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Abstract
The Expectation-Maximization (EM) algorithm is a popular choice for learning latent variable
models. Variants of the EM have been initially introduced by Neal and Hinton (1998), using in-
cremental updates to scale to large datasets, and by Wei and Tanner (1990); Delyon et al. (1999),
using Monte Carlo (MC) approximations to bypass the intractable conditional expectation of the
latent data for most nonconvex models. In this paper, we propose a general class of methods called
Two-Timescale EM Methods based on a two-stage approach of stochastic updates to tackle an es-
sential nonconvex optimization task for latent variable models. We motivate the choice of a double
dynamic by invoking the variance reduction virtue of each stage of the method on both sources
of noise: the index sampling for the incremental update and the MC approximation. We establish
finite-time and global convergence bounds for nonconvex objective functions. Numerical applica-
tions on various models such as deformable template for image analysis or nonlinear mixed-effects
models for pharmacokinetics are also presented to illustrate our findings.

Keywords: twotimescale, stochastic, EM, sampling, MCMC, Monte Carlo

1. Introduction

Learning latent variable models is critical for modern machine learning problems, see (e.g.,) McLach-
lan and Krishnan (2007) for references. We formulate the training of such model as an empirical
risk minimization problem:

min
θ∈Θ

L(θ) := L(θ) + r(θ) with L(θ) =
1

n

n∑
i=1

Li(θ) :=
1

n

n∑
i=1

{
− log g(yi;θ)

}
, (1)

where {yi}ni=1 are observations, Θ ⊂ Rd is the parameters set and r : Θ → R is a smooth reg-
ularizer. The objective L(θ) is possibly nonconvex and is assumed to be lower bounded. In the
latent data model, the likelihood g(yi;θ), is the marginal of the complete data likelihood defined as
f(zi, yi;θ), g(yi;θ) =

∫
Z f(zi, yi;θ)µ(dzi), where {zi}ni=1 are the latent variables. In this paper,

we assume that the complete model belongs to the curved exponential family (Efron et al., 1975):

f(zi, yi;θ) = h(zi, yi) exp
(〈
S(zi, yi) |φ(θ)

〉
− ψ(θ)

)
, (2)

where ψ(θ), h(zi, yi) are scalar functions, φ(θ) ∈ Rk is a vector function, and {S(zi, yi) ∈ Rk}ni=1

is the vector of sufficient statistics. Batch EM (Dempster et al., 1977; Wu, 1983), the method of
reference for (1), is comprised of two steps. The E-step computes the conditional expectation of
the sufficient statistics of (2), noted s(θ):
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E-step: s(θ) =
1

n

n∑
i=1

si(θ) where si(θ) =

∫
Z
S(zi, yi)p(zi|yi;θ)µ(dzi) , (3)

and the M-step is given by

M-step: θ̂ = θ(s(θ)) := arg min
ϑ∈Θ

{
r(ϑ) + ψ(ϑ)−

〈
s(θ) |φ(ϑ)

〉}
. (4)

Two caveats of this method are the following: (a) with the explosion of data, the first step of the
EM is computationally inefficient as it requires, at each iteration, a full pass over the dataset; and
(b) the complexity of modern models makes the expectation in (3) intractable. So far, and to the
best of our knowledge, both challenges have been addressed separately, as detailed in the sequel.

Prior Work: Inspired by stochastic optimization procedures, Neal and Hinton (1998); Cappé and
Moulines (2009) develop respectively an incremental and an online variant of the E-step in mod-
els where the expectation is computable, and were then extensively used and studied in Nguyen
et al. (2020); Liang and Klein (2009); Cappé (2011). Some improvements of those methods have
been provided and analyzed, globally and in finite-time, in Karimi et al. (2019) where variance re-
duction techniques taken from the optimization literature have been efficiently applied to scale the
EM algorithm to large datasets. Regarding the computation of the expectation under the posterior
distribution, the Monte Carlo EM (MCEM) has been introduced in Wei and Tanner (1990) where
a Monte Carlo (MC) approximation for this expectation is computed. A variant of that algorithm
is the Stochastic Approximation of the EM (SAEM) in Delyon et al. (1999) leveraging the power
of Robbins-Monro update (Robbins and Monro, 1951) to ensure pointwise convergence of the vec-
tor of estimated parameters using a decreasing stepsize rather than increasing the number of MC
samples. The MCEM and the SAEM have been successfully applied in mixed effects models (Mc-
Culloch, 1997; Hughes, 1999; Baey et al., 2016) or to do inference for joint modeling of time to
event data coming from clinical trials in Chakraborty and Das (2010), unsupervised clustering in Ng
and McLachlan (2003), variational inference of graphical models in Blei et al. (2017) among other
applications. An incremental variant of the SAEM was proposed in Kuhn et al. (2019) showing
positive empirical results but its analysis is limited to asymptotic consideration.

Contributions: This paper introduces and analyzes a new class of methods which purpose is to up-
date two proxies for the target expected quantities in a two-timescale manner. Those approximated
quantities are then used to optimize the objective function (1) for modern examples and settings
using the M-step of the EM algorithm. The main contributions of the paper are:

• We propose a two-timescale method based on (i) Stochastic Approximation (SA), to alleviate
the problem of computing MC approximations, and on (ii) Incremental updates, to scale to
large datasets. We describe in details the edges of each level of our method based on variance
reduction arguments. Such class of algorithms has two advantages. First, it naturally lever-
ages variance reduction and Robbins-Monro type of updates to tackle large-scale and highly
nonlinear learning tasks. Then, it gives a simple formulation as a scaled-gradient method
which makes the global analysis and the implementation accessible.

• We also establish global (independent of the initialization) and finite-time (true at each iter-
ation) upper bounds on a classical sub-optimality condition in the nonconvex literature (Jain
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and Kar, 2017; Ghadimi and Lan, 2013), i.e., the second order moment of the gradient of the
objective function. We discuss the double dynamic of those bounds due to the two-timescale
property of our algorithm update and we theoretically show the advantages of introducing
variance reduction in a Stochastic Approximation (Robbins and Monro, 1951) scheme.

• We stress on the originality of our theoretical findings including such MC sampling noise
contrary to existing studies related to the EM where the expectations are computed exactly.
Adding a layer of MC approximation and the stochastic approximation step to reduce its
variance introduce some new technicalities and challenges that need careful considerations
and constitues the originality of our paper on the algorithmic and theoretical plans.

In Section 2 we formalize both incremental and Monte Carlo variants of the EM. Then, we introduce
our two-timescale class of EM algorithms for which we derive several global statistical guarantees
in Section 3 for possibly nonconvex functions. Section 4 is devoted to numerical illustrations. The
supplementary material of this paper includes proofs of our theoretical results.

2. Two-Timescale Stochastic EM Algorithms

We recall and formalize in this section the different methods found in the literature that aim at solv-
ing the intractable expectation and the large-scale problem. We then provide the general framework
of our method that efficiently tackles the optimization problem (1).

2.1. Monte Carlo Integration and Stochastic Approximation

As mentioned in the Introduction, for complex and possibly nonconvex models, the expectation
under the posterior distribution defined in (3) is not tractable. In that case, the first solution involves
computing a Monte Carlo integration of that latter. For all i ∈ [n], where [n] := {1, · · · , n}, draw
{zi,m ∼ p(zi|yi; θ)}Mm=1 samples and compute the MC integration of S̃ of s(θ) defined by (3):

MC-step : S̃ :=
1

n

n∑
i=1

1

M

M∑
m=1

S(zi,m, yi) . (5)

Then update the parameter via the maximization function θ(S̃). This algorithm bypasses the in-
tractable expectation issue but is rather computationally expensive in order to reach point wise
convergence (M needs to be large). An alternative to that stochastic algorithm is to use a Robbins-
Monro (RM) type of update. We denote, at iteration k, the number of samplesMk and the following
MC approximation by S̃(k+1):

S̃(k+1) :=
1

n

n∑
i=1

S̃
(k+1)
i =

1

n

n∑
i=1

1

Mk

Mk∑
m=1

S(z
(k)
i,m, yi) where z

(k)
i,m ∼ p(zi|yi; θ

(k)) . (6)

Then, the RM update of the sufficient statistics ŝ(k+1) reads:

SA-step : ŝ(k+1) = ŝ(k) + γk+1(S̃(k+1) − ŝ(k)) , (7)

where {γk}k>1 ∈ (0, 1) is a sequence of decreasing stepsizes to ensure asymptotic convergence.
The combination of (6) and (7) is called the Stochastic Approximation of the EM (SAEM) and has
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been shown to converge to a maximum likelihood of the observations under very general condi-
tions (Delyon et al., 1999). In simple scenarios, the samples {zi,m}Mm=1 are conditionally indepen-
dent and identically distributed with distribution p(zi, θ). Nevertheless, in most cases, since the loss
function between the observed data yi and the latent variable zi can be nonconvex, sampling exactly
from this distribution is not an option and the MC batch is sampled by Markov Chain Monte Carlo
(MCMC) algorithm (Meyn and Tweedie, 2012; Brooks et al., 2011). It has been proved in Kuhn
and Lavielle (2004) that (7) converges almost surely when coupled with an MCMC procedure.
Role of the stepsize γk: The sequence of decreasing positive integers {γk}k>1 controls the con-
vergence of the algorithm. It is inefficient to start with small values for the stepsize γk and large
values for the number of simulations Mk. Rather, it is recommended that one decreases γk, as in
γk = 1/kα, with α ∈ (0, 1), and keeps a constant and small number Mk bypassing the computa-
tionally involved sampling step in (5). In practice, γk is set equal to 1 during the first few iterations
to let the iterates explore the parameter space without memory and converge quickly to a neigh-
borhood of the target estimate. The Stochastic Approximation is performed during the remaining
iterations ensuring the almost sure convergence of the vector of estimates.

This Robbins-Monro type of update constitutes the first level of our algorithm, needed to temper
the variance and noise introduced by the Monte Carlo integration. In the next section, we derive
variants of this algorithm to adapt to the sheer size of data of today’s applications and formalize the
second level of our class of two-timescale EM methods.

2.2. Incremental and Two-Stage Stochastic EM Methods

Efficient strategies to scale to large datasets include incremental (Neal and Hinton, 1998) and vari-
ance reduced (Chen et al., 2018; Johnson and Zhang, 2013) methods. We will explicit a general
update that covers those latter variants and that represents the second level of our algorithm, i.e., the
incremental update of the noisy statistics S̃(k+1) in (6). Instead of computing its full batch noted
S̃(k+1) as in (6), the MC approximation is incrementally evaluated through the quantity S(k+1)

tts as:

Incremental-step : S
(k+1)
tts = S

(k)
tts + ρk+1

(
S(k+1) − S(k)

tts
)
. (8)

Note that {ρk}k>1 ∈ (0, 1) is a sequence of stepsizes, S(k) is a proxy for S̃(k) defined in (6). If
the stepsize is equal to 1 and S(k) = S̃(k), i.e., computed in a full batch manner as in (6), then we
recover the SAEM algorithm. Also if ρk = 1, γk = 1 and S(k) = S̃(k), then we recover the MCEM.

Remarks on Table 1: For all methods, we define a random index drawn at iteration k, noted ik ∈
[n], and τki = max{k′ : ik′ = i, k′ < k} as the iteration index where i ∈ [n] is last drawn prior to it-
eration k.

Table 1 Proxies for the Incremental-step (8)

1: iSAEM S(k+1) = S(k) +n−1
(
S̃

(k)
ik
− S̃

(τkik
)

ik

)
2: vrTTEM S(k+1) = S

(`(k))
tts +

(
S̃

(k)
ik
− S̃(`(k))

ik

)
3: fiTTEM S(k+1) = S(k)

+
(
S̃

(k)
ik
− S̃

(tkik
)

ik

)
S(k+1)

= S(k)
+ n−1

(
S̃

(k)
jk
− S̃

(tkjk
)

jk

)

The proposed fiTTEM method draws two
indices independently and uniformly as
ik, jk ∈ [n]. Thus, we define tkj = {k′ :
jk′ = j, k′ < k} to be the iteration in-
dex where the sample j ∈ [n] is last drawn
as jk prior to iteration k in addition to τki
which was defined w.r.t. ik.

