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Abstract6

Decoupling multivariate polynomials is useful for obtaining an insight into the workings7

of a nonlinear mapping, performing parameter reduction, or approximating nonlinear8

functions. Several different tensor-based approaches have been proposed independently9

for this task, involving different tensor representations of the functions, and ultimately10

leading to a canonical polyadic decomposition.11

We first show that the involved tensors are related by a linear transformation, and
that their CP decompositions and uniqueness properties are closely related. This con-
nection provides a way to better assess which of the methods should be favored in certain
problem settings, and may be a starting point to unify the two approaches. Second, we
show that taking into account the previously ignored intrinsic structure in the tensor de-
compositions improves the uniqueness properties of the decompositions and thus enlarges
the applicability range of the methods.

Keywords: polynomial decoupling, tensors, canonical polyadic decomposition, coupled12

tensor decomposition, tensorization, Waring decomposition13
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1. Introduction15

Representing a nonlinear function in a simpler way can provide an insight into its16

inner workings, reduce the parametric complexity, or facilitate function approximation.17

One of the successful examples are tensor decompositions, such as the canonical polyadic18

(CP) decomposition that can be viewed as a decomposition of functions into a sum of19

separable functions [1]. Tensor decompositions found many applications in signal/image20

processing, chemometrics, physics, machine learning, to name a few [2, 3, 4, 5, 6]. In21

these applications, tensors either appear naturally due to multi-dimensionality of data22

[7], or the data can be tensorized, i.e., a higher-order tensor is constructed from data23

[8].24
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In this paper, we focus on the task of decoupling a set of polynomial vector functions,25

that is, decomposing a set of multivariate real polynomials into linear combinations of26

univariate polynomials in linear forms of the input variables. This task has attracted a27

spark of research attention over the last years, motivated by several applications, such as28

system identification [9, 10, 11, 12, 13, 14], approximation theory [15, 16, 17], and neural29

networks [18]. Restricting polynomial decoupling to a single homogeneous polynomial is30

equivalent to the well-known Waring decomposition [19, 20], but some generalizations to31

non-homogeneous polynomials or joint Waring decompositions are studied as well [21, 22]32

and [23, 24, 11].33

Several tensor-based approaches were proposed for computing a decoupled represen-34

tation of a given function [12, 13, 25, 26, 24]. These solutions can be categorized into35

two classes. The methods [12, 13, 25, 26] build a tensor from the polynomial coefficients,36

whereas the method of [24] builds a tensor from the Jacobian matrices of the functions,37

evaluated at a set of sampling points. Ultimately, all methods boil down to a canon-38

ical polyadic decomposition (CP decomposition) of the constructed tensor to retrieve39

a decoupled representation in which the nonlinearities occur as univariate polynomial40

mappings.41

The benefit of using a tensor-based approach for decoupling is twofold. First, ‘ten-42

sorization’ procedures often lead to (essentially) uniquely decomposable tensors [8], i.e.,43

ensuring that identifiable structures can be retrieved. Second, by solving the decoupling44

problem as a CP decomposition, one can use recent widely available and robust numerical45

tools, such as Tensorlab for MATLAB [27] (or alternatives [28, 29]).46

This paper specifically focuses on the two tensorization methods [26] and [24]. Al-47

though both associated tensors have a particular structure, both approaches seem quite48

different in nature, and each of the methods has distinct advantages over the other one.49

For instance, the coefficient-based methods [12, 13, 25, 26] require several high-order50

tensors (or their matricizations) for polynomials of high degrees, whereas [24] involves a51

single third-order tensor only. Coefficient-based approaches can easily deal with single52

polynomials, whereas [24] would in that case not be able to take advantage of the unique-53

ness properties of the CP decomposition, as the tensor of Jacobian matrices is then a54

matrix composed of gradient vectors. On the other hand, the approach of [24] can be55

applied to non-polynomial functions, which may in some cases be of interest, e.g., in [9]56

a neural network was decoupled.57

We aim at obtaining a deeper understanding of the connections between the solution58

approaches. This is profitable when extending the applicability range of the methods,59

e.g., when moving from polynomials to any differentiable functions. Furthermore, such60

connections may provide a way to transfer theoretical properties from one formulation to61

another. For example, as we argue in Section 6, exploring the previously ignored structure62

in the tensor decomposition in one of the settings enlarges the range of decomposable63

functions. This knowledge may lead to improved algorithms in another setting as well.64

The remainder of this article is organized as follows: Section 2 formalizes the problem65

of decoupling multivariate polynomials. Section 3 explains the link between the decou-66

pling problem and the symmetric tensor decomposition problem. Section 4 discusses67

the construction of the tensor of unfoldings [26] and the Jacobian tensor [24]. Section 568

presents our first contribution, namely the relation between the two tensorizations. The69

second main contribution of the paper is Section 6, which clarifies the need of dealing70

with structure in the decompositions and proposes a coupled CP decomposition approach71

