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Abstract—To prevent the growth of weeds in precision farming,
multispectral imaging has gained much interest for its ability
to provide vegetation images with a high spectral resolution.
However, spectral reflectance computation is an issue when
the image is assembled from successive frames acquired under
varying illumination conditions. In this study, we present a
method to estimate reflectance from images acquired by a
linescan camera in such conditions. Because rows in a given
channel are associated to different illumination conditions, we
process the image row-wise to improve reflectance estimation.
Experimental segmentation results show that our method is a
good candidate to effectively identify crops from weeds.

Index Terms—Multispectral imaging, Reflectance estimation,
Illumination, Precision farming, Weed detection, Linescan cam-
era.

I. INTRODUCTION

In most cases, removal of the weeds in agricultural fields
involves the application of abundant quantities of chemical
herbicides, which is harmful to the environment regardless of
their success in increasing crop productivity. To optimize the
application of herbicides in crop fields, precision spraying can
be considered thanks to recent advances in imaging sensors.
The sensors originally used in agricultural fields are either
monochromatic or color-based ones [1]. A critical limitation
is that they use average spectral information over wide wave-
length ranges, resulting in a lack of detailed information in
specific narrow bands. During the last decade, more sophis-
ticated multispectral sensors have been manufactured and de-
ployed in crop fields leading to precision farming applications
like pest and disease detection [2], plant classification [3], and
weed detection [4]–[6].
Multispectral cameras collect spectral data over a wide spectral
range and provide the ability to investigate spectral responses
of soils and vegetated surfaces in narrow spectral bands. Two
categories of devices can be distinguished in multispectral
image acquisition [7]. “Snapshot” (multi-sensor or filter array-
based) devices build the image from a single shot. Although

this technology provides multispectral images at video frame
rate, the few acquired channels may not be sufficient to fully
explore the vegetation spectral signatures. “Multishot” (tun-
able filter or illumination-based, push-broom, spatio-spectral
linescan) devices build the image from several and successive
frame acquisitions. Although restricted to still scenes, they
provide images with a high spectral resolution. In this study,
we use a multishot camera to acquire outdoor multispectral
radiance images of plant parcels in a greenhouse. From this
radiance information, the spectral reflectance is estimated as
an illumination-invariant spectral signature of each species.

Several methods have been proposed to compute reflectance
thanks to prior knowledge about cameras or illumination
conditions [8]–[10]. In field conditions, typical methods first
estimate the illumination by including a reference device (a
white diffuser or a ColorChecker Chart) in the scene [5],
[11]–[13]. Then, the reflectance is estimated at each pixel
p by channel-wise dividing the value of the radiance image
at p by the pixel values characterizing the white diffuser or
the ColorChecker white patch. In [14], an extension to the
multispectral domain of four algorithms traditionally applied
to RGB images is proposed to estimate the illumination. In
[15], a bragg-grating-based multispectral camera is used to
acquire outdoor radiance images. Two white diffusers are used
for reflectance computation, one is included at the bottom
image border and the other is fully visible. In [16], illumination
variation is compensated in outdoor condition using a subspace
model proposed in [17], and enhanced by learning a historical
database of illumination and reflectance spectra along various
natural lighting conditions. A multispectral camera is used in
conjunction with a skyward pointing spectrometer in [18] to
estimate reflectance from the acquired scene radiance.
These methods require specific devices and knowledge about
the spectral sensitivity functions (SSFs) of the sensor filters,
and may include a learning step. They also often assume con-
stant incident illumination during the successive frame acqui-
sitions (scans). In outdoor conditions however, the illumination
may vary significantly across scans that last several seconds
(e.g., 12s with our camera for an integration time of 1.5ms978-1-7281-8750-1/20/$31.00 ©2020 IEEE
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Fig. 1: Illumination variation at wavelength 500nm during an
acquisition of an outdoor multispectral image.

that is suited to most outdoor conditions). Fig. 1 illustrates
this phenomenon by showing the variation of the incident
irradiance at wavelength 500nm during one of our outdoor
frame acquisitions, measured by the AvaSpec-ULS2048L spec-
trometer. In this paper, we propose a learning-free reflectance
estimation method that is robust to illumination variations
during the acquisition of frames used to provide multispectral
images.

