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Honey bees play a critical role in the maintenance of plant biodiversity and sustainability of food webs.

In the last few decades, bees have been subjected to biotic and abiotic threats causing various colony disorders. Therefore, monitoring solutions to help beekeepers to improve bee health are necessary. MALDI mass spectrometry profiling has emerged within this decade as powerful to identify in routine micro-organisms and is currently used in real-time clinical diagnosis. We developed MALDI BeeTyping to monitor significant hemolymph molecular changes in honey bees upon infection with a series of entomopathogenic Gram-positive and -negative bacteria. A Serratia marcescens strain isolated from one naturally infected honey bee collected from the field was also considered. We individually recorded a series of hemolymph molecular mass fingerprints and built, to our knowledge, the first computational model harboring a predictive score of 97.92% and made of nine molecular signatures that discriminate and classify the honey bees' systemic response to the bacteria. Hence, we challenged our model by classifying a training set of hemolymphs and obtained an overall recognition of 91.93%. Through this work, we aimed at introducing a novel, time and cost saving high-throughput strategy that addresses honey bee health and on an individual scale.

Introduction

Over several decades, an abnormal mortality of honey bees and other pollinators (bumblebees, solitary bees) has been observed in all industrialized countries [1][2][3][4] . This phenomenon has been particularly recorded in honey bees (Apis mellifera) [5] . The global loss of honey bee colonies has detrimental consequences for plant biodiversity, bee products, and negative economic and societal effects [6] . As a result, many scientific studies have been carried out to understand the mechanisms underlying phenomena such as colony weakening or collapse and colony mortality observed in most of the countries practicing intensive agriculture. Many reports concluded that biotic and abiotic factors are suspected to be involved in this phenomenon, either alone or in combination [2,5,[7][8][9][10] . Potential causes are exposure to (i) environmental and in-hive chemicals [11,12] , (ii) agricultural practices [13,14] , (iii) infection by microorganisms and predation by parasites [15][16][17] and (iv) nutritional factors [18][19][20] , among others, which lead to the transition from a health status qualified as normal to a health decline that would contribute to the colony collapse [7] . The expression of this pathological state may notably be linked to a decrease in the immune capacities of the bee and/or the colony [21][22][23][24][START_REF] Di Prisco | Proc Natl Acad Sci[END_REF] . The complex underlying mechanisms of stressors (biotic and abiotic) that impact honey bee health status remain still partially understood and solutions capable of rendering a prognosis, an early diagnosis or a diagnosis, need to be developed. Even if visual inspection of beehives, polymerase chain reaction and sensor-based analyses are available for surveillance of pathogen loads, prediction of the likely impact on the colony remains an issue not satisfactorily addressed [START_REF] Efsa | [END_REF][27][28][29] . Taking advantages of analytical improvements over the last 20 years, MALDI-MS has become increasingly popular to identify biological samples through mass fingerprinting of molecular changes that occur in fluid, cells or insects' appendices or simply as a robust microbiological technique in clinical diagnostics [30] . This approach may also play an essential role in the quest for innovative solutions in monitoring bee health.

Molecular mass fingerprinting (MFP) or signatures of biological matrices by MALDI-MS profiling is indeed a thriving approach, enabling the rapid detection of peptide/protein that can provide comparative information regarding immunity in Drosophila [31][32][33] , insects' appendices [34][35][36] and even from complex biological matrices. MALDI-MS based peptidomics/proteomics typing has found practical applications in fingerprinting honeys to determine specific molecular signatures that classify honeys according to their geographical origins [37] or to establish a robust proteomics mass fingerprint of sterile sperm chicken for diagnosis purpose [38] .

Relying on previously published studies [33,[39][40][41] , we first developed and validated an experimental model of challenged honey bees with Gram-positive and -negative bacteria (using notably a Serratia marcescens strain we have isolated from honey bees). Then, we assessed the usefulness of MALDI profiling to fingerprint the peptides/proteins within the molecular mass range 2-20 kDa from honey bee hemolymph. Finally, we generated a computational model that scored nine markers as a discriminant signature. These markers were successfully used to discriminate hemolymph molecular changes that occurred following bacterial infections. Through the present work, we are introducing this newly developed approach of MALDI profiling, referred as MALDI BeeTyping, to follow the health status of Apis mellifera under bacterial infections. While clinical application of biotyping is based on the identification of proteins derived from the micro-organisms themselves (for more about the biotyping approach, see [42][43][44] ), the BeeTyping approach we describe in this paper does not aim neither at identifying proteins from bacteria present in the hemolymph nor at isolating and characterizing bacteria from this fluid but rather at identifying the subsequent molecular changes they induced in the honey bee hemolymph. In addition, we determined the performance of this computational model using a training set of challenged bees. Through this work, we introduce BeeTyping as an effective method for monitoring peptide/protein changes within honey bees' hemolymph following bacterial challenges as a blood.