2



for solving the structured problem. Section 7 draws the conclusions and points out open72

problems for future work.73

Notation74

Scalars are denoted by lowercase or uppercase letters. Vectors are denoted by low-75

ercase boldface letters, e.g., u. Elements of a vector are denoted by lowercase letters76

with an index as subscript, e.g., x =
[
x1 · · · xm

]>
. Matrices are denoted by up-77

percase boldface letters, e.g., V. The entry in the i-th row and j-th column of a matrix78

V is denoted by vij , and the matrix V ∈ Rm×r may be represented by its columns79

V =
[
v1 · · · vr

]
. The Kronecker product of matrices is denoted by “⊗”.80

Tensors of order d are denoted by uppercase caligraphical letters, e.g., J ∈ Rn×m×N .81

The outer product is denoted by “◦” and is defined as follows: For T = u ◦ v ◦w, the82

entry in position (i, j, k) is equal to uivjwk. The canonical polyadic (CP) decomposition83

expresses a tensor T as a (minimal) sum of rank-one tensor terms [30, 31, 2] as T =84 ∑R
i=1 ui ◦vi ◦wi, and is sometimes denoted in a short-hand notation as T = JU,V,WK.85

The CP rank r is defined as the (minimal) number of terms that is required to represent86

T as a sum of r rank-one terms. To refer to elements of matrices or tensors, or subsets87

thereof, we may use MATLAB-like index notation (including MATLAB’s colon wildcard):88

for instance, Ti,j,k,` is the element at position (i, j, k, `) of a fourth-order tensor T , and89

T:,:,2 is the second frontal slice of a third-order tensor T . The mode-n product is denoted90

by “•n” and is defined as follows. Let X be an I1 × I2 × · · · × IN tensor, and let u be a91

vector of length In, then we have
(
X •n u>

)
i1···in−1in+1···iN

=
∑In
in=1 xi1i2···iNuin . Notice92

that the result is a tensor of order N − 1, as mode n is summed out. Similarly, for an93

I1 × I2 × · · · × IN tensor X and a matrix M ∈ J × In, the mode-n product is defined94

as
(
X •n M>

)
i1···in−1jin+1···iN

=
∑In
in=1 xi1i2···iNmj,in . Let vec(T ) denote the column-95

major vectorization of a tensor T . The first-mode unfolding of an I1 × I2 × · · · × IN96

tensor X is the matrix X(1) of size I1 × I2 · · · IN , where each row is the vectorized slice97

of the tensor X , i.e. (X(1))i,: = (vec(Xi,:,...,:))> (see, for example, [2] for more details).98

2. The polynomial decoupling model99

First, we describe the model, following the notation of [24] as illustrated in Fig. 1.100

Consider a multivariate polynomial map f : Rm → Rn, i.e., a vector101

f(u) =
[
f1(u) · · · fn(u)

]>
of multivariate polynomials (of total degree at most d) in variables u =

[
u1 · · · um

]>
.102

We say that f has a decoupled representation, if it can be expressed as103

f(u) = Wg(V>u), (1)

where V ∈ Rm×r,W ∈ Rn×r are transformation matrices, and g : Rr → Rr is defined as104

g(x1, . . . , xr) =
[
g1(x1) · · · gr(xr)

]>
,

where gk : R→ R are univariate polynomials of degree at most d, i.e.,105

gk(t) = c1t+ · · ·+ cdt
d. (2)
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Note that we omitted the constant terms of the polynomials, since they are not uniquely106

identifiable [24]. In this paper we limit ourselves to the model (1).

u1

...

um

f(u1, . . . , um)

y1

...

yn

=

u1

...

um

V>

g1(x1)
x1

...

gr(xr)
xr

W

z1

zr

y1

...

yn

Figure 1: Every multivariate polynomial vector function f(u) can be represented by a linear transfor-
mation of a set of univariate functions (in linear combinations of the original variables).

107

The decoupled representation (1) can be also equivalently rewritten as108

f(u) = w1g1(v>1 u) + · · ·+ wrgr(v
>
r u), (3)

where vk and wk are the columns of V and W, respectively. As shown in [32, 33], the109

decomposition (3) is a special case of the X-rank decomposition [34, §5.2.1], where the110

set of “rank-one” terms is the set of polynomial maps of the form wg(v>u). The X-rank111

framework is useful [33] for studying the identifiability of the model (3).112

The following example shows a decoupled representation for a simple case. This113

example will be used throughout the paper to illustrate the main ideas of the various114

aspects that we will explore.115

Example 1. Consider a function f(u) =
[
f1(u1, u2) f2(u1, u2)

]>
given as116

f1(u1, u2) = −3u31 − 9u21u2 − 27u1u
2
2 − 15u32 − 8u21 − 8u1u2 − 20u22 + 3u1 + 9u2,

f2(u1, u2) = −7u31 − 6u21u2 + 6u1u
2
2 + 7u32 + 10u21 + 16u1u2 + 10u22 − 3u2.

