Homotopic Digital Rigid Motion: An Optimization Approach on Cellular Complexes

Nicolas Passat, Phuc Ngo, Yukiko Kenmochi DGMM 2021 – May 26th, 2021 In \mathbb{R}^n , a rigid transformation, which is a combination of rotations and translations, is a geometric transformation that preserves the Euclidean distance between any pair of points.

In \mathbb{R}^n , a rigid transformation, which is a combination of rotations and translations, is a geometric transformation that preserves the Euclidean distance between any pair of points.

Problem

In \mathbb{Z}^n , topology (and geometry) is often altered during such transformations due to the discontinuities induced by digitization.

transformed image

State of the art

• A class of 2D images that preserve their topological properties during rigid motions, called **regular**, has been identified [1].

[1] Ngo, Passat, Kenmochi, Talbot, "Topology-preserving rigid transformation of 2D digital images", IEEE Trans. on Image Processing, 2014.

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called **regular**, has been identified [1].

 This notion can be **transposed to neither higher dimensions**
 - nor other transformations [2].

2

 Ngo, Passat, Kenmochi, Talbot, "Topology-preserving rigid transformation of 2D digital images", IEEE Trans. on Image Processing, 2014.

[2] Passat, Kenmochi, Ngo, Pluta, "Rigid motions in the cubic grid: A discussion on topological issues", In Proc. DGCI 2019.

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called **regular**, has been identified [1].
- With a polygonal intermediate, a class of regions in ℝ², which preserve their connectivity after the digitization, called quasi-regular, has been identified [3,4].

[3] Ngo, Passat, Kenmochi, Debled-Rennesson, "Geometric preservation of 2D digital objects under rigid motions", Journal of Mathematical Imaging and Vision, 2019.

[4] Ngo, Passat, Kenmochi, Debled-Rennesson, "Convexity invariance of voxel objects under rigid motions", in Proc. ICPR 2018.

State of the art

- A class of 2D images that preserve their topological properties during rigid motions, called **regular**, has been identified [1].
- With a polygonal intermediate, a class of regions in ℝ², which preserve their connectivity after the digitization, called quasi-regular, has been identified [3,4].

 \implies Extension to higher dimensions is not trivial [2].

[2] Passat, Kenmochi, Ngo, Pluta, "Rigid motions in the cubic grid: A discussion on topological issues", In Proc. DGCI 2019.

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R} , construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R} , construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

The problem is formulated as an **optimization problem in the space of cellular complexes** with the notion of collapse on complexes.

Goal and contributions

Goal

Given a binary object X and a rigid transformation \mathcal{R} , construct a transformed binary object $X_{\mathcal{R}}$ preserving the homotopy type.

The problem is formulated as an **optimization problem in the space of cellular complexes** with the notion of collapse on complexes.

Advantages

The framework is **flexible** in higher dimensions as well as other geometric transformations.

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$\mathsf{X}_{\mathcal{R}} = \mathsf{arg}_{\mathsf{Y} \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{R},\mathsf{X}}(\mathsf{Y})$$

where $\mathcal{D}_{\mathcal{R},X}(Y)$ is a dissimilarity measure between X and Y.

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

 $X_{\mathcal{R}} = \text{arg}_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{R},X}(Y)$

where $\mathcal{D}_{\mathcal{R},X}(Y)$ is a dissimilarity measure between X and Y.

Example of dissimilarity measure

- based on Gauss digitization: $\mathcal{D}_{\mathcal{R},X}^{\boxdot}(Y) = | \boxdot (\mathcal{R}(\Box(X))) \setminus Y| + |Y \setminus \boxdot(\mathcal{R}(\Box(X)))|$
- Continuous analogue of X: □(X) = X ⊕ □ = X where ⊕ is the dilation operator and □ is the structuring element [¹/₂, ¹/₂]² ⊂ ℝ².
- Gauss digitization of X: $\Box(X) = X \cap \mathbb{Z}^2$.

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

$$\mathsf{X}_{\mathcal{R}} = \mathsf{arg}_{\mathsf{Y} \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{R},\mathsf{X}}(\mathsf{Y})$$

where $\mathcal{D}_{\mathcal{R},X}(Y)$ is a dissimilarity measure between X and Y.