Material & Methods

The MALDI profiling strategy relies on a workflow divided into four major steps (see Supporting Information 1) and described in this section.

Biological models

Bacterial strains

To generate biological models of infection, we used the Gram-negative strains Pectobacterium carotovorum subsp. carotovorum 15 (formerly Erwinia carotovora carotovora 15 CFBP2141, generous gift from Bruno Lemaitre, EPFL Switzerland), Serratia entomophila (Institut Pasteur, CIP102919) and the Gram-positive Micrococcus luteus (ATCC 4698). We added in our infection model, a Serratia marcescens strain (SmBIOP160412, from our laboratory collection) isolated within the haemocoel from a naturally infected Apis mellifera collected in the field. This strain was identified using MALDI Biotyper® Compass (v4.1 from Bruker Daltonik GmbH) and according to the Bruker manufacturer protocol. Bacteria were cultured in Luria Bertani (LB) medium overnight at 32°C.

Experimental infection of the honey bees

Experimental infections were performed on newly-emerged honey bee workers (less than 12h old). To design the computational analyses, a training set of spectra was built using non experimentally infected (unpicked control) bees and bees infected with either Pectobacterium carotovorum subsp. carotovorum 15, M. luteus, S. entomophila or the isolated Serratia marcescens SmBIOP160412 strain. Infections were performed by pricking honey bees individually in the anterior lateral thorax (spiracle) using a fine needle (Fine Science Tools, Germany) dipped into a freshly concentrated culture pellet of live bacteria. All honey bees (experimentally infected and controls) were placed for 24h at room temperature in dedicated small cages and fed ad libitum with sugar syrup (Invertbee from SARL Isnard, France) containing fructose (36%), dextrose (30%), saccharose (31%), maltose (1.5%) and other sugars (1.5%). Hemolymph was collected from the dorsal side of the abdomen, using pulled glass capillaries (Sutter Instrument Corp, Novato, California). The collected hemolymph was immediately transferred into a chilled LoBind Protein microtube (Eppendorf, Germany) pre-coated with phenylthiourea and phenylmethylsulfonyl fluoride (both from Sigma Aldrich, France) to prevent melanization and proteolysis, respectively. The hemolymph samples were stored at -20°C until use.

Molecular mass fingerprints by MALDI MS

Data acquisition

Each individual hemolymph sample was analyzed with the Bruker AutoFlex™ III. The molecular mass fingerprints (MFP) were acquired following the Bruker Biotyper® recommendations (matrix, method of sample deposition and detection) with minor adjustments. Briefly, the hemolymph samples were 10-fold diluted in acidified water (0.1% trifluoroacetic acid, Sigma Aldrich, France) and 0.5µL of a given sample was mixed with 0.5µL of 4-HCCA (Sigma Aldrich, France) on a MALDI MTP 384 polished ground steel plate (Bruker Daltonik). Following co-crystallization of the hemolymph spots with the matrix droplet, MALDI MS spectra were recorded in a linear positive mode and in an automatic data acquisition using FlexControl 4.0 software (Bruker Daltonik).

The following instrument settings were used: 1.5kV of electric potential difference, dynamic range of detection of 600 to 18,000 Da, 69% of laser power, a global attenuator offset of 46% with 200Hz laser frequency, and 2,000 accumulated laser shots per hemolymph spectrum with a raster of random walk set to 50. The linear detector gain was setup at 1.82kV with a suppression mass gate up to m/z 600 to prevent detector saturation by clusters of the 4-HCCA matrix. The pseudo-molecular ions desorbed from the hemolymph were accelerated under 1.5kV. An external calibration of the mass spectrometer was performed using a standard mixture of peptides and proteins (Peptide Standard Calibration II and Protein Standard Calibration I, Bruker Daltonik) covering the dynamic range of analysis.