It can be verified that f has a decomposition (3) with m = n = 2 and r = 3 as117

V =

[
2 −1 1
1 1 2

]
, and W =

[
0 1 −2
−1 0 1

]
,

and g1(x1) = x31 − 2x21 − x1, g2(x2) = x32 − 4x22 + x2, g3(x3) = x33 + 2x23 − 2x3 (see118

Figure 2).119

Remark 1. In general, the coupled representation f(u) has n
((
m+d
d

)
− 1
)

coefficients,120

while the decoupled representation Wg(V>u) has r(m+ n+ d) coefficients. Due to the121

combinatorial increase of the number of coefficients in the coupled representation, the122

decoupled representation is especially beneficial for large values of m, n, and d. But even123

for small values of m, n, and d, the parametric reduction can be significant, for example,124

if m = n = 3, d = 5, and r = 3, the coupled representation has 168 coefficients, while125

the decoupled one has only 36 coefficients.126
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Figure 2: The decoupling problem in Example 1 consists of decomposing the multivariate functions
f1(u1, u2) and f2(u1, u2) (top row) to the univariate functions g1(x1), g2(x2), and g3(x3) (bottom row),
using suitable transformation matrices as in (1).

3. Decoupling polynomials and symmetric tensor decompositions127

Let us review some well-known facts that connect polynomials with symmetric tensors128

[35, 36], and that connect some special cases of the representation (1) with symmetric129

tensor decompositions.130

3.1. Homogeneous polynomials, symmetric tensors and Waring decomposition131

It is well-known that there is a one-to-one correspondence between homogeneous132

polynomials and symmetric tensors [35]. For instance, the polynomial −8u21 − 8u1u2 −133

20u22 can be written as134

− 8u21 − 8u1u2 − 20u22 = u>Ψ(2)u, where Ψ(2) =

[
−8 −4
−4 −20

]
. (4)

In general, let p(d)(u1, . . . , um) be a homogeneous polynomial (also called a d-ary form)135

of degree d in m variables. Then there is a unique symmetric tensor Ψ(d) of order d and136

dimension m such that137

p(u) = Ψ(d) •1 u · · · •d u. (5)

Next, it is easy to see that the decoupling problem for the polynomial (5) takes the form138

p(u1, . . . , um) =

r∑
i=1

wi(v1iu1 + · · ·+ vmium)d, (6)
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which is known as the Waring decomposition [19, 20] of p(u1, . . . , um). The Waring139

decomposition, in its turn, is equivalent to the symmetric CP decomposition of Ψ(d):140

Ψ(d) =

r∑
i=1

wi(vi ◦ · · · ◦ vi).

The symmetric CP decomposition of Ψ(d) reveals possible values for the unknowns vij141

and wi.142

Example 2. Consider the polynomial given in (4). Then the corresponding symmetric143

matrix Ψ(2) admits the decomposition144 [
−8 −4
−4 −20

]
=

[
−2 2

2 4

] [
−1 0

0 −1

] [
−2 2

2 4

]
, (7)

such that p(u1, u2) = u>Ψ(2)u has the Waring decomposition145

p(u1, u2) = −(−2u1 + 2u2)2 − (2u1 + 4u2)2.

Notice that the symmetric decomposition of Ψ(2) from Example 2 is not unique (nor146

‘essentially unique’ [2]). Indeed, the eigenvalue decomposition147 [
−8 −4
−4 −20

]
≈
[

0.2898 −0.9571
0.9571 0.2898

] [
−21.2111 0

0 −6.7889

] [
0.2898 0.9571
−0.9571 0.2898

]
provides another valid factorization. For d > 2, however, the Waring decomposition (6)148

possesses uniqueness properties even in the case of quite large ranks [37, 38].149

Along the same lines, it is possible to decouple jointly several homogeneous polyno-150

mials. Consider the case of n homogeneous polynomials of degree d, denoted by151

p1(u1, . . . , um) = Ψ
(d)
1 •1 u · · · •d u,

...

pn(u1, . . . , um) = Ψ
(d)
n •1 u · · · •d u.

(8)

Then the decoupling problem (1) corresponds to the simultaneous Waring decomposition152

of several forms or, equivalently, the coupled CP decomposition of several symmetric153

tensors. The rank and identifiability properties of simultaneous Waring decompositions154

were also studied in the literature, see [23, 37, 39] and references therein.155

3.2. The case of non-homogeneous polynomials156

Next, consider the case of non-homogeneous polynomials. Any non-homogeneous157

polynomial of degree d can hence be written as158

p(u) = u>Ψ(1) + u>Ψ(2)u + Ψ(3) •1 u •2 u •3 u + · · ·+ Ψ(d) •1 u · · · •d u, (9)

where Ψ(1) ∈ Rm , Ψ(2) ∈ Rm×m is a symmetric matrix, and each Ψ(s) ∈ Rm×···×m,159

3 ≤ s ≤ d, is a symmetric tensor of order s.160
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Example 3. We continue Example 1. We can write f1(u1, u2) and f2(u1, u2) as161

f1(u1, u2) = u>
[

3
9

]
+ u>

[
−8 −4
−4 −20

]
u + Ψ(3) •1 u •2 u •3 u,

with162

Ψ
(3)
:,:,1 =

[
−3 −3
−3 −9

]
, Ψ

(3)
:,:,2 =

[
−3 −9
−9 −15

]
,

and163

f2(u1, u2) = u>
[

0
−3

]
+ u>

[
10 8
8 10

]
u + Ψ(3) •1 u •2 u •3 u,

with164

Ψ
(3)
:,:,1 =

[
−7 −2
−2 2

]
, Ψ

(3)
:,:,2 =

[
−2 2

2 7

]
.

