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Abstract

We consider the mixing of a viscous fluid by the rotation of a pitched blade turbine inside an open, cylindrical tank,
with air as the lighter fluid above. To examine the flow and interfacial dynamics, we utilise a highly-parallelised
implementation of a hybrid front-tracking/level-set method that employs a domain-decomposition parallelisation
strategy. Our numerical technique is designed to capture faithfully complex interfacial deformation, and changes of
topology, including interface rupture and dispersed phase coalescence. As shown via transient, three-dimensional
direct numerical simulations, the impeller induces the formation of primary vortices that arise in many idealised
rotating flows as well as several secondary vortical structures resembling Kelvin-Helmholtz, vortex breakdown,
blade tip vortices, and end-wall corner vortices. As the rotation rate increases, a transition to ‘aeration’ is observed
when the interface reaches the rotating blades leading to the entrainment of air bubbles into the viscous fluid and
the creation of a bubbly, rotating, free surface flow. The mechanisms underlying the aeration transition are probed
as are the routes leading to it, which are shown to exhibit a strong dependence on flow history.

Impact Statement

The combination of innovative numerical algorithms in a single numerical framework, able to accurately
handle coupled physics in fluid mechanics such as multiphase interface motion, fluid-structure interaction and
turbulence modelling, is essential for predicting complex mixing flow in stirred vessels. Moreover, a robust
high-performance computing architecture enables in-depth understanding of previously inaccessible physics
for such extreme flow regimes. In the context of aeration due to mixing in a stirred vessel, where the density
ratio between the air and the liquid is ~ O(103), it is crucial to provide an accurate numerical framework able
to encompass all the techniques listed above.
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1. Introduction

Flow mixing inside a stirred vessel occurs in a large array of industrial applications and produces
complex dynamical structures. These structures, such as those seen in the work of Batels et al. (2002) for
single-phase flow, exert a strong influence on the mixing efficiency. Many fast-moving consumer goods
involve the manufacturing of so-called structured products (e.g., foods, creams, detergents), which, in
turn, result from the multiphase mixing of several types of base products in an open stirred vessel
similar to the one shown schematically in Fig. 1. Some viscous products require rapid mixing but in the
absence of bubble creation that lead to undesirable partial bottle-filling and process inefficiencies. In
contrast, for other processes, such as those used in ice cream manufacturing (involving non-Newtonian
fluids and emulsifiers (McClements, 2004; Douglas Goff, 1997)) and those that deploy bioreactors, the
promotion of ‘aeration’ is essential. Thus it is crucial to predict the mixing patterns in stirred vessels,
and to demarcate the aeration threshold as a function of the relevant system parameters, such as fluid
properties, and impeller geometry and rotational speed.

Given the broad range of applications, there have been numerous studies within the fluid mechanics
mixing community which have focused on flow sandwiched between a rotating disk at the base of a
cylinder and a free surface. These studies have covered steady and unsteady, axisymmetric and three-
dimensional, and flat as well as deoformable free surface flows. The visualisations of Spohn (1991)
demonstrated development of an intriguing variety of secondary toroidal structures, which form even
under steady, laminar, and axisymmetric conditions. Spohn (1991) and Spohn et al. (1993, 1998) reported
that the secondary circulation was not always located along the rotating axis, as for an enclosed cavity but
could also be attached to the interface. Daube (1991) performed the first axisymmetric direct numerical
simulation assuming a flat, stress-free, free surface, which was later extended by Lopez (1995).

The deformation of the free surface created by the rotating disk was explored experimentally by
Vatistas (1990). The interface shape initially forms an inverted bell, and as the rotation rate increases,
the free surface descends to the rotating disk producing a dry region on the disk in the form of a periodic
pattern in the azimuthal direction. Experiments for flows creating sloshing (Vatistas et al., 1992) have
provided a flow pattern map that highlights the most unstable azimuthal modes as a function of the
fluid height at rest as a function of the disk angular velocity. The experimental work of Suzuki et al.
(2006) and Jansson et al. (2006) studied the variation of the height of the free surface at the axis of
symmetry as a function of the Reynolds number (defined using the disk rotational speed and diameter).
Four states are described by increasing the Reynolds number: an axisymmetric and steady-state where
the interface resembles an inverted bell; a switching state where the interface reaches the rotating disk
and dries it from its centre; an asymmetric state with the interface assuming the shape of two rotating
concave surfaces; and a state in which the interface regains its symmetrical shape forming a single
axisymmetric concavity. Jansson et al. (2006) provided a flow regime map that highlights the unstable
azimuthal mode as a function of the disk speed and the flow aspect ratio (fluid height/tank radius). Piva
& Meiburg (2005) proposed a first numerical approximation to detect the free surface deflection but this
is limited to small deformations. Kahouadji & Martin Witkowski (2014) performed a numerical study
that takes into account the axisymmetric interfacial deformation using curvilinear coordinates.