Data post-processing and statistical analyses

The MALDI-MS datasets were imported into the ClinProTools™ 2.2 Software (Bruker Daltonik) for post-processing and statistical analyses. All of the recorded spectra were processed with a baseline subtraction and spectral smoothing followed by an internal recalibration step with exclusion of null and/or "non-recalibratable" spectra. The total averaged spectra were calculated based on a signal over noise ratio equal to 5 for peakpicking and area calculations. The irrelevant spectra that did not pass the required signal intensity and resolution were excluded from any integration into the MALDI-MS computational model designed to match the biological models of honey bee infections. A post-processing step involving spectral normalization of all calculated peak area was performed with ClinProTools™ software prior to statistical analysis (95% confidence interval, standard deviation and Principal Component Analysis-PCA).

Hierarchical Clustering, heat maps and Receiver Operating Characteristic curves

The total number of spectra used to design the computational models were normalized and subjected to PCA and unsupervised hierarchical clustering analysis to measure distances between spectra. This analysis was used to determine Euclidean distances (based on PCA results with a reduced dimension limited to 70% and 95% of the total explained variance). The molecular correlation between four antimicrobial peptides with the ClinProTools™ software. The GA parameters were as follow: a maximum of 10 peaks harboring the greatest weight was selected and included in the model. A number of 50 generations (iterative algorithm searching) was chosen to achieve this maximum of peaks. The k-nearest neighbor parameter, which is a key parameter of artificial intelligence used in supervised machine learning, was set at 3.

External validation of the barcode model and classification of unknown spectra

In order to assess the capability of the GA classifier to recognize the infected bees from the control group, a new set of hemolymph MS spectra, never processed in the classifier model, was used to perform an external validation. This experimental set of honey bees included the three biological models; 26 controls, 37 honey bees infected with P. carotovorum subsp. carotovorum 15 and 10 with M. luteus. By submitting those hemolymph spectra to the classifier resulted in counting the correctly classified spectra, and also the mismatched and the invalid ones. In order to assess the performance of our classifier model, accuracy, sensitivity, specificity, informedness, specific-positive and negative likelihood ratios, false discovery rate (q-value) and false positive rate (p-value) were calculated. The accuracy, which informs on how efficient the model is, was calculated according to Wang et al. [45] . Sensitivity scores real positive cases that are correctly predicted positive by the model and the specificity scores the opposite i.e. the real negative cases that are correctly predicted negative. Informedness scores the probability that a prediction (e.g. result of a machine-learning model to classify one condition against the others) is informed regarding to the tested condition versus odds. Informedness helps to make diagnosis decision.

Sensitivity, specificity and informedness were determined as previously described [46] . The specificpositive and -negative likelihood ratios (abbreviated +LR and -LR) classically used in diagnostic testing with multiple classes informs on how likely the results from the classifier model will match the condition. +LR gives the change in the odds of satisfying the condition (fitting to the biological models), given a positive test result and -LR, the change in the odds of satisfying the condition when the test comes negative. +LR ranges from zero to infinity. With +LR values between zero and one, there is a weak probability that the test matches the condition. If the ratio equals to one, then the test lacks diagnostic value and if the ratio is >1, then the test increases the probability to match correctly with the condition. Regarding -LR, the closer to zero the value is, the more informative the test is [47] .

Results & Discussion

MALDI-MS profiling as a new approach to discriminate bacterial systemic infection through endogenous proteins from honey bees fingerprinting

In order to generate relevant biological models of honey bee infections, we used the bacteria Micrococcus luteus, Pectobacterium carotovorum subsp. carotovorum and Serratia entomophila. M. luteus is a Gram-positive bacterial strain frequently used when monitoring insect immunity [48] and has been shown to colonize bee hives and gastrointestinal tracts of honey bees [49] while P. carotovorum subsp. carotovorum [50] and S. entomophila (Institut Pasteur, CIP102919) are two bacterial strains that trigger a systemic immune response in insects. We also performed an additional model of infection using a Serratia marcescens strain (SmBIOP160412, Lab. collection) isolated from a naturally infected honey bee collected in the field and which is known to be a widespread pathogen of adult honey bees [51] , and a virulent opportunist, taking advantage of disturbed microbiota to develop in honey bee guts after exposure to the pesticide glyphosate [52] .