The decomposition of a single non-homogeneous polynomial as in (3) is hence equiv-165

alent to joint decomposition of several symmetric tensors but of different orders [32].166

Finally, several non-homogeneous polynomials can be jointly decomposed in a similar167

way. Consider n non-homogeneous polynomials of maximal degree d, denoted as168

p1(u1, . . . , um) = u>Ψ
(1)
1 + · · ·+ Ψ

(d)
1 •1 u · · · •d u,

...

pn(u1, . . . , um) = u>Ψ
(1)
n + · · ·+ Ψ

(d)
n •1 u · · · •d u,

(10)

The full decomposition in (1) can be also viewed as a coupled tensor decomposition,169

which will be presented in Section 6.2.170

4. Tensorizations and their decompositions171

In this section, we recall tensorizations proposed in the literature to find the decom-172

position (1) by a CP decomposition of a single tensor constructed from f , namely the173

tensorizations of [26] and [24]. We recall basic properties and give short proofs for com-174

pleteness, although these proofs are already present in [26, 24]. We also use a slightly175

different notation to simplify the exposition.176

4.1. Tensor of unfoldings [26]177

The above link between polynomials, (partially) symmetric tensors and their CP178

decompositions gives rise to the tensorization approach of [26], in which a tensor is179

constructed from the coefficients of the polynomials f1(u1, . . . , um) up to fn(u1, . . . , um).180

This tensorization offers the advantage that several polynomials can be represented as a181

single tensor, and the decoupling task can be solved using a single (but structured) CP182

decomposition. In this approach, the tensor (shown in Figure 3) is constructed from the183

coefficients of the polynomial map of degree d, as follows:184

• The tensor has size n×m× δ, where δ =
d∑
k=1

mk−1.185
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• The tensor is constructed by slices186

Qi,:,: := Ψ(fi),

where Ψ is a structured m× δ matrix built from the coefficients of fi(u).187

=Q ...

Ψ(f1)

Ψ(f2)

Ψ(fn)
m

n

δ

Figure 3: The coefficients of a polynomial map f : Rm → Rn of degree d can be arranged into an
n×m× δ tensor Q, where δ =

∑d
k=1m

k−1.

Now let us describe the construction of the structured coefficient matrix Ψ(p) for a188

given polynomial of degree d. Recall that each such polynomial can be written as in189

(9), where Ψ(1) ∈ Rm , Ψ(2) ∈ Rm×m is a symmetric matrix and Ψ(s) ∈ Rm×···×m are190

symmetric tensors of order s. Then the matrix Ψ(p) ∈ Rm×δ is constructed1 as191

Ψ(p) =
[

Ψ(1) Ψ(2) Ψ
(3)
(1) · · · Ψ

(d)
(1)

]
, (11)

where G(1) denotes the first-mode unfolding of a tensor G.192

Example 4. A third-degree polynomial in two variables193

p(u1, u2) = a1u1 + a2u2 + b1u
2
1 + 2b2u1u2 + b3u22 + d1u

3
1 + 3d2u

2
1u2 + 3d3u1u

2
2 + d4u

3
3

has the representation194

p(u1, u2) = u>
[
a1
a2

]
+ u>

[
b1 b2
b2 b3

]
u + Ψ(3) •1 u •2 u •3 u, (12)

where195

Ψ
(3)
:,:,1 =

[
d1 d2
d2 d3

]
, Ψ

(3)
:,:,2 =

[
d2 d3
d3 d4

]
.

By putting all the unfoldings together, we get196

Ψ(p) =

[
a1 b1 b2 d1 d2 d2 d3
a2 b2 b3 d2 d3 d3 d4

]
. (13)

Hence, for f1 and f2 in Example 1, the slices of the tensor Q are given by197

Q1,:,: = Ψ(f1) =

[
3 −8 −4 −3 −3 −3 −9
9 −4 −20 −3 −9 −9 −15

]
,

1In [26] the linear term is skipped, and δ =
d∑

k=2
md−1. In [40] the matrix Ψ is denoted as Γ.

8



and198

Q2,:,: = Ψ(f2) =

[
0 10 8 −7 −2 −2 2
−3 8 10 −2 2 2 7

]
.