In all of the work reviewed in the forgoing, the motion is driven by a rotating disk rather than an
impeller with far fewer studies focusing on the detailed fluid dynamics associated with the latter. With
the added complexity of a bladed impeller, we expect to see flow regimes reminiscent of this complex
behaviour. Ciofalo et al. (1996) performed a three-dimensional turbulent flow simulation, where the flow
equations are in the rotating reference frame of the impeller with the addition of a conventional linear
logarithmic “wall function" as in Launder & Spalding (1974). Brucato et al. (1998) compared alternative
computational methods: the first replaced the impeller by suitable boundary conditions, and the second
consisted of dividing the computational domain into two concentric and partially-overlapping parts;
the inner region, containing the impeller, where the flow is simulated in the impeller rotating reference
frame, while in the outer region, simulations are conducted in the laboratory reference frame. This
technique requires information exchange between the two regions. More recently, Witz et al. (2016)
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used the lattice Boltzmann method to simulate the flow in aerated bioreactors, and Li et al. (2017)
coupled a volume-of-fluid method to a Reynolds stress model to capture the gas-liquid interface and
turbulent flow agitated by pitched blade turbines where the interface deflection reached the impeller hub.

To the best of our knowledge, studies involving unsteady, turbulent, and high deformable free surface
flows have been restricted to situations wherein the interface deflection does not descend beyond
the impeller blades. As a result, these studies are unable to analyse, in detail, the rich and complex
vortical structures accompanying such flows. Furthermore, the phenomenon of aeration has not yet been
studied in detail via numerical simulations despite its obvious importance to industrial applications as
highlighted above. Aeration involves the development of sufficiently large interfacial deformations that
lead to the interaction of the free surface with the rotating impeller. This, in turn, brings about the
entrainment and dispersion of the lighter phase into the underlying denser phase; for gas (air)-liquid
systems, the dispersed phase corresponds to bubbles (of air).

Our aim in the present paper is to study the intricacies of two-phase mixing flows in a stirred vessel via
a standard LES (Large Eddy Simulation) Smagorinsky-Lilly turbulence model coupled with a Direct-
Forcing Method for the motion of the impeller (Fadlun et al., 2000; Mohd-Yusof, 1997). Moreover,
our numerical framework is formulated in the context of a high-fidelity front-tracking technique for the
interface Shin et al. (2017); Shin et al. (2018) which is able to handle complex interfacial deformation,
pinchoff and coalescence. Applying this new numerical scheme for stirred vessels, our results elucidate,
for the first time, the challenging transition to aeration and its dependence on flow history (e.g.,
ramping up impulsively from a stationary state vs. increasing the impeller rotational speed following
the achievement of a steady-state at lower speeds). A crucial metric for mixing-induced aeration that a
numerical framework should be capable of furnishing is the gas/air holdup which corresponds to the
relative amount of gas/air held in the liquid phase. We provide results for the temporal variation of the
holdup from our simulation data.

The rest of this article is organised as follows. Section 2 describes the configuration, sets out
the governing equations, and summarises the computational methods. Section 4 presents results for
both laminar and turbulent regimes highlighting the vortical structures occurring in such flows; the
mechanisms leading to aeration are described, followed by a discussion of the turbulent aeration regime.
Finally, in Section 5, concluding remarks are provided, and ideas for future work are outlined.

2. Problem formulation

The configuration we consider is shown in Fig. 1 and consists of a cylindrical vessel of diameter
Dj = 8.5 cm filled with a viscous fluid up to a height # = 7 cm. The fluid in all simulations is taken to
be water or glycerine with air above. The impeller consists of a cylindrical shaft of 0.5 cm diameter, a
cylindrical hub of 1 cm diameter and 0.9 cm height, and four blades of 2.5 cm length, 1 cm height, 0.2 cm
width, and inclined at @ = 45°. The impeller is immersed inside the vessel with clearance C = 3.5 cm
from the bottom of the vessel, and rotating at frequency f. The impeller diameter is D; = 5 cm giving a
ratio of radii between the vessel and the impeller D, /D; = 1.7. The characteristic length, velocity, and
pressure scales are the impeller diameter, D;, blade tip speed, 7 fD;, and p (7 f D;)?, respectively that
determine the Reynolds, Froude, and Weber numbers given by:

Re = PRSP o f?Di o f2Di
Mi 8 o

(D

We solve the Navier-Stokes equations, assuming incompressible and immiscible viscous fluids in a
three-dimensional Cartesian domain x = (x, y, z) € [0, 8.6]> x [0, 13] cm:

V-u=0,

da 2

p (E +0- Vﬁ) =-Vp+V- [(u +pC2A? |§|) (Vﬁ+ VﬁT)] +pg+F +Fyg.
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Figure 1. Schematic illustration of the computational domain: a stirred vessel defined by an open
cylindrical container, partially-filled with a viscous liquid, with a pitched-blade turbine immersed within
it. The domain is of size 8.6 X 8.6 x 13 cm® and is divided into 4 x 4 x 6 subdomains. The Cartesian
structured grid per subdomain is 643, which gives a global structured mesh grid of 256 x 256 x 384.

