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Rigid motions in Zn: Problem

In Rn, a rigid transformation, which is a combination of rotations and

translations, is a geometric transformation that preserves the Euclidean

distance between any pair of points.

Problem

In Zn, topology (and geometry) is often altered during such

transformations due to the discontinuities induced by digitization.
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Topological preservation: State of the art

State of the art

• A class of 2D images that preserve their topological properties

during rigid motions, called regular, has been identified [1].

• With a polygonal intermediate, a class of regions in R2, which

preserve their connectivity after the digitization, called

quasi-regular, has been identified [3,4].

=⇒ Extension to higher dimensions is not trivial [2].

original rotated regularized regular + rotated

[1] Ngo, Passat, Kenmochi, Talbot, “Topology-preserving rigid transformation of 2D digital images”, IEEE Trans.

on Image Processing, 2014.
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Goal and contributions

Goal

Given a binary object X and a rigid transformation R, construct a

transformed binary object XR preserving the homotopy type.

The problem is formulated as an optimization problem in the space of

cellular complexes with the notion of collapse on complexes.

Advantages

The framework is flexible in higher dimensions as well as other

geometric transformations.

3



Goal and contributions

Goal

Given a binary object X and a rigid transformation R, construct a

transformed binary object XR preserving the homotopy type.

The problem is formulated as an optimization problem in the space of

cellular complexes with the notion of collapse on complexes.

Advantages

The framework is flexible in higher dimensions as well as other

geometric transformations.

3



Goal and contributions

Goal

Given a binary object X and a rigid transformation R, construct a

transformed binary object XR preserving the homotopy type.

The problem is formulated as an optimization problem in the space of

cellular complexes with the notion of collapse on complexes.

Advantages

The framework is flexible in higher dimensions as well as other

geometric transformations. 3



Problem statement as a discrete optimization

Reaching the most similar XR to X can be formalized as:

XR = arg
Y∈2Z2 minDR,X(Y)

where DR,X(Y) is a dissimilarity measure between X and Y.

Example of dissimilarity measure

• based on Gauss digitization:

D�
R,X(Y) = |� (R(�(X))) \ Y|+ |Y \�(R(�(X)))|
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where DR,X(Y) is a dissimilarity measure between X and Y.

Example of dissimilarity measure

• based on Gauss digitization:

D�
R,X(Y) = |� (R(�(X))) \ Y|+ |Y \�(R(�(X)))|

• Continuous analogue of X: �(X) = X⊕� = X

where ⊕ is the dilation operator and � is the structuring element

[ 12 ,
1
2 ]2 ⊂ R2.

• Gauss digitization of X: �(X) = X ∩ Z2.
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Problem statement as a discrete optimization

Reaching the most similar XR to X can be formalized as:

XR = arg
Y∈2Z2 minDR,X(Y)

where DR,X(Y) is a dissimilarity measure between X and Y.

Example of dissimilarity measure

• based on Gauss digitization:

D�
R,X(Y) = |� (R(�(X))) \ Y|+ |Y \�(R(�(X)))|

Topological constraint is missing!
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Definition of cellular space

A closed convex polygon P and its partition F(P)

F(P) contains:

2-face (interior of P, P̊),

1-faces (edges of P), and

0-faces (vertices of P).

A union of closed convex polygons Ω and its partition K(Ω)

Let Ω =
⋃
K where K is a set of closed, convex polygons such that for

any pair P1,P2 ∈ K, P̊1 ∩ P̊2 = ∅. Then, K(Ω) =
⋃

P∈K F(P).
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Definition of cellular complexes

Let K be a cellular space and f ∈ K be a face.

Cell C (f)

The cell C (f) induced by f is the subset of faces of K such that⋃
C (f) is the smallest closed set that includes f.

Complex of K
A complex K of K is a union of cells of K.

The embedding of K into R2 is defined by ΠR2(K ) =
⋃

K .

If X = ΠR2(K ), K is the embedding of X into K, K = ΠK(X ).
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Collapse on complexes

Let K be a complex defined in a cellular space K.

Elementary collapse

Suppose that τ and σ are two faces of K such that

• τ ⊂ σ with dim(τ) = dim(σ)− 1 and

• σ is a maximal face of K and no other maximal face of K

contains τ ,

then τ is called a free face and the removal of the faces,

K \ {τ, σ}, is called an elementary collapse.

If there is a sequence of elementary collapses from K to a complex

K ′, we say that K collapses to K ′.

7



Simple cells

Let K be a complex defined in a cellular space K on R2.

Let f2 be a 2-face of K .

Let Dd(f2), d = 0, 1, be the subset of C (f2) composed by the d-faces f

such that S(f) ∩ K = S(f) ∩ C (f2).

Simple cells

If |D1(f2)| = |D0(f2)|+ 1, C (f2) is called a simple 2-cell for K .

• Detachment of a simple 2-cell C (f2) from K : collapse operation

from K to K � C (f2) = K \ ({f2} ∪ D1(f2) ∪ D0(f2))

• Attachment of a simple 2-cell C (f2) for K ∪ C (f2) where

f ∈ K \ K : the inverse collapse operation from K into K ∪ C (f2)

8



Cubical space F induced by Z2

Let ∆ = Z + 1
2 .The induced cellular complex space F is composed of:

• set of 0-faces F0 = {{d} | d ∈ ∆2}
• set of 1-faces F1 =

⋃
i=1,2{]d ,d + e i [ | d ∈ ∆2}

• set of 2-faces F2 = {]d ,d + e1[ × ]d ,d + e2[ | d ∈ ∆2}

where e1 = (1, 0) and e2 = (0, 1).

