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DIP-VBTV: A COLOR IMAGE RESTORATION MODEL
COMBINING A DEEP IMAGE PRIOR AND A VECTOR BUNDLE

TOTAL VARIATION

THOMAS BATARD∗, GLORIA HARO † , AND COLOMA BALLESTER †

Abstract. In this paper, we introduce a new variational model for color image restoration, called
DIP-VBTV, which combines two priors: a deep image prior (DIP), which assumes that the restored
image can be generated through a neural network and a Vector Bundle Total Variation (VBTV)
which generalizes the Vectorial Total Variation (VTV) on vector bundles. VBTV is determined by
a geometric triplet: a Riemannian metric on the base manifold, a covariant derivative and a metric
on the vector bundle. Whereas VTV prior encourages the restored images to be piece-wise constant,
VBTV prior encourages them to be piece-wise parallel with respect to a covariant derivative. For
well-chosen geometric triplets, we show that the minimization of VBTV encourages the solutions
of the restoration model to share some visual content with the clean image. Then, we show on
experiments that DIP-VBTV benefits from this property by outperforming DIP-VTV and state-of-
the-art unsupervised methods. It demonstrates the relevance of combining DIP and VBTV priors.

1. Introduction.

1.1. New perspective on image restoration. There is a growing interest
in designing human vision-inspired mathematical models in image processing and
computer vision (see e.g. [1],[3],[4],[6],[7],[9],[17],[25]). Dealing with restoration of
natural images, this approach is justified by the fact that one aims to maintain the
perception of the original scene rather than reproducing its light intensity. This is
a very challenging task as the property of the Human Visual System (HVS) to be
included in the restoration model depends on the degradations observed on the input
image, and it is likely that the vision model describing the desired property of the
HVS has to be adapted in order to fit into an image processing model.

From the observation that a clean image and a degraded version of it (noisy,
blurry, downsampled,...) still share some visual content, we claim that a model for
image restoration should take this information into account. This can be done by
making the model preserve, or at most slightly modify, some visual attributes of the
degraded image. Nonetheless, the features which should be preserved depend on the
nature of the degradation. For instance, dealing with noise, the colors of the original
clean image are widely altered (e.g. the hue is modified), whereas local structures
(edges, textures) are still visible if the noise level is not too high (this is the case in
realistic situations). On the other hand, when the degradation comes from a blurring
operator, local structures are more degraded than colors. Hence, a model for image
restoration should, on one hand, be general enough to encode some invariance of the
perception of both local structures and colors, but also be able to adapt the invariance
to a given degradation operator.

1.2. Related work.

1.2.1. VBTV priors to express perceptual invariance. Over the last 30
years, variational models have demonstrated their efficiency to tackle several tasks
in image restoration, e.g. denoising, deblurring, inpainting, super-resolution, etc (see
e.g. [28] and references therein). They are often expressed as a convex combination of
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a data term and one or more penalty terms, the latter(s) being determined by some
image prior(s).

The fact that the perception of local structures is almost invariant under (real-
istic) noise degradation has been used in many approaches for image denoising, and
is implicitly encoded into a penalty term. Among the seminal penalty terms encod-
ing such invariance, we have for instance the Total Variation (TV) [13],[14],[24] whose
minimization encourages the preservation of local structures by means of the L1 norm
of the Euclidean gradient. A second example is the Polyakov action [26] whose mini-
mization encourages the preservation of local structures by means of the L2 norm of
a Riemannian gradient, the Riemannian metric being related to the structure tensor
of the image [19]. These two penalty terms can be extended to color images in a
straightforward manner, replacing the gradient of a scalar function by the Jacobian
of a vector-valued function. For instance, TV extends to the so-called Vectorial Total
Variation (VTV) [8],[10].

A more perceptually-based color extension of TV is the Saturation-Value Total
Variation (SVTV) [20], which takes into account that the spatial variations of the
local structures of a natural image are mainly in its achromatic component. Then,
SVTV penalizes the smoothing of the achromatic component of the image, and con-
sequently of its local structures. This makes SVTV be a better prior for color image
denoising than VTV.