To certify the constructed biological models of infection, the four bacterial strains were classified by MALDI MS biotyping (Data not shown). A set of 64 MALDI MS spectra was recorded from individual hemolymph samples. These spectra were obtained from 22 control honey bees and from 23 and 19 honey bees individually infected with the Gram-positive M. luteus or the Gram-negative P. carotovorum subsp. carotovorum, respectively. An averaged spectrum, containing 110 MALDI MS ion peaks (MFP, Supporting Information 2), was built for each of the three biological models (Figure 1A). Statistical analysis based on Principal Component Analysis (PCA) and performed on these MFPs clearly segregated the three biological models (Figure 1B). As shown by the PCA plot score, the individual spectra were clustered in accordance with their corresponding models and were segregated based on their mass fingerprints. The unsupervised hierarchical clustering of hemolymph samples, classified almost all of the individual MFPs with respect to their corresponding biological models (Figure 1C).

Out of 64 normalized spectra used to build the clustering dendrogram, four and three recorded mismatched spectra were observed, corresponding to the lowest (70%) and highest (95%) limits of explained variance, respectively. The mismatched spectra were further identified within the representation of the PCA plot score of the hemolymph samples (Figure 1B, arrows). At the limit of explained variance of 70%, the mismatched four spectra included one spectrum from the control condition and one from the M. luteus infection model, both classified under the P. carotovorum subsp. carotovorum model, and two of this latter model, mismatched to the control model (see asterisks in Fig. 2C). Regarding the three mismatched spectra observed at 95% of the explained variance, one was from the M. luteus model and classified under the P. carotovorum subsp. carotovorum model and two, from the P. carotovorum subsp. carotovorum model, classified under the control model (see asterisks in Fig. 2C).

In order to assess the relationship between the MALDI-MS MFPs of the biological models and the honey bee's immune status, we correlated these MFPs with each of the four antimicrobial peptides (AMP) defined from Apis mellifera [53] : Apidaecin 1A (41) at m/z 2,107), Hymenoptaecin [54] at m/z 10,270, Abaecin [55] at m/z 3,878 and Defensin 1A [39] at m/z 5,519 (Figure 2). As shown, per-peak fingerprint correlations with the antimicrobial peptides (AMPs) were scored based on the molecular ion peak area and represented as heat maps through a colored scale intensity ranging from low (minimum score of -1, in red) to high correlation (maximum score of 1, in green). Reported in relation to the MFPs, four clades 

Machine-learning as the first reported computational model to recognize and classify experimentally infected honey bees based on hemolymph MFPs

Because the proteomic mass spectra of hemolymph samples reflect the immune status of the honey bees, our next goal was to predict honey bee health status based on the bee MALDI-MS MFPs. For that purpose, we decided to build a molecular model based on the MFPs of hemolymph samples, by using a machine-learning algorithm, the Genetic Algorithm (GA). The GA classifier generated a set of discriminating peaks that recognized and classified hemolymph according to the biological model (honey bees challenged with P. carotovorum carotovorum or M. luteus and non-experimentally infected honey bees). These discriminating peaks form a barcode model and define the strength of this model through its recognition capability. The performance of the classifier barcode model was evaluated through internal cross validation by iterative reclassification of a set of spectra equal to half of the total number of spectra included in the model. For each of the ten iterations performed, a new set of spectra was chosen randomly through an automated internal process.

In an initial approach, we restricted our experimental infection to M. luteus as the Gram-positive strain and to P. carotovorum subsp. carotovorum. While this is, to our knowledge, the first time such a computational model has been applied to the classification of bacterial-infected honey bees, machinelearning algorithms have been used previously in other biological subjects. For example, MALDI MS has been successfully used to build a proteomic mass spectra database of different honeys and their MFPs to identify their geographical origin [37] . As another example of application, an experimental model of male chicken fertility was designed to perform on-cell direct proteomic fingerprinting by MALDI profiling and demonstrated the capability of the GA classifier to build a predictive model to classify chicken sperm fertility [38] .