As proved in [26], the tensor Q has a CP decomposition, which reveals the decompo-199

sition (1). We repeat here a simplified version of the proof for completeness.200

Lemma 1. For the polynomial map (1), the tensor Q has the following CP decomposi-201

tion:202

Q =

r∑
k=1

wk ◦ vk ◦ zk, (14)

where203

zk =
[
ck,1 ck,2v

>
k ck,3(vk ⊗ vk)> · · · ck,d(vk ⊗ · · · ⊗ vk)>

]>
. (15)

Proof. Consider qk(u) := gk(v>k u), where gk is as in (2). Easy calculations show that204

Ψ(qk) = vkz
>
k ,

see also [40, eqn. (A.7)]. Since, from (3) fi(u) =
r∑

k=1

(wk)iqk(u), we have that205

Ψ(fi) =

r∑
k=1

(wk)ivkz
>
k

which implies (14).206

Example 5. We continue Examples 1, 4. The Kronecker products of columns of V are:207

(v1⊗v1)> =
[
4 2 2 1

]
, (v2⊗v2)> =

[
1 −1 −1 1

]
, (v3⊗v3)> =

[
1 2 2 4

]
.

Hence, the matrix Z =
[
z1 z2 z3

]
is given by208

Z> =

 −1 −4 −2 4 2 2 1
1 4 −4 1 −1 −1 1
−2 2 4 1 2 2 4

 .
4.2. The tensor of Jacobian matrices of [24]209

The tensorization method of [24] does not use the coefficients of f(u) directly, but210

proceeds by collecting the first-order information of f(u) (i.e., the partial derivatives)211

in a set of sampling points. The thusly obtained Jacobian matrices are arranged into a212

third-order tensor, of which the CP decomposition reveals the decomposition (1).213

As in [24], we consider the Jacobian of f :214

Jf (u) :=


∂f1
∂u1

(u) · · · ∂f1
∂um

(u)
...

...
∂fn
∂u1

(u) · · · ∂fn
∂um

(u)

 . (16)

Using Lemma 2, the tensorization is constructed as follows (see Figure 4):215

9



• N points u(1), . . . ,u(N) ∈ Rm are chosen (so-called sampling points).216

• An n×m×N tensor J is constructed by stacking the Jacobian evaluations at u(k)
217

J:,:,k := Jf (u
(k)).

=J

J(u1)
J(u2)

J(uN )

. .
.

m

n

N

Figure 4: The third-order tensor J is constructed by stacking behind each other a set of Jacobian
matrices J evaluated at the sampling points u(k). Its CP decomposition is equivalent to joint matrix
diagonalization of the Jacobian matrix slices.

Example 6. We continue Example 1. As a set of sampling points, we choose218

u =

[
0
0

]
,u(2) =

[
1
0

]
,u(3) =

[
0
1

]
.

By evaluating Jf (u) at these points, we get the tensor J given by219

J:,:,1 =

[
3 9
0 −3

]
, J:,:,2 =

[
−22 −8
−1 7

]
, J:,:,3 =

[
−32 −76
22 38

]
. (17)

If f(u) has a decoupled representation (1), the following lemma holds true.220

Lemma 2 ([24, Lemma 2.1]). The first order derivatives of (1) are given by221

Jf (u) = W diag(g′1(v>1 u), . . . , g′r(v
>
r u))V>, (18)

where g′i(t) := dgi
dt (t).222

The proof, given in [24], follows by chain rule:223

Jf (u) = WJg(V>u)V>.

By Lemma 2, the evaluations of the Jacobians can be jointly factorized:224

J(u(1)) = WD(1)V>,

...

J(u(N)) = WD(N)V>,

(19)
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where D(k) = diag(g′1(v>1 u
(k)), . . . , g′r(v

>
r u

(k))). Therefore, J admits a CP decomposi-225

tion226

J = JW,V,HK =

r∑
k=1

wk ◦ vk ◦ hk, (20)

where wk, vk are as in (3), and hk contains the evaluations of g′k(v>k u) in u(1), . . . ,u(N):227

hk =
[
g′k(v>k u

(1)) · · · g′k(v>k u
(N))

]>
. (21)

Example 7. We continue Examples 1 and 6. By differentiation, we get228

g′1(t) = 3t2 − 4t− 1, g′2(t) = 3t2 − 8t+ 1, g′3(t) = 3t2 + 4t− 2,

and hence, by substitution,229

H =

 −1 1 −2
3 12 5
−2 −4 18

 . (22)

Straightforward calculations show indeed that J given in (17) admits a decomposition230

(20) with H as in (22).231

5. Relation between tensorizations J and Q232

In this section, we show how CP decompositions of (14) and (20) are related. More-233

over, we establish the relation between the ranks of the tensors and uniqueness of CP234

decompositions.235

First, we show the relation between the vectors zk and hk, defined in (15) and (21),236

respectively. We give the proof of this basic fact for completeness.237

Lemma 3. The vectors zk and hk defined in (15) and (21), respectively, satisfy238

hk = A>zk, (23)

where A ∈ Rδ×N is a Vandermonde-like matrix whose columns are239

A:,j =
[

1 2(u(j))> 3(u(j) ⊗ u(j))> · · · d(u(j) ⊗ · · · ⊗ u(j))>
]>
. (24)

Proof. Recall that by the properties of the Kronecker product240

(u⊗ · · · ⊗ u︸ ︷︷ ︸
d times

)>(v ⊗ · · · ⊗ v) = (u>v)d.