Recall S̃(k)
ik

= 1
Mk

∑Mk
m=1 S(z

(k)
ik,m

, yik)

where z
(k)
ik,m

are samples drawn from
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p(zik |yik ; θ(k)). The stepsize in (8) is set to ρk+1 = 1 for the iSAEM method and we initialize
with S(0) = S̃(0); ρk+1 = ρ is constant for the vrTTEM and fiTTEM methods. Note that we
initialize as follows S(0)

= S̃(0) for the fiTTEM which can be seen as a slightly modified version
of SAGA inspired by Reddi et al. (2016). For vrTTEM we set an epoch size of m and we define
`(k) := mbk/mc as the first iteration number in the epoch that iteration k is in.

Two-Timescale Stochastic EM methods: We now introduce the general method derived using the
two variance reduction techniques described above. Algorithm 1 leverages both levels (7) and (8)
in order to output a vector of fitted parameters θ̂(Km) where Km is the total number of iterations.

Algorithm 1 Two-Timescale Stochastic EM methods.

1: Input: θ̂(0) ← 0, ŝ(0) ← S̃(0), {γk}k>0, {ρk}k>0 and Km ∈ N∗.
2: for k = 0, 1, 2, . . . ,Km − 1 do
3: Draw index ik ∈ [n] uniformly (and jk ∈ [n] for fiTTEM).
4: Compute S̃(k)

ik
using the MC-step (5), for the drawn indices.

5: Compute the surrogate sufficient statistics S(k+1) using Lines 1, 2 or 3 in Table 1.
6: Compute S(k+1)

tts and ŝ(k+1) using respectively (8) and (7):

S
(k+1)
tts = S

(k)
tts + ρk+1

(
S(k+1) − S(k)

tts
)

ŝ(k+1) = ŝ(k) + γk+1(S
(k+1)
tts − ŝ(k))

(9)

7: Update θ̂(k+1) = θ(ŝ(k+1)) via the M-step.
8: end for

The update in (9) is said to have a two-timescale property as the stepsizes satisfy limk→∞ γk/ρk <
1 such that S̃(k+1) is updated at a faster time-scale, determined by ρk+1, than ŝ(k+1), determined
by γk+1. The next section introduces the main results of this paper and establishes global and
finite-time bounds for the three different updates of our scheme. We first recall the main notations
introduced in the previous section:

S̃ , MC approximation of its expected counterpart s at index i ∈ [n]

S , proxy of the MC approximation S̃ and updated incrementally according to Table 1
Stts , variance-reduced quantity in (8) and related to stepsize ρ

ŝ , statistics resulting from the Robbins-Monro procedure in (7) and related to stepsize γ

3. Finite Time Analysis of the Two-Timescale Scheme

Following Cappé and Moulines (2009), it can be shown that stationary points of the objective func-
tion (1) corresponds to the stationary points of the following nonconvex Lyapunov function:

min
s∈S

V (s) := L(θ(s)) =
1

n

n∑
i=1

Li(θ(s)) + r(θ(s)) , (10)

that we propose to study in this article.
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3.1. Assumptions and Intermediate Lemmas

Several important assumptions required to derive convergence guarantees read as follows:

A1 The sets Z,S are compact. There exist constants CS, CZ such that:

CS := maxs,s′∈S ‖s− s′‖ <∞, CZ := maxi∈[n]

∫
Z |S(z, yi)|µ(dz) <∞. (11)

A2 For any i ∈ [n], z ∈ Z, θ,θ′ ∈ int(Θ)2, we have
∣∣p(z|yi;θ) − p(z|yi;θ′)

∣∣ ≤ Lp ‖θ − θ′‖
where int(Θ) denotes the interior of Θ.

We also recall that we consider curved exponential family models assuming the following:

A3 For any s ∈ S, the function θ 7→ L(s,θ) := r(θ) + ψ(θ)−
〈
s |φ(θ)

〉
admits a unique global

minimum θ(s) ∈ int(Θ).
In addition, Jθφ(θ(s)), the Jacobian of the function φ at θ, is full rank, Lp-Lipschitz and θ(s) is

Lt-Lipschitz.

We denote by HθL(s,θ) the Hessian (w.r.t to θ for a given value of s) of the function θ 7→ L(s,θ) =

r(θ) + ψ(θ)−
〈
s |φ(θ)

〉
, and define B(s) := Jθφ(θ(s))

(
HθL(s,θ(s))

)−1
Jθφ(θ(s))>.

A4 It holds that υmax := sups∈S ‖B(s)‖ < ∞ and 0 < υmin := infs∈S λmin(B(s)). There exists
a constant Lb such that for all s, s′ ∈ S2, we have ‖B(s)− B(s′)‖ ≤ Lb ‖s− s′‖.

The class of algorithms we develop in this paper is composed of two levels where the second stage
corresponds to the variance reduction trick used in Karimi et al. (2019) in order to accelerate in-
cremental methods and reduce the variance introduced by the index sampling. The first stage is the
Robbins-Monro update that aims at reducing the Monte Carlo noise of S̃(k+1) at iteration k:

η
(k)
i := S̃

(k)
i − si(ϑ

(k)) for all i ∈ [n] and k > 0 . (12)

For instance, we consider that the MC approximation is unbiased if for all i ∈ [n] and m ∈ [M ],
the samples zi,m ∼ p(zi|yi; θ) are i.i.d. under the posterior distribution, i.e., E[η

(k)
i |Fk] = 0 where

Fk is the filtration up to iteration k. The following results are derived under the assumption that the
fluctuations implied by the approximation are bounded:

A5 For all k > 0, i ∈ [n], it holds: E[‖η(k)
i ‖2] <∞ and E[‖E[η

(k)
i |Fk]‖2] <∞ .

Note that typically, the controls exhibited above are vanishing when the number of MC samples Mk

increases with k. We now state two important results on the Lyapunov function; its smoothness:

Lemma 1 (Karimi et al., 2019) Assume A1-A4. For all s, s′ ∈ S and i ∈ [n], we have

‖si(θ(s))− si(θ(s′))‖ ≤ Ls ‖s− s′‖, ‖∇V (s)−∇V (s′)‖ ≤ LV ‖s− s′‖ , (13)

where Ls := CZ Lp Lt and LV := υmax

(
1 + Ls

)
+ LbCS.

We also establish a growth condition on the gradient of V related to the mean field of the algorithm:

Lemma 2 Assume A3 and A4. For all s ∈ S,

υ−1
min

〈
∇V (s) | s− s(θ(s))

〉
≥ ‖s− s(θ(s))‖2 ≥ υ−2

max‖∇V (s)‖2 . (14)

We present in the following sections a finite-time and global (independent of the initialization)
analysis of both the incremental and two-timescale variants our method.
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3.2. Global Convergence of Incremental Stochastic EM Algorithms

The following result for the iSAEM algorithm is derived under the control of the Monte Carlo fluc-
tuations as described by Assumption A5 and is built upon an intermediary Lemma, characterizing
the quantity of interest (S

(k+1)
tts − ŝ(k)):

Lemma 3 Assume A1. The iSAEM update (1) is equivalent to the following update on the statistics

ŝ(k+1) = ŝ(k) + γk+1

(∑n
i=1 S̃

(τki )
i − ŝ(k)

)
. Also:

E[S
(k+1)
tts − ŝ(k)] = E[s(k) − ŝ(k)] +

(
1− 1

n

)
E

[
1

n

n∑
i=1

S̃
(τki )
i − s(k)

]
+

1

n
E[η

(k+1)
ik

] ,

where s(k) is defined by (3) and τki = max{k′ : ik′ = i, k′ < k}.

Then, the following non-asymptotic convergence rate can be derived for the iSAEM algorithm:

Theorem 1 Assume A1-A5. Consider the iSAEM sequence {ŝ(k)}k>0 ∈ S obtained with ρk+1 = 1
for any k ≤ Km where Km is a positive integer. Let {γk = 1/(kaαc1L)}k>0, where a ∈ (0, 1), be a
sequence of stepsizes, c1 = υ−1

min, α = max{8, 1 + 6υmin}, L = max{Ls,LV }, β = c1L/n. Then:

υ−2
max

Km∑
k=0

α̃kE[‖∇V (ŝ(k))‖2] ≤ E[V (ŝ(0))− V (ŝ(Km))] +

Km−1∑
k=0

Γ̃kE[‖η(k)
ik
‖2] .

Note that, in Theorem 1, the convergence bound is composed of an initialization term V (ŝ(0)) −
V (ŝ(Km)) and suffers from the Monte Carlo noise introduced by the posterior sampling step, see
the second term on the RHS of the inequality. We observe, in the next section, that when variance
reduction is applied (ρk < 1), a second phase of convergence will be included in our bounds.

3.3. Global Convergence of Two-Timescale Stochastic EM Algorithms

We now deal with the analysis of Algorithm 1 when variance reduction is applied i.e., ρ < 1. Two
important intermediate Lemmas are needed in order to establish finite-time bounds for the vrTTEM
and the fiTTEM methods. We first derive an identity for the drift term of the vrTTEM :

Lemma 4 Consider the vrTTEM update (2) with ρk = ρ, it holds for all k > 0

E[‖ŝ(k) − S(k+1)
tts ‖2] ≤2ρ2E[‖ŝ(k) − s(k)‖2] + 2ρ2 L2

s E[‖ŝ(k) − ŝ(`(k))‖2]

+ 2(1− ρ)2E[‖ŝ((k)) − S(k)
tts ‖2] + 2ρ2E[‖η(k+1)

ik
‖2] ,

where we recall that `(k) is the first iteration number in the epoch that iteration k is in.

The second one derives an identity for the quantity E[‖ŝ(k) − S(k+1)
tts ‖2] using the fiTTEM update:

Lemma 5 Consider the fiTTEM update (3) with ρk = ρ. It holds for all k > 0 that

E[‖ŝ(k) − S(k+1)
tts ‖2] ≤2ρ2E[‖ŝ(k) − s(k)‖2] + 2ρ2 L2

s

n

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2]

+ 2(1− ρ)2E[‖ŝ((k)) − S(k)
tts ‖2] + 2ρ2E[‖η(k+1)

ik
‖2] ,

where Ls is the smoothness constant defined in Lemma 1.
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Let K be an independent discrete r.v. drawn from {1, . . . ,Km} with distribution {γk+1/Pm}Km−1
k=0 ,

then, for any Km > 0, the convergence criterion used in our study reads

E[‖∇V (ŝ(K))‖2] =
1

Pm

Km−1∑
k=0

γk+1E[‖∇V (ŝ(k))‖2] ,

where Pm =
∑Km−1

`=0 γ` and the expectation is over the stochasticity of the algorithm. Denote
∆V = V (ŝ(0))− V (ŝ(Km)). We now state the main result regarding the vrTTEM method:

Theorem 2 Assume A1-A5. Consider the vrTTEM sequence {ŝ(k)}k>0 ∈ S for any k ≤ Km where
Km is a positive integer. Let {γk+1 = 1/(kaL)}k>0, where a ∈ (0, 1), be a sequence of stepsizes,
L = max{Ls,LV }, ρ = µ/(c1Ln

2/3), m = nc2
1/(2µ

2 + µc2
1) and a constant µ ∈ (0, 1). Then:

E[‖∇V (ŝ(K))‖2] ≤ 2n2/3L

µPmυ2
minυ

2
max

(
E[∆V ] +

Km−1∑
k=0

η̃(k+1)+ χ(k+1)E[‖ŝ(k) − S(k)
tts ‖2]

)
.

Furthermore, the fiTTEM method has the following convergence rate:

Theorem 3 Assume A1-A5. Consider the fiTTEM sequence {ŝ(k)}k>0 ∈ S for any k ≤ Km where
Km be a positive integer. Let {γk+1 = 1/(kaαc1L)}k>0, where a ∈ (0, 1), be a sequence of
positive stepsizes, α = max{2, 1 + 2υmin}, L = max{Ls,LV }, β = 1/(αn), ρ = 1/(αc1Ln

2/3)
and c1(kα− 1) ≥ c1(α− 1) ≥ 2, α ≥ 2. Then:

E[‖∇V (ŝ(K))‖2] ≤ 4αLn2/3

Pmυ2
minυ

2
max

(
E
[
∆V

]
+

Km−1∑
k=0

Ξ(k+1) + Γ(k+1)E[‖ŝ(k) − S(k)
tts ‖2]

)
.

Note that in those two bounds, the quantities η̃(k+1) and Ξ(k+1) depend only on the Monte Carlo
noises E[‖η(k)

ik
‖2], E[‖E[η

(r)
i |Fr]‖2], bounded under Assumption A5, and some constants.