In the present study, using GA, based on the individual hemolymph spectra of a cohort of 22 controls and 23 honey bees challenged with M. luteus or 20 honey bees challenged with P. carotovorum subsp. carotovorum, we identified a set of nine best m/z molecular ions based on their capability to discriminate the three biological models from each other (Figure 3). Further tests of recognition capability and cross validation of the GA model were assessed by using the MFPs from the same sample cohort. Considering the standard deviation and the 95% confidence interval of these nine molecular ions, weight indexes were calculated to rank the nine molecular signatures from the most discriminant molecular ion (m/z 3,348.17, weight of 6.24) to the least discriminant one (m/z 5,603.01, weight of 1.97). Moreover, we rated the accuracy of the GA classifier model following two distinct data processing. On the one hand, the classifier calculated the recognition capability by matching the MALDI MS spectra described above against their respective biological models. Therefore, we were able to re-assign hemolymph spectra derived from the control and the M. luteus biological models (score of recognition 100%) and for the P. carotovorum subsp. carotovorum model (score of 93.75%). Overall, performance recognition of the classifier reached 97.92%. On the other hand, internal cross validation scores were calculated for each biological model. To perform this cross validation, the same individual hemolymph spectra from each biological model were randomized and reassessed for successful matching in a batch mode of analysis by the classifier using solely the set of the nine molecular ion markers. The cross validations of the classifier were at 91.51%, 94.40% and 89.87% for the control, M. luteus and P. carotovorum subsp. carotovorum biological models, respectively, giving an overall validation of 91.93% (see Figure 3).

A new set made of 26, 10 and 35 MALDI MS spectra of hemolymph from control, M. luteus and P. carotovorum subsp. carotovorum biological models respectively was submitted for the to the GA classifier and classified individually (Table 1 and Supporting Information 3). Among the 26 control spectra, 16 were correctly classified, three were classified in P. carotovorum subsp. carotovorum and three in M. luteus models. Four spectra were found as invalid spectra because of the recalibration step. This result was caused by weaker intensities of the molecular fingerprints causing the ion mass recalibration to fail. Regarding the M. luteus infectious model, 10 spectra were subjected to the classifier.

Seven were correctly classified, two were considered as control and one as belonging to the P. carotovorum subsp. carotovorum model. No spectrum was deemed invalid. Considering the P. carotovorum subsp. carotovorum biological model of infection, from the 37 spectra, 13 were correctly classified, one matched to the control, three to the M. luteus biological models and 20 to the invalid spectra category. These 20 spectra were qualified as invalid due to noisy mass spectra (intensities of the nine peaks not sufficient to pass the classification) or to a failure in properly calibrating the mass spectra.

Given these results, we calculated the performance of the classifier for each of the biological model (see details in Supporting Information 4). The GA algorithm achieved 80 % to 90 % accuracy discriminating thus the three biological models. The sensitivity (true positive) and the specificity (true negative) of the GA classifier model were calculated for the three biological models. The model scored at least 70% of sensitivity and at least 84 % of specificity. As detailed in the Supporting Information 4, the highest sensitivity was observed for the P. carotovorum subsp. carotovorum model (76.47 %) and the highest specificity for the control model (95.16 %). Based on the sensitivity and the specificity, we calculated the informedness indexes and the positive-negative stratum-specific likelihood ratio (abbreviated +LR, -LR) which inform about how predictive the classifier model is and its performance as a diagnostic tool respectively. As reported in the Supporting Information 4, the three biological models scored indexes within the range [-1 ;1] with -1 as incorrect model predictions, 1 as maximum of correct predictions).

The calculated informedness indexes for the control, the P. carotovorum subsp. carotovorum scoring 0.68 and 0.64 respectively and for the M. luteus (0.55) demonstrated the model was a good predictor.

Regarding +LR and -LR, both parameters were calculated. The +LR, which required scores over 1 to be significant were found equal to 15.02; 4.55 and 6.12 for the control, the M. luteus and the P. carotovorum subsp. carotovorum models respectively (Supporting Information 4). This result demonstrated a good probability that our GA model classified positively the spectra against the biological models. The -LR, which required scores as close as possible to 0 to be significant were found equal to 0.28; 0.35 and 0.27 for the control, the M. luteus and the P. carotovorum subsp. carotovorum models respectively (Supporting Information 4). This result demonstrated the weak probability to misclassify the cohort of hemolymph spectra through the GA classifier. In addition, we determined the false discovery rate (qvalue) and the false positive rate (p-value) for each of the three biological models. The lowest q-value was of 0.158 and concerned the control model while P. carotovorum subsp. carotovorum and M. luteus models harbored highest values (0.235 and 0.461 respectively) denoting a better capability of the classifier to classify unknown spectra within the control model followed by the P. carotovorum subsp. carotovorum and M. luteus models respectively. Regarding the p-values, the control model harbored 0.0484 while P. carotovorum subsp. carotovorum and M. luteus models scored 0.125 and 0.154. Based on this statistical parameter, the classifier shares the same conclusion as obtained with the q-values regarding the algorithm's performance to classify properly the spectra.