Then from (15) have that241

(A>zk)j = A>:,jzk = ck,1 + ck,2(v>k u
(j)) + · · ·+ ck,d(v

>
k u

(j))d−1 = (hk)j ,

where the last equality follows from (21) and the fact that242

g′k(t) = ck,1 + ck,2t+ · · ·+ ck,dt
d−1.

243
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Example 8. In Example 6, the matrix A can be found as244

A> =

 1 0 0 0 0 0 0
1 2 0 3 0 0 0
1 0 2 0 0 0 3

 .
It is easy to see that H = A>Z.245

As a consequence, we get that the two tensors and their ranks are also related.246

Theorem 1. 1. For any polynomial map f , J and Q are related as247

J = Q •3 A>. (25)

2. The rank of A is bounded as248

rankA ≤M :=

(
m+ d− 1

d− 1

)
.

In addition, if M ≤ N , and M points in {u(j)} are in general position, then249

rankA = M . For example, if points {u(j)} are independent and sampled from a250

continuous probability distribution, then rankA = M with probability 1.251

3. If A has maximal possible rank (i.e. rankA = M), then252

rankJ = rankQ,

and all the minimal CP decompositions differ only by the third factors, which are253

linked as in (23). Moreover, if the CP decomposition of Q is unique, then the CP254

decomposition of J is also unique.255

Proof of Lemma 3. Let us express g′k(v>k u) in an explicit form. First, g′k(t) = ck,1 +256

2ck,2t+ 3ck,3t
2 + · · ·+ dck,dt

d−1, from which it follows that257

g′k(v>k u) = ck,1 + 2ck,2v
>
k u + 3ck,3(v>k u)2 + · · ·+ dck,d(v

>
k u)d−1.

Since (v>u)s = (v ⊗ · · · ⊗ v)>(u⊗ · · · ⊗ u), the j-th element of hk is equal to258

(hk)j = hj,k = g′k(v>k u
(j)) = A>:,kzk,

which completes the proof.259

Proof of Theorem 1. 1. First, any polynomial map f can be decomposed as (1) with r260

sufficiently large. Let us take such a decomposition; then it holds that261

(Q) •3 A> =

(
r∑

k=1

wk ◦ vk ◦ zk

)
•3 A> =

r∑
k=1

wk ◦ vk ◦A>zk = J ,

where the last equality follows from (23).262

2. By construction, each element in the image of A lies in the following subspace:263

A := {
[
a0 a>1 a>2 · · · a>d−1

]> ∈ Rδ|

ak ∈ Rn
k

is a vectorization of a symmetric m× · · · ×m tensor.}
(26)
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Taking into account that the dimension of the space of m × · · · ×m symmetric tensors264

of order s is
(
m+s−1

s

)
, we get that the maximal possible rank of A is265

1 +m+

(
m+ 1

2

)
+ . . .

(
m+ d− 2

d− 1

)
= M.

Next, from (24), we have that the k-th column contains evaluations of all M monomials266

{uj11 · · ·ujmm ≤ d−1}j1+···+jm≤dj1,...,jm=0 at a point u(k) (scaled by a constant). If, without loss of267

generality, the first M points {u(k)}Mk=1 are in general position, then the columns of A268

corresponding to different monomials are linearly independent by [41, Multiplicity One269

Theorem], hence rankA = M .270

3. Note that each tube Qi,j,: of the tensor Q, by construction, lies in A . If rankA = M ,271

then its row span coincides with A . Hence the following identity holds true:272

J •3 (A†)> = Q •3 (AA†)> = Q. (27)

The remaining properties follow from (27) and (25).273

6. Structured tensor decompositions274

6.1. From CPD to a decomposition with structured rank-one terms275

The CP decomposition of J and Q, although related, are not always equivalent to276

the original decomposition (3). This happens because there are still nontrivial linear de-277

pendencies between the elements of Q and J . In what follows, we establish relationships278

between the CP decompositions and the original decomposition (3).279

First, we prove that for the rank-one case, these decompositions coincide.280

Proposition 1. Consider a polynomial map f(u) of degree d, and the tensor Q built281

from it. Then the following holds282

rank(Q) ≤ 1 ⇐⇒ f(u) = wg(v>u),

where w ∈ Rn, v ∈ Rm and g(t) is a polynomial of degree d.283

Proof. The ⇐ follows from Lemma 1. Let us prove the ⇒ part. Assume that284

Q = w ◦ v ◦ y.

First, since the tensor Q contains all the coefficients of the derivatives, we have that there285

exists a polynomial f̃(u) such that ∇fk(u) = (w)k∇f̃(u). Since the polynomials fk(u)286

do not have constant terms, we have that287

f(u) = wf̃(u),

where Ψ(f̃) = vy>.288

Next, let us show that the polynomial f̃ should necessarily the form f̃(u) = g(v>u).289

Since Ψ(f̃) = vy>, then it follows from (11) that all the unfoldings Ψ(1), Ψ(2), Ψ
(3)
(1), · · · ,Ψ

(d)
(1)290
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have rank at most one and their column space is spanned by the vector v. Therefore, we291

have that292

Ψ(1) = c1v,

Ψ(2) = c2vv
>,

Ψ(3) = c3v ◦ v ◦ v,
...