Egs. 2, include the Smagorinsky-Lilly LES turbulence model (Smagorinsky, 1963) where i is the
ensemble-averaged fluid velocity (u = + u’, with u’ being the turbulent velocity fluctuation), ¢ the
time, p, the ensemble-averaged pressure, and g the gravitational acceleration. Cy is the well known
Smagorinsky-Lilly coefficient, A = V!/3 where V is the volume of a grid cell, V = AxAyAz and

S| = {/25:;S:; with §;; being the strain rate tensor
(om0
Sii=— (32U 3
Y 2 (8)6]" 6xl- ( )

(Pope, 2000, 2004; Meyers & Sagaut, 2006). In our study, Cs is fixed to the value 0.2 as it is quoted in
the literature to vary between 0.1 —0.3 (Lilly, 1966, 1967; Deardoft, 1970; Mc Millan & Ferziger, 1979;
Pope, 2000). If we set Cs = 0, Egs. (2) reduce to the Navier-Stokes equations, without a turbulence
model. F, the local surface tension force, and Fy; is the solid-fluid interaction force. We define F using
a hybrid formulation (Shin et al., 2017; Shin et al., 2018):

F =, VH(x, 1), 4)

where H is an indicator function equal to zero for the gas phase and unity for the liquid phase,
respectively. Numerically, this sharp transition is resolved across 3 to 4 grid cells with a steep, but
smooth, numerical Heaviside function generated using a vector distance function computed directly
from the tracked interface (Shin, 2007; Shin & Juric, 2009). In Eq. (4), k,, is twice the mean interface
curvature field calculated on an Eulerian grid using:

_F,-G

k= ®)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49

Ut Ot Ot
— O

[\



Flow 5

in which F, and G are respectively given by:

FL=/ OK MO, (x—xf)ds
(1) ’

G = /F(t) no, (x - x_f) ds.

In these formulae, o is the surface tension, assumed constant, X . is a parameterisation of the interface,
['(7),and 6, (x—x,) is a Dirac distribution that is non-zero only when x = X ., n . is the unit normal vector
to the interface, and ds is the length of the interface element; « - is twice the mean interface curvature
obtained from the Lagrangian interface structure. The geometric information corresponding to the unit
normal, n,, and length of the interface element, ds, in G are computed directly from the Lagrangian
interface and then distributed onto an Eulerian grid using the discrete delta function. The details follow
Peskin (1977) well-known immersed boundary approach using our procedure for calculating the force
and constructing the function field G.

The Lagrangian interface is advected by integrating

(6)

dx, v ;

T — ¥, ( )
with a second-order Runge-Kutta method where the interface velocity, V, is interpolated from the
Eulerian velocity. Incorporating the complex geometry of the impeller and its rotation requires the
implementation of the so-called Direct Forcing Method (Mohd-Yusof, 1997; Fadlun et al., 2000), which
is done by incorporating a fluid-solid interaction force Fg in Eq. (2). This force is defined numerically
using the latest step of the temporal integration of (2),

l—ln+1 -

p———— =local” + Fj,

— e (®)

where “local” stands for the right-hand-side terms of Eq. (2) that contain the convective, pressure
gradient, viscous, turbulent, gravitational, and surface tension force terms. Here, the superscripts denote
the discrete temporal step in the computation. In the solid part of the domain corresponding to the
impeller, F; the forced rotational motion V™! is enforced:

@t = V=271 (v = y0) .~ (x = x0)) ©)
where (x,,y,) = (4.3,4,3) cm are the position of the impeller axis. Hence Fg; is

n+l 7]
Fl = pVT“ — local” (10)
The no-slip condition is applied for the velocity and the interface on the surface of the impeller parts
except for the shaft where we impose a solid rotating motion and axial free-slip condition du/dz = 0,
otherwise, the interface will remain attached to the shaft.

The computational domain (see Fig. 1) is a rectangular parallelepiped where the entire domain is
discretized by a uniform fixed three-dimensional finite-difference mesh and has a standard staggered
MAC cell arrangement (Harlow & Welch, 1965). The velocity components i, v, and w are defined on
the corresponding cell faces while the scalar variables (pressure p, and the distance function ) are
located at the cell centers. All spatial derivatives are approximated by second-order centred differences.
The velocity field is solved by a parallel generalized minimal residual (GMRES) method (Saad, 2003)
and the pressure field by a modified parallel 3D multigrid solver (Kwak & Lee, 2004; Shin et al., 2017).
Parallelisation is achieved using an algebraic domain decomposition where communication across
processes is handled by Message Passing Interface (MPI) protocols.



6 Kahouadji et al.

The chosen pitched-blade turbine shown in Fig. 1 and described in the beginning of this section
is built using a combination of primitive geometric objects (planes, cylinders, and rectangular blocks)
where each object is defined by a static distance function ¥ (x, y, z), positive in the fluid and negative in
the solid. The resulting shape in Fig. 1-(c) corresponds to the iso-value ¥ (x, y, z) = 0. Details on how
to construct similar complex objects are described in Kahouadji et al. (2018).