Remarks: Theorem 2 and Theorem 3 exhibit in their convergence bounds two different phases. The
upper bounds display a bias term due to the initial conditions, i.e., the term ∆V , and a double
dynamic burden exemplified by the term E[‖ŝ(k) − S̃(k)‖2]. Indeed, the following remarks are
worth doing on this quantity: (i) This term is the price we pay for the two-timescale dynamic and
corresponds to the gap between the two asynchronous updates (one on ŝ(k) and the other on S̃(k)).
(ii) It is readily understood that if ρ = 1, i.e., there is no variance reduction, then for any k > 0

E[‖ŝ(k) − S(k)
tts ‖2] = E[‖S(k+1) − S(k+1)

tts ‖2] = 0 with ŝ(0) = S̃(0) = 0 ,

which strengthen the fact that this quantity characterizes the impact of the variance reduction tech-
nique introduced in our class of methods. The following Lemma characterizes this gap:

Lemma 6 Considering a decreasing stepsize γk ∈ (0, 1) and a constant ρ ∈ (0, 1), we have

E[‖ŝ(k) − S(k)
tts ‖2] ≤ ρ

1− ρ

k∑
`=0

(1− γ`)2(S(`) − S(`)
tts ) ,

where S(`) is defined either by Line 2 (vrTTEM ) or Line 3 (fiTTEM ).
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4. Numerical Examples
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Figure 1: Precision |µ(k) − µ∗|2 per epoch

This section presents several numerical applica-
tions for our proposed class of Algorithms 1.

4.1. Gaussian Mixture Models

We begin by a simple and illustrative example. The
authors acknowledge that the following model can
be trained using deterministic EM-type of algo-
rithms but propose to apply stochastic methods,
including theirs, in order to compare their perfor-
mances. Given n observations {yi}ni=1, we want to
fit a Gaussian Mixture Model (GMM) whose dis-
tribution is modeled as a mixture of M Gaussian
components, each with a unit variance. Let zi ∈ [M ] be the latent labels of each component, the
complete log-likelihood is defined as follows:

log f(zi, yi;θ) =
∑M

m=1 1{m}(zi)
[
log(ωm)− µ2

m/2
]

+
∑M

m=1 1{m}(zi)µmyi + constant .

where θ := (ω,µ) with ω = {ωm}M−1
m=1 are the mixing weights with the convention ωM =

1−
∑M−1

m=1 ωm and µ = {µm}Mm=1 are the means. We use the penalization r(θ) = δ
2

∑M
m=1 µ

2
m −

log Dir(ω;M, ε) where δ > 0 and Dir(·;M, ε) is the M dimensional symmetric Dirichlet dis-
tribution with concentration parameter ε > 0. The constraint set is given by Θ = {ωm, m =
1, ...,M − 1 : ωm ≥ 0,

∑M−1
m=1 ωm ≤ 1} × {µm ∈ R, m = 1, ...,M}. In the following exper-

iments on synthetic data, we generate 50 synthetic datasets of size n = 105 from a GMM model
with M = 2 components of means µ1 = −µ2 = 0.5. We run the EM method until convergence (to
double precision) to obtain the ML estimate µ? averaged on 50 datasets. We compare the EM, iEM
(incremental EM), SAEM, iSAEM, vrTTEM and fiTTEM methods in terms of their precision mea-
sured by |µ− µ?|2. We set the stepsize of the SA-step for all method as γk = 1/kα with α = 0.5,
and the stepsize ρk for the vrTTEM and the fiTTEM to a constant stepsize equal to 1/n2/3. The
number of MC samples is fixed to M = 10. Figure 1 shows the precision |µ−µ∗|2 for the different
methods through the epoch(s) (one epoch equals n iterations). The vrTTEM and fiTTEM methods
outperform the other stochastic methods, supporting the benefits of our scheme.

4.2. Deformable Template Model for Image Analysis

Let (yi, i ∈ [n]) be observed gray level images defined on a grid of pixels. Let u ∈ U ⊂ R2 denote
the pixel index on the image and xu ∈ D ⊂ R2 its location. The model used in this experiment
suggests that each image yi is a deformation of a template, noted I : D → R, common to all images
of the dataset:

yi(u) = I (xu − Φi (xu, zi)) + εi(u) (15)

where Φi : R2 → R2 is a deformation function, zi some latent variable parameterizing this defor-
mation and εi ∼ N (0, σ2) is an observation error. The template model, given {pk}

kp
k=1 landmarks

9
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on the template, a fixed known kernel Kp and a vector of parameters β ∈ Rkp is defined as follows:

Iξ = Kpβ, where (Kpβ) (x) =

kp∑
k=1

Kp (x, pk)βk .

Given a set of landmarks {gk}
kg
k=1 and a fixed kernel Kg, we parameterize the deformation Φi as:

Φi = Kgzi where (Kgzi) (x) =

ks∑
k=1

Kg (x, gk)
(
z

(1)
i (k), z

(2)
i (k)

)
,

where we put a Gaussian prior on the latent variables, zi ∼ N (0,Γ) and zi ∈
(
Rkg
)2. The

vector of parameters we estimate is thus θ =
(
β,Γ, σ

)
. The complete model (15) belongs to

the curved exponential family, see Allassonnière et al. (2007), which vector of sufficient statistics
for all i ∈ [n] is defined by S(yi, zi) = (K>p,ziyi,K

>
p,ziKp,zi , z

t
izi) where we denote Kp,zi =

Kp,zi(xu − φi(xu, zi), pj). Then, the two-timescale M-step (4) yields the following parameter
updates θ̄(ŝ) =

(
β(ŝ) = ŝ−1

2 (z)ŝ1(z),Γ(ŝ) = ŝ3(z)/n,σ(ŝ) = β(ŝ)>ŝ2(z)β(ŝ)− 2β(ŝ)ŝ1(z)
)

where ŝ = (ŝ1(z), ŝ2(z), ŝ3(z)) is the vector of statistics obtained via update (9) in Algorithm 1.

Numerical Experiment: We apply model (15) and our Algorithm 1 to a collection of handwritten
digits, called the US postal database (Hull, 1994), featuring n = 1 000, (16× 16)-pixel images for
each class of digits from 0 to 9. The main challenge with this dataset stems from the geometric
dispersion within each class of digit as shown Figure 2 for digit 5. We thus ought to use our
deformable template model (15) in order to account for both sources of variability: the intrinsic
template to each class of digit and the small and local deformations in each observed image.

Figure 2: Training set of the USPS database (20 images for digit 5)

Figure 3 shows the resulting synthetic images for digit 5 through several epochs, for the batch
method, the online SAEM, the incremental SAEM and the various two-timescale methods. For
all methods, the initialization of the template (16) is the mean of the gray level images. In our
experiments, we have chosen Gaussian kernels for both, Kp and Kg, defined on R2 and centered
on the landmark points{pk}

kp
k=1 and {gk}

kg
k=1 with standard respective standard deviations of 0.12

and 0.3. We set kp = 15 and kg = 6 equidistributed landmarks points on the grid for the training
procedure. Those hyperparameters are inspired by relevant studies (Allassonnière and Kuhn, 2008;
Allassonnière et al., 2010). In particular, the choice of the geometric covariance, indexed by g,
in such study is critical since it has a direct impact on the sharpness of the templates. As for the
photometric hyperparameter, indexed by p, both the template and the geometry are impacted, in the
sense that with a large photometric variance, the kernel centered on one landmark spreads out to
many of its neighbors.

10
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Figure 3: (USPS Digits) Estimation of the template. From top to bottom: batch, online, iSAEM,
vrTTEM and fiTTEM through 7 epochs. Note that Batch method templates are replicated
in-between epochs for a fair comparison with incremental variants.

As the iterations proceed, the templates become sharper. Figure 3 displays the virtue of the
vrTTEM and fiTTEM methods that obtain a more contrasted and accurate template estimate. The
incremental and online versions are better in the very first epochs compared to the batch method,
given the high computational cost of the latter. After a few epochs, the batch SAEM estimates
similar template as the incremental and online methods due to their high variance. Our variance
reduced and fast incremental variants are effective in the long run and sharpen the template estimates
contrasting between the background and the regions of interest in the image.

4.3. Pharmacokinetics (PK) Model with Absorption Lag Time

This numerical example was conducted in order to characterize the pharmacokinetics (PK) of orally
administered drug to simulated patients, using a population pharmacokinetics approach. M =
50 synthetic datasets were generated for n = 5000 patients with 10 observations (concentration
measures) per patient. The goal is to model the evolution of the concentration of the absorbed drug
using a nonlinear and latent variable model.

Model and Explicit Updates: We consider a one-compartment PK model for oral administration
with an absorption lag-time (T lag), assuming first-order absorption and linear elimination processes.
The final model includes the following variables: ka the absorption rate constant, V the volume of
distribution, k the elimination rate constant and T lag the absorption lag-time. We also add several
covariates to our model such as D the dose of drug administered, t the time at which measures
are taken and the weight of the patient influencing the volume V . More precisely, the log-volume
log(V ) is a linear function of the log-weight lw70 = log(wt/70). Let zi = (T

lag
i , kai, Vi, ki) be the

vector of individual PK parameters, different for each individual i. The final model reads:

yij = f(tij , zi) + εij where f(tij , zi) =
Dkai

V (kai − ki)
(e−kai (tij−T lag

i )− e−ki (tij−T lag
i )) , (16)

where yij is the j-th concentration measurement of the drug of dosage D injected at time tij for
patient i. We assume in this example that the residual errors εij are independent and normally dis-
tributed with mean 0 and variance σ2. Lognormal distributions are used for the four PK parameters:

log(T
lag
i ) ∼ N (log(T lag

pop), ω2
T lag) , log(kai) ∼ N (log(kapop), ω2

ka) ,

log(Vi) ∼ N (log(Vpop), ω2
V ) , log(ki) ∼ N (log(kpop), ω2

k) .

11
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We note that the complete model (y, z) defined by (16) belongs to the curved exponential family,
which vector of sufficient statistics S =

(
S1(z), S2(z), S3(z)

)
reads:

S1(z) =
1

n

n∑
i=1

zi, S2(z) =
1

n

n∑
i=1

z>i zi, S3(z) =
1

n

n∑
i=1

(yi − f(ti, zi))
2 (17)

where we have noted yi and ti the vector of observations and time for each patient i ∈ [n]. At
iteration k, and setting the number of MC samples to 1 for the sake of clarity, the MC sampling
z

(k)
i ∼ p(zi|yi, θ(k)) is performed using a Metropolis-Hastings procedure detailed in Appendix C.

The quantities S(k+1)
tts and ŝ(k+1) are then updated according to the different methods introduced in

our paper, see Table 1. Finally the maximization step yields:

θ(s) =

(
ŝ

(k+1)
1 , ŝ

(k+1)
2 − ŝ

(k+1)
1

(
ŝ

(k+1)
1

)>
, ŝ

(k+1)
3

)
=
(
zpop(ŝ(k+1)),ωz(ŝ(k+1)),σ(ŝ(k+1))

)
where zpop denotes the vector of fixed effects (T

lag
pop, kapop, Vpop, kpop).
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Figure 4: Precision |ka(k) − ka∗|2 per epoch

Monte Carlo study: We con-
duct a Monte Carlo study to
showcase the benefits of our
scheme. M = 50 datasets
have been simulated using the
following PK parameters values:
T

lag
pop = 1, kapop = 1, Vpop =

8, kpop = 0.1, ωT lag = 0.4,
ωka = 0.5, ωV = 0.2, ωk =
0.3 and σ2 = 0.5. We de-
fine the mean square distance
over the M replicates Ek(`) =

1
M

∑M
m=1

(
θ

(m)
k (`)− θ∗

)2
and

plot it against the epochs (passes over the data) in Figure 4. Note that the MC-step (5) is per-
formed using a Metropolis Hastings procedure since the posterior distribution under the model θ
noted p(zi|yi, θ) is intractable, mainly due to the nonlinearity of the model (16). Figure 4 shows
clear advantage of variance reduced methods (vrTTEM and fiTTEM ) avoiding the twists and turns
displayed by the incremental and the batch methods (iSAEM and SAEM).