Example of dissimilarity measure

• based on Gauss digitization:

 $\mathcal{D}_{\mathcal{R},X}^{\boxdot}(\mathsf{Y}) = | \odot (\mathcal{R}(\Box(\mathsf{X}))) \setminus \mathsf{Y}| + |\mathsf{Y} \setminus \boxdot(\mathcal{R}(\Box(\mathsf{X})))|$

Problem statement as a discrete optimization

Reaching the most similar $X_{\mathcal{R}}$ to X can be formalized as:

 $X_{\mathcal{R}} = \operatorname{arg}_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{R},X}(Y)$

where $\mathcal{D}_{\mathcal{R},X}(Y)$ is a dissimilarity measure between X and Y.

Example of dissimilarity measure

• based on Gauss digitization:

 $\mathcal{D}_{\mathcal{R},X}^{\scriptscriptstyle \Box}(Y) = | \boxdot \left(\mathcal{R}(\Box(X)) \right) \setminus Y | + |Y \setminus \boxdot(\mathcal{R}(\Box(X)))|$

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

 $\mathcal{F}(P)$ contains: 2-face (interior of P, \mathring{P}), 1-faces (edges of P), and 0-faces (vertices of P).

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

 $\mathcal{F}(P)$ contains: 2-face (interior of P, \mathring{P}), 1-faces (edges of P), and 0-faces (vertices of P).

A union of closed convex polygons Ω and its partition $\mathbb{K}(\Omega)$ Let $\Omega = \bigcup \mathcal{K}$ where \mathcal{K} is a set of closed, convex polygons such that for any pair $P_1, P_2 \in \mathcal{K}, \ \mathring{P}_1 \cap \mathring{P}_2 = \emptyset$. Then, $\mathbb{K}(\Omega) = \bigcup_{P \in \mathcal{K}} \mathcal{F}(P)$.

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$ The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The **embedding of** K **into** \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$.

If $X = \prod_{\mathbb{R}^2}(K)$, K is the embedding of X into K, $K = \prod_{\mathbb{K}}(X)$.

6

Collapse on complexes

Let K be a complex defined in a cellular space \mathbb{K} .

Elementary collapse

Suppose that τ and σ are two faces of K such that

- $\tau \subset \sigma$ with $\dim(\tau) = \dim(\sigma) 1$ and
- σ is a maximal face of K and no other maximal face of K contains τ ,

then τ is called a **free face** and the removal of the faces,

 $K \setminus \{\tau, \sigma\}$, is called an **elementary collapse**.

If there is a sequence of elementary collapses from K to a complex K', we say that K collapses to K'.

Simple cells

Let K be a complex defined in a cellular space \mathbb{K} on \mathbb{R}^2 . Let \mathfrak{f}_2 be a 2-face of K.

Let $D_d(\mathfrak{f}_2)$, d = 0, 1, be the subset of $C(\mathfrak{f}_2)$ composed by the *d*-faces \mathfrak{f} such that $S(\mathfrak{f}) \cap K = S(\mathfrak{f}) \cap C(\mathfrak{f}_2)$.

Simple cells

If $|D_1(\mathfrak{f}_2)| = |D_0(\mathfrak{f}_2)| + 1$, $C(\mathfrak{f}_2)$ is called a **simple** 2-cell for K.

- Detachment of a simple 2-cell C(f₂) from K: collapse operation from K to K ⊗ C(f₂) = K \ ({f₂} ∪ D₁(f₂) ∪ D₀(f₂))
- Attachment of a simple 2-cell C(f₂) for K ∪ C(f₂) where f ∈ K \ K: the inverse collapse operation from K into K ∪ C(f₂)

Cubical space ${\mathbb F}$ induced by ${\mathbb Z}^2$

Let $\Delta = \mathbb{Z} + \frac{1}{2}$. The induced **cellular complex space** \mathbb{F} is composed of:

- set of 0-faces $\mathbb{F}_0 = \{\{\boldsymbol{d}\} \mid \boldsymbol{d} \in \Delta^2\}$
- set of 1-faces $\mathbb{F}_1 = \bigcup_{i=1,2} \{] \boldsymbol{d}, \boldsymbol{d} + \boldsymbol{e}_i [\mid \boldsymbol{d} \in \Delta^2 \}$
- set of 2-faces $\mathbb{F}_2 = \{]d, d + e_1[\times]d, d + e_2[\mid d \in \Delta^2\}$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$.