In [2], a new geometric setting for imaging has been proposed, in which a color
image is considered as a section of a vector bundle. In this context, the Vector Bundle
Total Variation (VBTV) arises as the natural extension of VTV, and is defined by
VBTV(u) = ‖Du‖L1(g−1⊗h) for differentiable sections u. Here, g stands for a Rie-
mannian metric on the base manifold, D is a covariant derivative determined by a
connection 1-form ω, and h is a definite positive metric on the vector bundle (the
explicit expression of VBTV(u) is given in Sect. 2.1.3). Hence, VBTV is determined
by the geometric triplet g, h, ω. Then, the authors considered a particular geometric
triplet which encodes some invariance of the local structures under a degradation by
noise. Experiments showed that this VBTV is a better prior for denoising than the
standard VTV in the sense that it provides better restored images (higher PSNR and
SSIM). More recently, this approach has been coupled with SVTV, yielding a VBTV
encoding that local structures are mainly in the achromatic component, and providing
even better results [29].

Besides denoising, these priors/penalty terms have also been applied to vari-
ous image restoration problems such as deblurring, inpainting, super-resolution [14].
Whereas they do encode some perceptual invariance with respect to a degradation
by noise, they do not encode any perceptual invariance with respect to other degra-
dations. Then, we claim that an image restoration model would benefit from the
consideration of degradation-based penalty terms.

1.2.2. Deep Image Prior. In the variational models for image restoration
aforementioned, the minimization is performed on a space of functions or sections
having bounded variations. Recently, a new prior has been introduced for image
restoration, called Deep Image Prior (DIP) [27]. In this framework, the minimization
is performed on a set of functions generated by a well-chosen neural network. More
precisely, the following minimization problem has been introduced θ = arg min

θ

1

2
‖H(Tθ(z))− v‖2L2

u = Tθ(z),
(1.1)
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where Tθ is a neural network parametrized by θ whose input z is a random multi-
channel image, v is the observed degraded image, H is a degradation operator, and
u is the restored image. Experiments showed that model (1.1) outperforms standard
VTV-based restoration models in a great extent on denoising and super-resolution.

More recently, DIP has been combined to an (anisotropic) TV in [22] yielding the
so-called model DIP-TV, given by θ = arg min

θ

1

2
‖H(Tθ(z))− v‖2L2 + λTV(Tθ(z)) λ > 0

u = Tθ(z),
(1.2)

Experiments showed that DIP-TV outperforms DIP on denoising and deblurring.

1.3. Contribution. Our contribution in this paper is three-fold:

1.3.1. Construction of an optimal geometric triplet. Given a color image
u = (u1, u2, u3) : Ω ⊂ R2 −→ R3 seen as a section of a vector bundle, we consider the
differentiable energy

X(g, ω, h) = ‖Du‖2L2(g−1⊗h), (1.3)

and determine some of its critical points in Sect. 2.

Optimal Riemannian metric. Fixing ω and h, we show that, for ε > 0 small, the
Riemannian metric g given by

g =

Å
ε+ h(D∂x1

u,D∂x1
u) h(D∂x1

u,D∂x2
u)

h(D∂x1
u,D∂x2

u) ε+ h(D∂x2
u,D∂x2

u)

ã
(1.4)

in the frame (∂x1
, ∂x2

) induced by the Cartesian coordinates system (x1, x2) on Ω,
approximates a critical point of the energy (1.3).

Optimal connection 1-form. Fixing g and h, and assuming that ω is R× so(2)−
valued, we show that the energy (1.3) possesses a unique critical point, given by

ω =

â
−du1
u1

0 0

0 0
u2du3 − u3du2

u22 + u23

0 −u2du3 − u3du2
u22 + u23

0

ì
(1.5)

On the existence of optimal vector bundle metrics. Fixing g and ω, we show that
the energy (1.3) does not possess critical points.