For Egs. (2), (8), and (10), we use the single-field formulation for the density p and viscosity u:

p(X’t):pg"'(pl_pg) 7-{(X’t)’ (11)
p(x,1) = pig + (1 = pg) H(x,1),

where the subscripts g and / designate the gas and liquid phases, respectively. The indicator function, H,
is a Heaviside function, zero in the gas phase and unity in the liquid phase; Numerically H is resolved
with a smooth transition across 3 to 4 grid cells and is generated using a vector distance function ¢ (x),
positive for the liquid phase and negative for the gas phase, and is computed directly from the tracked
interface (Shin & Juric, 2009). The gas phase is considered as air, with constant physical properties at
20 °C (pg = 1.205 kg/m?® and e = 1.825 1073 Pa.s). The liquid phase corresponds to either water
or glycerine with the following properties: p; = 1000 kg/m?, y; = 1073 Pa.s, and o = 0.0725 N/m
or p; = 1261.08 kg/m? and y; = 1.4 Pa.s, and o = 0.064 N/m, for water and glycerine, respectively.
Simulations with glycerine and water allow us to compare the two-phase mixing phenomena associated
with laminar and turbulent flow regimes, respectively.

3. Validations

9 FDNGS 192 x 192 = 256
LES 192 x 192 x 256
DNS 256 x 256 x 384
01} -LES 256 x 256 x 384
< -0.2}f
|
031 0.16f 570 Current work
. mNum. Li et al. (2017)
KExp. Ciofalo et al. (1996)
0.4 . : 0.15 : *
0 5 10 15 0 0.2 0.4 0.6 0.8 1
t/T T‘/R
() (b)

Figure 2. Validation of our numerical framework, (a): mesh dependence for the predictions of the
interface minimal vertical position normalised by the position at the axis r = 0 generated via the DNS
and LES approaches with the following parameters f = 1/T = 8 Hz, Re ~ 6.28 x 10*, Fr ~ 3.22,
and We ~ 1.1 x 103, using water properties; (b): comparison with a benchmark case for a developed
interface shape Ciofalo et al. (1996) and Li et al. (2017).

In the previous section, we have detailed the governing equations and the numerical scheme that
accounts for fluid-structure interaction applied to a turbulent multiphase mixing vessel. Before moving
to the results section, it is crucial to validate this new numerical framework that combines both a direct
forcing method for the impeller motion and the hybrid front-tracking/level-set method for tracking the
interface in the context of a turbulent two-phase flow in an agitated vessel. Figure 2a, provides evidence
of mesh-independence of our numerical solutions by showing the normalised minimum position of the
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interface which is often located at the axis r = 0 generated via the LES and DNS (Direct Numerical
Simulation) approaches. Global meshes of 192 x 192 X256 and 256 x 256 X 384 are used and results are
presented for water agitated at a constant frequency f = 1/T = 8 Hz (Re ~ 6.28 x 10*, Fr ~ 3.22,
and We ~ 1.1 x 10%). It is clear from figure 2a that both resolutions lead to accurate predictions of
the interface deflection for both DNS and LES approaches. It is also well known through the previous
works of Piva & Meiburg (2005) and Kahouadji (2011) that the physical quantity that plays a major
role in interface deflection is the azimuthal velocity distribution along the interface, uy ~ r close to
the shaft. Therefore, even for turbulent regimes, the interface can be accurately captured via DNS or
LES approaches. Thus, the resolution used in the rest of this paper is globally 256 x 256 x 384 with a
constant LES model unless specified otherwise.

We also provide further validation involving a direct comparison with previous works of Ciofalo
et al. (1996) and Li et al. (2017). The configuration here consists of a cylindrical tank with diameter
0.19m and height of 0.30m filled with a liquid of initial height of 0.19 m and agitated by a pitched
blade turbine at 194 r/min (f ~ 3.23 Hz) located at a distance ~ 6.3 cm from the bottom. More details
of this configuration can be found in Ciofalo et al. (1996) and Li et al. (2017). The physical properties
of the liquid working medium is water (p; = 998 kg/m3, (1 = 0.00103 Pa.s) and the surface tension
coefficient between the phases (air and water) is set as 0.0732 N/m. As depicted in figure 2b, our
numerical framework is capable of reproducing accurately different stirring configurations. Note that
our computation is purely three-dimensional and the resulting interface is axisymmetric.

The examples shown in figure 2 inspire confidence in our new numerical framework which combines
a LES model and a direct forcing method for a FSI (Fluid-Structure Interaction) configuration, within the
context of a hybrid front-tracking/level-set method for the advection of the interface. Another novelty,
and a significant challenge which this study will address, is to simulate the aeration regime that features a
multitude of interfacial singularities such as breakup and coalescence at large density ratios, ~ 10%; this
is notoriously troublesome for numerical procedures previously used for the simulation of two-phase
flows.

4. Results and discussions

We begin the presentation of our results by describing the flow associated with the case of glycerine
(Section 4.1) wherein the interface is slightly deformed. In section 4.2, we replace glycerine by water
and highlight the emergence of complex vortical structures and a highly deformed surface; a large range
of rotating frequencies, from f = 5 Hz to 9.5 Hz, is covered. The mechanisms leading to aeration
are studied in Section 4.3 by close examination of the transition boundary between the separated and
dispersed flows. Finally, Section 4.4 focuses on the situation wherein air is entrained into the water
across a highly deformed interface leading to bubbly mixing.