5. Conclusion

This paper introduces a new class of two-timescale EM methods for learning latent variable models.
In particular, the models dealt with in this paper belong to the curved exponential family and are
possibly nonconvex. The nonconvexity of the problem is tackled using a Robbins-Monro type of
update, which represents the first level of our class of methods. The scalability with the number
of samples is performed through a variance reduced and incremental update, the second and last
level of our newly introduced scheme. The various algorithms are interpreted as scaled gradient
methods, in the space of the sufficient statistics, and our convergence results are global, in the sense
of independence of the initial values, and non-asymptotic, i.e., true for any random termination
number. Numerical examples illustrate the benefits of our scheme on synthetic and real tasks.
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Stéphanie Allassonnière, Estelle Kuhn, Alain Trouvé, et al. Construction of bayesian deformable
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Appendix A. Proofs for the iSAEM Algorithm

A.1. Proof of Lemma 2

Lemma Assume A3,A4. For all s ∈ S,

υ−1
min

〈
∇V (s) | s− s(θ(s))

〉
≥ ‖s− s(θ(s))‖2 ≥ υ−2

max‖∇V (s)‖2, (18)

Proof Using A3 and the fact that we can exchange integration with differentiation and the Fisher’s
identity, we obtain

∇sV (s) = Js
θ
(s)>

(
∇θ r(θ(s)) +∇θL(θ(s))

)
= Js

θ
(s)>

(
∇θψ(θ(s)) +∇θ r(θ(s))− Jθφ(θ(s))>s(θ(s))

)
= Js

θ
(s)> Jθφ(θ(s))> (s− s(θ(s))) ,

(19)

Consider the following vector map:

s→ ∇θL(s,θ)|θ=θ(s) = ∇θψ(θ(s)) +∇θ r(θ(s))− Jθφ(θ(s))>s .

Taking the gradient of the above map w.r.t. s and using assumption A3, we show that:

0 = − Jθφ(θ(s)) +
(
∇2
θ

(
ψ(θ) + r(θ)−

〈
φ(θ) | s

〉)︸ ︷︷ ︸
=Hθ

L(s;θ)

∣∣
θ=θ(s)

)
Js
θ
(s) .

The above yields
∇sV (s) = B(s)(s− s(θ(s))) ,

where we recall B(s) = Jθφ(θ(s))
(

HθL(s;θ(s))
)−1

Jθφ(θ(s))>. The proof of (18) follows directly
from the assumption A4.

A.2. Proof of Theorem 1

Beforehand, We present two intermediary Lemmas important for the analysis of the incremental
update of the iSAEM algorithm. The first one gives a characterization of the quantity E[S

(k+1)
tts −

ŝ(k)]:

Lemma Assume A1. The update (1) is equivalent to the following update on the resulting statistics

ŝ(k+1) = ŝ(k) + γk+1

(
S

(k+1)
tts − ŝ(k)

)
.

Also:

E[S
(k+1)
tts − ŝ(k)] = E[s(k) − ŝ(k)] +

(
1− 1

n

)
E

[
1

n

n∑
i=1

S̃
(τki )
i − s(k)

]
+

1

n
E[η

(k+1)
ik

] ,

where s(k) is defined by (3) and τki = max{k′ : ik′ = i, k′ < k}.
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Proof From update (1), we have:

S
(k+1)
tts − ŝ(k) = S

(k)
tts − ŝ(k) +

1

n

(
S̃

(k+1)
ik

− S̃(τki )
ik

)
= s(k) − ŝ(k) + S

(k)
tts − s(k) − 1

n

(
S̃

(τki )
ik
− S̃(k+1)

ik

)
.

Since S̃(k+1)
ik

= sik(θ(k)) + η
(k+1)
ik

we have

S
(k+1)
tts − ŝ(k) = s(k) − ŝ(k) + S

(k)
tts − s(k) − 1

n

(
S̃

(τki )
ik
− sik(θ(k))

)
+

1

n
η

(k+1)
ik

.

Taking the full expectation of both side of the equation leads to:

E[S
(k+1)
tts − ŝ(k)] = E[s(k) − ŝ(k)] + E

[
1

n

n∑
i=1

S̃
(τki )
i − s(k)

]

− 1

n
E[E[S̃

(τki )
i − sik(θ(k))|Fk]] +

1

n
E[η

(k+1)
ik

] .

Since we have E[S̃
(τki )
i |Fk] = 1

n

∑n
i=1 S̃

(τki )
i and E

[
sik(θ(k))|Fk

]
= s(k), we conclude the proof of

the Lemma.

We also derived the following auxiliary Lemma which sets an upper bound for the quantity
E[‖S(k+1)

tts − ŝ(k)‖2]:

Lemma 7 For any k ≥ 0 and consider the iSAEM update in (1), it holds that

E[‖S(k+1)
tts − ŝ(k)‖2] ≤4E[‖s(k) − ŝ(k)‖2] +

2 L2
s

n3

n∑
i=1

E
[
‖ŝ(k) − ŝ(tki )‖2

]

+ 2
cη
Mk

+ 4E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2
 .

Proof Applying the iSAEM update yields:

E[‖S(k+1)
tts − ŝ(k)‖2] =E[‖S(k)

tts − ŝ(k) − 1

n

(
S̃

(τki )
ik
− S̃(k)

ik

)
‖2]

≤4E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2
+ 4E[‖s(k) − ŝ(k)‖2]

+
2

n2
E[‖s(k)

ik
− s

(tkik
)

ik
‖2] + 2

cη
Mk

.

The last expectation can be further bounded by

2

n2
E[‖s(k)

ik
− s

(tkik
)

ik
‖2] =

2

n3

n∑
i=1

E[‖s(k)
i − s

(tki )
i ‖

2]
(a)

≤ 2 L2
s

n3

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2] ,

where (a) is due to Lemma 1 and which concludes the proof of the Lemma.
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Theorem Assume A1-A5. Consider the iSAEM sequence {ŝ(k)}k>0 ∈ S obtained with ρk+1 = 1
for any k ≤ Km where Km is a positive integer. Let {γk = 1/(kaαc1L)}k>0, where a ∈ (0, 1), be a
sequence of stepsizes, c1 = υ−1

min, α = max{8, 1 + 6υmin}, L = max{Ls,LV }, β = c1L/n. Then:

υ−2
max

Km∑
k=0

α̃kE[‖∇V (ŝ(k))‖2] ≤ E[V (ŝ(0))− V (ŝ(Km))] +

Km−1∑
k=0

Γ̃kE[‖η(k)
ik
‖2] .

Proof
Under the smoothness of the Lyapunov function V (cf. Lemma 1), we can write:

V (ŝ(k+1)) ≤ V (ŝ(k)) + γk+1

〈
S

(k+1)
tts − ŝ(k) | ∇V (ŝ(k))

〉
+
γ2
k+1 LV

2
‖S(k+1)

tts − ŝ(k)‖2 .

Taking the expectation on both sides yields:

E
[
V (ŝ(k+1))

]
≤ E

[
V (ŝ(k))

]
+ γk+1E

[〈
S

(k+1)
tts − ŝ(k) | ∇V (ŝ(k))

〉]
+
γ2
k+1 LV

2
E
[
‖S(k+1)

tts − ŝ(k)‖2
]
.

Using Lemma 3, we obtain:

E
[〈
S

(k+1)
tts − ŝ(k) | ∇V (ŝ(k))

〉]
=E

[〈
s(k) − ŝ(k) | ∇V (ŝ(k))

〉]
+

(
1− 1

n

)
E

[〈 1

n

n∑
i=1

S̃
(τki )
i − s(k) | ∇V (ŝ(k))

〉]

+
1

n
E
[〈
η

(k)
ik
| ∇V (ŝ(k))

〉]
(a)

≤ − υminE[‖s(k) − ŝ(k)‖2] +

(
1− 1

n

)
E

[〈 1

n

n∑
i=1

S̃
(τki )
i − s(k) | ∇V (ŝ(k))

〉]

+
1

n
E
[〈
η

(k)
ik
| ∇V (ŝ(k))

〉]
(b)

≤ − υminE[‖s(k) − ŝ(k)‖2] +
1− 1

n

2β
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


+
β(n− 1) + 1

2n
E
[∥∥∥∇V (ŝ(k))

∥∥∥2
]

+
1

2n
E[‖η(k)

ik
‖2]

(a)

≤
(
υ2

max

β(n− 1) + 1

2n
− υmin

)
E[‖s(k) − ŝ(k)‖2] +

1− 1
n

2β
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


+
1

2n
E[‖η(k)

ik
‖2] ,
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where (a) is due to the growth condition (2) and (b) is due to Young’s inequality (with β → 1). Note
ak = γk+1

(
υmin − υ2

max
β(n−1)+1

2n

)
and

akE[‖s(k) − ŝ(k)‖2] ≤E
[
V (ŝ(k))− V (ŝ(k+1))

]
+
γ2
k+1 LV

2
E
[
‖S(k+1)

tts − ŝ(k)‖2
]

+
γk+1(1− 1

n)

2β
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2
+

γk+1

2n
E[‖η(k)

ik
‖2] .

(20)

We now give an upper bound of E
[
‖S(k+1)

tts − ŝ(k)‖2
]

using Lemma 7 and plug it into (20):

(ak − 2γ2
k+1 LV )E[‖s(k) − ŝ(k)‖2]

≤E
[
V (ŝ(k))− V (ŝ(k+1))

]
+ γk+1

(
1

2β
(1− 1

n
) + 2γk+1 LV

)
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


+ γk+1

(
γk+1 LV +

1

2n

)
E[‖η(k)

ik
‖2]

+
γ2
k+1 LV L2

s

n3

n∑
i=1

E[‖ŝ(k) − ŝ(τki )‖2] .

(21)

Next, we observe that

1

n

n∑
i=1

E[‖ŝ(k+1) − ŝ(tk+1
i )‖2] =

1

n

n∑
i=1

( 1

n
E[‖ŝ(k+1) − ŝ(k)‖2] +

n− 1

n
E[‖ŝ(k+1) − ŝ(τki )‖2]

)
,

where the equality holds as ik and jk are drawn independently. For any β > 0, it holds

E[‖ŝ(k+1) − ŝ(tki )‖2]

=E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(τki )‖2 + 2

〈
ŝ(k+1) − ŝ(k) | ŝ(k) − ŝ(τki )

〉]
=E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(τki )‖2 − 2γk+1

〈
ŝ(k) − S(k+1)

tts | ŝ(k) − ŝ(τki )
〉]

≤E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(τki )‖2 +

γk+1

β
‖ŝ(k) − S(k+1)

tts ‖2 + γk+1β‖ŝ(k) − ŝ(τki )‖2
]
,

where the last inequality is due to Young’s inequality. Subsequently, we have

1

n

n∑
i=1

E[‖ŝ(k+1) − ŝ(τk+1
i )‖2]

≤E[‖ŝ(k+1) − ŝ(k)‖2] +
n− 1

n2

n∑
i=1

E
[
(1 + γk+1β)‖ŝ(k) − ŝ(τki )‖2 +

γk+1

β
‖ŝ(k) − S(k+1)

tts ‖2
]
.
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Observe that ŝ(k+1) − ŝ(k) = −γk+1(ŝ(k) − S(k+1)
tts ). Applying Lemma 7 yields

1

n

n∑
i=1

E[‖ŝ(k+1) − ŝ(τk+1
i )‖2]

≤
(
γ2
k+1 +

n− 1

n

γk+1

β

)
E
[
‖S(k+1)

tts − ŝ(k)‖2
]

+
n∑
i=1

E
[1− 1

n + γk+1β

n
‖ŝ(k) − ŝ(τki )‖2

]
≤4
(
γ2
k+1 +

γk+1

β

)
E
[
‖s(k) − ŝ(k)‖2

]
+ 2
(
γ2
k+1 +

γk+1

β

)
E[‖η(k)

ik
‖2]

+4
(
γ2
k+1 +

γk+1

β

)
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


+
n∑
i=1

E
[1− 1

n + γk+1β +
2γk+1 L2

s

n2 (γk+1 + 1
β )

n
‖ŝ(k) − ŝ(tki )‖2

]
.

Let us define

∆(k) :=
1

n

n∑
i=1

E[‖ŝ(k) − ŝ(τki )‖2] .

From the above, we get

∆(k+1) ≤
(
1− 1

n
+ γk+1β +

2γk+1 L2
s

n2
(γk+1 +

1

β
)
)
∆(k) + 4

(
γ2
k+1 +

γk+1

β

)
E
[
‖s(k) − ŝ(k)‖2

]
+ 2
(
γ2
k+1 +

γk+1

β

)
E[‖η(k)

ik
‖2] + 4

(
γ2
k+1 +

γk+1

β

)
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2
 .