To summarize, the computational model significantly discriminated control from infected honey bees and M. luteus from P. carotovorum subsp. carotovorum infection as well on the basis of the hemolymph molecular signatures.

MALDI-MS profiling of hemolymph as an effective molecular method to discriminate honey bees infected with different Serratia species

We assessed the performance of MALDI profiling to discriminate honey bee infections at the species level, in particular between two Serratia species: S. marcescens (SmBIOP160412, Lab. collection) isolated from a naturally infected honey bee and identified by MALDI Biotyper® Compass (data not shown), and a reference strain of S. entomophila. We found that the MFPs of the hemolymph samples collected from honey bees infected by S. entomophila and S. marcescens presented significant molecular differences (Figure 4A). Moreover, by using the two best discriminant molecular ions (m/z 12,752.8 and m/z 7,186.95), revealed by the PCA analysis, we could differentiate the hemolymph spectra of bees infected either with S. entomophila or S. marcescens SmBIOP160412. In contrast, the two weaker discriminant markers m/z 1,996.14 and m/z 6,113.68 failed to discriminate the two types of spectra resulting from the two Serratia species (Figure 4B).

To further evaluate and rank the measured ion markers within the MFPs based on their capability to discriminate the two Serratia species, we performed a receiver operating curve (ROC) analysis to highlight eight m/z ion markers (12,752.8; 7,186.95; 7,688.27; 10,269.8 (Hymenoptaecin); 5,057.69; 5,160.28) with AUC scores between 0.8 and 1 in sensitivity (Figure 4C). The Apidaecin, Abaecin and Defensin were also checked for their capability to discriminate the two Serratia species (Supporting Information 5). Based on the ROC test, Abaecin and Defensin were also capable to discriminate, to some extent, the two Serratia species (see Supporting Information 5) (AUC of 0.739 and 0.639, respectively). However, like the two markers m/z 1,996.14 and 6,613.68, Apidaecin (AUC=0.520) revealed to be a poor discriminant (Figure 4D). Hence, based on these results, it seems possible to discriminate infection by S. marcescens from S. entomophila in honey bees using computational modelling. To our knowledge, this is the first report on the feasibility of using MALDI MS as an MFP-based method capable of discriminating hemolymph molecular response to systemic infections induced by two different bacterial species of the same genus. S. marcescens is known to be a commensal bacterium present in low abundance in the gut of honey bees. By studying the pathogenicity of different strains of S. marcescens through two routes of in vivo exposure (oral and direct injection into the hemolymph), Raymann et al. (46) found that expression of the four honey bee AMPs Abaecin, Defensin, Hymenoptaecin and Apidaecin did not differ between infected and non-experimentally infected control honey bees. These results support the idea that markers other than AMPs need to be identified and monitored to efficiently discriminate bacterial infections in honey bee hemolymph. As we demonstrated, the correlation of the molecular fingerprints and the AMPs in hemolymph allowed us to discriminate the three different models. In order to determine how specific were the nine markers of the classifier to the control, M. luteus and P. carotovorum subsp. carotovorum biological models, we tested the classification of the hemolymph mass fingerprints of honey bees infected using the two Serratia strains. We submitted 13 MALDI mass fingerprints of hemolymph from infected bees with S. entomophila to the classifier. One was classified as control, seven as fitting with the P. carotovorum subsp. carotovorum model, and one fitting with the M. luteus model. The classifier excluded four hemolymphs' fingerprints because of noisy spectra signal or invalid mass recalibration. We also submitted 19 MALDI mass fingerprint of hemolymph from infected bees with S. marcescens to the classifier, which identified two as control, five as fitting with the P. carotovorum subsp. carotovorum model, and four fitting with the M. luteus model. The classifier excluded eight hemolymphs' fingerprints for the same reasons as above. Interestingly, the majority of the classified spectra from both, the S. entomophila and S. marcescens models matched with the P. carotovorum subsp. carotovorum model. It is particularly interesting as these three bacteria are Gram-negative. Nevertheless, some spectra matched against the control and the M. luteus models. Taking altogether, these results suggest that the MALDI profiling approach generates specific molecular barcodes/signatures defined accordingly to biological models. As we developed this approach for the monitoring of honey bee health, we define this approach of molecular signature by MALSI MS as MALDI BeeTyping.