4.1. Laminar vortex mixing

The typical flow in the laminar regime is summarised in Fig. 3. Here, glycerine is chosen as the liquid
phase and the rotation frequency is restricted to f = 1/T = 8 Hz so that the flow regime remains
laminar, and the free surface deformation small, characterised by the following values of the relevant
dimensionless numbers: Re ~ 56, Fr ~ 3.22,and We ~ 1.55x 103. The free surface deformation is
defined as ‘small’ provided the amplitude of the deflection to the horizontal, divided by the characteristic
length scale D;, does not exceed 10%.

A centrifugal force is generated in the vicinity of the rotating blades causing the glycerine solution
to spiral out toward the tank periphery (see Fig. 3-(a)). This spiralling motion reaches the fixed vessel
wall inducing the formation of two Stewartson boundary layers (Kahouadji & Martin Witkowski, 2014;
Poncet, 2005; Stewartson, 1953) at the top and bottom peripheries. The fluid motion reaches the free
surface (bottom of the tank), it then decelerates by a centripetal spiral motion toward the rotating shaft
(rotation axis) above (below) the impeller; this is analogous to the behaviour reported previously in the
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0.75xT 0.875xT 1xT 1.125xT 1.25xT 1.375xT
©
Figure 3. Laminarmixing flow for the case of glycerine with f = 1/T = 8 Hz for which the dimensionless
numbers are Re ~ 56, Fr ~ 3.22, and We ~ 1.55 x 103. Flow visualisation of the streamlines in
the horizontal plane located at z = 3.95 cm, (a), and vertical plane y = 0, (b); (c) shows snapshots of
the streamlines in the y = 0 plane that illustrate the temporal evolution of the flow starting from rest.
(see Supplementary Material "Animation-Fig3.avi")

literature for rotating disks (Daube, 1991; Spohn, 1991; Spohn et al., 1993, 1998; Piva & Meiburg, 2005;
Kahouadji & Martin Witkowski, 2014). The flow is not axisymmetric, and one can see in Fig. 3-(a)
and (b) that the position of the rotating blades matter in terms of understanding the reasons underlying
the flow patterns. Under the pumping effect generated by the rotating blades, the fluid returns toward
the rotating hub and blades by an upward swirling motion around the z-axis from the bottom, and by a
downward swirling motion around the rotating shaft (see Fig. 3-(a) and (b)).

The temporal evolution starting from a static initial conditiont = 0 X T uptot = 1.375 X T is shown
in Fig. 3-(c), which depicts the streamlines in the horizontal plane immediately below the hub as well as
in the y = 0 plane. From this figure, we can see that the free surface shape becomes essentially steady
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for ¢+ > T. This has similarity with the work of Kahouadji & Martin Witkowski (2014) who studied
the free surface rotating flow generated by a rotating disk located at the bottom of a fixed cylindrical
tank by solving the steady and axisymmetric Navier-Stokes equations using a vorticity-streamfunction
formulation. Assuming a developed steady state, Kahouadji & Martin Witkowski (2014) considered the
interface as a streamline. In the present case, as shown in Fig. 3(c), the streamlines cross the interface
for ¢+ < T indicating interfacial motion, whereas for ¢t > T, the interface becomes a streamline and
remains steady. It is also noteworthy that although the interfacial shape is steady and axisymmetric for
t > T, the liquid flow is periodic in its azimuthal direction with a periodicity mode of 4, reflecting the
impeller geometry which comprises four blades. Finally, we draw attention to the time required to make
the flow quasi-steady: t ~ T = 1/f = 1/8 (s); this is in contrast to the cases which will be discussed
below where, typically, 10 or 20 x T are required to reach a quasi-steady state.

4.2. Turbulent vortex mixing

We replace the highly viscous glycerine with water and keep the frequency at f = 8 Hz so that the flow is
characterised by Re = 6.28 X 104, Fr =3.22,and We = 1.08 x 10?, which indicates that it is expected to
be turbulent and accompanied by large interfacial deformations. We show in Fig. 4 the spatio-temporal
behaviour of the flow for f = 1/T = 8 Hz starting from a static initial state until a steady state is reached
for t = 20 X T. It is seen that the free surface shape remains quasi-flat until the impeller has rotated 1.5
cycles (see Fig. 4-(a-e)). However, in spite of this, the velocity magnitude on the interface Fig. 4-(d-
j) shows that the velocity disturbance experiences a periodic distribution along its azimuthal direction
with a wave number equal to 4, a symmetry that once again reflects the impeller 4-blade geometry. At
t = 2x T, the interface starts to deform (see Fig. 4-(f-1)) where the velocity gradient is high, leading to a
periodic azimuthal interface deflection with a wave number 4 being preserved. The interface continues
to undergo spatio-temporal variations until reaching a quasi-steady and approximately axisymmetric
state beyond r = 10X T, as shown in Fig. 4-(j-1), which is characterised by maximal interfacial deflection.

The evolution of the vortical structures in the vertical plane shows the existence of very rich dynamics,
as depicted in Fig. 4. At early times (¢ ~ 0.25 X T'), the impeller blades generate a large primary vortex
that starts at the blade tips toward the bottom of the vessel and then moves upward near the vessel
wall toward the interface. A secondary vortex is also generated under the impeller blades, which rotates
radially in the opposite direction compared to the primary vortex. This secondary vortex is generated
from the bottom of the impeller hub and grows until being replaced by a two dipole-vortex, one above
and the other below the impeller blades (see the streamlines in Fig. 4-(c) and (d) fort = 0.5 and 1 X T).