Setting c1 = υ−1
min, α = max{8, 1 + 6υmin}, L = max{Ls,LV }, γk+1 = 1

kαc1L
, β = c1L

n ,
c1(kα− 1) ≥ c1(α− 1) ≥ 6, α ≥ 8, we observe that

1− 1

n
+ γk+1β +

2γk+1 L2
s

n2
(γk+1 +

1

β
) ≤ 1− c1(kα− 1)− 4

kαnc1
≤ 1− 2

kαnc1
,

which shows that 1− 1
n + γk+1β +

2γk+1 L2
s

n2 (γk+1 + 1
β ) ∈ (0, 1) for any k > 0. Denote Λ(k+1) =

1
n − γk+1β − 2γk+1 L2

s

n2 (γk+1 + 1
β ) and note that ∆(0) = 0, thus the telescoping sum yields:

∆(k+1) ≤ 4

k∑
`=0

k∏
j=`+1

(
1− Λ(j)

)(
γ2
`+1 +

γ`+1

β

)
E[‖s(`) − ŝ(`)‖2]

+ 2
k∑
`=0

k∏
j=`+1

(
1− Λ(j)

)(
γ2
`+1 +

γ`+1

β

)
E
[∥∥∥η(`)

i`

∥∥∥2
]

+ 4
k∑
`=0

k∏
j=`+1

(
1− Λ(j)

)(
γ2
`+1

+
γ`+1

β

)
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τ`i )
i − s(`)

∥∥∥∥∥
2
 .
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Note ωk,` =
∏k
j=`+1

(
1− Λ(j)

)
Summing on both sides over k = 0 to k = Km − 1 yields:

Km−1∑
k=0

∆(k+1)

=4

Km−1∑
k=0

(
γ2
k+1 +

γk+1

β

)
ωk,1E[‖s(k) − ŝ(k)‖2] + 2

Km−1∑
k=0

(
γ2
k+1 +

γk+1

β

)
ωk,1E

[∥∥∥η(k)
i`

∥∥∥2
]

+

Km−1∑
k=0

4
(
γ2
k+1 +

γk+1

β

)
ωk,1E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


≤
Km−1∑
k=0

4
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

E[‖s(k) − ŝ(k)‖2] +

Km−1∑
k=0

2
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

E
[∥∥∥η(k)

i`

∥∥∥2
]

+

Km−1∑
k=0

4
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2
 .

(22)

We recall (21) where we have summed on both sides from k = 0 to k = Km − 1:

Km−1∑
k=0

(
ak − 2γ2

k+1 LV
)
E[‖s(k) − ŝ(k)‖2]

≤E
[
V (ŝ(0))− V (ŝ(K))

]
+

Km−1∑
k=0

γk+1

(
1

2β
(1− 1

n
) + 2γk+1 LV

)
E

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


+

Km−1∑
k=0

γk+1

(
γk+1 LV +

1

2n

)
E[‖η(k)

ik
‖2]

+

Km−1∑
k=0

γ2
k+1 LV L2

s

n2
∆(k) .

(23)

Plugging (22) into (23) results in:

Km−1∑
k=0

α̃kE[‖s(k) − ŝ(k)‖2] +

Km−1∑
k=0

β̃kE

∥∥∥∥∥ 1

n

n∑
i=1

S̃
(τki )
i − s(k)

∥∥∥∥∥
2


≤E
[
V (ŝ(0))− V (ŝ(K))

]
+

Km−1∑
k=0

Γ̃kE[‖η(k)
ik
‖2] ,
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where

α̃k = ak − 2γ2
k+1 LV −

γ2
k+1 LV L2

s

n2

4
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

,

β̃k = γk+1

(
1

2β
(1− 1

n
) + 2γk+1 LV

)
−
γ2
k+1 LV L2

s

n2

4
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

,

Γ̃k = γk+1

(
γk+1 LV +

1

2n

)
+
γ2
k+1 LV L2

s

n2

2
(
γ2
k+1 +

γk+1

β

)
Λ(k+1)

,

and

ak = γk+1

(
υmin − υ2

max

β(n− 1) + 1

2n

)
,

Λ(k+1) =
1

n
− γk+1β −

2γk+1 L2
s

n2
(γk+1 +

1

β
) ,

c1 = υ−1
min, α = max{8, 1 + 6υmin}, L = max{Ls,LV }, γk+1 =

1

kαc1L
, β =

c1L

n
.

When, for any k > 0, α̃k ≥ 0, we have by Lemma 2 that:

Km∑
k=0

α̃kE[‖∇V (ŝ(k))‖2] ≤ υ2
max

Km∑
k=0

α̃kE[‖s(k) − ŝ(k)‖2] ,

which yields an upper bound of the gradient of the Lyapunov function V along the path of the
iSAEM update and concludes the proof of the Theorem.

Appendix B. Proofs for the vrTTEM and the fiTTEM Algorithms

B.1. Proofs of Auxiliary Lemmas ( Lemma 4, Lemma 5 and Lemma 6)

Lemma Consider the vrTTEM update (2) with ρk = ρ, it holds for all k > 0

E[‖ŝ(k) − S(k+1)
tts ‖2] ≤2ρ2E[‖ŝ(k) − s(k)‖2] + 2ρ2 L2

s E[‖ŝ(k) − ŝ(`(k))‖2]

+ 2(1− ρ)2E[‖ŝ((k)) − S(k)
tts ‖2] + 2ρ2E[‖η(k+1)

ik
‖2] ,

where we recall that `(k) is the first iteration number in the epoch that iteration k is in.

Proof Beforehand, we provide a rewiriting of the quantity ŝ(k+1)− ŝ(k) that will be useful through-
out this proof:

ŝ(k+1) − ŝ(k) = −γk+1(ŝ(k) − S(k+1)
tts )

= −γk+1(ŝ(k) − (1− ρ)S
(k)
tts − ρS(k+1))

= −γk+1

(
(1− ρ)

[
ŝ(k) − S(k)

tts

]
+ ρ

[
ŝ(k) − S(k+1)

])
.

(24)
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We observe, using the identity (24), that

E[‖ŝ(k)−S(k+1)
tts ‖2] ≤ 2ρ2E[‖ŝ(k)−s(k)‖2]+2ρ2E[‖s(k)−S(k+1)‖2]+2(1−ρ)2E[‖ŝ((k))−S(k)

tts ‖2].
(25)

For the latter term, we obtain its upper bound as

E[‖s(k) − S(k+1)‖2]

=E
[
‖ 1

n

n∑
i=1

(
s

(k)
i − S̃

`(k)
i

)
−
(
s

(k)
ik
− S̃(`(k))

ik

)
‖2
]

(a)

≤E[‖s(k)
ik
− s(`(k))

ik
‖2] + E[‖η(k+1)

ik
‖2]

(b)

≤ L2
s E[‖ŝ(k) − ŝ(`(k))‖2] + E[‖η(k+1)

ik
‖2] ,

where (a) uses the variance inequality and (b) uses Lemma 1. Substituting into (25) proves the
lemma.

Lemma Consider the fiTTEM update (3) with ρk = ρ. It holds for all k > 0 that

E[‖ŝ(k) − S(k+1)
tts ‖2] ≤2ρ2E[‖ŝ(k) − s(k)‖2] + 2ρ2 L2

s

n

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2]

+ 2(1− ρ)2E[‖ŝ((k)) − S(k)
tts ‖2] + 2ρ2E[‖η(k+1)

ik
‖2] ,

where Ls is the smoothness constant defined in Lemma 1.

Proof Beforehand, we provide a rewiriting of the quantity ŝ(k+1)− ŝ(k) that will be useful through-
out this proof:

ŝ(k+1) − ŝ(k) = −γk+1(ŝ(k) − S(k+1)
tts )

= −γk+1(ŝ(k) − (1− ρ)S
(k)
tts − ρS(k+1))

= −γk+1

(
(1− ρ)

[
ŝ(k) − S(k)

tts

]
+ ρ

[
ŝ(k) − S(k+1)

])
= −γk+1

(
(1− ρ)

[
ŝ(k) − S(k)

tts

]
+ ρ

[
ŝ(k) − S(k) −

(
S̃

(k)
ik
− S̃

(tkik
)

ik

)])
.

(26)

We observe, using the identity (26), that

E[‖ŝ(k)−S(k+1)
tts ‖2] ≤ 2ρ2E[‖ŝ(k)−s(k)‖2]+2ρ2E[‖s(k)−S(k+1)‖2]+2(1−ρ)2E[‖ŝ((k))−S(k)

tts ‖2] .
(27)

For the latter term, we obtain its upper bound as

E[‖s(k) − S(k+1)‖2] = E
[
‖ 1

n

n∑
i=1

(
s

(k)
i − S(k)

i

)
−
(
S̃

(k)
ik
− S̃

(tkik
)

ik

)
‖2
]

(a)

≤ E[‖s(k)
ik
− s(`(k))

ik
‖2] + E[‖η(k+1)

ik
‖2] ,
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where (a) uses the variance inequality. We can further bound the last expectation using Lemma 1:

E[‖s(k)
ik
− s

(tkik
)

ik
‖2] =

1

n

n∑
i=1

E[‖s(k)
i − s

(tki )
i ‖

2]
(a)

≤ L2
s

n

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2] .

Substituting into (27) proves the lemma.

Lemma Considering a decreasing stepsize γk ∈ (0, 1) and a constant ρ ∈ (0, 1), we have

E[‖ŝ(k) − S(k)
tts ‖2] ≤ ρ

1− ρ

k∑
`=0

(1− γ`)2(S(`) − S̃(`)) ,

where S(k) is defined either by Line 2 (vrTTEM ) or Line 3 (fiTTEM ).

Proof We begin by writing the two-timescale update:

S
(k+1)
tts = S

(k)
tts + ρ

(
S(k+1) − S(k)

tts
)
,

ŝ(k+1) = ŝ(k) + γk+1(S
(k+1)
tts − ŝ(k)) ,

(28)

where S(k+1) = 1
n

∑n
i=1 S̃

(tki )
i +

(
S̃

(k)
ik
−S̃

(tkik
)

ik

)
according to (3). Denote δ(k+1) = ŝ(k+1)−S(k+1)

tts .
Then from (28), doing the subtraction of both equations yields:

δ(k+1) = (1− γk+1)δ(k) +
ρ

1− ρ
(1− γk+1)(S(k+1) − S(k+1)

tts ) .

Using the telescoping sum and noting that δ(0) = 0, we have

δ(k+1) ≤ ρ

1− ρ

k∑
`=0

(1− γ`+1)2(S(`+1) − S̃(`+1)) .

B.2. Additional Intermediary Result

Lemma 8 At iteration k + 1,the drift term of update (3), with ρk+1 = ρ, is equivalent to the
following :

ŝ(k) − S(k+1)
tts =ρ(ŝ(k) − s(k)) + ρη

(k+1)
ik

+ ρ

[(
s

(k)
ik
− S̃

(tkik
)

ik

)
− E[s

(k)
ik
− S̃

(tkik
)

ik
]

]
+ (1− ρ)

(
ŝ(k) − S̃(k)

)
,

where we recall that η(k+1)
ik

, defined in (12), which is the gap between the MC approximation and
the expected statistics.
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Proof Using the fiTTEM update S(k+1)
tts = (1− ρ)S

(k)
tts + ρS(k+1) where S(k+1) = S(k)

+
(
S̃

(k)
ik
−

S̃
(tkik

)

ik

)
leads to the following decomposition:

S
(k+1)
tts − ŝ(k)

=(1− ρ)S
(k)
tts + ρ

(
S(k)

+
(
S̃

(k)
ik
− S̃

(tkik
)

ik

))
− ŝ(k) + ρs(k) − ρs(k)

=ρ(s(k) − ŝ(k)) + ρ(S̃
(k)
ik
− s

(k)
ik

) + (1− ρ)
(
S

(k)
tts − ŝ(k)

)
+ ρ

(
S(k) − s(k) +

(
s

(k)
ik
− S̃

(tkik
)

ik

))
=ρ(s(k) − ŝ(k)) + ρη

(k+1)
ik

− ρ
[(

s
(k)
ik
− S̃

(tkik
)

ik

)
− E[s

(k)
ik
− S̃

(tkik
)

ik
]

]
+(1− ρ)

(
S

(k)
tts − ŝ(k)

)
,

where we observe that E[s
(k)
ik
− S̃

(tkik
)

ik
] = s(k) − S(k) and which concludes the proof.