1.3.2. Perceptual invariance associated to the minimization of VBTV
induced by well-chosen geometric triplets. A vector bundle metric can be used
to assign different weights to the different image components. Then, through the
minimization of VBTV, a vector bundle metric enables for instance to process some
image components in a smaller extent than others. This can be a desirable property
in the context of image denoising. Indeed, by smoothing the achromatic component
of the noisy image less than its chromatic components, the minimization of VBTV
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Table 1.1
Geometric triplets for denoising and deblurring

Degradation Color space ω h g
Noise Achromatic-Chromatic space 0 diag(αβ, β, β) (2.9)
Blur Achromatic-Chromatic space (1.5) diag(β, β, β) (2.9)
Blur Achromatic-Chromatic space Dual of (1.5) diag(β, β, β) (2.9)

encourages the local structures of the restored image to be similar to the ones of the
degraded image, and consequently similar to the ones of the clean image. This is
exactly the purpose of the SVTV prior aforementioned.

The minimization of VBTV encourages the generation of images which are piece-
wise parallel with respect to the corresponding covariant derivative. In Sect. 2.3.1,
we show that, under the assumption that u is a blurred image expressed in a well-
chosen achromatic-chromatic space (e.g. opponent space), the parallel sections of
the covariant derivative induced by the optimal connection 1-form (1.5) share some
perceptual content with both u and the clean original image. As a consequence,
the minimization of VBTV encourages the restored image to share some perceptual
content with the clean image. We also show that the dual of the connection 1-form
(1.5), defined in Sect. 2.3.2, satisfies similar properties.

A Riemannian metric of the form (1.4) is a generalization to vector bundles of the
Riemannian metric used in the Beltrami framework [26]. This latter approximates the
structure tensor (at scale 0) of the image, which is known to provide some information
about its local structures. We show in the experiments conducted in this paper that
image restoration benefits from the use of a Riemannian metric (1.4).

Based on this analysis, we consider in this paper the geometric triplets described
in Table 1.1, for well-chosen β > 0, 0 < α < 1.

1.3.3. A variational model for color image restoration combining DIP
and VBTV priors. In order to corroborate our claim that a restoration model
should take into account that a clean image and a degraded version of it share some
visual content, we consider VBTV as a penalty term of a variational problem for
image restoration, yielding the so-called model DIP-VBTV θ = arg min

θ

1

2
‖H(Tθ(z))− v‖2L2(h) + λVBTV(Tθ(z)) λ > 0

u = Tθ(z).
(1.6)

It generalizes both DIP (1.1) and DIP-TV (1.2).
In Sect. 3.2 and Sect. 3.4, we test DIP-VBTV for the restoration of color images

corrupted with additive white Gaussian noise. We show that DIP-VBTV with the
geometric triplet for denoising described in Table 1.1, outperforms other DIP-based
models: DIP, DIP-VTV, DIP-SVTV. We also show that, when combined with a
boosting technique introduced in [27], DIP-VBTV outperforms DeepRED [23] and
gets similar results as C-BM3D [18],[21].

In Sect. 3.3 and Sect. 3.4, we test DIP-VBTV for the restoration of color images
corrupted with Gaussian blur. We show that DIP-VBTV, for VBTV being induced
by the geometric triplets for deblurring described in Table 1.1, outperforms other
DIP-based models: DIP, DIP-VTV, DIP-SVTV.

The codes are available at https://github.com/tombatard/dip_vbtv.
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2. Construction of geometric triplets for color image restoration.

2.1. The notion of geometric triplet on a G-associated bundle and the
induced Vector Bundle Total Variation.

2.1.1. Color image as a section of a G-associated bundle. We first recall
the correspondence between sections of G-associated bundles and G-equivariant func-
tions on principal bundles.

Definition 2.1. A smooth principal bundle is a quadruplet (P, π,M,G) where
M and P are two C∞ manifolds, G is a Lie group, π : P −→ M is a surjective map
such that for all x ∈ M , the preimage π−1(x) is diffeomorphic to G and there is an
action · of G on P satisfying:
- π(p · g) = π(p) for p ∈ π−1(x) and g ∈ G.
- the restriction · : G× π−1(x) −→ π−1(x) is free and transitive.

