Homotopic Digital Rigid Motion:

An Optimization Approach on Cellular Complexes

Nicolas Passat, Phuc Ngo, Yukiko Kenmochi
DGMM 2021 - May 26th, 2021

Rigid motions in \mathbb{Z}^{n} : Problem

In \mathbb{R}^{n}, a rigid transformation, which is a combination of rotations and translations, is a geometric transformation that preserves the Euclidean distance between any pair of points.

Rigid motions in \mathbb{Z}^{n} : Problem

In \mathbb{R}^{n}, a rigid transformation, which is a combination of rotations and translations, is a geometric transformation that preserves the Euclidean distance between any pair of points.

Problem

In \mathbb{Z}^{n}, topology (and geometry) is often altered during such transformations due to the discontinuities induced by digitization.

original image

transformed image

Topological preservation: State of the art

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called regular, has been identified [1].

[1] Ngo, Passat, Kenmochi, Talbot, "Topology-preserving rigid transformation of 2D digital images", IEEE Trans. on Image Processing, 2014.

Topological preservation: State of the art

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called regular, has been identified [1].
\Longrightarrow This notion can be transposed to neither higher dimensions nor other transformations [2].

[1] Ngo, Passat, Kenmochi, Talbot, "Topology-preserving rigid transformation of 2D digital images", IEEE Trans. on Image Processing, 2014.
[2] Passat, Kenmochi, Ngo, Pluta, "Rigid motions in the cubic grid: A discussion on topological issues", In Proc. DGCI 2019.

Topological preservation: State of the art

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called regular, has been identified [1].
- With a polygonal intermediate, a class of regions in \mathbb{R}^{2}, which preserve their connectivity after the digitization, called quasi-regular, has been identified $[3,4]$.

polygonized

\Longrightarrow rotated

(re)digitized
[3] Ngo, Passat, Kenmochi, Debled-Rennesson, "Geometric preservation of 2D digital objects under rigid motions", Journal of Mathematical Imaging and Vision, 2019.
[4] Ngo, Passat, Kenmochi, Debled-Rennesson, "Convexity invariance of voxel objects under rigid motions", in

Topological preservation: State of the art

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called regular, has been identified [1].
- With a polygonal intermediate, a class of regions in \mathbb{R}^{2}, which preserve their connectivity after the digitization, called quasi-regular, has been identified [3,4].
\Longrightarrow Extension to higher dimensions is not trivial [2].

original \Longrightarrow

polygonized

\Longrightarrow rotated \Longrightarrow

(re)digitized
[2] Passat, Kenmochi, Ngo, Pluta, "Rigid motions in the cubic grid: A discussion on topological issues", In Proc. DGCI 2019.

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R}, construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

R

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R}, construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

The problem is formulated as an optimization problem in the space of cellular complexes with the notion of collapse on complexes.

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R}, construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

The problem is formulated as an optimization problem in the space of cellular complexes with the notion of collapse on complexes.

Advantages

The framework is flexible in higher dimensions as well as other geometric transformations.

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$
X_{\mathcal{R}}=\arg _{Y \in 2^{Z^{2}}} \min \mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})
$$

where $\mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})$ is a dissimilarity measure between X and Y .

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$
X_{\mathcal{R}}=\arg _{\mathrm{Y} \in 2^{\mathbb{Z}^{2}}} \min \mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})
$$

where $\mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})$ is a dissimilarity measure between X and Y .

Example of dissimilarity measure

- based on Gauss digitization:
- Continuous analogue of $\mathrm{X}: \square(\mathrm{X})=\mathrm{X} \oplus \square=X$ where \oplus is the dilation operator and \square is the structuring element $\left[\frac{1}{2}, \frac{1}{2}\right]^{2} \subset \mathbb{R}^{2}$.
- Gauss digitization of $X: \backsim(X)=X \cap \mathbb{Z}^{2}$.

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$
X_{\mathcal{R}}=\arg _{\mathrm{Y} \in 2^{Z^{2}}} \min \mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})
$$

where $\mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})$ is a dissimilarity measure between X and Y .

Example of dissimilarity measure

- based on Gauss digitization:

$$
\mathcal{D}_{\mathcal{R}, \mathrm{x}}^{\square}(\mathrm{Y})=|\boxtimes(\mathcal{R}(\square(\mathrm{X}))) \backslash \mathrm{Y}|+|\mathrm{Y} \backslash \backsim(\mathcal{R}(\square(\mathrm{X})))|
$$

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$
X_{\mathcal{R}}=\arg _{Y \in 2^{Z^{2}}} \min \mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})
$$

where $\mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})$ is a dissimilarity measure between X and Y .