Given a digital object X ⊂ Z2, the associated complex F = ΠF(�(X))

is defined as:

F =
⋃
x∈X

C (�(x))

where �(p) = p ⊕ ]− 1
2 ,

1
2 [2 for p ∈ Z2.
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Cubical space G induced by R(Z2)

The cubical space G induced by a rigid motion R and Z2 is composed

of the three sets of d-faces (0 ≤ d ≤ 2):

Gd = R(Fd) = {R(f) | f ∈ Fd}

The continuous object XR ⊂ Z2 is modeled by the complex

G = ΠG(XR), which is defined by

G = R(F ) = R(ΠF(X)) = {R(f) | f ∈ ΠF(X )}
10



Rational rigid motions

Rigid motion R(θ,t) : R2 → R2

A rigid motion R(θ,t) is defined for any p ∈ R2 as

R(θ,t)(p) = R(θ) · p + t where R(θ) =

[
cos θ − sin θ

sin θ cos θ

]

is the rotation matrix of angle θ and t is the translation vector.

Remark

A family of rational rigid motions handled for application uses,

• are sufficiently dense, and

• leads to exact geometric calculations.
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Cellular space H refining F and G

A new cellular space H that refines both F and G is built.

For each 2-face h2 of H, there exists exactly one 2-face f2 of F and one

2-face g2 of G such that h2 = f2 ∩ g2.

Namely, we can define

• φ : H2 → F2 such that φ(h2) = f2
• γ : H2 → G2 such that γ(h2) = g2.

and reversely,

• Φ : F2 → 2H2 such that Φ(f2) = {h2 ∈ H2 | φ(h2) = f2}
• Γ : G2 → 2H2 such that Γ(g2) = {h2 ∈ H2 | γ(h2) = g2}.

The 2-faces of H are convex polygons with 3 to 8 edges.
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Optimization-based rigid motion with topological constraint

Proposed framework

Main steps:

1. Generate the cellular complex H on H from

G = ΠG(R(�(X))).

2. Apply a homotopic transformation H from H to Ĥ.

3. Embed the cellular complex Ĥ into F, i.e. F̂ = ΠF(Ĥ). 13



Homotopic transformation H on H

It is mandatory that:

• H is a homotopic transformation from H to Ĥ represented by

a sequence of additions / removals of simple 2-cells,

• Ĥ can be embedded into F, i.e. F̂ = ΠF(Ĥ) exists; and

• the digital analogue XR = �(ΠR2(Ĥ)) ⊂ Z2 of Ĥ be as close

as possible to the solution of the optimization problem

XR = arg
Y∈2Z2 minDR,X(Y)

14



Heuristics for solving the optimization problem

A non-exhaustive list of ideas in order to reach the goal:

• Border processing

• Measure separability and gradient climbing

• Homotopic transformations in F

• Termination issues

• Non-existence of solutions

15



General algorithm of homotopic digital rigid motion

Algorithm 1: Construction of Ĥ from H by H

Input: H ⊂ H, DR,X : 2Z
2 → R+

Output: Ĥ ⊂ H
1 Ĥ ← H

2 B2 ← {f2 ∈ F2 | Φ(f2) 6⊆ H2(H) ∧ Φ(f2) ∩H2(H) 6= ∅}
3 while B2 6= ∅ do

4 choose f2 ∈ B2 wrt DR,X

5 B2 ← B2 \ {f2}
6 (I2,O2)← (Φ(f2) ∩H2(Ĥ),Φ(f2) \H2(Ĥ))

7 while ∃h2 ∈ I2 s.t. C (h2) is simple for Ĥ do

8 Ĥ ← Ĥ � C (h2)

9 (I2,O2)← (I2 \ {h2},O2 ∪ {h2})

10 if I2 6= ∅ then

11 while ∃h2 ∈ O2 s.t. C (h2) is simple for Ĥ do

12 Ĥ ← Ĥ ∪ C (h2)

13 (I2,O2)← (I2 ∪ {h2},O2 \ {h2})

14 if O2 6= ∅ then Failure of the process
16



Dissimilarity measures

Examples of dissimilarity measure

• based on Gauss digitization:

D�
R,X(Y) = |� (R(�(X))) \ Y|+ |Y \�(R(�(X)))|

• based on majority vote digitization:

D�
R,X(Y) = |R(�(X)) \�(Y)|+ |�(Y) \ R(�(X))|

17



Experiments with/without topological constraint

Original image

Gaussian

Majority vote

without with
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Conclusion and perspectives

Conclusion

• The proposed approach of digital rigid motion ensures topological

invariance between the initial object and its image.

• It relies on an optimization strategy under topological constraints on

the cellular space.

• It may lead to non-existence of solutions.

Perspectives

• Multigrid strategies may help us to handle solution non-existence.

• Other dissimilarity measures can be integrated in the framework.

• Adaptation of the proposed approach to other topological models

and non-binary images will be investigated.

• Transformations in higher dimensions and other families of

transformations will be considered.

• Other constraints, which are not only topological but also

geometrical, can be combined.
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Implementation issues

A first implementation of the homotopic digital rigid motion

proceeds in three steps:

1. compute the cellular complex H on H from

G = ΠG(R(�(X))).

2. initialize a solution Ĥ by building a homotopic transformation

of H in H,

3. update Ĥ iteratively while the error measure is reduced and

the solution is homotopic to H.
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