Important Note: Note that s
(k)
ik
− S̃

(tkik
)

ik
is not equal to η(k+1)

ik
, defined in (12), which is the gap

between the MC approximation and the expected statistics. Indeed S̃
(tkik

)

ik
is not computed under the

same model as s
(k)
ik

.

B.3. Proof of Theorem 2

Theorem Assume A1-A5. Consider the vrTTEM sequence {ŝ(k)}k>0 ∈ S for any k ≤ Km where
Km is a positive integer. Let {γk+1 = 1/(kaL)}k>0, where a ∈ (0, 1), be a sequence of stepsizes,
L = max{Ls,LV }, ρ = µ/(c1Ln

2/3), m = nc2
1/(2µ

2 + µc2
1) and a constant µ ∈ (0, 1). Then:

E[‖∇V (ŝ(K))‖2] ≤ 2n2/3L

µPmυ2
minυ

2
max

(
E[∆V ] +

Km−1∑
k=0

η̃(k+1)+ χ(k+1)E[‖ŝ(k) − S̃(k)‖2]

)
.

Proof
Using the smoothness of V and update (2), we obtain:

V (ŝ(k+1)) ≤ V (ŝ(k)) +
〈
ŝ(k+1) − ŝ(k) | ∇V (ŝ(k))

〉
+

LV
2
‖ŝ(k+1) − ŝ(k)‖2

≤ V (ŝ(k))− γk+1

〈
ŝ(k) − S(k+1)

tts | ∇V (ŝ(k))
〉

+
γ2
k+1 LV

2
‖ŝ(k) − S(k+1)

tts ‖2 .
(29)
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Denote Hk+1 := ŝ(k) − S(k+1)
tts the drift term of the fiTTEM update in (7) and hk = ŝ(k) − s(k).

Taking expectations on both sides show that

E[V (ŝ(k+1))]

(a)

≤E[V (ŝ(k))]− γk+1(1− ρ)E
[〈
ŝ(k) − S(k)

tts | ∇V (ŝ(k))
〉]

− γk+1ρE
[〈
ŝ(k) − S(k+1) | ∇V (ŝ(k))

〉]
+
γ2
k+1 LV

2
E[‖Hk+1‖2]

(b)

≤E[V (ŝ(k))]− γk+1ρE
[〈
hk | ∇V (ŝ(k))

〉]
− γk+1(1− ρ)E

[〈
ŝ(k) − S(k)

tts | ∇V (ŝ(k))
〉]

−γk+1ρE
[〈
η

(k+1)
ik

| ∇V (ŝ(k))
〉]

+
γ2
k+1 LV

2
E[‖Hk+1‖2]

(c)

≤E[V (ŝ(k))]−
(
γk+1ρυmin + γk+1υ

2
max

)
E
[
‖hk‖2

]
+
γ2
k+1 LV

2
E[‖Hk+1‖2]

−γk+1ρE
[∥∥∥η(k+1)

ik

∥∥∥2
]
− γk+1(1− ρ)E

[
‖ŝ(k) − S̃(k)‖2

]
,

(30)

where we have used (24) in (a) and E
[
S(k+1)

]
= s(k) + E[η

(k+1)
ik

] in (b), the growth condition in
Lemma 2 and Young’s inequality with the constant equal to 1 in (c).

Furthermore, for k + 1 ≤ `(k) +m (i.e., k + 1 is in the same epoch as k), we have

E[‖ŝ(k+1) − ŝ(`(k))‖2] = E[‖ŝ(k+1) − ŝ(k) + ŝ(k) − ŝ(`(k))‖2]

=E
[
‖ŝ(k) − ŝ(`(k))‖2 + ‖ŝ(k+1) − ŝ(k)‖2 + 2

〈
ŝ(k) − ŝ(`(k)) | ŝ(k+1) − ŝ(k)

〉]
=E
[
‖ŝ(k) − ŝ(`(k))‖2 + γ2

k+1‖Hk+1‖2

−2γk+1

〈
ŝ(k) − ŝ(`(k)) | ρ(hk − η

(k+1)
ik

) + (1− ρ)(ŝ(k) − S(k)
tts )
〉]

≤E
[
(1 + γk+1β)‖ŝ(k) − ŝ(`(k))‖2 + γ2

k+1‖Hk+1‖2 +
γk+1ρ

β
‖hk‖2

+
γk+1ρ

β
‖η(k+1)
ik

‖2 +
γk+1(1− ρ)

β
‖ŝ(k) − S(k)

tts ‖2
]
,

where we first used (24) and the last inequality is due to Young’s inequality.
Consider the following sequence

Rk := E[V (ŝ(k)) + bk‖ŝ(k) − ŝ(`(k))‖2] ,

where bk := bk mod m is a periodic sequence where:

bi = bi+1(1 + γk+1β + 2γ2
k+1ρ

2 L2
s) + γ2

k+1ρ
2 LV L2

s, i = 0, 1, . . . ,m− 1 with bm = 0 .

Note that bi is decreasing with i and this implies

bi ≤ b0 = γ2
k+1ρ

2 LV L2
s

(1 + γk+1β + 2γ2
k+1ρ

2 L2
s)
m − 1

γk+1β + 2γ2
k+1ρ

2 L2
s

, i = 1, 2, . . . ,m .
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For k + 1 ≤ `(k) +m, we have the following inequality

Rk+1 ≤ E
[
V (ŝ(k))−

(
γk+1ρυmin + γk+1υ

2
max

)
‖hk‖2 +

γ2
k+1 LV

2
‖Hk+1‖2

]
+ γk+1E

[
ρ
∥∥∥η(k+1)

ik

∥∥∥2
− (1− ρ)‖ŝ(k) − S̃(k)‖2

]
+ bk+1E

[
(1 + γk+1β)‖ŝ(k) − ŝ(`(k))‖2 + γ2

k+1‖Hk+1‖2 +
γk+1ρ

β
‖hk‖2

]
+ bk+1E

[
γk+1ρ

β
‖η(k+1)
ik

‖2 +
γk+1(1− ρ)

β
‖ŝ(k) − S(k)

tts ‖2
]
.

And using Lemma 4 we obtain:

Rk+1

≤E
[
V (ŝ(k))−

(
γk+1ρυmin + γk+1υ

2
max − γ2

k+1ρ
2 LV

)
‖hk‖2 + γ2

k+1ρ
2 LV L2

s ‖ŝ(k) − ŝ(`(k))‖2
]

+ bk+1E
[
(1 + γk+1β + 2γ2

k+1ρ
2 L2

s)‖ŝ(k) − ŝ(`(k))‖2 + (
γk+1ρ

β
+ 2γ2

k+1ρ
2)‖hk‖2

]
+ γk+1E

[
(ρ+ ρ2γk+1 LV )

∥∥∥η(k+1)
ik

∥∥∥2
− (1− ρ− (1− ρ)2γk+1 LV )‖ŝ(k) − S̃(k)‖2

]
+ bk+1E

[
(
γk+1ρ

β
+ 2γ2

k+1ρ
2)‖η(k+1)

ik
‖2 + (

γk+1(1− ρ)

β
+ 2γ2

k+1(1− ρ)2)‖ŝ(k) − S(k)
tts ‖2

]
.

Rearranging the terms yields:

Rk+1 ≤ E[V (ŝ(k))]− γk+1

(
ρυmin + υ2

max − γk+1ρ
2 LV −bk+1(

ρ

β
+ 2γk+1ρ

2)
)
E[‖hk‖2]

+
(
bk+1(1 + γβ + 2γ2ρ2 L2

s) + γ2ρ2 LV L2
s︸ ︷︷ ︸

=bk since k + 1 ≤ `(k) +m

)
E
[
‖ŝ(k) − ŝ(`(k))‖2

]
+ η̃(k+1) + χ̃(k+1) ,

where

η̃(k+1) =

(
γk+1(ρ+ ρ2γk+1 LV ) + bk+1(

γk+1ρ

β
+ 2γ2

k+1ρ
2)

)
E
[∥∥∥η(k+1)

ik

∥∥∥2
]

χ(k+1) =

(
bk+1(

γk+1(1− ρ)

β
+ 2γ2

k+1(1− ρ)2)− γk+1(1− ρ− (1− ρ)2γk+1 LV )

)
χ̃(k+1) = χ(k+1)E

[
‖ŝ(k) − S(k)

tts ‖2
]
.

This leads, using Lemma 2, that for any γk+1, ρ and β such that ρυmin+υ2
max−γk+1ρ

2 LV −bk+1( ρβ+

2γk+1ρ
2) > 0,

υ2
maxE[‖∇V (ŝ(k))‖2] ≤ E[‖ŝ(k) − s(k)‖2]

≤ Rk −Rk+1

γk+1

(
ρυmin + υ2

max − γk+1ρ2 LV −bk+1( ρβ + 2γk+1ρ2)
)

+
η̃(k+1) + χ̃(k+1)

γk+1

(
ρυmin + υ2

max − γk+1ρ2 LV −bk+1( ρβ + 2γk+1ρ2)
) .
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We first remark that

γk+1

(
ρυmin + υ2

max − γk+1ρ
2 LV −bk+1(

ρ

β
+ 2γk+1ρ

2)
)

≥ γk+1ρ

c1

(
1− γk+1c1ρLV −bk+1(

c1

β
+ 2γk+1ρc1)

)
,

where c1 = υ−1
min. By setting L = max{Ls,LV }, β = c1L

n1/3 , ρ = µ

c1Ln2/3 , m =
nc21

2µ2+µc21
and {γk+1}

any sequence of decreasing stepsizes in (0, 1), it can be shown that there exists µ ∈ (0, 1), such that
the following lower bound holds

1− γk+1c1ρLV −bk+1(
c1

β
+ 2γk+1ρc1)

≥1− µ

n
2
3

− b0
(n 1

3

L
+

2µ

Ln
2
3

)
≥1− µ

n
2
3

− LV µ
2

c2
1n

4
3

(1 + γβ + 2γ2 L2
s)
m − 1

γβ + 2γ2 L2
s

(n 1
3

L
+

2µ

Ln
2
3

)
(a)

≥1− µ

n
2
3

− µ

c2
1

(e− 1)
(
1 +

2µ

n

)
≥ 1− µ− µ(1 + 2µ)

e− 1

c2
1

(b)

≥ 1

2
,

where the simplification in (a) is due to

µ

n
≤ γβ + 2γ2 L2

s ≤
µ

n
+

2µ2

c2
1n

4
3

≤ µc2
1 + 2µ2

c2
1

1

n
and (1 + γβ + 2γ2 L2

s)
m ≤ e− 1.

and the required µ in (b) can be found by solving the quadratic equation.
Finally, these results yield:

υ2
max

Km−1∑
k=0

γk+1E[‖∇V (ŝ(k))‖2] ≤ 2(R0 −RKm)

υminρ
+ 2

Km−1∑
k=0

η̃(k+1) + χ̃(k+1)

υminρ
.

Note that R0 = E[V (ŝ(0))] and if Km is a multiple of m, then Rmax = E[V (ŝ(Km))]. Under the
latter condition, we have

Km−1∑
k=0

γk+1E[‖∇V (ŝ(k))‖2] ≤ 2n2/3L

µυ2
minυ

2
max

E[V (ŝ(0))− V (ŝ(Km))]

+
2n2/3L

µυ2
minυ

2
max

Km−1∑
k=0

[
η̃(k+1) + χ̃(k+1)

]
.

This concludes our proof.
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B.4. Proof of Theorem 3

Theorem Assume A1-A5. Consider the fiTTEM sequence {ŝ(k)}k>0 ∈ S for any k ≤ Km where
Km be a positive integer. Let {γk+1 = 1/(kaαc1L)}k>0, where a ∈ (0, 1), be a sequence of
positive stepsizes, α = max{2, 1 + 2υmin}, L = max{Ls,LV }, β = 1/(αn), ρ = 1/(αc1Ln

2/3)
and c1(kα− 1) ≥ c1(α− 1) ≥ 2, α ≥ 2. Then:

E[‖∇V (ŝ(K))‖2] ≤ 4αLn2/3

Pmυ2
minυ

2
max

(
E
[
∆V

]
+

Km−1∑
k=0

Ξ(k+1) + Γ(k+1)E[‖ŝ(k) − S̃(k)‖2]

)
.