Cubical space \mathbb{F} induced by \mathbb{Z}^2

Let $\Delta = \mathbb{Z} + \frac{1}{2}$. The induced **cellular complex space** \mathbb{F} is composed of:

- set of 0-faces $\mathbb{F}_0 = \{\{\boldsymbol{d}\} \mid \boldsymbol{d} \in \Delta^2\}$
- set of 1-faces $\mathbb{F}_1 = \bigcup_{i=1,2} \{] \boldsymbol{d}, \boldsymbol{d} + \boldsymbol{e}_i [\mid \boldsymbol{d} \in \Delta^2 \}$
- set of 2-faces $\mathbb{F}_2 = \{] \boldsymbol{d}, \boldsymbol{d} + \boldsymbol{e}_1[\times] \boldsymbol{d}, \boldsymbol{d} + \boldsymbol{e}_2[\mid \boldsymbol{d} \in \Delta^2 \}$

where $e_1 = (1, 0)$ and $e_2 = (0, 1)$.

Given a digital object $X \subset \mathbb{Z}^2$, the **associated complex** $F = \prod_{\mathbb{F}} (\Box(X))$ is defined as:

$$F = \bigcup_{\boldsymbol{x} \in \mathsf{X}} C(\boldsymbol{\blacksquare}(\boldsymbol{x}))$$

where $\blacksquare(\mathbf{p}) = \mathbf{p} \oplus] - \frac{1}{2}, \frac{1}{2}[^2 \text{ for } \mathbf{p} \in \mathbb{Z}^2.$

Cubical space \mathbb{G} induced by $\mathcal{R}(\mathbb{Z}^2)$

The **cubical space** \mathbb{G} induced by a rigid motion \mathcal{R} and \mathbb{Z}^2 is composed of the three sets of *d*-faces ($0 \le d \le 2$):

$$\mathbb{G}_d = \mathcal{R}(\mathbb{F}_d) = \{\mathcal{R}(\mathfrak{f}) \mid \mathfrak{f} \in \mathbb{F}_d\}$$

The continuous object $X_{\mathcal{R}} \subset \mathbb{Z}^2$ is modeled by the complex $\mathcal{G} = \prod_{\mathbb{G}} (X_{\mathcal{R}})$, which is defined by

$$G = \mathcal{R}(F) = \mathcal{R}(\Pi_{\mathbb{F}}(X)) = \{\mathcal{R}(\mathfrak{f}) \mid \mathfrak{f} \in \Pi_{\mathbb{F}}(X)\}$$

Rational rigid motions

Rigid motion $\mathcal{R}_{(\theta,t)} : \mathbb{R}^2 \to \mathbb{R}^2$ A rigid motion $\mathcal{R}_{(\theta,t)}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^2$ as $\mathcal{R}_{(\theta,t)}(\boldsymbol{p}) = R(\theta) \cdot \boldsymbol{p} + \boldsymbol{t}$ where $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

is the rotation matrix of angle θ and t is the translation vector.

Rational rigid motions

Rigid motion
$$\mathcal{R}_{(\theta, t)} : \mathbb{R}^2 \to \mathbb{R}^2$$

A rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^2$ as

$$\mathcal{R}_{(\theta,t)}(\boldsymbol{p}) = R(\theta) \cdot \boldsymbol{p} + \boldsymbol{t}$$
 where $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

is the rotation matrix of angle θ and \boldsymbol{t} is the translation vector.

Here we consider that $R(\theta)$ is rational, *i.e.*,

$$\cos \theta = \frac{a}{c}$$
 and $\sin \theta = \frac{b}{c}$

where $(a, b, c) \in \mathbb{Z}^3$ is a Pythagorean triple, and $\boldsymbol{t} \in \mathbb{Q}^2$.

Rational rigid motions

Rigid motion
$$\mathcal{R}_{(\theta, t)} : \mathbb{R}^2 \to \mathbb{R}^2$$

A rigid motion $\mathcal{R}_{(\theta, \boldsymbol{t})}$ is defined for any $\boldsymbol{p} \in \mathbb{R}^2$ as

$$\mathcal{R}_{(\theta,t)}(\boldsymbol{p}) = R(\theta) \cdot \boldsymbol{p} + \boldsymbol{t}$$
 where $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

is the rotation matrix of angle θ and \boldsymbol{t} is the translation vector.

Here we consider that $R(\theta)$ is rational, *i.e.*,

$$\cos \theta = \frac{a}{c}$$
 and $\sin \theta = \frac{b}{c}$

where $(a, b, c) \in \mathbb{Z}^3$ is a Pythagorean triple, and $t \in \mathbb{Q}^2$.

Remark

A family of rational rigid motions handled for application uses,

- are sufficiently dense, and
- leads to exact geometric calculations.

Cellular space $\mathbb H$ refining $\mathbb F$ and $\mathbb G$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2 = \mathfrak{f}_2 \cap \mathfrak{g}_2$.

