal direction with a wave num-
ber equal to 4, a symmetry that reflect the 4-blades of the
impeller. At t = 2 × T , the interface starts to deform (see
Fig. 3-(f-l)), where the velocity gradient is high, leading to
a periodic azimuthal interface deflection with wave number
again 4 due to symmetry. The interface continues to undergo
spatio-temporal variations until reaching a quasi-steady, and
approximately axisymmetric state from t = 10×T , as shown
in Fig. 3-(j-l), which is characterised by a maximal interfa-
cial deflection.

The evolution of the vortical structures in the vertical
plane shows the existence of very rich dynamics, as depicted
in Fig. 3. At early times (t ∼ 0.25 × T ), the impeller blades
generate a large primary vortex that starts at the blade tips
toward the bottom of the vessel and then moves upward near
the vessel wall toward the interface. A secondary vortex is
also generated under the impeller blades, which rotates ra-
dially in the opposite direction compared to the the primary
vortex. This secondary vortex is generated from the bottom
of the impeller hub and grows until reaching a situation of
a two dipole-vortex, one above the impeller blades and the
second below it (see the streamlines in Fig. 3-(c) and (d) for
t = 0.5 and 1 × T ).

At t = 1.5 × T , the bottom vortex dissipates and we
notice the creation of Kelvin-Helmholtz vortices that merge
(at t = 2 × T ) into a single vortex below the impeller blades
(see the streamlines in Fig. 3-(e,f)). TheseKelvin-Helmholtz
vortices are generated due to the fact that the primary top
vortex rotates faster (due to the presence of the interface)
than the secondary bottom vortex (due to the no-slip condi-
tion at the bottom of the vessel), and creates a large shear
zone between these two vortices. For t ≥ 2 × T , the Kelvin-
Helmholtz vortices give way to two large counter-rotating
vortices and a small vortex breakdown underneath the im-
peller hub, a well-known phenomenon in the context of a
rotating disk inside a closed cylindrical tank (i.e., a rotor-
stator configuration (Daube, 1991; Kahouadji, 2011; Spohn,
1991; Spohn et al., 1998)). These vortical structures de-
scribed for f = 8 Hz are also observed for the entire range
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(a) (b) (c) (d) (e) (f)
0 × T 0.25 × T 0.5 × T 1 × T 1.5 × T 2 × T

(g) (h) (i) (j) (k) (l)
3 × T 4 × T 5 × T 10 × T 15 × T 20 × T

Figure 3: Spatio-Temporal evolution of the flow for water, vortical structures, and interface shapes coloured by velocity magnitude
shown in the lower and upper figures in every panel, respectively, for a rotating frequency f = 1∕T = 8 Hz. The dimensionless
numbers are Re ∼ 6.28 × 104, F r ∼ 3.22, W e ∼ 1.08 × 103. (see Supplementary Material "Animation-Fig3.avi")

of frequency f ≤ 9 Hz as shown in Fig. 4 which shows the
spatio-temporal evolution of the interface and vortical struc-
tures in a two-dimensional plane for f = 5, 7, and 9 Hz for
t = 0.25 × T -15 × T (see also the supplementary Material
"Animation-Fig5.avi"). It is also clear upon inspection of
Fig. 4 that there are strong qualitative similarities amongst
the vortical structures for this range of frequencies (and, in
turn, Re andW e) for t ≤ 2 × T .

Figure 5-(a)-(f) depicts snapshots of the interface shape,
and accompanying structures in the vorticity and pressure
fields at t∕T = 20 for f = 5 − 9.5 Hz. It is clear that the
salient points highlighted for f = 8 Hz in Fig. 3 are ob-
served for the entire frequency range. Figure 5-(g), shows
the temporal evolution of the global kinetic energy of the
flow, � =

(

∫ ∫ ∫ �u2dxdydz
)

, and Fig. 5-(h) shows the
variation of the minimum position of the interface with time
for the range of frequency f = 5 to 9.5 Hz. For f = 5