Ψ(d) = cdv ◦ · · · ◦ v,

and hence f̃(u) = g(v>u) where293

g(t) = c1t+ c2t
2 + · · ·+ cdt

d,

which completes the proof.294

Remark 2. The fact that rank Ψ(f̃) ≤ 1 implies f̃(u) = g(v>u) also can be proved295

alternatively, by noting that the matrix Ψf̃ , after removing duplicate columns, can be296

reduced to the form S(f) in [33, Proposition 22]. Hence, by [33, Proposition 4.1], the297

polynomial f̃ has necessarily the form f̃(u) = g(v>u). However, this alternative proof298

requires introducing extra notation, which would be much longer that the proof presented299

in this paper.300

Corollary 1. If the N sampling points are chosen such that the rank(A) = M , then301

rank(J ) ≤ 1 ⇐⇒ f(u) = wg(v>u).

As a corollary of Proposition 1, we get that the original polynomial decomposition (3)302

is equivalent to a structured CP decomposition.303

Corollary 2. Let LQ ⊂ Rn×m×δ be the linear subspace of tensors with the structure of304

Q. Let the sampling points be chosen such that rankA = M , and LJ ⊂ Rn×m×N be the305

linear subspace of tensors with the structure of J .306

Then the following three statements are equivalent:307

1. the polynomial map f(u) admits a decomposition (3);308

2. the tensor Q(f) admits the structured CP decomposition309

Q = Q1 + · · ·+Qr, rank(Qk) = 1, Qk ∈ LQ; (28)

3. the tensor J (f) admits the structured CP decomposition310

J = J1 + · · ·+ Jr, rank(Jk) = 1, Jk ∈ LJ . (29)

The structure constraint is important: indeed, the CP decomposition of the tensor311

Q or J is not necessarily structured. In general, we do not know even if the CP rank312

is equal to the structured CP rank (minimal number of terms in (28) or (29)). This313

is similar to the Comon’s conjecture [35, §5] about symmetric tensors: it is not known314

whether the symmetric rank of a symmetric tensor equals its non-symmetric rank.315

However, if the CP decomposition of a tensor is unique (for example, if it satisfies316

Kruskal’s uniqueness conditions), then it should necessarily be a structured CP decom-317

position.318

14



6.2. Computing coupled/structured CP decomposition319

Earlier attempts to tackle the structured case were made by [25, 13] and [42, §8,320

pp. 133–136]. The attempts of [25, 13] have the disadvantage that a tensor is built321

that has missing values, which increase in number as the polynomial degree grows. The322

attempt of [42] consisted of parameterizing the internal nonlinear functions gk using their323

coefficients. Although this seems a promising approach, it turned out to be problematic324

in practice to build a working algorithm, as the decoupling method led to strongly325

nonlinear/nonconvex optimization problems.326

We propose to tackle the problem by solving a coupled and structured CP decomposi-327

tion instead. First, let us consider simultaneous decoupling of homogeneous polynomials328

(8). Let us arrange the Ψ
(d)
i , for i = 1, . . . , n into a tensor T d, such that T di,:,...,: = Ψ

(d)
i ,329

for all i = 1, . . . , n. Then it is easy to verify that T d admits a partially symmetric CP330

decomposition331

T d = JW,V, . . . ,V︸ ︷︷ ︸
d times

K,

which, in our decoupled representation (1), takes the form Wg(V>u), where g(x) =332 [
xd1 · · · xdr

]>
.333

Decoupling non-homogeneous polynomials can be achieved by means of a coupled334

structured CP decomposition of the T d tensors. Let us arrange all Ψ
(d)
i , for i = 1, . . . , n335

into the tensors T d (like in the previous paragraph), such that T di,:,...,: = Ψ
(d)
i , for all i =336

1, . . . , n. We now have for each degree a coupled partially symmetric CP decomposition337

as338

T 1 = JW,V, c>1 K,
T 2 = JW,V,V, c>2 K,

...
T d = JW,V, . . . ,V︸ ︷︷ ︸

d times

, c>d K,
(30)

where the ci, for i = 1, . . . , d, are the i-th degree coefficients for each of the r nonlinear339

functions gk.340

Remark that these coefficients were not required in the previous paragraphs when341

homogeneous polynomials were considered: in such cases the nonlinear functions gk are342

of the form ckt
d, i.e., they differ only by a scaling factor, which can be assumed to be fully343

absorbed by W. Also remark that there are redundancies in the representation (30):344

for example, an equivalent problem can be obtained if one rescales a coefficient vector cδ345

to a vector containing ones, in which case a rescaling has to take place on the remaining346

coefficients as well as on W. Finally we want to mention that the framework of structured347

data fusion [43, 27] allows for computing tensor decompositions as in (30), where several348

tensors (and possibly matrices) are jointly decomposed while sharing factors, possibly349

while imposing structure on the factors.350

Example 9. Let us continue with Examples 1, 6 and 7. We have that m = n = 2 and351

r = 3, which does not guarantee a unique CP decomposition of J (under assumptions352

of genericity, see [24]). Indeed, if we compute a numerical CP decomposition of ten-353

sor J , we find that, up to a relative norm-wise error 2.3546 × 10−16, J admits a CP354
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decomposition with factors355