Att = 1.5 T, the bottom vortex dissipates and we notice the creation of Kelvin-Helmholtz vortices
that merge at r = 2 X T into a single vortex below the impeller blades (see the streamlines in Fig. 4-(e,f)).
These Kelvin-Helmbholtz vortices are generated due to the fact that the primary top vortex rotates faster
(due to the presence of the interface) than the secondary bottom vortex (due to the no-slip condition at
the bottom of the vessel), and creates a large shear zone between these two vortices. For t > 2 X T, the
Kelvin-Helmholtz vortices give way to two large counter-rotating vortices and a small vortex breakdown
underneath the impeller hub, a well-known phenomenon in the context of a rotating disk inside a closed
cylindrical tank (i.e., a rotor-stator configuration (Daube, 1991; Kahouadji, 2011; Spohn, 1991; Spohn
et al., 1998)). These vortical structures described for f = 8 Hz are also observed for the entire range of
frequency f < 9 Hz as shown in Fig. 5 which depicts the spatio-temporal evolution of the interface and
vortical structures in a two-dimensional plane for f = 5,7, and 9 Hz for r = 0.25xT-15X T (see also the
supplementary Material "Animation-Fig5.avi"). Further inspection of Fig. 5 reveals strong qualitative
similarities amongst the vortical structures for this range of frequencies (and Re and We) forr < 2 x T.

Figure 6-(a)-(f) depicts snapshots of the interface shape, and accompanying structures in the vorticity
and pressure fields at /T = 20 for f = 5—9.5 Hz. It is clear that the salient points highlighted for f = 8
Hz in Fig. 4 are observed for the entire frequency range. Figure 6-(g), shows the temporal evolution of

the global kinetic energy of the flow, k = ( / / / puzdxdydz), and Fig. 6-(h) shows the variation of
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(@) (b) ©) (d) (e) ()
OxT 0.25xT 05%xT 1xT 1.5xT 2T

Figure 4. Spatio-Temporal evolution of the flow for water, vortical structures, and interface shapes
coloured by velocity magnitude shown in the lower and upper figures in every panel, respectively, for
f =1/T = 8 Hz. The dimensionless numbers are Re ~ 6.28 X 104, Fr ~3.22, We ~ 1.08 x 10°. (see
Supplementary Material "Animation-Fig4.avi")

the minimum position of the interface with time for the range of frequency f =5 t0 9.5 Hz. For f =5
Hz, the interface deflection is small compared to other cases and a vortex breakdown attached to the
interface occurs; this phenomenon is also observed for rotating disks inside an open cavity (Kahouadji
& Martin Witkowski, 2014; Piva & Meiburg, 2005; Spohn, 1991; Spohn et al., 1993, 1998). In certain
cases, there is an appearance of a small vortex at the bottom corner of the vessel or at the top corner (see
Fig. 6-(c) for f = 7Hz). For f = 9.5 Hz, the interface just reaches the hub of the impeller (see Fig 6-(f)).
For this set of parameters, this frequency represents the limit for efficient mixing without entraining
bubbles into the water phase. At t+ = 20 X T, we consider the flow to be quasi-steady as the curves
corresponding to Fig. 6-(g)-(h) flatten, particularly for the range f = 5 — 8 Hz. For f = 9 and 9.5 Hz,
although the kinetic energy appears to plateau for + > 10 x T, the minimal interfacial position exhibits
small-amplitude, high-frequency oscillations due to the interfacial interactions with the impeller hub.
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(@) (b) (©) (d G () €] (h)
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Figure 5. Spatio-temporal evolution of vortical structures in water for f = 1/T =5, 7 and 9 Hz,
from top to bottom, respectively, and t = 0.25 X T-15 X T. The corresponding Reynolds and Weber
number combinations are (Re,We) = (39270,425), (54978,834) and (70686, 1378), respectively.
(see Supplementary Material “Animation-Fig5.avi")

The pressure field shown in Fig. 6 for all values of f illustrates the dominance of the vortical structures
on the pressure field. For small rotation frequency values (f < 5HZz), the behaviour of the pressure
is hydrostatic, decreasing linearly as a function of z-direction. This type of pressure field distribution
is observed for f = 5 Hz (see Fig. 6-(a)). Increasing the frequency up to 6 Hz, the pressure field still
varies linearly through z-direction; however, a depression zone is noticed at the back of the blades (see
pressure field in 6-(b-f)). This depression is a characteristic of flows past an obstacle, which means that
in the rotating blades reference, the front and back of the blades are zones of high and low pressure,
respectively. In addition to these low and high pressure zones near the blades, we can notice that for high
values of rotation frequency (f > 7 Hz), the eddy structures break the hydrostatic form of the pressure
field and a high pressure zone is localised only near the bottom outer edge of the vessel.