Hz, the interface deflection is small compared to other cases
and a vortex breakdown attached to the interface occurs; this
phenomenon is also observed for rotating disks inside an
open cavity (Kahouadji and Martin Witkowski, 2014; Piva
and Meiburg, 2005; Spohn, 1991; Spohn et al., 1993, 1998).
In certain cases, there is an appearance of a small vortex
at the bottom corner of the vessel or at the top corner (see
Fig. 5-(c) for f = 7 Hz). For f = 9.5 Hz, the interface just
reaches the hub of the impeller (see Fig 5-(f)). For this set
of parameters, this frequency represents the limit for efficient
mixing without entraining bubbles into the water phase. At
t = 20 × T , we consider that the flow is in a quasi-steady
state as the curves corresponding to Fig. 5-(g)-(h) flatten,
particularly for the range f = 5 − 8 Hz. For f = 9 and
9.5 Hz, although the the kinetic energy appears to plateau
for t ≥ 10 × T , the minimal interfacial position exhibits
small-amplitude, high-frequency oscillations related to the
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(a) (b) (c) (d) (e) (f) (g) (h)
0.25 × T 0.5 × T 1 × T 1.5 × T 2 × T 5 × T 10 × T 15 × T
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Figure 4: Spatio-temporal evolution of vortical structures for three different rotational frequencies, from top to bottom, f =
1∕T = 5, 7 and 9 Hz, respectively, using the physical properties of water, for t = 0.25 × T -15 × T . The corresponding Reynolds
and Weber number combinations are (Re,W e) = (39270, 425), (54978, 834) and (70686, 1378), respectively. (see Supplementary
Material “Animation-Fig4.avi")

interaction of the interface with the impeller hub.
The pressure field shown in Fig. 5 for all values of f il-

lustrates the dominance of the vortical structures on the pres-
sure field. For small rotation frequency values (f ≤ 5Hz),
the behaviour of the pressure is hydrostatic, decreasing lin-
early as a function of z-direction. This type of pressure field
distribution is observed for f = 5 Hz (see Fig. 5-(a)). In-
creasing the frequency up to 6 Hz, the pressure field still
varies linearly through z-direction; however, a depression
zone is noticed at the back of the blades (see pressure field
in 5-(b-f)). This depression is a characteristic of flows past
an obstacle, which means that in the rotating blades refer-
ence, the front and back of the blades are zones of high and
low pressure, respectively. In addition to these low and high
pressure zones near the blades, we can notice that for high
values of rotation frequency (f ≥ 7 Hz), the eddy structures
break the hydrostatic form of the pressure field and a high
pressure zone is localised only near the bottom outer edge of
the vessel.

3.3. Transition to aeration
In this section, we will focus on the air-water system and

elucidate mechanisms that lead to entrainment of air bubbles
into the water phase via careful examination of the transition
boundary between the vortex and bubbly mixing regimes. In

order to perform accurate simulations of the onset of aera-
tion, all simulations presented in this section are performed
using 4×4×6 = 96 subdomains, with a Cartesian structured
grid of 643 per subdomain, which gives a global structured
mesh of 256 × 256 × 384.

Figure 6 depicts the interfacial dynamics associated with
the f = 10 Hz case, characterised by Re = 78540 and
W e = 1713. The results presented thus far were generated
by starting from an initially flat interface and a velocity field
at rest (u = 0). Using this initialisation, it is seen clearly that
the interface, which interacts with the impeller hub, under-
goes breakup leading to the formation of three small bubbles
that are entrained into the water phase. If, however, the sim-
ulation is initialised starting from the steady-state associated
with the f = 8 Hz case, but with f = 10 Hz, then we find
that the outcome (not shown) corresponds to a vortex mixing
regime, similar to that shown in Fig. 5-(f).

In order to elucidate the mechanisms underlying aera-
tion, we focus on the case wherein the flow is started impul-
sively from an initially stationary flat-interface state. As a
result of the impeller rotation, a low pressure region forms
near the impeller hub that leads to a large interfacial deflec-
tion and the formation of a thin air ligament at the back of
one of the blades; this is a consequence of the centrifugal
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Figure 5: Interface shape, vortical structures, and pressure fields for the flow of water in a two-dimensional vertical plane at
t∕T = 20 for rotating frequency given from (a) to (f), f = 5, 6, 7, 8, 9 and 9.5 Hz, respectively. Panels (g) and (h) show the
temporal evolution of the kinetic energy normalised by its terminal value, and the minimum interface position normalised by its
initial value, respectively. (see Supplementary Material “Animation-Fig5.avi")

forces that drive ligament elongation in the radial direction
away from the hub. The ligament eventually undergoes a
Rayleigh-Plateau instability and breakups into three small
bubbles (see Fig. 6 c, d, and e). Thus, the route to bubble cre-
ation, and subsequent aeration of the water phase, involves

three successive mechanisms: (i) a sufficiently strong cen-
trifugal force able to deform the interface rapidly toward the
impeller hub; (ii) ligament formation that grows radially be-
hind a blade; (iii) a Rayleigh-Plateau-driven breakup of the
ligament. The example shown in Fig. 6 features the forma-
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(a) (b) (c) (d) (e)
5.8 × T 5.9 × T 6.0 × T 6.05 × T 6.1 × T