M is called the base manifold, P the total space and G the structure Lie group
of the principal bundle. The set π−1(x) is called the fiber over x, and is denoted by Px.

Definition 2.2. Let G be a Lie group and V a vector space. A representation
ρ of G on V is a group morphism ρ : G −→ GL(V ), where GL(V ) denotes the group
of invertible endomorphisms of V .

Definition 2.3. Let (P, π,M,G) be a principal bundle and ρ a representation
of G on a finite dimensional vector space V . A function J : P −→ V is called G-
equivariant if it satisfies

J(p · g) = ρ(g−1)J(p).

We denote by C∞(P, V )G the set of smooth G-equivariant functions on P .

Definition 2.4. Let (P, π,M,G) be a principal bundle, ρ a representation of G
on V of dimension n, and E = (P × V )/G, i.e. a point in E is of the form

[p, f ] := {(p · g, ρ(g−1)f) , g ∈ G}

where p ∈ P and f ∈ V . Let πE : E −→ M given by πE [p, f ] = π(p). Then, the
triplet (E, πE ,M) forms a vector bundle of rank n, called G-associated bundle and
denoted by P ×(ρ,G) V .

There is a correspondence between sections of associated bundles and G-equivariant
functions on principal bundles. Indeed, given f ∈ C∞(P, V )G, we put Sf (x) =
[p, f(p)] for any p ∈ π−1(x). By the G-equivariance property of f , the map Sf is
independent of the choice of p. Hence, Sf is a section of E = P ×(ρ,G) V . Conversely,
for S being a section of E, we put fS(p) = v such that S ◦ π(p) = [p, v]. We observe
that fS is G-equivariant.

In what follows, we denote by TM the tangent bundle of M , by T ∗M the cotan-
gent bundle of M , and by G(E) the bundle of linear maps acting on the fibers of E
given by matrices in the group G. We denote by g the Lie algebra of G and by g(E)
the bundle of linear maps acting on the fibers of E given by matrices in the set g.
Given a bundle F , we denote by Γ(F ) the set of smooth sections of F .
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Let Ω ⊂ R2 and u : Ω −→ R3 be a color image. Let G be a Lie group acting on
R3 through a representation ρ. Let P = Ω×G and (P, π,Ω, G) be a principal bundle.
Let E be the G-associated bundle P ×(ρ,G)R3. In this paper, we extend u to a section
of E or equivalently to a G-equivariant function on P of the form

u(x, g) = ρ(g−1)u(x) ∀x ∈ Ω,∀g ∈ G.

2.1.2. Geometric triplet on a G-associated bundle. A geometric triplet
on a G-associated bundle over a manifold M is a triplet (g, h, ω) where:
- g is a Riemannian metric on the base manifold: A Riemannian metric on a
manifold is a positive definite metric on its tangent bundle.
- h is a positive definite metric on the bundle: A positive definite metric h on
a vector bundle E is the assignment of a positive definite scalar product hx on each
fiber π−1E (x).
- ω is a connection 1-form on the bundle: A connection 1-form is an element of
the set Γ(T ∗M ⊗ g(E)) which satisfies a certain transformation law under a moving
frame change. More precisely, let ω be the expression of a connection 1-form in a
moving frame, and G be another moving frame. Then, the expression of ω in the
frame G is given by

G−1dG + G−1ωG, (2.1)

where d stands for the standard differential operator.

Note that by formula (2.1), a connection 1-form is completely determined by its value
in a moving frame.

2.1.3. Covariant derivative and Vector Bundle Total Variation (VBTV)
induced by a geometric triplet. A covariant derivative on a G-associated bundle
E is a differential operator D := d + ω, where d stands for the standard differential
operator, and ω is a connection 1-form.
The transformation law (2.1) makes D satisfy a G-equivariance property with respect
to a moving frame change, i.e.