Proof Using the smoothness of V and update (3), we obtain:

V (ŝ(k+1)) ≤ V (ŝ(k)) +
〈
ŝ(k+1) − ŝ(k) | ∇V (ŝ(k))

〉
+

LV
2
‖ŝ(k+1) − ŝ(k)‖2

≤ V (ŝ(k))− γk+1

〈
ŝ(k) − S(k+1)

tts | ∇V (ŝ(k))
〉

+
γ2
k+1 LV

2
‖ŝ(k) − S(k+1)

tts ‖2 .
(31)

Denote Hk+1 := ŝ(k) − S(k+1)
tts the drift term of the fiTTEM update in (7) and hk = ŝ(k) − s(k).

Using Lemma 8 and the additional following identity:

E
[(

s
(k)
ik
− S̃

(tkik
)

ik

)
− E[s

(k)
ik
− S̃

(tkik
)

ik
]

]
= 0 , (32)

we have:

E[V (ŝ(k+1))]

≤E[V (ŝ(k))]− γk+1ρE[
〈
hk | ∇V (ŝ(k))

〉
]

− γk+1E
[〈
ρE[η

(k+1)
ik

|Fk] + (1− ρ)E[ŝ(k) − S̃(k)] | ∇V (ŝ(k))
〉]

+
γ2
k+1 LV

2
‖Hk+1‖2

(a)

≤ − υminγk+1ρE[‖hk‖2]− γk+1E
[∥∥∥∇V (ŝ(k))

∥∥∥2
]

− γk+1ρ
2

2
ξ(k+1) − γk+1(1− ρ)2

2
E[‖ŝ(k) − S̃(k)‖2] +

γ2
k+1 LV

2
‖Hk+1‖2

(b)

≤ − (υminγk+1ρ+ γk+1υ
2
max)E[‖hk‖2]− γk+1ρ

2

2
ξ(k+1) − γk+1(1− ρ)2

2
E[‖ŝ(k) − S̃(k)‖2]

+
γ2
k+1 LV

2
‖Hk+1‖2 ,

where ξ(k+1) = E[‖E[η
(k+1)
ik

|Fk]‖2].
Bounding E

[
‖Hk+1‖2

]
Using Lemma 5, we obtain:

γk+1(υminρ+ υ2
max − γk+1ρ

2 LV )E[‖hk‖2]

≤E
[
V (ŝ(k))− V (ŝ(k+1))

]
+ ξ̃(k+1) +

(
(1− ρ)2γ2

k+1 LV −
γk+1(1− ρ)2

2

)
E[‖ŝ(k) − S̃(k)‖2]

+
γ2
k+1 LV ρ

2 L2
s

n

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2] ,

(33)
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where ξ̃(k+1) = γ2
k+1ρ

2 LV E[‖η(k+1)
ik

‖2]− γk+1ρ
2

2 ξ(k+1). Next, we observe that

1

n

n∑
i=1

E[‖ŝ(k+1)−ŝ(tk+1
i )‖2] =

1

n

n∑
i=1

( 1

n
E[‖ŝ(k+1)−ŝ(k)‖2]+

n− 1

n
E[‖ŝ(k+1)−ŝ(tki )‖2]

)
, (34)

where the equality holds as ik and jk are drawn independently. Then,

E[‖ŝ(k+1) − ŝ(tki )‖2]

= E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(tki )‖2 + 2

〈
ŝ(k+1) − ŝ(k) | ŝ(k) − ŝ(tki )

〉]
.

Note that ŝ(k+1) − ŝ(k) = −γk+1(ŝ(k) − S(k+1)
tts ) = −γk+1Hk+1 and that in expectation we recall

that E[Hk+1|Fk] = ρhk + ρE[η
(k+1)
ik

|Fk] + (1 − ρ)E[S
(k)
tts − ŝ(k)] where hk = ŝ(k) − s(k). Thus,

for any β > 0, it holds

E[‖ŝ(k+1) − ŝ(tki )‖2]

=E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(tki )‖2 + 2

〈
ŝ(k+1) − ŝ(k) | ŝ(k) − ŝ(tki )

〉]
≤E
[
‖ŝ(k+1) − ŝ(k)‖2 + (1 + γk+1β)‖ŝ(k) − ŝ(tki )‖2 +

γk+1ρ
2

β
‖hk‖2 +

γk+1ρ
2

β
E[
∥∥∥η(k+1)

ik

∥∥∥2
]

+
γk+1(1− ρ)2

β
E[‖ŝ(k) − S̃(k)‖2]

]
,

where the last inequality is due to Young’s inequality. Plugging this into (34) yields:

E[‖ŝ(k+1) − ŝ(tki )‖2]

=E
[
‖ŝ(k+1) − ŝ(k)‖2 + ‖ŝ(k) − ŝ(tki )‖2 + 2

〈
ŝ(k+1) − ŝ(k) | ŝ(k) − ŝ(tki )

〉]
≤E
[
‖ŝ(k+1) − ŝ(k)‖2 + (1 + γk+1β)‖ŝ(k) − ŝ(tki )‖2 +

γk+1ρ
2

β
‖hk‖2 +

γk+1ρ
2

β
E[
∥∥∥η(k+1)

ik

∥∥∥2
]

+
γk+1(1− ρ)2

β
E
[∥∥∥ŝ(k) − S̃(k)

∥∥∥2
] ]

.

Subsequently, we have

1

n

n∑
i=1

E[‖ŝ(k+1) − ŝ(tk+1
i )‖2]

≤E[‖ŝ(k+1) − ŝ(k)‖2] +
n− 1

n2

n∑
i=1

E
[
(1 + γk+1β)‖ŝ(k) − ŝ(tki )‖2 +

γk+1ρ
2

β
‖hk‖2

+
γk+1ρ

2

β
E[
∥∥∥η(k+1)

ik

∥∥∥2
] +

γk+1(1− ρ)2

β
E
[∥∥∥ŝ(k) − S̃(k)

∥∥∥2
] ]]

.
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We now use Lemma 5 on ‖ŝ(k+1) − ŝ(k)‖2 = γ2
k+1‖ŝ(k) − S(k+1)

tts ‖2 and obtain:

1

n

n∑
i=1

E[‖ŝ(k+1) − ŝ(tk+1
i )‖2]

≤
(

2γ2
k+1ρ

2 +
γk+1ρ

2

β

)
E[‖s(k) − ŝ(k)‖2]

+
n∑
i=1

(
γ2
k+1ρ

2 L2
s

n
+

(n− 1)(1 + γk+1β)

n2

)
E
[
‖ŝ(k) − ŝ(tki )‖2

]
+ γk+1(1− ρ)2

(
2γk+1 +

1

β

)
E[‖ŝ(k) − S̃(k)‖2] +

(
2γ2

k+1 +
γk+1ρ

2

β

)
E[
∥∥∥η(k+1)

ik

∥∥∥2
]

≤
(

2γ2
k+1ρ

2 +
γk+1ρ

2

β

)
E[‖s(k) − ŝ(k)‖2]

+

n∑
i=1

(
1− 1

n + γk+1β + γ2
k+1ρ

2 L2
s

n

)
E
[
‖ŝ(k) − ŝ(tki )‖2

]
+ γk+1(1− ρ)2

(
2γk+1 +

1

β

)
E[‖ŝ(k) − S̃(k)‖2] +

(
2γ2

k+1 +
γk+1ρ

2

β

)
E[
∥∥∥η(k+1)

ik

∥∥∥2
] .

Let us define

∆(k) :=
1

n

n∑
i=1

E[‖ŝ(k) − ŝ(tki )‖2] .

From the above, we get

∆(k+1) ≤
(

1− 1

n
+ γk+1β + γ2

k+1ρ
2 L2

s

)
∆(k) +

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
E[‖s(k) − ŝ(k)‖2]

+ γk+1(1− ρ)2

(
2γk+1 +

1

β

)
E[‖ŝ(k) − S̃(k)‖2] + γk+1

(
2γk+1 +

ρ2

β

)
E[
∥∥∥η(k+1)

ik

∥∥∥2
] .

Setting c1 = υ−1
min, α = max{2, 1 + 2υmin}, L = max{Ls,LV }, γk+1 = 1

k , β = 1
αn , ρ =

1
αc1Ln2/3 , c1(kα− 1) ≥ c1(α− 1) ≥ 2, α ≥ 2, we observe that

1− 1

n
+ γk+1β + γ2

k+1ρ
2 L2

s ≤ 1− 1

n
+

1

αkn
+

1

α2c2
1k

2n
4
3

≤ 1− c1(kα− 1)− 1

kαnc1
≤ 1− 1

kαnc1

which shows that 1 − 1
n + γk+1β + γ2

k+1ρ
2 L2

s ∈ (0, 1) for any k > 0. Denote Λ(k+1) = 1
n −

γk+1β − γ2
k+1ρ

2 L2
s and note that ∆(0) = 0, thus the telescoping sum yields:

∆(k+1) ≤
k∑
`=0

ωk,`

(
2γ2

`+1ρ
2 +

γ2
`+1ρ

2

β

)
E
[∥∥∥s(`) − ŝ(`)

∥∥∥2
]

+

k∑
`=0

ωk,`γ`+1(1− ρ)2

(
2γ`+1 +

1

β

)
E
[∥∥∥S̃(`) − ŝ(`)

∥∥∥2
]

+

k∑
`=0

ωk,`γ`+1ε̃
(`+1) ,
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where ωk,` =
∏k
j=`+1

(
1− Λ(j)

)
and ε̃(`+1) =

(
2γk+1 + ρ2

β

)
E[
∥∥∥η(k+1)

ik

∥∥∥2
].

Summing on both sides over k = 0 to k = Km − 1 yields:

Km−1∑
k=0

∆(k+1) ≤
Km−1∑
k=0

2γ2
k+1ρ

2 +
γk+1ρ

2

β

Λ(k+1)
E[‖s(k) − ŝ(k)‖2]

+

Km−1∑
k=0

γk+1(1− ρ)2
(

2γk+1 + 1
β

)
Λ(k+1)

E[‖ŝ(k) − S̃(k)‖2] +

Km−1∑
k=0

γk+1

Λ(k+1)
ε̃(k+1) .

We recall (33) where we have summed on both sides from k = 0 to k = Km − 1:

E
[
V (ŝ(Km))− V (ŝ(0))

]
≤

Km−1∑
k=0

{
γk+1(−(υminρ+ υ2

max) + γk+1ρ
2 LV )E[‖hk‖2] + γ2 LV ρ

2 L2
s ∆(k)

}
+

Km−1∑
k=0

{
ξ̃(k+1) +

(
(1− ρ)2γ2

k+1 LV −
γk+1(1− ρ)2

2

)
E[‖ŝ(k) − S̃(k)‖2]

}

≤
Km−1∑
k=0

{−γk+1(υminρ+ υ2
max) + γ2

k+1ρ
2 LV +

ρ2γ2
k+1 LV L2

s

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
Λ(k+1)

E[‖hk‖2]
}

+

Km−1∑
k=0

Ξ(k+1) +

Km−1∑
k=0

Γ(k+1)E
[
‖ŝ(k) − S̃(k)‖2

]
,

(35)

where

Ξ(k+1) = ξ̃(k+1) +
γ3
k+1 LV ρ

2 L2
s

Λ(k+1)
ε̃(k+1)

and

Γ(k+1) =

(
(1− ρ)2γ2

k+1 LV −
γk+1(1− ρ)2

2

)
+
γ3
k+1 LV ρ

2 L2
s(1− ρ)2

(
2γk+1 + 1

β

)
Λ(k+1)

.

We now analyse the following quantity

− γk+1(υminρ+ υ2
max) + γ2

k+1ρ
2 LV +

ρ2γ2
k+1 LV L2

s

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
Λ(k+1)

= γk+1

−(υminρ+ υ2
max) + γk+1ρ

2 LV +
ρ2γk+1 LV L2

s

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
Λ(k+1)

 .