Concluding remarks

Along with most relevant, technically feasible and primary observation-based health status indicators highlighted by EFSA's HEALTHY-B, MALDI-MS BeeTyping, a method derived from the biotyping approach used routinely in clinical microbiology, analyze the downstream responses to stressors through the matured effector molecules circulating in the hemolymph.

These effectors include the products of selected immune genes (i.e. genes coding for Apidaecin, Defensin, Hymenoptaecin, and Abaecin) and other molecular markers of stress that we intend to further characterize through an on-going proteomic study. Our approach of MFPs by MALDI-MS BeeTyping, is a cutting-edge analytic method that may complement and address some limitations issued of the HEALTHY-B toolbox by establishing robust, effective, sensitive and a comprehensive technology for profiling and deciphering, at the individual level, the honeybee health parameters including its immunity stage with regards to bacterial stressors. Moreover, MALDI BeeTyping has several advantages over other molecular biology techniques and visual observations, such as (i) the use of a drop of hemolymph allowing to keep the rest of the body for complementary molecular measurements such as PCR, (ii) a very simple and fast sample preparation, (iii) a short time for data acquisition and processing, (iv) low consumable costs, and (v) a user friendly workflow that can be standardized and automated for cost-effective high throughput use. We believe that future developments of MALDI BeeTyping could improve monitoring of honey bee health upon exposure to other biotic or abiotic stressors, the quality control and the origin traceability of apiary products based on molecular markers fingerprinting. Based on specific proteomics signatures, MALDI BeeTyping could bring out a novel analytical tool for early diagnosis of honey bees parasited with Nosema species, Varroa destructor and infected or not with deformed wing virus or acute bee paralysis virus. Fifty-seven hemolymph samples were collected individually from the biological models M. l., P. c. c. and control prior to being fingerprinted. The spectra were submitted to the GA-based computational model in order to assess classifier performance.

Supporting Information 1: MALDI profiling workflow for machine learning data-driven analysis of honey bee infections.

The methodological approach relied on four main steps addressing major tasks. 
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  AMPs) known from the honey bee [Apidaecin 1A at m/z 2,107 (Uniprot entry A0A088AIG0), Hymenoptaecin at m/z 10,270 (Uniprot entry Q10416), Abaecin at m/z 3,878 (Uniprot entry P15450) and Defensin 1A at m/z 5,519 (Uniprot entry P17722)]; and mass fingerprints (MFP) of the three biological models of infection were calculated and represented with a heat map. The ROC analyses were built using the ClinProTools™ program and the heat maps, using the OMICs add-on module provided by the XLSTAT program (interquartile threshold value of 0.25). Computational-based algorithm & machine learning model In the quest of delivering a barcode model capable of discriminating infected from control honey bees, a training set of spectra was established by fingerprinting the corresponding hemolymph samples using MALDI MS. Series of individual spectra were recorded from 22 controls, 23 honey bees challenged with M. luteus, 20 with P. carotovorum subsp. carotovorum 15, 15 with S. entomophila and 15 with S. marcescens SmBIOP160412. Data clustering (optimal spectral separation combined with the determination of a fixed number of peaks within the training set) was performed using the Genetic Algorithm (GA)
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  Figure 2). Regarding the control condition, the four AMPs were found to be positively correlated with the molecular ion markers of the hemolymph MFPs of clades A, C and D and negatively correlated with markers of clade B. In the P. carotovorum subsp. carotovorum model, the same four AMPs were positively correlated with the MFPs of clades B and C and negatively with clade A and D markers, except for Hymenoptaecin, which exhibited positive and negative correlations with clade D. In the M. luteus model of infection, each of the AMPs was predominantly positively correlated with the molecular clades A and B, and negatively with clades C and D. These correlations show complementary molecular signatures in the three experimental models. Discrete dynamic molecular patterns are modulated and correlated to the immune status of the bees, allowing us to discriminate infected from non-infected bees and the type of infection.