DGψ = GDψ (2.2)

for ψ ∈ Γ(E).
A Riemannian metric g on TM and a positive definite metric h on E determine a
positive definite metric g−1 ⊗ h on T ∗M ⊗ E and an Lp norm on Γ(T ∗M ⊗ E). In
particular, we have

‖Dψ‖Lp(g−1⊗h) =

(∫
M

m∑
i,j=1

(gijh(D∂xi
ψ,D∂xj

ψ))p/2dM

)1/p

,

where (∂x1 , · · · , ∂xm) is the basis of TM induced by a coordinates system (x1, x2, · · · , xm)
and gij denotes the coefficients of the inverse matrix of g in the frame (∂x1

, · · · , ∂xm
).

Definition 2.5. The Vector Bundle Total Variation (VBTV) of ψ ∈ Γ(E) is the
quantity

V BTV (ψ) = ‖Dψ‖L1(g−1⊗h). (2.3)
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We denote by BV (E) the set of sections ψ such that V BTV (ψ) <∞.

Remark: Unlike [2], we do not require the covariant derivative to be compatible with
the vector bundle metric h in the definition of V BTV .

2.2. An optimal Riemannian metric generalizing the structure tensor.
Let u be a color image seen as a section of a G-associated bundle equipped with a
connection 1-form ω and a definite positive vector bundle metric h. We consider the
following energy

X(g) = ‖Du‖2L2(g−1⊗h). (2.4)

We have the following result.

Proposition 2.6. If u satisfies that D∂x1
u(x) 6= αD∂x2

u(x) ∀α ∈ R, ∀x ∈ Ω,
then the Riemannian metricÅ

h(D∂x1
u,D∂x1

u) h(D∂x1
u,D∂x2

u)
h(D∂x1

u,D∂x2
u) h(D∂x2

u,D∂x2
u)

ã
(2.5)

is a critical point of the energy (2.4).

Proof. Denoting byA the quantity h(D∂x1
u,D∂x1

u), B the quantity h(D∂x1
u,D∂x2

u),
C the quantity h(D∂x2

u,D∂x2
u), and gij the coefficients of the matrix g, the critical

points of the functional (2.4) satisfy

∂X

∂g11
= C(g11g22 − g212)− 1

2
g22(g22A− 2g12B + g11C) = 0

∂X

∂g22
= A(g11g22 − g212)− 1

2
g11(g22A− 2g12B + g11C) = 0

∂X

∂g12
= B(g11g22 − g212)− 1

2
g12(g22A− 2g12B + g11C) = 0.

(2.6)

Reordering the terms in the first equation gives

g11 = 2
g212
g22
− 2g12

B

C
+ g22

A

C
. (2.7)

Note that g22 6= 0 and C 6= 0 by positive definiteness of g and h, respectively. Substi-
tuting g11 according to (2.7) in the second and third equations in (2.6) yields

−2g12A+ 6
g212
g22

B − 4g12
B2

C
+ 2g22

AB

C
− 2

g312
g222

C = 0

−g12g22A+ 3g212B − 2g12g22
B2

C
+ g222

AB

C
− g312
g22

C = 0.

(2.8)

These two equations are linearly dependent. Fixing g22, we obtain an equation of the
form p(g12) = 0 where p is a polynomial of order 3, which guarantees the existence of
at least one solution of this equation. Hence, the system (2.8) has an infinite number
of solutions (g∗12, g

∗
22), and consequently the original (2.6) system does.
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In particular, we observe that the triplet g∗11 = A, g∗12 = B, g∗22 = C is a solution
of (2.6). Finally, the assumption D∂x1

u(x) 6= αD∂x2
u(x) ∀α ∈ R, ∀x ∈ Ω guarantees

that the matrix field (2.5) is positive definite on Ω.

For h represented by I3, the 3x3 Identity matrix, and D given by the connection
1-form ω ≡ 0 in the RGB color space, the optimal metric (2.5) corresponds to the
structure tensor of the image u at scale 0.