Figure 6: Spatio-temporal evolution of the mixing behaviour for f = 1∕T = 10 Hz, Re = 78540, and W e = 1713 highlighting the
primary aeration process. (see Supplementary Material “Animation-Fig6.avi")

tion of only one air ligament and its breakup. We will show
that further increase in rotating frequency causes simultane-
ous entrapment and growth of multiple ligaments, leading to
a more violent transition into the bubbly mixing regime.

3.4. Bubbly mixing
After the brief discussion of the mechanisms underlying

aeration mixing, we now increase the impeller rotation fre-
quency to f = 11 Hz (Re = 86394 and W e = 2073) for
which the outcome is very bubbly with a total number of air
bubbles being of the order of hundreds dispersed inside the
water phase. Figure 7 shows the spatio-temporal evolution
of the flow where it is seen that the initially flat interface ex-
periences a rapid deflection (see Fig. 7 a, b, & c) toward the
impeller blades (see Fig. 7 e-f) with some interfacial pinchoff
without yet significant ligament formation and breaking (see
Fig. 7 g-h).

At t = 4.25 × T , four air ligaments are formed, which
grow quickly in the radial direction, and breakup into many
bubbles (see Fig. 7 i-j). The resulting air-ligaments forming
behind each blade are not as thin as in the case described
for f = 10 Hz (see Fig. 6). As highlighted through Fig. 7
j-k, thick shaped air ligaments will breakup and disperse all
around the liquid water phase. This process continues and
produces a myriad of multiscale air-bubbles. Some of these
bubbles have the shape of elongated thin air ligaments, also
dispersed in the water phase, and eventually breakup later
into smaller bubbles.

The flow is also accompanied by a series of coalescence
events that occur between bubbles inside the water phase as
well as with themain top interface. Small bubbles usually re-
main in the water phase but larger bubbles, due to buoyancy,
rise to the top. When any bubble reaches the main top in-
terface, it bursts and sometimes ejects some liquid-droplets
above the interface (Fig. 7 n-o).

In Fig. 8, we have isolated several ‘singular’ events that
involve topological transitions occurring in this type of bub-
bly mixing. Figure 8a highlights a coalescence event be-

tween a small bubble and the main interface. These snap-
shots in Fig. 8a are given at the following times, from top
to bottom, t∕T = 5.92, 5.94, and 5.96, respectively. We
can notice that the small bubble coalesces with the verti-
cal part of the main interface that surrounds the impeller
shaft. In Fig. 8b, we have also isolated the breakup event
of a ligament. We can notice a rapid coalescence of a tiny
bubble with this ligament before experiencing two interfa-
cial breakups later.

Figure 8c shows the temporal evolution of a bubble burst-
ing through the main top interface, generating liquid liga-
ments above this interface, and finally breaking up into a
multitude of droplets that will fall back to the liquid bulk
later on. Contrary to the coalescence described in Fig. 8a,
when a bubble hits the top interface, it bursts. However,
if a bubble hits the vertical part of the main interface, the
outcome is described as a simple coalescence process. Fur-
thermore, for the latest snapshot of Fig. 8c, we count a total
of 503 bubbles dispersed inside the bulk of the water phase,
and also a total 33 water drops. Some of the water drops are
located above the main top interface (see the latest snapshots
Fig. 8c), but some other liquid droplets are encapsulated in-
side some large bubbles inside the water bulk.