4.3. Transition to aeration

In this section, we will focus on the air-water system and elucidate mechanisms that lead to entrainment
of air bubbles into the water phase via careful examination of the transition boundary between the
vortex and bubbly mixing regimes. In order to perform accurate simulations of the onset of aeration, all
simulations presented in this section are performed using 4 X 4 X 6 = 96 subdomains, with a Cartesian
structured grid of 64° per subdomain, which gives a global structured mesh of 256 x 256 x 384.
Figure 7 depicts the interfacial dynamics associated with the f = 10 Hz case, characterised by
Re = 78540 and We = 1713. The results presented thus far were generated by starting from an initially
flat interface and a velocity field at rest (u = 0). Using this initialisation it is seen clearly that the
interface, which interacts with the impeller hub, undergoes breakup leading to the formation of three
small bubbles that are entrained into the water phase. If, however, the simulation is initialised starting
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from the steady-state associated with the f = 8 Hz case, but with f = 10 Hz, then we find that the
outcome (not shown) corresponds to a vortex mixing regime, similar to that shown in Fig. 6-(f).

(a) (b) (©) @ (e) ()
5Hz 6 Hz 7Hz 8 Hz 9 Hz 9.5Hz
We =425 We =612 We = 834 We = 1089 We = 1378 We = 1536
Re =39270 Re = 47124 Re = 54978 Re = 62832 Re = 70686 Re = 74613

S
o

Ff=5Hz
Ff=6Hz
Fhf=THz
Ff=8Hz
Ff=9Hz
Hf=9.5H" |

15 20 0 5

(d — do)/do

S
o

15 20

10
HT

10
tT
(& (h)
Figure 6. Interface shape, vortical structures, and pressure fields in a two-dimensional vertical plane
att/T =20 for f =5,6,7,8,9 and 9.5 Hz, (a)-(f), respectively; (g) and (h) show the temporal evolution
of the kinetic energy and minimum interface position normalised by their initial values, respectively.
(see Supplementary Material “Animation-Fig6.avi")
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(a) (b) (©) (d) (e)
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@ 0.5 I

Figure 7. Spatio-temporal evolution of the mixing behaviour for f = 1/T = 10 Hz, Re = 78540, and
We = 1713 highlighting the onset of aeration.

In order to elucidate the mechanisms underlying aeration, we focus on the case wherein the flow is
started impulsively from an initially stationary flat-interface state. As a result of the impeller rotation,
a low pressure region forms near the impeller hub that leads to a large interfacial deflection and the
formation of a thin air ligament at the back of one of the blades; this is a consequence of the centrifugal
forces that drive ligament elongation in the radial direction away from the hub. The ligament eventually
undergoes a Rayleigh-Plateau instability and breakups into three small bubbles (see Fig. 7 c, d, and e).
Thus, the route to bubble creation, and subsequent aeration of the water phase, involves three successive
mechanisms: (i) a sufficiently strong centrifugal force able to deform the interface rapidly toward the
impeller hub; (ii) ligament formation that grows radially behind a blade; (iii) a Rayleigh-Plateau-driven
breakup of the ligament. The example shown in Fig. 7 features the formation of only one air ligament and
its breakup. We will show that further increase in rotating frequency causes simultaneous entrapment
and growth of multiple ligaments, leading to a more violent transition to the bubbly mixing regime.

4.4. Bubbly mixing

After the brief discussion of the mechanisms underlying aeration mixing, we now increase the impeller
rotation frequency to f = 11 Hz (Re = 86394 and We = 2073) for which the outcome is very bubbly
with a total number of air bubbles being of the order of hundreds dispersed inside the water phase.
We have performed this calculation using both the DNS & LES approaches and simulations with the
former exhibit interesting phenomena such as the bursting effect with the main interface. Figure 8 shows
the spatio-temporal evolution of the flow, using DNS where it is seen that the initially flat interface
undergoes a rapid deflection (see Fig. 8 a, b, & c¢) toward the impeller blades (see Fig. 8 e-f) with some
interfacial pinchoff without significant ligament formation and breakup (see Fig. 8 g-h).

Att =4.25x T, four air ligaments are formed, which grow quickly in the radial direction, and break
up into many bubbles (see Fig. 8 i-j). The resulting air-ligaments forming behind each blade are not as
thin as in the case described for f = 10 Hz (see Fig. 7). As highlighted through Fig. 8 j-k, thick shaped
air ligaments will breakup and disperse all around the liquid water phase. This process continues and
produces a myriad of multiscale air-bubbles. Some of these bubbles have the shape of elongated thin air
ligaments, also dispersed in the water phase, and eventually breakup later into smaller bubbles.

The flow is also accompanied by a series of coalescence events that occur between bubbles inside
the water phase as well as with the main top interface. Small bubbles usually remain in the water phase
but larger bubbles, due to buoyancy, rise to the top. When any bubble reaches the main top interface, it
bursts and sometimes ejects some liquid-droplets above the interface (see Fig. 8 n-0).
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In Fig. 9, we have isolated several ‘singular’ events that involve topological transitions occurring in
this type of bubbly mixing. Figure 9a highlights a coalescence event between a small bubble and the main
interface. These snapshots in Fig. 9a are given at the following times, from top to bottom, ¢/7 = 5.92,
5.94, and 5.96, respectively. We can notice that the small bubble coalesces with the vertical part of the
main interface that surrounds the impeller shaft. In Fig. 9b, we have also isolated the breakup event of
a ligament. We can notice a rapid coalescence of a tiny bubble with this ligament before experiencing
two interfacial breakups later.