In practice, it is likely that u satisfies D∂x1
u(x) = αD∂x2

u(x) for some α ∈ R at
some points x of the domain Ω, which makes the metric (2.5) be singular. In order
to overcome this issue, we consider the following approximation of the metric (2.5)

g =

Å
ε+ h(D∂x1

u,D∂x1
u) h(D∂x1

u,D∂x2
u)

h(D∂x1
u,D∂x2

u) ε+ h(D∂x2
u,D∂x2

u)

ã
(2.9)

for ε > 0 small, which endows (Ω, g) with a Riemannian manifold structure for any u.

2.3. An optimal connection 1-form on a R+∗× SO(2)-associated bundle
and its interpretation in color imaging.

2.3.1. The optimal connection 1-form and the parallel sections of the
corresponding covariant derivative. Let u be a color image seen as a section of
a G-associated bundle equipped with a Riemannian metric g and a positive definite
vector bundle metric h. Without loss of generality, we assume that u is expressed in
a moving frame in which h is the Euclidean metric ‖ ‖2. We consider the energy

X(ω) = ‖Du‖2L2(g−1⊗‖‖2). (2.10)

In this Section, we assume that the Lie group representation (ρ,G) is R+∗× SO(2)
acting on R3 through the representation

ρ(k, θ)

Ñ
u1
u2
u3

é
=

Ñ
ku1

cos θu2 + sin θu3
− sin θu3 + cos θu2

é
, (2.11)

where u = (u1, u2, u3).

Critical points of the energy (2.10) with respect to the group representation (2.11).
We have the following result.

Proposition 2.7. The unique critical point of the energy (2.10) with respect to
the group representation (2.11) is

ωu =


−du1
u1

0 0

0 0
u2du3 − u3du2
‖u2,3‖22

0 −u2du3 − u3du2
‖u2,3‖22

0

 , (2.12)

where u2,3 denotes the R2-valued image (u2, u3) and ‖u2,3‖2 its Euclidean norm.
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Note that we denote the connection 1-form (2.12) by ωu in order to emphasize its
dependence with respect to u.

Proof. By the group representation (2.11), ω is of the form

ω =

à
ω11 0 0

0 0 ω23

0 −ω23 0

í
, (2.13)

and we have

‖Du‖2 = ‖du1 + ω11u1‖2 + ‖du2 + ω23u3‖2 + ‖du3 − ω23u2‖2.

As a consequence, the critical points of the energy (2.10) are the connection 1-forms
(2.13) satisfying

∂X

∂ω11
=2(u1du1 + ω11(u1)2) = 0

∂X

∂ω23
=2(u3du2 − u2du3 + ω23(u22 + u23)) = 0.

We deduce the existence of a unique critical point given by (2.12).

Let Du = d+ ωu. We have

Du

Ñ
u1
u2
u3

é
= d log(‖u2,3‖2)

Ñ
0
u2
u3

é
, (2.14)

which proves the R+∗× SO(2)-equivariance of Du with respect to u.

Parallel sections of the covariant derivative induced by (2.12). Let v be a section
and ωv the optimal connection 1-form (2.12) induced by v. We have the following
result.

Proposition 2.8. The parallel sections of Dv are the sections u satisfying

Dvu = 0⇐⇒



d u1
u1

=
d v1
v1

d‖u2,3‖2 = 0

u2du3 − u3du2
‖u2,3‖22

=
v2dv3 − v3dv2
‖v2,3‖22

.

(2.15)

Proof. See Appendix A.

The existence of parallel sections of a covariant derivative is a direct consequence
of the flatness of the corresponding connection 1-form, and it has been shown in [3]
that the connection 1-form (2.12) is flat.
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Let us assume that u, v represent two color images expressed in an opponent color
space, in which u1, v1 is the achromatic component and (u2, u3), (v2, v3) are the chro-
matic components.
The first equality in (2.15) encodes the equality of the perceptual gradients of the
achromatic components of u and v according to Weber’s law in visual psychophysics.
In polar coordinates u2,3 = (r(u2,3), ϕ(u2,3)) and v2,3 = (r(v2,3), ϕ(v2,3)), the co-
ordinate r corresponds to the saturation component (up to the multiplication by a
constant) and the coordinate ϕ to the hue. Hence, the second equality in (2.15) ex-
presses some regularity of the saturation of u. Finally, the third equality in (2.15)
reads

dϕ(u) = dϕ(v), (2.16)

which encodes the equality of the gradients of the hue components of u and v.