W̃ =

[
1.1628 −3.2951 3.0252
0.5705 1.1349 −2.1791

]
, Ṽ =

[
3.5822 −0.7705 −2.2959
−0.0226 −3.4455 −2.9785

]
,

H̃ =

 0.2736 0.8181 0.0312
−3.3900 0.2647 1.2313

0.5334 −3.9194 3.4945

 ,
the columns of which are not scaled and permuted versions of the columns of W, V, H.356

It can be shown that the ‘structured CP’ approaches are able to correctly return the357

underlying factors W, V and H (up to scaling and permutation invariances). For in-358

stance, the structured data fusion framework [43, 27] is able to compute the coupled and359

partially symmetric decomposition (30). This returns360

W̃ =

[
1.2767 1.7112 0

0 −0.8556 −1.9980

]
, Ṽ =

[
−0.9218 −1.0534 1.5879

0.9218 −2.1067 0.7940

]
,

as well as computed values for the coefficient vectors of gi(xi), which are omitted here.361

It can be verified that W̃ and Ṽ are scaled and permuted versions of W and V.362

Remark that if one uses m = n = r = 2, both the structured and non-structured363

CP decomposition return the same decomposition (up to scaling and permutation of the364

columns of the factors). Indeed, in this case, uniqueness is guaranteed (generically),365

ensuring that the underlying factors are identifiable. This could be checked easily by366

generating a variation of the equations that we are decoupling where the third columns of367

V and W are removed, so that g3(x3) is not considered.368

6.3. Linking Q and T 1, . . . , T d tensors369

In this section, we show how Q and its CPD is connected with the tensors T s and370

their joint decomposition (30). Let (1, 2)-reshapings of the tensors T s to be the third371

order tensors T s(1,2) ∈ Rn×m×ms−1

defined as372

(T s(1,2))i,j,: = vec(T si,j,:,··· ,:).

Then it is easy to see that the tensor T s(1,2) can be split into slices as shown in Fig. 5,373

where the Ψ(s,j) is the symmetric tensor corresponding to the s-th degree homogeneous374

part of the polynomial fk.375

By taking into account the definition (11) of the slices of the tensor Q, we can easily376

see that Q can be constructed by stacking the tensors is equivalent to reshaping the377

tensors T s(1,2) along the third mode together, as shown in Fig. 6.378

Remark that in Lemma 1 we see that the structure appearing in the CP decomposition379

of Q is closely connected to the simultaneous decomposition described in Section 6.2.380

Indeed, Lemma 1 can be alternatively deduced from (30), because the outer products of381

vectors become Kronecker products after reshaping.382
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Figure 5: The slices of the tensor T s are the unfoldings of the symmetric tensors corresponding to
s-degree homogeneous parts of polynomials f1, . . . , fn.

=Q T 1
(1,2)

T 2
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. .
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T d
(1,2)

m

n

δ

Figure 6: Stacking the reshapings of T s together.

7. Conclusions and perspectives383

We have established a link between two tensorization approaches for decoupling384

multivariate polynomials [26, 24]: the tensor of Jacobian matrices [24] can be obtained by385

multiplying the coefficient-based tensor [26] by a Vandermonde-like matrix. As revealed386

by this connection, the two approaches have similar fundamental properties, such as387

equal tensor rank and uniqueness of the CP decomposition under conditions on the388

number and location of the sampling points.389

The decoupling problem, however, is not equivalent to the CP decomposition of one390

of the tensors. This may lead to loss of uniqueness and identifiability of the CP decompo-391

sition, in the cases when the original decomposition is still unique. We have shown that392

by adding structure to the CP decomposition we can obtain equivalence between tensor393

decomposition and decoupling problems for polynomials. The structure can be imposed394

either as a joint decomposition of partially symmetric tensors, or can be imposed on395

rank-one factors. Numerical experiments confirm that using structured decompositions396

can restore uniqueness of the polynomial decoupling.397

Although our results show that different tensor-based approaches are very closely398

related, let us make some remarks on applicability of the approaches and some future399

directions. For (differentiable) non-polynomial functions, the approach based on Jacobian400

matrices would be more appropriate, as it only uses evaluations of the derivatives of the401

functions. Coefficient-based approach seems more relevant in the case when the region402

of interest is unclear, or when some of the coefficients are missing or unreliable. In403

both cases, an interesting open question remains how to impose the structure directly on404
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the rank-one components, without resorting to coupled tensor factorizations. Another405

important question is how to address the approximate decoupling problem, i.e., when we406

are dealing with noise (see [44] for results on the unstructured case).407
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