Example of dissimilarity measure

- based on Gauss digitization:

$$
\mathcal{D}_{\mathcal{R}, \mathrm{X}}^{\square}(\mathrm{Y})=|\backsim(\mathcal{R}(\square(\mathrm{X}))) \backslash \mathrm{Y}|+|\mathrm{Y} \backslash \backsim(\mathcal{R}(\square(\mathrm{X})))|
$$

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

$\mathcal{F}(P)$ contains:
2-face (interior of P, P),
1-faces (edges of P), and
0 -faces (vertices of P).

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

$$
\mathcal{F}(P) \text { contains: }
$$

2-face (interior of $P, \stackrel{P}{P}$),
1-faces (edges of P), and 0 -faces (vertices of P).

A union of closed convex polygons Ω and its partition $\mathbb{K}(\Omega)$ Let $\Omega=\bigcup \mathcal{K}$ where \mathcal{K} is a set of closed, convex polygons such that for any pair $P_{1}, P_{2} \in \mathcal{K}, \grave{P}_{1} \cap \grave{P}_{2}=\emptyset$. Then, $\mathbb{K}(\Omega)=\bigcup_{P \in \mathcal{K}} \mathcal{F}(P)$.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Star $S(f)$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}^{\prime} such that $\mathfrak{f} \in C\left(\mathfrak{f}^{\prime}\right)$.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Star $S(f)$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}^{\prime} such that $\mathfrak{f} \in C\left(\mathfrak{f}^{\prime}\right)$.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Star $S(f)$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}^{\prime} such that $\mathfrak{f} \in C\left(\mathfrak{f}^{\prime}\right)$.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Star $S(f)$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}^{\prime} such that $\mathfrak{f} \in C\left(\mathfrak{f}^{\prime}\right)$.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Complex of \mathbb{K}
A complex K of \mathbb{K} is a union of cells of \mathbb{K}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Complex of \mathbb{K}
A complex K of \mathbb{K} is a union of cells of \mathbb{K}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Complex of \mathbb{K}
A complex K of \mathbb{K} is a union of cells of \mathbb{K}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.
Cell $C(f)$
The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K}.

Definition of cellular complexes

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(f)$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f}.

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K}.

The embedding of K into \mathbb{R}^{2} is defined by $\Pi_{\mathbb{R}^{2}}(K)=\bigcup K$.
If $X=\Pi_{\mathbb{R}^{2}}(K), K$ is the embedding of X into $\mathbb{K}, K=\Pi_{\mathbb{K}}(X)$.

Collapse on complexes

Let K be a complex defined in a cellular space \mathbb{K}.

Elementary collapse

Suppose that τ and σ are two faces of K such that

- $\tau \subset \sigma$ with $\operatorname{dim}(\tau)=\operatorname{dim}(\sigma)-1$ and
- σ is a maximal face of K and no other maximal face of K contains τ, then τ is called a free face and the removal of the faces, $K \backslash\{\tau, \sigma\}$, is called an elementary collapse.

If there is a sequence of elementary collapses from K to a complex K^{\prime}, we say that K collapses to K^{\prime}.

Simple cells

Let K be a complex defined in a cellular space \mathbb{K} on \mathbb{R}^{2}.
Let \mathfrak{f}_{2} be a 2 -face of K.
Let $D_{d}\left(\mathfrak{f}_{2}\right), d=0,1$, be the subset of $C\left(f_{2}\right)$ composed by the d-faces \mathfrak{f} such that $S(\mathfrak{f}) \cap K=S(\mathfrak{f}) \cap C\left(\mathfrak{f}_{2}\right)$.

Simple cells

If $\left|D_{1}\left(f_{2}\right)\right|=\left|D_{0}\left(f_{2}\right)\right|+1, C\left(f_{2}\right)$ is called a simple 2-cell for K.