The paper is organized as follows. In Sec. II, we give details
about the multispectral image acquisition process in outdoor
conditions using a linescan camera. In Sec. III, we propose a
method for scene reflectance estimation from a multispectral
radiance image acquired in uncontrolled and varying illumi-
nation conditions. Sec. IV presents an experimental evaluation
of the proposed method, and weed/crop segmentation results
using the estimated reflectance. Finally, conclusions are drawn
in Sec. V.

II. MULTISPECTRAL IMAGE ACQUISITION

A. Image formation model

We consider a multispectral camera that embeds a sensor
covered with spectrally sensitive filters and provides a
multispectral radiance image I = {Ik}Kk=1 with K spectral
channels thanks to the acquisition of frames. Assuming
homogeneous spectral sensitivity of the sensor, the value Ikp
of channel Ik at pixel p can be expressed as:

Ikp = Q

(
τ ·
∫

Ω

E(λ) ·Rp(λ) · T k(λ) · op(λ) dλ

)
, (1)

where τ is the frame integration time, Ω is the working
spectral domain, E(λ) ∈ [0, 1] is the relative spectral power
distribution of the illumination which is assumed to homoge-
neously illuminate all surface elements of the scene, Rp(λ)
∈ [0, 1] is the spectral reflectance at wavelength λ of the
surface element s observed by pixel p, op(λ) ∈ [0, 1] is the
optical attenuation of the lens for pixel p at λ. The radiance
E(λ) ·Rp(λ) · op(λ) is filtered according to the SSF T k(λ) of
the filter k associated to a narrow spectral band. The value Ikp
is given by the quantization of the received energy on B bits
by the function Q.

B. Snapscan camera

The Snapscan [19] is a multispectral camera manufactured
by IMEC that embeds a single matrix sensor, covered by a
series of narrow stripes of Fabry-Perot integrated filters. It pro-
vides K = 141 spectral channels whose central wavelengths
range from λ1 = 475.1nm to λ141 = 901.7nm with a variable
center step (from 0.5nm to 5nm). Specifically, each filter is
associated to 5 adjacent rows of 2048 pixels, and samples a
band from the visible (VIS) or near infrared (NIR) spectral
domain according to its SSF T k(λ) with a full width at half
maximum between 2nm and 10nm.
During acquisitions, both the object and camera remain static.
The sensor moves linearly from bottom to top behind the
lens inside the Snapscan with a spatial step of 5 pixel rows,
and records a two-dimensional frame fi at each time ti,
i = 1 . . . N . A frame fi is spatially organized as juxta-
posed stripes of 5 consecutive pixel rows. Each stripe fki ,
k = 1 . . .K, contains the spectral information of the scene
radiance filtered according to the SSF T k(λ) of the filter k
centered at wavelength λk.
The multispectral image should then be assembled from
N successively acquired frames {fi}Ni=1 (see Fig. 2). All
the stripes associated to filter k in all the acquired frames
are stacked to provide an assembly {fki }Ni=1. The scene
part common to all the assemblies is considered to form
the spectral channels. Finally, the Snapscan delivers a
multispectral radiance image I = {Ik}Kk=1 composed of
K = 141 channels quantized on B = 10 bits.
Note that before the frame acquisitions, the Snapscan uses
its internal shutter to acquire a dark frame fdark whose
values are subtracted pixel-wise from the acquired frames.
Therefore, the pixel value expressed by (1) is assumed to be
free from thermal noise.

III. REFLECTANCE ESTIMATION

A. Reflectance computation

To compute reflectance according to the linear image for-
mation model of (1), the following assumptions need to be
verified:
(i) The illumination is spatially uniform and does not vary

during the successive acquisition of the frames.
(ii) Each of the Fabry-Perot filters has an ideal SSF:

T k(λ) = δ(λ− λk) =

{
1 if λ = λk,
0 otherwise.

(2)

(iii) Each SSF of the Fabry-Perot filters is angle-independent,
thus vignetting effect only depends on pixel location.

The discrete version of (1) can be expressed as:

Ikp = τ ·
K∑
l=1

E(λl) ·Rp(λl) · T k(λl) · op(λl). (3)

Note that the quantization function Q is omitted here since
the different terms are already considered as quantized.
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Fig. 2: Frame acquisition and assembly in varying illumination conditions (top) and K-channel multispectral image (bottom).