(36)
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Furthermore, we recall that c1 = υ−1
min, α = max{2, 1+2υmin}, L = max{Ls,LV }, γk+1 = 1

k ,
β = 1

αn , ρ = 1
αc1Ln2/3 , c1(kα− 1) ≥ c1(α− 1) ≥ 2, α ≥ 2.Then,

γk+1ρ
2 LV +

ρ2γk+1 LV L2
s

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
1
n − γk+1β − γ2

k+1ρ
2 L2

s

≤ 1

kα2c2
1Ln

4/3
+
L(kα2c2

1n
4/3)−1

(
2

k2α2c21L
2
n4/3

+ 1

kαc21L
2
n1/3

)
1
n −

1
kαn −

1
k2α2c21n

4/3

=
1

kα2c2
1Ln

4/3
+
L
(

2

k2α2c21L
2
n4/3

+ 1

kαc21L
2
n1/3

)
(kαc1n1/3)(kα− 1)c1 − 1

(a)

≤ 1

kα2c2
1Ln

4/3
+

1
kαc21Ln

1/3

(
2
kαn + 1

)
2(αc1n1/3)− 1

≤ 1

k2αc2
1Ln

4/3
+

1

4kα2c3
1Ln

2/3

≤ 3/4

αc2
1Ln

2/3
,

(37)

where (a) is due to c1(kα− 1) ≥ c1(α− 1) ≥ 2 and kαc1n
1/3 ≥ 1. Note also that

−(υminρ+ υ2
max) ≤ −ρυmin = − 1

αc2
1Ln

2/3
,

which yields that−(υminρ+ υ2
max) + γk+1ρ

2 LV +
ρ2γk+1 LV L2

s

(
2γ2

k+1ρ
2 +

γk+1ρ
2

β

)
Λ(k+1)

 ≤ − 1/4

αc2
1Ln

2/3
.

Using the Lemma 2, we know that υ2
max‖∇V (ŝ(k))‖2 ≤ ‖ŝ(k) − s(k)‖2 and using (37) on (35)

yields:

υ2
max

Km−1∑
k=0

γk+1E[‖∇V (ŝ(k))‖2]

≤4αLn2/3

υ2
min

[
V (ŝ(0))− V (ŝ(Km))

]
+

4αLn2/3

υ2
min

Km−1∑
k=0

Ξ(k+1) +

Km−1∑
k=0

Γ(k+1)E
[
‖ŝ(k) − S̃(k)‖2

]
,

proving the bound on the second order moment of the gradient of the Lyapunov function:
Km−1∑
k=0

γk+1E[‖∇V (ŝ(k))‖2] ≤ 4αLn2/3

υ2
minυ

2
max

[
V (ŝ(0))− V (ŝ(Km))

]
+

4αLn2/3

υ2
minυ

2
max

Km−1∑
k=0

Ξ(k+1) +

Km−1∑
k=0

Γ(k+1)E
[
‖ŝ(k) − S̃(k)‖2

]
.
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Appendix C. Practical Implementations of Two-Timescale EM Methods

C.1. Application on GMM

C.1.1. EXPLICIT UPDATES

We first recognize that the constraint set for θ is given by

Θ = ∆M × RM .

Using the partition of the sufficient statistics as S(yi, zi) = (S(1)(yi, zi)
>, S(2)(yi, zi)

>, S(3)(yi, zi))
> ∈

RM−1×RM−1×R, the partition φ(θ) = (φ(1)(θ)>, φ(2)(θ)>, φ(3)(θ))> ∈ RM−1×RM−1×R and
the fact that 1{M}(zi) = 1 −

∑M−1
m=1 1{m}(zi), the complete data log-likelihood can be expressed

as in (2) with

s
(1)
i,m = 1{m}(zi), φ(1)

m (θ) =

{
log(ωm)− µ2

m

2

}
−
{

log(1−
∑M−1

j=1 ωj)−
µ2
M

2

}
,

s
(2)
i,m = 1{m}(zi)yi, φ(2)

m (θ) = µm , s
(3)
i = yi, φ(3)(θ) = µM ,

(38)

and ψ(θ) = −
{

log(1−
∑M−1

m=1 ωm)− µ2M
2σ2

}
. We also define for each m ∈ J1,MK, j ∈ J1, 3K,

s
(j)
m = n−1

∑n
i=1 s

(j)
i,m. Consider the following latent sample used to compute an approximation of

the conditional expected value Eθ[1{zi=m}|y = yi]:

zi,m ∼ P (zi = m|yi;θ) (39)

where m ∈ J1,MK, i ∈ [n] and θ = (w,µ) ∈ Θ.
In particular, given iteration k + 1, the computation of the approximated quantity S̃(k)

ik
during

Incremental-step updates, see (8) can be written as

S̃
(k)
ik

=
(
1{1}(zik,1), ...,1{M−1}(zik,M−1)︸ ︷︷ ︸

:=s̃
(1)
ik

,1{1}(zik,1)yik , ...,1{M−1}(zik,M−1)yik︸ ︷︷ ︸
:=s̃

(2)
ik

, yik︸︷︷︸
:=s

(3)
ik

(θ(k))

)>
.

(40)
Recall that we have used the following regularizer:

r(θ) = δ
2

∑M
m=1 µ

2
m − ε

∑M
m=1 log(ωm)− ε log

(
1−

∑M−1
m=1 ωm

)
, (41)

It can be shown that the regularized M-step evaluates to

θ(s) =


(1 + εM)−1

(
s

(1)
1 + ε, . . . , s

(1)
M−1 + ε

)>(
(s

(1)
1 + δ)−1s

(2)
1 , . . . , (s

(1)
M−1 + δ)−1s

(2)
M−1

)>(
1−

∑M−1
m=1 s

(1)
m + δ

)−1(
s(3) −

∑M−1
m=1 s

(2)
m

)
 =

 ω(s)
µ(s)
µM (s)

 . (42)

where we have defined for all m ∈ J1,MK and j ∈ J1, 3K , s(j)
m = n−1

∑n
i=1 s

(j)
i,m.
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C.1.2. MODEL ASSUMPTIONS (GMM EXAMPLE)

We use the GMM example to illustrate the required assumptions.
Many practical models can satisfy the compactness of the sets as in Assumption A1 For instance,

the GMM example satisfies (11) as the sufficient statistics are composed of indicator functions and
observations as defined Section C.1 Equation (38).

Assumptions A2 and A3 are standard for the curved exponential family models. For GMM, the
following (strongly convex) regularization r(θ) ensures A3:

r(θ) =
δ

2

M∑
m=1

µ2
m − ε

M∑
m=1

log(ωm)− ε log
(
1−

M−1∑
m=1

ωm
)
,

since it ensures θ(k) is unique and lies in int(∆M ) × RM . We remark that for A2, it is possible to
define the Lipschitz constant Lp independently for each data yi to yield a refined characterization.

Again, A4 is satisfied by practical models. For GMM, it can be verified by deriving the closed
form expression for B(s) and using A1.

Under A1 and A3, we have ‖ŝ(k)‖ < ∞ since S is compact and θ̂(k) ∈ int(Θ) for any k ≥ 0
which thus ensure that the EM methods operate in a closed set throughout the optimization process.

C.1.3. ALGORITHMS UPDATES

In the sequel, recall that, for all i ∈ [n] and iteration k, the computed statistic S̃(k)
ik

is defined by (40).
At iteration k, the several E-steps defined by (1) or (2) and (3) leads to the definition of the quantity
ŝ(k+1). For the GMM example, after the initialization of the quantity ŝ(0) = n−1

∑n
i=1 s

(0)
i , those

E-steps break down as follows:
Batch EM (EM): for all i ∈ [n], compute s

(k)
i and set

ŝ(k+1) = n−1
∑n

i=1
s

(k)
i .

where s
(k)
i are computed using the exact conditional expected balue Eθ[1{zi=m}|y = yi]:

ω̃m(yi;θ) := Eθ[1{zi=m}|y = yi] =
ωmexp(−1

2(yi − µi)2)∑M
j=1 ωj exp(−1

2(yi − µj)2)
,

Incremental EM (iEM): draw an index ik uniformly at random on [n], compute s
(k)
ik

and set

ŝ(k+1) = ŝ(k) +
1

n

(
s

(k)
ik
− s

(τki )
ik

)
= n−1

∑n

i=1
s

(τki )
i .

batch SAEM (SAEM): draw an index ik uniformly at random on [n], compute s
(k)
ik

and set

ŝ(k+1) = ŝ(k)(1− γk+1) + γk+1S
(k)
tts .

where = 1
n

∑n
i=1 S̃

(k)
i with S̃(k)

i defined in (40).

Incremental SAEM (iSAEM): draw an index ik uniformly at random on [n], compute s
(k)
ik

and
set

ŝ(k+1) = ŝ(k)(1− γk+1) + γk+1

(
S

(k)
tts +

1

n
(S̃

(k)
ik
− S̃(τki )

ik
)
)
.
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Variance Reduced Two-Timescale EM (vrTTEM): draw an index ik uniformly at random on
[n], compute s

(k)
ik

and set

ŝ(k+1) = ŝ(k)(1− γk+1) + γk+1

(
S

(k)
tts (1− ρ) + ρ(S̃(`(k)) +

(
S̃

(k)
ik
− S̃(`(k))

ik

)
)
)
.

Fast Incremental Two-Timescale EM (fiTTEM): draw an index ik uniformly at random on
[n], compute s

(k)
ik

and set

ŝ(k+1) = ŝ(k)(1− γk+1) + γk+1

(
S

(k)
tts (1− ρ) + ρ(S(k)

+
(
S̃

(k)
ik
− S̃

(tkik
)

ik
)
)
.

Finally, the k-th update reads θ̂(k+1) = θ(ŝ(k+1)) where the function s → θ(s) is defined by
(42).

C.2. Deformable Template Model for Image Analysis

C.2.1. MODEL AND UPDATES

The complete model belongs to the curved exponential family, see Allassonnière et al. (2007), which
vector of sufficient statistics S =

(
S1(z), S2(z), S3(z)

)
read:

S1(z) =
1

n

n∑
i=1

S1(yi, zi) =
1

n

n∑
i=1

(
Kzi
p

)>
yi ,

S2(z) =
1

n

n∑
i=1

S2(yi, zi) =
1

n

n∑
i=1

(
Kzi
p

)> (
Kzi
p

)
,

S3(z) =
1

n

n∑
i=1

S3(yi, zi) =
1

n

n∑
i=1

ztizi ,

(43)

where for any pixel u ∈ R2 and j ∈ J1, kgK we denote:

Kzi
p (xu, j) = Kzi

p (xu − φi(xu, zi), pj) .

Finally, the Two-Timescale M-step yields the following parameter updates:

θ̄(ŝ) =

 β(ŝ) = ŝ−1
2 (z)ŝ1(z)

Γ(ŝ) = 1
n ŝ3(z)

σ(ŝ) = β(ŝ)>ŝ2(z)β(ŝ)− 2β(ŝ)ŝ1(z)

 , (44)

where ŝ = (ŝ1(z), ŝ2(z), ŝ3(z)) is the vector of statistics obtained via the SA-step (7) and using
the MC approximation of the sufficient statistics

(
S1(z), S2(z), S3(z)

)
defined in (43).

C.2.2. NUMERICAL APPLICATIONS

For the inference of the template, we use the Matlab code (online SAEM) used in Maire et al. (2016)
and implement our own batch, incremental, Variance reduced and Fast Incremental variants. The
hyperparameters are kept the same and reads as follows M = 400, γk = 1/k0.6 and p = 16. The
number of landmarks for the template is kp = 15 points and for the deformation kg = 6 points. Both
have Gaussian kernels with respectively standard deviation of 0.12 and 0.3. The standard deviation
of the measurement errors is set to 0.1.

For the simulation part, we use the Carlin and Chib MCMC procedure, see Carlin and Chib
(1995). Refer to Maire et al. (2016) for more details.
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C.3. Pharmacokinetics (PK) Model with Absorption Lag Time

Metropolis Hastings algorithm. During the simulation step of the MISSO method, the sampling
from the target distribution π(zi,θ) := p(zi|yi,θ) is performed using a Metropolis Hastings (MH)
algorithm (Meyn and Tweedie, 2012) with proposal distribution q(zi, δ) where θ = (zpop, ωz) and
δ is the vector of parameters of the proposal distribution. Commonly they parameterize a Gaussian
proposal. The MH algorithm is summarized in 2.

Algorithm 2 MH aglorithm
1: Input: initialization zi,0 ∼ q(zi; δ)
2: for m = 1, · · · ,M do
3: Sample zi,m ∼ q(zi; δ)
4: Sample u ∼ U(J0, 1K)
5: Calculate the ratio r =

π(zi,m;θ)/q(zi,m);δ)
π(zi,m−1;θ)/q(zi,m−1);δ)

6: if u < r then
7: Accept zi,m
8: else
9: zi,m ← zi,m−1

10: end if
11: end for
12: Output: zi,M
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