- Detachment of a simple 2-cell $C\left(f_{2}\right)$ from K : collapse operation from K to $K \otimes C\left(\mathfrak{f}_{2}\right)=K \backslash\left(\left\{\mathfrak{f}_{2}\right\} \cup D_{1}\left(\mathfrak{f}_{2}\right) \cup D_{0}\left(\mathfrak{f}_{2}\right)\right)$
- Attachment of a simple 2-cell $C\left(f_{2}\right)$ for $K \cup C\left(f_{2}\right)$ where $\mathfrak{f} \in \mathbb{K} \backslash K$: the inverse collapse operation from K into $K \cup C\left(f_{2}\right)$

Cubical space \mathbb{F} induced by \mathbb{Z}^{2}

Let $\Delta=\mathbb{Z}+\frac{1}{2}$. The induced cellular complex space \mathbb{F} is composed of:

- set of 0-faces $\mathbb{F}_{0}=\left\{\{\boldsymbol{d}\} \mid \boldsymbol{d} \in \Delta^{2}\right\}$
- set of 1-faces $\mathbb{F}_{1}=\bigcup_{i=1,2}\{] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{i}\left[\mid \boldsymbol{d} \in \Delta^{2}\right\}$
- set of 2-faces $\mathbb{F}_{2}=\{] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{1}[\times] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{2}\left[\mid \boldsymbol{d} \in \Delta^{2}\right\}$
where $\boldsymbol{e}_{1}=(1,0)$ and $\boldsymbol{e}_{2}=(0,1)$.

Cubical space \mathbb{F} induced by \mathbb{Z}^{2}

Let $\Delta=\mathbb{Z}+\frac{1}{2}$. The induced cellular complex space \mathbb{F} is composed of:

- set of 0-faces $\mathbb{F}_{0}=\left\{\{\boldsymbol{d}\} \mid \boldsymbol{d} \in \Delta^{2}\right\}$
- set of 1-faces $\mathbb{F}_{1}=\bigcup_{i=1,2}\{] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{i}\left[\mid \boldsymbol{d} \in \Delta^{2}\right\}$
- set of 2-faces $\mathbb{F}_{2}=\{] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{1}[\times] \boldsymbol{d}, \boldsymbol{d}+\boldsymbol{e}_{2}\left[\mid \boldsymbol{d} \in \Delta^{2}\right\}$
where $\boldsymbol{e}_{1}=(1,0)$ and $\boldsymbol{e}_{2}=(0,1)$.

Given a digital object $X \subset \mathbb{Z}^{2}$, the associated complex $F=\Pi_{\mathbb{F}}(\square(X))$ is defined as:

$$
F=\bigcup_{x \in X} C(\square(x))
$$

where $\square(\boldsymbol{p})=\boldsymbol{p} \oplus]-\frac{1}{2}, \frac{1}{2}\left[{ }^{2}\right.$ for $\boldsymbol{p} \in \mathbb{Z}^{2}$.

Cubical space \mathbb{G} induced by $\mathcal{R}\left(\mathbb{Z}^{2}\right)$

The cubical space \mathbb{G} induced by a rigid motion \mathcal{R} and \mathbb{Z}^{2} is composed of the three sets of d-faces $(0 \leq d \leq 2)$:

$$
\mathbb{G}_{d}=\mathcal{R}\left(\mathbb{F}_{d}\right)=\left\{\mathcal{R}(\mathfrak{f}) \mid \mathfrak{f} \in \mathbb{F}_{d}\right\}
$$

The continuous object $X_{\mathcal{R}} \subset \mathbb{Z}^{2}$ is modeled by the complex $G=\Pi_{\mathbb{G}}\left(X_{\mathcal{R}}\right)$, which is defined by

$$
G=\mathcal{R}(F)=\mathcal{R}\left(\Pi_{\mathbb{F}}(X)\right)=\left\{\mathcal{R}(\mathfrak{f}) \mid \mathfrak{f} \in \Pi_{\mathbb{F}}(X)\right\}
$$

Rational rigid motions

Rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
A rigid motion $\mathcal{R}_{(\theta, t)}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^{2}$ as

$$
\mathcal{R}_{(\theta, \boldsymbol{t})}(\boldsymbol{p})=R(\theta) \cdot \boldsymbol{p}+\boldsymbol{t} \quad \text { where } \quad R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is the rotation matrix of angle θ and \boldsymbol{t} is the translation vector.

Rational rigid motions

Rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
A rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^{2}$ as

$$
\mathcal{R}_{(\theta, \boldsymbol{t})}(\boldsymbol{p})=R(\theta) \cdot \boldsymbol{p}+\boldsymbol{t} \quad \text { where } \quad R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is the rotation matrix of angle θ and \boldsymbol{t} is the translation vector.
Here we consider that $R(\theta)$ is rational, i.e.,

$$
\cos \theta=\frac{a}{c} \quad \text { and } \quad \sin \theta=\frac{b}{c}
$$

where $(a, b, c) \in \mathbb{Z}^{3}$ is a Pythagorean triple, and $\boldsymbol{t} \in \mathbb{Q}^{2}$.