Figure 9c shows the temporal evolution of a bubble bursting through the main top interface, generating
liquid ligaments above this interface, and finally breaking up into a multitude of droplets that will fall
back to the liquid bulk later on. Contrary to the coalescence described in Fig. 9a, when a bubble hits

(a) (b) © d (e)
OxT 1xT 2xT 3xT 4xT

(@ (h) () 0
45xT 475%xT S5xT 525xT

Figure 8. Spatio-temporal evolution for bubbly mixing with f = 1/T = 11 Hz, Re = 86394, and
We = 2073.
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the top interface, it bursts. However, if a bubble hits the vertical part of the main interface, the outcome
corresponds to a simple coalescence process. Furthermore, for the latest snapshot of Fig. 9c, we count a
total of 503 bubbles dispersed inside the bulk of the water phase, and also a total 33 water drops. Some
of the water drops are located above the main top interface (see the latest snapshots Fig. 9¢c), but some
others are encapsulated within some large bubbles inside the bulk water phase.

Bursting rone

Liguid ligament

Tormation \

Ligament retraction
and breakup

(a) (b)
Figure 9. Flow snapshotsfor f = 1/T = 11 Hz, Re = 86394, and We = 2073 showing bubble-interface
coalescence, ligament breakup, and bubble bursting through the interface, in (a)-(c), respectively.
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Figure 10. Probability density function histogram of bubble size inside the liquid bulk, (a), normalised
by the average bubble diameter, dp,, associated with the times t/T = 10; temporal evolution of the gas
holdup &(t) generated using the DNS and LES approaches, (b). The rest of the parameter values are the
same as those used to generate Fig. 7.
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At this stage of the mixing process, it is interesting to follow the temporal evolution of the bubble
sizes during the aeration process. We can notice through Fig. 8 that the appearance of bubbles in the
liquid bulk starts at time t/T ~ 4.5 (see Fig. 8g). Moreover, the flow can be considered as ‘bubbly’
only at t/T ~ 5.5 (Fig. 8k). It is possible to isolate all n bubbles dispersed within the water phase,
calculate the volume of each individual bubble V,,; (i = 1,n), and deduce an approximation of its
diameter dp; = (6V} i/ 7)1/3)  Figure 10(a) represents the probability density function of bubble size
distribution for /T = 10 using both LES and DNS formulations. Most of the bubble sizes are smaller
than the average value dp,,,. The probability density functions are quasi-similar (see Fig. 10a).

Finally, from an engineering perspective, it is crucial to estimate the air bubble volume dispersed
inside the water phase. As mentioned in the introduction, for some applications, bubbles are desirable
and for others their presence must be avoided. However, if these air bubbles are produced during a
mixing process, it is important to estimate the temporal evolution of the gas holdup, &:

e(t) =Vp/ (Vo +V)) (12)

which is the ratio of the volume of the air phase entrained within the water, V), = Z:’z 1 Vb.i, to the total
volume of air and water within the stirred vessel; V; = nDi h/4 is the volume of the water phase. In Fig.
10(b), we show the evolution of the gas holdup £(¢) highlighting its maximum value at t/T =~ 6.25-6.5
beyond which the dynamic equilibrium amongst bubble formation, coalescence, and breakup leads to
a steady . Inspection of Fig. 10(b) reveals that the bubbly steady-state using both DNS and LES is
reached for t/T > 8 with about 1.9% of air dispersed in the water bulk. The difference between these
approaches is in the interval ¢ /7 ~ 5.5 — 8.0 where DNS predicts more bubbles compared to LES.

5. Conclusion and perspectives

In this paper, we have studied numerically the complex dynamics occurring during air-liquid mixing
using a pitched blade turbine. The motion of the impeller and the fluid-structure interaction is computed
by a direct forcing method within a general solver for multiphase flows (Shin et al., 2017). We have
shown that vortical structures are similar for any frequency below the aeration limit. These vortical
structures correspond to Kelvin-Helmholtz, blade tip, end wall, and wall breakdown vortices. Aeration
occurs for a sufficiently large rotational frequency, and we highlight the importance of the initial state
(from rest or from an already developed flow). Future research avenues for study are to investigate further
the physics of the aeration (for frequency larger than 10 Hz), generalise this study through variation of
the initial liquid height, the clearance and the diameter ratio between the impeller and the cylindrical
tank. Another type of multiphase mixing process that has not been studied here and occurs for high
frequencies f > 15 Hz, is ‘air envelopment’ mixing. At very high rotation frequencies, the air phase
will envelop the entire impeller during the rotation. It would also be interesting to explore different
types of impellers (e.g., Rushton turbines, propellers or curved blade turbines). Finally, in considering
non-Newtonian fluids or the presence of surfactants, the recent paper of Shin et al. (2018) has moved
the numerical method in those directions and thus these effects could, in the future, be modelled too.
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