At this stage of the mixing process, it is interesting to
follow the temporal evolution of these bubble sizes during
the aeration process. We can notice through Fig. 7 that the
appearance of bubbles in the liquid bulk starts at time t∕T ≈
4.5 (see Fig. 7g). Moreover, the flow can be considered as
‘bubbly’ only at t∕T ≈ 5.5 (Fig. 7k). It is possible to isolate
all n bubbles dispersed within the water phase, calculate the
volume of each individual bubble b,i (i = 1, n), and deduce
an approximation of its diameter db,i = (6b,i∕�)(1∕3). Fig-
ure 9(a) represents the probability density function of bubble
size distribution for t∕T = 5.5, 6, and 6.5. It is during this
time range t∕T = 5.5 − 6.5 that the flow transitions from
quasi-stratified to bubbly. The bubbles at t∕T = 5.5 are rel-
atively large compared to t∕T ≥ 6 due to the presence of four
thick air-ligaments behind each blade that have not broken up
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(a) (b) (c) (d) (e)
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(f) (g) (h) (i) (j)
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Figure 7: Spatio-temporal evolution for bubbly mixing with f = 1∕T = 11 Hz, Re = 86394, and W e = 2073. (see Supplementary
Material “Animation-Fig7.avi”)

entirely (see Fig. 7k). However, most of the bubble sizes are
smaller than the average value dbm. For t∕T ≥ 8, the prob-
ability density functions are nearly identical (see Fig. 9b).
Even if there are still amultitude of singular events (e.g. bub-
ble entrainment, coalescence, breakup, bursting) continuing
to occur, the aeration process for f = 11 Hz can be consid-
ered as full-developed for t∕T ≥ 8.

Finally, from an engineering perspective, it is crucial to
estimate the air bubble volume dispersed inside the water
phase. As mentioned in the introduction, for some applica-

tions, bubbles can be desired and sometimes their appear-
ance should be avoided. However, if these air bubbles are
produced during a mixing process, it is important to estimate
the temporal evolution of the gas holdup, ":

"(t) = b∕
(

b + l
)

(11)

which is the ratio of the volume of the air phase entrained
within the water, b =

∑n
i=1 b,i, to the total volume of air

and water within the stirred vessel; l = �D2bℎ∕4 is the
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(a) (b) (c)

Figure 8: Flow snapshot for f = 1∕T = 11 Hz, Re = 86394, and W e = 2073 highlighting singularity mechanisms: (a) coalescence
of a tiny bubble with the main interface, (b) ligament breakup events, and (c) bubble bursting through the main top interface.

volume of the water phase. In Fig. 9(c), we show the evolu-
tion of the gas holdup "(t) highlighting its maximum value
at t∕T ≈ 6.25 − 6.5 beyond which the dynamic equilibrium
amongst bubble formation, coalescence, and breakup leads
to a steady ". Inspection of Fig. 9(c) reveals that this steady-
state is reached for t∕T ≥ 8with about 1.9% of air dispersed
in the water bulk.

4. Conclusion and perspectives
In this paper, we study numerically the complex dynam-

ics occurring during air-liquid mixing using a pitched blade
turbine. The motion of the impeller and the fluid-structure
interaction is computed by a direct forcing method within a
general solver for multiphase flows (Shin et al., 2017). We
have shown that vortical structures are similar for any fre-
quency below the aeration limit. These vortical structures
are Kelvin-Helmholtz, blade tip, end wall, and wall break-
down vortices. Aeration occurs for large rotational frequency,
and we highlight the importance of the initial state (from rest
or from a developed situation). Future research avenues for
study are to investigate further the physics of the aeration (for
frequency larger than 10 Hz), generalise this study through
variation of the initial liquid height, the clearance and the
diameter ratio between the impeller and the cylindrical tank.
Another type of multiphase mixing process that has not been
studied here and occurs for high frequencies f ≥ 15 Hz, is

‘air envelopment’ mixing. At very high rotation frequencies,
the air phase will envelop the entire impeller during the rota-
tion. It would also be interesting to explore different types of
impellers (e.g., Rushton turbines, propellers or curved blade
turbines). Finally, in considering non-Newtonian fluids or
the presence of surfactants, the recent paper of Shin et al.
(2018) has moved the numerical method in those directions
and thus these effects could, in the future, be modelled too.
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Figure 9: Probability density function histogram of bubble size inside the liquid bulk, normalised by the average bubble diameter,
dbm, associated with the times (a): t∕T = 5.5, 6, 6.5, and (b): t∕T = 7, 8, 9, respectively. (c): temporal evolution of the gas
holdup "(t). The rest of the parameter values are the same as those used to generate Fig. 7.
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