Rational rigid motions

Rigid motion $\mathcal{R}_{(\theta, t)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
A rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^{2}$ as

$$
\mathcal{R}_{(\theta, \boldsymbol{t})}(\boldsymbol{p})=R(\theta) \cdot \boldsymbol{p}+\boldsymbol{t} \quad \text { where } \quad R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is the rotation matrix of angle θ and \boldsymbol{t} is the translation vector.
Here we consider that $R(\theta)$ is rational, i.e.,

$$
\cos \theta=\frac{a}{c} \quad \text { and } \quad \sin \theta=\frac{b}{c}
$$

where $(a, b, c) \in \mathbb{Z}^{3}$ is a Pythagorean triple, and $\boldsymbol{t} \in \mathbb{Q}^{2}$.

Remark

A family of rational rigid motions handled for application uses,

- are sufficiently dense, and
- leads to exact geometric calculations.

Cellular space \mathbb{H} refining \mathbb{F} and \mathbb{G}

A new cellular space \mathbb{H} that refines both \mathbb{F} and \mathbb{G} is built.

For each 2-face \mathfrak{h}_{2} of \mathbb{H}, there exists exactly one 2-face \mathfrak{f}_{2} of \mathbb{F} and one 2-face \mathfrak{g}_{2} of \mathbb{G} such that $\mathfrak{h}_{2}=\mathfrak{f}_{2} \cap \mathfrak{g}_{2}$.

Cellular space \mathbb{H} refining \mathbb{F} and \mathbb{G}

A new cellular space \mathbb{H} that refines both \mathbb{F} and \mathbb{G} is built.

For each 2-face \mathfrak{h}_{2} of \mathbb{H}, there exists exactly one 2-face \mathfrak{f}_{2} of \mathbb{F} and one 2-face \mathfrak{g}_{2} of \mathbb{G} such that $\mathfrak{h}_{2}=\mathfrak{f}_{2} \cap \mathfrak{g}_{2}$. Namely, we can define

- $\phi: \mathbb{H}_{2} \rightarrow \mathbb{F}_{2}$ such that $\phi\left(\mathfrak{h}_{2}\right)=\mathfrak{f}_{2}$
- $\gamma: \mathbb{H}_{2} \rightarrow \mathbb{G}_{2}$ such that $\gamma\left(\mathfrak{h}_{2}\right)=\mathfrak{g}_{2}$.

Cellular space \mathbb{H} refining \mathbb{F} and \mathbb{G}

A new cellular space \mathbb{H} that refines both \mathbb{F} and \mathbb{G} is built.

For each 2-face \mathfrak{h}_{2} of \mathbb{H}, there exists exactly one 2-face \mathfrak{f}_{2} of \mathbb{F} and one 2-face \mathfrak{g}_{2} of \mathbb{G} such that $\mathfrak{h}_{2}=\mathfrak{f}_{2} \cap \mathfrak{g}_{2}$. Namely, we can define

- $\phi: \mathbb{H}_{2} \rightarrow \mathbb{F}_{2}$ such that $\phi\left(\mathfrak{h}_{2}\right)=\mathfrak{f}_{2}$
- $\gamma: \mathbb{H}_{2} \rightarrow \mathbb{G}_{2}$ such that $\gamma\left(\mathfrak{h}_{2}\right)=\mathfrak{g}_{2}$.
and reversely,
- $\Phi: \mathbb{F}_{2} \rightarrow 2^{\mathbb{H}_{2}}$ such that $\Phi\left(\mathfrak{f}_{2}\right)=\left\{\mathfrak{h}_{2} \in \mathbb{H}_{2} \mid \phi\left(\mathfrak{h}_{2}\right)=\mathfrak{f}_{2}\right\}$
- 「: $\mathbb{G}_{2} \rightarrow 2^{\mathbb{H}_{2}}$ such that $\Gamma\left(\mathfrak{g}_{2}\right)=\left\{\mathfrak{h}_{2} \in \mathbb{H}_{2} \mid \gamma\left(\mathfrak{h}_{2}\right)=\mathfrak{g}_{2}\right\}$.

Cellular space \mathbb{H} refining \mathbb{F} and \mathbb{G}

A new cellular space \mathbb{H} that refines both \mathbb{F} and \mathbb{G} is built.