Assumption (ii) is not verified in practice: there is no mul-
tispectral camera with such a fine resolving power. However,
to the extent of our knowledge, the filters embedded in the
Snapscan are very narrow and approximate this assumption to
the best at present. We can then write:

Ikp = τ · E(λk) ·Rp(λk) · op(λk). (4)

The reflectance of a surface element s observed by pixel p for
the spectral band centered at λk is then expressed as:

Rp(λk) =
Ikp

τ · E(λk) · op(λk)
. (5)

B. Reflectance estimation under constant illumination

The term E(λk)·op(λk) in (5) characterizes the illumination
in the sensor domain for channel k, and can be experimentally
estimated by acquiring a full-field image Iwd of a white
diffuser. This calibration tile is supposed to reflect the incident
light for all λ ∈ Ω with a constant diffuse reflection factor ρwd

(ρwd = 95% for our Sphere Optics Spectralon®). Using the
same image formation model and assumptions as for I (see
(4)), each value of Iwd is then expressed as:

Ikwd,p = τwd · E(λk) · ρwd · op(λk), (6)

where τwd is the frame integration time used to acquire Iwd.
Plugging (6) into (5) then yields the estimated reflectance R̂k

p

for channel k at pixel p:

R̂p(λk)
def
= R̂k

p = ρwd ·
Ikp
Ikwd,p

· τwd

τ
. (7)

Note that this reflectance estimation method implicitly com-
pensates the vignetting effect. Since the white diffuser and the
object occupy the same (full) field of view, Ikp and Ikwd,p are
affected by the same optical attenuation whose effect vanishes
after division. We consider the reflectance estimated by this
method as a reference and denote it as R̂ref .

C. Reflectance estimation under varying illumination

The Snapscan assembles a multispectral radiance image
from individual frames acquired at different successive times.
Due to illumination variations during frame acquisitions in
outdoor (see Fig. 1), the illumination conditions associated to
the values of the assembled radiance image vary both across
pixel rows for a given channel and across channels for a given
row (see Fig. 2). To estimate the reflectance, we then need to
estimate the illumination condition for each channel and each
row.
Inspired by [15], [16], we propose to mount a white diffuser



on the acquisition device so that the sensor vertically observes
a portion of it at the right border of each frame. Once the N
frames have been assembled as an image, an area W of width
250 pixels represents the white diffuser (see Fig. 3). Each
row of this area is used to estimate the specific illumination
condition under which the scene part associated to the same
pixel row has been acquired.

Because reflectance cannot be estimated according to (7)
any longer, the vignetting effect cannot be compensated as in
Sec. III-A. To accurately estimate the reflectance, we need to
spatially correct the vignetting effect on each channel of the
radiance image I.

1) Vignetting correction: To compute a correction factor
for each pixel, we use a look-up table (LUT) approach [20]
because it requires no knowledge about the optical device be-
havior. To generate LUT correction factors, one first acquires
a full-field image Iwd of a white diffuser under a spatially
uniform and constant illumination, and in a dark room to avoid
ambient light influence. The vignetting effect in the object
radiance image I is then corrected pixel-wise and channel-
wise to provide the corrected image Ĩ as:

Ĩkp =
Ikwd

Ikwd,p

· Ikp . (8)

The first term is the correction factor. It implies Ikwd, namely
the median value of m pixels with the highest values over Ikwd

to discard saturated or defective pixel values.
2) Row-wise (rw) based reflectance estimation: Since pix-

els in each row of Ĩ are associated to the same illumination
condition according to the spatial uniformity assumption, we
estimate the reflectance from the radiance image Ĩ in a row-
wise manner (see Fig. 3). Moreover, the attenuation is spatially
uniform (and equal to a constant αk for all p associated to
channel index k) after vignetting correction. The reflectance at
pixel p associated to channel index k is then deduced from (5)
as:

Rp(λk) =
Ĩkp

τ · Ey(p)(λk) · αk
. (9)

For a given row y(p), the illumination Ey(p)(λ
k) is the same

at any pixel p. We estimate it from the median value Ĩ
k

W,y(p)

of the m highest pixel values of the white diffuser (W) in
this row. This median value satisfies (6), which provides the
rw-based estimated reflectance as:

R̂k
rw,p = ρwd ·

Ĩkp

Ĩ
k

W,y(p)

. (10)

IV. EVALUATION OF REFLECTANCE ESTIMATION

A. Overview

An image acquisition campaign was conducted in a green-
house under skylight by the Chambre d’Agriculture de la
Somme in early April 2019. The targeted plants are beet,
wheat, bean, and barley for crops, and datura, thistle, goose-
foot, foxtail, and barnyard grass for weeds. For our exper-
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Fig. 3: rw-based reflectance estimation (k = 100,
λ100 = 780nm).

iments we use a database composed of M = 63 radiance
images acquired on different days and at different times of
the day, each of which represents a single plant species and
incorporates a GretagMacbeth™ ColorChecker Chart.
We compare the quality of the rw method (setting m = 11)
with the results obtained by two methods that are generally
dedicated to images acquired with snapshot or linescan cam-
eras in controlled illumination conditions. The classical white-
average (wa) method uses the surface of a white diffuser
included in the scene to estimate the illumination for each
channel. We adopt the wa implementation by considering a
subset Ws of W in our images (see dashed green rectangle
in Fig. 3). The max–spectral (ms) method provides good
performance when estimating the illumination in multispectral
images with various band combinations [14]. It uses the
maximum pixel value within each channel. The reflectance is
estimated at each pixel in each channel by wa and ms methods
as:

R̂k
wa,p = ρwd ·

Ĩkp
1

|Ws|
∑

p∈Ws
Ĩkp

, (11)

and:
R̂k

ms,p =
Ĩkp

maxp∈X Ĩkp
, (12)

where |Ws| is the number of white diffuser pixels considered
for wa implementation, and X is the set of vegetation and
soil pixels (i.e., all image pixels but W and those of the



ColorChecker).

B. Reflectance estimation error

To evaluate the accuracy of reflectance estimation, we
use the patches of the ColorChecker (see Fig. 3). Let R̂∗,
∗ ∈ {rw,wa,ms}, denote the reflectance image estimated by
either of the three tested methods (see (10)–(12)).
All surface elements of a patch are assumed to have the
same spectral response. Each patch Pj , j = 1 . . . 24, is
then represented by a K-dimensional reflectance vector R̂∗,Pj

whose kth component is computed as the average value in
channel k over all the pixels characterizing the patch. This
vector is compared to the reference reflectance R̂ref,Pj

of
the same patch estimated according to (7) from an image
of the ColorChecker acquired in laboratory under controlled
illumination conditions. Note that the ColorChecker is placed
at various spatial coordinates in the images of our database.
In case of high vegetation density, it is placed on the top of a
wooden block to prevent patch occlusions by leaves. Thus we
use a 15×15 pixel window around the automatically detected
center of each patch to ensure all these pixels belong to the
same patch whatever the image.

We objectively asses each estimated reflectance image
thanks to the mean absolute error (MAE) and the angular error
∆θ of each patch Pj , given by:

MAE(R̂ref,Pj , R̂∗,Pj ) =
1

K

K∑
k=1

|R̂k
ref,Pj

− R̂k
∗,Pj
|, (13)

and:

∆θ(R̂ref,Pj , R̂∗,Pj ) = arccos

( 〈
R̂ref,Pj

, R̂∗,Pj

〉∥∥∥R̂ref,Pj

∥∥∥
2
·
∥∥∥R̂∗,Pj

∥∥∥
2

)
,

(14)
where 〈 , 〉 is the dot vector product, and ‖·‖2 is the Euclidean
norm. When ∆θ of two vectors (spectra in our case) is equal to
zero, it means that these two vectors are collinear. We compute
the average mean absolute error MAE∗ and angular error ∆θ∗
over all patches of all estimated reflectance images. We also
compute the average channel-wise mean absolute error MAE

k

∗
over all patches of all reflectance images.