Cellular space ${\mathbb H}$ refining ${\mathbb F}$ and ${\mathbb G}$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2 = \mathfrak{f}_2 \cap \mathfrak{g}_2$. Namely, we can define

- $\phi: \mathbb{H}_2 \to \mathbb{F}_2$ such that $\phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $\gamma : \mathbb{H}_2 \to \mathbb{G}_2$ such that $\gamma(\mathfrak{h}_2) = \mathfrak{g}_2$.

Cellular space ${\mathbb H}$ refining ${\mathbb F}$ and ${\mathbb G}$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2 = \mathfrak{f}_2 \cap \mathfrak{g}_2$. Namely, we can define

- $\phi: \mathbb{H}_2 \to \mathbb{F}_2$ such that $\phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $\gamma : \mathbb{H}_2 \to \mathbb{G}_2$ such that $\gamma(\mathfrak{h}_2) = \mathfrak{g}_2$.

and reversely,

- $\Phi: \mathbb{F}_2 \to 2^{\mathbb{H}_2}$ such that $\Phi(\mathfrak{f}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \phi(\mathfrak{h}_2) = \mathfrak{f}_2\}$
- $\Gamma: \mathbb{G}_2 \to 2^{\mathbb{H}_2}$ such that $\Gamma(\mathfrak{g}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \gamma(\mathfrak{h}_2) = \mathfrak{g}_2\}.$

Cellular space $\mathbb H$ refining $\mathbb F$ and $\mathbb G$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2 = \mathfrak{f}_2 \cap \mathfrak{g}_2$. Namely, we can define

- $\phi: \mathbb{H}_2 \to \mathbb{F}_2$ such that $\phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $\gamma : \mathbb{H}_2 \to \mathbb{G}_2$ such that $\gamma(\mathfrak{h}_2) = \mathfrak{g}_2$.

and reversely,

- $\Phi: \mathbb{F}_2 \to 2^{\mathbb{H}_2}$ such that $\Phi(\mathfrak{f}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \phi(\mathfrak{h}_2) = \mathfrak{f}_2\}$
- $\Gamma: \mathbb{G}_2 \to 2^{\mathbb{H}_2}$ such that $\Gamma(\mathfrak{g}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \gamma(\mathfrak{h}_2) = \mathfrak{g}_2\}.$

The 2-faces of \mathbb{H} are convex polygons with 3 to 8 edges.

Optimization-based rigid motion with topological constraint

Main steps:

1. Generate the cellular complex H on $\mathbb H$ from

 $G = \Pi_{\mathbb{G}}(\mathcal{R}(\Box(X))).$

- 2. Apply a **homotopic transformation** \mathfrak{H} from H to \widehat{H} .
- 3. Embed the cellular complex \widehat{H} into \mathbb{F} , *i.e.* $\widehat{F} = \prod_{\mathbb{F}} (\widehat{H})$.

Homotopic transformation \mathfrak{H} on \mathbb{H}

It is mandatory that:

- \mathfrak{H} is a homotopic transformation from H to \widehat{H} represented by a sequence of additions / removals of simple 2-cells,
- \widehat{H} can be embedded into \mathbb{F} , i.e. $\widehat{F} = \prod_{\mathbb{F}} (\widehat{H})$ exists; and
- the digital analogue $X_{\mathcal{R}} = \boxdot(\Pi_{\mathbb{R}^2}(\widehat{H})) \subset \mathbb{Z}^2$ of \widehat{H} be as close as possible to the solution of the optimization problem

$$\mathsf{X}_\mathcal{R} = \mathsf{arg}_{\mathsf{Y} \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{R},\mathsf{X}}(\mathsf{Y})$$

14

A non-exhaustive list of ideas in order to reach the goal:

- Border processing
- Measure separability and gradient climbing
- Homotopic transformations in $\ensuremath{\mathbb{F}}$
- Termination issues
- Non-existence of solutions