For each 2-face \mathfrak{h}_{2} of \mathbb{H}, there exists exactly one 2-face \mathfrak{f}_{2} of \mathbb{F} and one 2-face \mathfrak{g}_{2} of \mathbb{G} such that $\mathfrak{h}_{2}=\mathfrak{f}_{2} \cap \mathfrak{g}_{2}$. Namely, we can define

- $\phi: \mathbb{H}_{2} \rightarrow \mathbb{F}_{2}$ such that $\phi\left(\mathfrak{h}_{2}\right)=\mathfrak{f}_{2}$
- $\gamma: \mathbb{H}_{2} \rightarrow \mathbb{G}_{2}$ such that $\gamma\left(\mathfrak{h}_{2}\right)=\mathfrak{g}_{2}$.
and reversely,
- $\Phi: \mathbb{F}_{2} \rightarrow 2^{\mathbb{H}_{2}}$ such that $\Phi\left(\mathfrak{f}_{2}\right)=\left\{\mathfrak{h}_{2} \in \mathbb{H}_{2} \mid \phi\left(\mathfrak{h}_{2}\right)=\mathfrak{f}_{2}\right\}$
- 「: $\mathbb{G}_{2} \rightarrow 2^{\mathbb{H}_{2}}$ such that $\Gamma\left(\mathfrak{g}_{2}\right)=\left\{\mathfrak{h}_{2} \in \mathbb{H}_{2} \mid \gamma\left(\mathfrak{h}_{2}\right)=\mathfrak{g}_{2}\right\}$.

The 2-faces of \mathbb{H} are convex polygons with 3 to 8 edges.

Optimization-based rigid motion with topological constraint

Proposed framework

Main steps:

1. Generate the cellular complex H on \mathbb{H} from

$$
G=\Pi_{\mathbb{G}}(\mathcal{R}(\square(X))) .
$$

2. Apply a homotopic transformation \mathfrak{H} from H to \widehat{H}.
3. Embed the cellular complex \widehat{H} into \mathbb{F}, i.e. $\widehat{F}=\Pi_{\mathbb{F}}(\widehat{H})$.

Homotopic transformation \mathfrak{H} on \mathbb{H}

It is mandatory that:

- \mathfrak{H} is a homotopic transformation from H to \widehat{H} represented by a sequence of additions / removals of simple 2-cells,
- \widehat{H} can be embedded into \mathbb{F}, i.e. $\widehat{F}=\Pi_{\mathbb{F}}(\widehat{H})$ exists; and
- the digital analogue $X_{\mathcal{R}}=\boxminus\left(\Pi_{\mathbb{R}^{2}}(\widehat{H})\right) \subset \mathbb{Z}^{2}$ of \widehat{H} be as close as possible to the solution of the optimization problem

$$
X_{\mathcal{R}}=\arg _{Y \in 2^{Z^{2}}} \min \mathcal{D}_{\mathcal{R}, \mathrm{X}}(\mathrm{Y})
$$

Heuristics for solving the optimization problem

A non-exhaustive list of ideas in order to reach the goal:

- Border processing
- Measure separability and gradient climbing
- Homotopic transformations in \mathbb{F}
- Termination issues
- Non-existence of solutions

General algorithm of homotopic digital rigid motion

Algorithm 1: Construction of \widehat{H} from H by \mathfrak{H}
Input: $H \subset \mathbb{H}, \mathcal{D}_{\mathcal{R}, \mathrm{x}}: 2^{\mathbb{Z}^{2}} \rightarrow \mathbb{R}_{+}$
Output: $\widehat{H} \subset \mathbb{H}$
$1 \widehat{H} \leftarrow H$
$2 \mathbb{B}_{2} \leftarrow\left\{\mathfrak{f}_{2} \in \mathbb{F}_{2} \mid \Phi\left(\mathfrak{f}_{2}\right) \nsubseteq \mathbb{H}_{2}(H) \wedge \Phi\left(f_{2}\right) \cap \mathbb{H}_{2}(H) \neq \emptyset\right\}$
3 while $\mathbb{B}_{2} \neq \emptyset$ do
4 choose $\mathfrak{f}_{2} \in \mathbb{B}_{2}$ wrt $D_{\mathcal{R}, \mathrm{X}}$
$5 \quad \mathbb{B}_{2} \leftarrow \mathbb{B}_{2} \backslash\left\{\mathfrak{f}_{2}\right\}$
$6 \quad\left(\mathbb{I}_{2}, \mathbb{O}_{2}\right) \leftarrow\left(\Phi\left(\mathfrak{f}_{2}\right) \cap \mathbb{H}_{2}(\widehat{H}), \Phi\left(\mathfrak{f}_{2}\right) \backslash \mathbb{H}_{2}(\widehat{H})\right)$
$7 \quad$ while $\exists \mathfrak{h}_{2} \in \mathbb{I}_{2}$ s.t. $C\left(\mathfrak{h}_{2}\right)$ is simple for \widehat{H} do
8
9
10