Tab. I shows the average mean absolute and angular errors
over all images in the database for the three tested methods.
We can see that in terms of quality of reflectance estimation,
the rw-based method provides the lowest average mean abso-
lute and angular errors.
Considering the channel-wise error (see Fig. 4), the highest
error rates in the range [475nm, 750nm] (VIS domain) are
obtained by ms because it only analyzes pixels of background
and vegetation that strongly absorb the incident light. Hence,
illumination estimation is biased using ms in this domain. In
the range [750nm, 901nm] (NIR domain), the light reflection
factor of vegetation is high (it appears brighter in Fig. 3),
and the ms method gives very similar results as rw. The wa
method gives acceptable results along the working domain
[475nm, 901nm] of the Snapscan camera, while our rw method
provides the lowest error rates.

TABLE I: REFLECTANCE ESTIMATION ERRORS

Method * MAE*(%) ∆θ* (rad)
rw 7.479 0.092
wa 10.188 0.094
ms 20.636 0.354

500 600 700 800 900

0

10

20

30

40

VIS domain NIR domain

rw

wa

ms

Wavelength (nm)

M
A
E
k ∗
(%

)

Fig. 4: Channel-wise MAE of reflectance estimation.

C. Multispectral image segmentation

We now briefly evaluate the contribution of the rw-based
reflectance estimation method for segmentation tasks. To as-
sess the robustness of rw against illumination variations, we
consider an extra outdoor radiance image of a crop (beet) and
weed (thistle) species (see Fig. 5), acquired on a different
day than those present in our database. Vegetation pixels are
separated from the background using the NDVI index [21]. A
pixel p is considered as a vegetation pixel if its NVDI index
is greater than a manual threshold T , namely:

R̂140
rw,p − R̂68

rw,p

R̂140
rw,p + R̂68

rw,p

≥ T , (15)

where λ68 = 678.2nm and λ140 = 899.2nm with the
Snapscan. T is set to 0.45 in our case. Note that a vegetation
pixel in any rw-based reflectance image is also considered
as such in its corresponding radiance image and reflectance
images estimated by wa and ms.
The vegetation pixels are manually annotated by an expert
in agronomy that builds the segmentation ground truth as two
classes. Our radiance database contains 13 beet images and 10
thistle images with different growth stages. From each image
we randomly extract 2000 pixels, each being characterized
by a feature vector of reflectance (or radiance) values of
dimension K = 141. To reduce residual noise and within-
class variability, the reflectance/radiance is averaged channel-
wise over a 5×5 pixel window around each pixel. To analyze
equiprobable classes, the pixel sets are balanced against the
lowest class size (see Tab. II).
The segmentation process obeys a supervised scheme. All
pixels in the balanced set are used as learning samples. We
use the non-parametric 5-nearest neighbors classifier and the
Euclidean distance measure.

Tab. III shows the classification accuracies. The rw method



TABLE II: NUMBER OF PIXELS PER CLASS

Class Extracted pixels Balanced set Test pixels
Beet 26,000 20,000 674,131

Thistle 20,000 20,000 340,866
Total 46,000 40,000 1,014,997

TABLE III: CLASSIFICATION ACCURACIES

Spectral signature radiance rw wa ms
Accuracy (%) 76.86 88.93 77.83 62.91

provides the highest classification accuracy, which suggests
that rw-based reflectance is the most robust against illumina-
tion variations. Fig. 5 show the segmentation results obtained
on the input multispectral image rendered as RGB in Fig. 5(a)
using the CIE Standard Illuminant D65 with the CIE 1931 2◦

Standard Observer. Segmentation using radiance spectra (see
Fig. 5(c)) leads to thistle over-detection whereas wa- and ms-
based reflectance spectra (see Figs. 5(e) and 5(f)) lead to thistle
under-detection. rw-based spectra (see Fig. 5(d)) provide a
good discrimination between the two classes.

V. CONCLUSION

This paper proposes a method to estimate spectral re-
flectance from multispectral radiance images acquired in out-
door illumination conditions. We show that classical methods
of reflectance estimation are not adapted in these conditions
for multishot devices such as the Snapscan. Indeed, the illu-
mination that varies during the frame acquisitions affects the
reflectance estimation quality. Therefore, we propose to esti-
mate the illumination at a frame level following the proposed
row-wise (rw) approach. As an application of the rw-based
reflectance, an image segmentation by pixel classification is
performed. As a future work, the segmentation process will be
extended to more images with complex scenes. Furthermore,
the most suited spectral bands for this task should be identified
and used to specify a multispectral camera that is less sensitive
to outdoor illumination variation.
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