General algorithm of homotopic digital rigid motion

```
Algorithm 1: Construction of \hat{H} from H by \mathfrak{H}
       Input: H \subset \mathbb{H}, \mathcal{D}_{\mathcal{R}, \mathbf{X}} : 2^{\mathbb{Z}^2} \to \mathbb{R}_+
       Output: \widehat{H} \subset \mathbb{H}
  1 \ \widehat{H} \leftarrow H
  2 \mathbb{B}_2 \leftarrow \{\mathfrak{f}_2 \in \mathbb{F}_2 \mid \Phi(\mathfrak{f}_2) \not\subset \mathbb{H}_2(H) \land \Phi(\mathfrak{f}_2) \cap \mathbb{H}_2(H) \neq \emptyset\}
  3 while \mathbb{B}_2 \neq \emptyset do
             choose \mathfrak{f}_2 \in \mathbb{B}_2 wrt D_{\mathcal{R},\mathsf{X}}
  4
  5 \mathbb{B}_2 \leftarrow \mathbb{B}_2 \setminus \{f_2\}
            (\mathbb{I}_2, \mathbb{O}_2) \leftarrow (\Phi(\mathfrak{f}_2) \cap \mathbb{H}_2(\widehat{H}), \Phi(\mathfrak{f}_2) \setminus \mathbb{H}_2(\widehat{H}))
  6
                while \exists \mathfrak{h}_2 \in \mathbb{I}_2 s.t. C(\mathfrak{h}_2) is simple for \widehat{H} do
  7
                 \widehat{H} \leftarrow \widehat{H} \otimes C(\mathfrak{h}_2)
   8
                  (\mathbb{I}_2, \mathbb{O}_2) \leftarrow (\mathbb{I}_2 \setminus \{\mathfrak{h}_2\}, \mathbb{O}_2 \cup \{\mathfrak{h}_2\})
   9
                 if \mathbb{I}_2 \neq \emptyset then
10
                          while \exists \mathfrak{h}_2 \in \mathbb{O}_2 s.t. C(\mathfrak{h}_2) is simple for \widehat{H} do
11
                                \widehat{H} \leftarrow \widehat{H} \cup C(\mathfrak{h}_2)
12
                           (\mathbb{I}_2, \mathbb{O}_2) \leftarrow (\mathbb{I}_2 \cup \{\mathfrak{h}_2\}, \mathbb{O}_2 \setminus \{\mathfrak{h}_2\})
13
                         if \mathbb{O}_2 \neq \emptyset then Failure of the process
14
```

Dissimilarity measures

Examples of dissimilarity measure

• based on Gauss digitization:

 $\mathcal{D}_{\mathcal{R},X}^{\boxdot}(Y) = | \odot \left(\mathcal{R}(\Box(X)) \right) \setminus Y | + |Y \setminus \odot(\mathcal{R}(\Box(X)))|$

• based on majority vote digitization: $\mathcal{D}_{\mathcal{R},X}^{\Box}(Y) = |\mathcal{R}(\Box(X)) \setminus \Box(Y)| + |\Box(Y) \setminus \mathcal{R}(\Box(X))|$

Experiments with/without topological constraint

18

Experiments with/without topological constraint

Original image

Gaussian

Majority vote

with

Experiments with/without topological constraint

Conclusion and perspectives

Conclusion

- The proposed approach of digital rigid motion ensures topological invariance between the initial object and its image.
- It relies on an optimization strategy under topological constraints on the cellular space.
- It may lead to non-existence of solutions.

Conclusion and perspectives

Conclusion

- The proposed approach of digital rigid motion ensures topological invariance between the initial object and its image.
- It relies on an optimization strategy under topological constraints on the cellular space.
- It may lead to non-existence of solutions.

Perspectives

- Multigrid strategies may help us to handle solution non-existence.
- Other dissimilarity measures can be integrated in the framework.
- Adaptation of the proposed approach to other topological models and non-binary images will be investigated.
- Transformations in higher dimensions and other families of transformations will be considered.
- Other constraints, which are not only topological but also geometrical, can be combined.

Implementation issues

A first implementation of the homotopic digital rigid motion proceeds in three steps:

1. compute the cellular complex H on $\mathbb H$ from

 $G = \Pi_{\mathbb{G}}(\mathcal{R}(\Box(X))).$

Implementation issues

A first implementation of the homotopic digital rigid motion proceeds in three steps:

- 1. compute the cellular complex H on \mathbb{H} from $G = \Pi_{\mathbb{G}}(\mathcal{R}(\Box(X))).$
- 2. initialize a solution \widehat{H} by building a homotopic transformation of H in \mathbb{H} ,

A first implementation of the homotopic digital rigid motion proceeds in three steps:

- 1. compute the cellular complex H on \mathbb{H} from $G = \Pi_{\mathbb{G}}(\mathcal{R}(\Box(X))).$
- 2. initialize a solution \widehat{H} by building a homotopic transformation of H in \mathbb{H} ,
- 3. update \hat{H} iteratively while the error measure is reduced and the solution is homotopic to H.