$$
\text { if } \mathbb{I}_{2} \neq \emptyset \text { then }
$$

$$
\text { while } \exists \mathfrak{h}_{2} \in \mathbb{O}_{2} \text { s.t. } C\left(\mathfrak{h}_{2}\right) \text { is simple for } \hat{H} \text { do }
$$

$$
\begin{aligned}
& \hat{H} \leftarrow \hat{H} \otimes C\left(\mathfrak{h}_{2}\right) \\
& \left(\mathbb{I}_{2}, \mathbb{O}_{2}\right) \leftarrow\left(\mathbb{I}_{2} \backslash\left\{\mathfrak{h}_{2}\right\}, \mathbb{O}_{2} \cup\left\{\mathfrak{h}_{2}\right\}\right)
\end{aligned}
$$

$$
\widehat{H} \leftarrow \widehat{H} \cup C\left(\mathfrak{h}_{2}\right)
$$

$$
\left(\mathbb{I}_{2}, \mathbb{O}_{2}\right) \leftarrow\left(\mathbb{I}_{2} \cup\left\{\mathfrak{h}_{2}\right\}, \mathbb{O}_{2} \backslash\left\{\mathfrak{h}_{2}\right\}\right)
$$

if $\mathbb{O}_{2} \neq \emptyset$ then Failure of the process

Dissimilarity measures

Examples of dissimilarity measure

- based on Gauss digitization:

$$
\mathcal{D}_{\mathcal{R}, \mathrm{X}}^{\bullet}(\mathrm{Y})=|\boxtimes(\mathcal{R}(\square(\mathrm{X}))) \backslash \mathrm{Y}|+|\mathrm{Y} \backslash \backsim(\mathcal{R}(\square(\mathrm{X})))|
$$

- based on majority vote digitization:

$$
\mathcal{D}_{\mathcal{R}, \mathrm{x}}^{\square}(\mathrm{Y})=|\mathcal{R}(\square(\mathrm{X})) \backslash \square(\mathrm{Y})|+|\square(\mathrm{Y}) \backslash \mathcal{R}(\square(\mathrm{X}))|
$$

Experiments with/without topological constraint

Original image
Gaussian

Majority vote

without

with

Experiments with/without topological constraint

DG 1.151

Original image

Gaussian

Majority vote

without

with

Experiments with/without topological constraint

Original image

Gaussian

Majority vote

without

with

Conclusion and perspectives

Conclusion

- The proposed approach of digital rigid motion ensures topological invariance between the initial object and its image.
- It relies on an optimization strategy under topological constraints on the cellular space.
- It may lead to non-existence of solutions.

Conclusion and perspectives

Conclusion

- The proposed approach of digital rigid motion ensures topological invariance between the initial object and its image.
- It relies on an optimization strategy under topological constraints on the cellular space.
- It may lead to non-existence of solutions.

Perspectives

- Multigrid strategies may help us to handle solution non-existence.
- Other dissimilarity measures can be integrated in the framework.
- Adaptation of the proposed approach to other topological models and non-binary images will be investigated.
- Transformations in higher dimensions and other families of transformations will be considered.
- Other constraints, which are not only topological but also geometrical, can be combined.

Implementation issues

A first implementation of the homotopic digital rigid motion proceeds in three steps:

1. compute the cellular complex H on \mathbb{H} from

$$
G=\Pi_{\mathbb{G}}(\mathcal{R}(\square(\mathrm{X}))) .
$$

Implementation issues

A first implementation of the homotopic digital rigid motion proceeds in three steps:

1. compute the cellular complex H on \mathbb{H} from

$$
G=\Pi_{\mathbb{G}}(\mathcal{R}(\square(X))) .
$$

2. initialize a solution \widehat{H} by building a homotopic transformation of H in \mathbb{H},

Implementation issues

A first implementation of the homotopic digital rigid motion proceeds in three steps:

1. compute the cellular complex H on \mathbb{H} from

$$
G=\Pi_{\mathbb{G}}(\mathcal{R}(\square(X))) .
$$

2. initialize a solution \widehat{H} by building a homotopic transformation of H in \mathbb{H},
3. update \widehat{H} iteratively while the error measure is reduced and the solution is homotopic to H.