Figure 1 :

 1 Figure 1: Differential PCA-based statistical analyses and hierarchical clustering of individual hemolymph samples from the biological models. Total averaged spectra were fingerprinted by MALDI MS from the infected and control individuals (A). The individual spectra were subjected to PCA analysis, which discriminated the hemolymph molecular mass fingerprints of Micrococcus luteus (M. l. in blue), Pectobacterium caratovorum subsp. carotovorum 15 (P. c. c. in green) and control (red) groups (B); arrows mark the mismatched outliers. An unsupervised hierarchical clustering based on the PCA results classified the individual spectra according to the lowest (70% left panel C) and highest (95%, right panel C) limits of explained variances.

Figure 2 :

 2 Figure 2: Heat-map of four antimicrobial peptides (AMPs) from Apis mellifera, Apidaecin 1A, Abaecin, Defensin 1A and Hymenoptaecin correlating with the MALDI MS fingerprints (102 m/z) of the hemolymph samples. Per-peak MALDI MS correlation in standard mode between the AMP molecular ions of Apidaecin 1A (m/z 2,107), Abaecin (m/z 3,878), Defensin 1A (m/z 5,519) and Hymenoptaecin (m/z 10,270), and the MALDI MS fingerprints of the biological model following an experimental infection with either Micrococcus luteus (M. l.) in blue, or Pectobacterium carotovorum subs. carotovorum (P. c. c.) in green, and the control experiment (non-experimentally infected bees, in red). Each rectangle in the heat map dendrogram represents the abundance level (scale from -1 to +1 from the lowest in red to the highest in green, respectively) of the area of each AMP cross-related with each molecular ion from the fingerprint.

Figure 3 :

 3 Figure 3: Genetic Algorithm-based classifier used to discriminate non-experimentally infected (Control, red) bees from experimentally infected ones with Micrococcus luteus (M. l., in blue) or Pectobacterium carotovorum subsp. carotovorum (P. c. c., in green). Nine molecular ion peaks determined by the computational model and ranked according to their weight indexes were found as the best discriminative features of the hemolymph samples on the basis of statistical criteria (Standard deviation determined for each curve representing the molecular ions of the model and the box plots showing the first and third interquartile range with line denoting the median and whiskers encompassing 95% of the individuals). The spectral gel view represents the intensity of each of the discriminative peaks represented by their weight index and the m/z values (Da) found within the individual spectra of the biological models.

Figure 4 :

 4 Figure 4: Differential PCA-based analysis of hemolymph fingerprints following infection with two Serratia strains, Serratia marcescens (S. m.) isolated from a naturally infected Apis mellifera and S. entomophila (S. e.) and statistical relevance of predictive markers.

Table 1 :

 1 External validation of the genetic algorithm classifier model using a new set of hemolymph spectra.

Step 1 :Supporting Information 2 :

 12 Sampling of unchallenged bees (controls) and experimental infection obtained by pricking honey bees with live strains of Pectobacterium caratovorum subsp. carotovorum 15 (P. c. c.) and Micrococcus luteus (M. l.). Step 2: Individual hemolymph collections followed by MALDI-MS molecular mass fingerprinting, and strain identification by MALDI biotyping. Step 3: Multi-stage processing of MALDI MS fingerprints including recalibration, peak picking, normalization and statistical calculation of individual MS spectra through Principal Component Analysis (PCA) for revealing differential molecular patterns across infection groups. Step 4: Genetic algorithm-based computational model for recognition and classification of honey bee infection using PCA discriminant analysis. Barcodes were built following the molecular fingerprints that discriminate control bees from bees infected either with M. l. or with P. c. c. Peak-to-peak correlation scores of the four antimicrobial peptides (Abaecin, Apidaecin, Defensin and Hymenoptaecin) with the mass fingerprint of hemolymph across the three biological models (non-experimentally infected/control, M. l. for Micrococcus luteus infection and P. c. c. for Pectobacterium caratovorum subsp. carotovorum 15 infection).
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Supporting Information 3:

Results for the external validation of the genetic algorithm-based classifier.

Supporting Information 4: Assessment of the Genetic Algorithm classifier performance.

Based on the result of the external validation, the performance of the GA-based classifier model was assessed for each of the biological models by calculating the accuracy, the sensitivity, the specificity, the specific-positive and -negative likelihood ratios (all five expressed as percentage), informedness, pvalue and q-value. Supporting Information 5: Assessment of ROC curves of Apidaecin, Abaecin and Defensin to discriminate S. marcescens-from S. entomophila-infected honey bees.