2.3.2. Dual of the connection 1-form (2.12) and parallel sections of the
corresponding covariant derivative. To any connection 1-form ω on a vector
bundle E over a manifold M is associated a connection 1-form ω∗ by means of an
involution on Γ(T ∗M⊗End(E)), where End(E) denotes the bundle of endomorphisms
of E. ω and ω∗ are said to be dual to each other.
Let us consider the Cartan involution on gl(Rn), the Lie algebra of GL(Rn), given by

θ(X) = −XT . (2.17)

The Cartan involution extends in a straightforward way to an involution Θ on Γ(T ∗M⊗
End(E)). Then, given any connection 1-form ω, the dual connection 1-form induced
by Θ is ω∗ := Θ ◦ ω.

In this context, the dual of the connection 1-form ωu in (2.12) is

ωu∗ =



du1
u1

0 0

0 0
u2du3 − u3du2
‖u2,3‖22

0 −u2du3 − u3du2
‖u2,3‖22

0

 (2.18)

where u2,3 := (u2, u3). It gives

Duu = (2du1, d log
(
‖u2,3‖2

)
u2, d log

(
‖u2,3‖2

)
u3)T .

It shows that, unlike (2.12), the covariant derivative induced by the connection 1-form
(2.18) does not satisfy a R+∗× SO(2)-equivariance.

Parallel sections of the covariant derivative induced by (2.18). Let v be a section
and ωv the optimal connection 1-form (2.18) induced by v. It follows from Sect. 2.3.1
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that

Dvu = 0⇐⇒



d u1
u1

= −d v1
v1

d‖u2,3‖2 = 0

u2du3 − u3du2
‖u2,3‖22

=
v2dv3 − v3dv2
‖v2,3‖22

.

(2.19)

Let us assume that u, v represent two color images expressed in an opponent color
space, in which u1, v1 is the achromatic component and (u2, u3), (v2, v3) the chromatic
components.
The only difference with the parallel sections of the covariant derivative induced by
(2.12) is that here, the parallel sections u are such that the perceptual gradient of
their achromatic component is opposite to the one of v.

2.4. On optimal vector bundle metrics. Let u be a color image seen as a sec-
tion of a G-associated bundle equipped with a connection 1-form ω and a Riemannian
metric g. We consider the following energy.

X(h) = ‖Du‖2L2(g−1⊗h). (2.20)

We have the following result.

Proposition 2.9. The energy (2.20) does not possess critical points.

Proof. The energy (2.20) is linear with respect to h.

2.5. Geometric triplets for denoising and deblurring.

2.5.1. VBTV as regularizing term in variational models for color image
restoration. Let us consider an image degradation model of the form

v = Huclean + n (2.21)

where H is a degradation operator, uclean is the original clean image, v is the observed
degraded image, and n some noise. Then, a typical variational model for recovering
uclean is

arg min
u∈X

E(Hu, v) + λR(u), λ > 0 (2.22)

for some functional space X, where E(Hu, v) represents an attachment of Hu to v,
and R some regularizer.

The choice of R greatly impacts the nature of the solutions of the models (2.22).
For R being the Vectorial Total Variation (VTV), defined by VTV(u)=‖∇u‖L1 (here,
∇ denotes the Jacobian operator), the models tend to provide piece-wise constant
solutions, the piece-wise property arising from the use of the L1 norm and the con-
stancy property arising from ∇u.

As the metrics g and h are positive definite in a geometric triplet, we have

‖Du‖L1(g−1⊗h) = 0⇐⇒ Du = 0. (2.23)

11



As a consequence, under the assumption that D possesses parallel sections (which is
guaranteed if the curvature of the connection 1-form vanishes identically), models of
the form (2.22) with R =VBTV tend to provide piece-wise parallel solutions.

Whereas the existing restoration models of the form (2.22) mainly differ on the
choice of the regularizer R, most of them fix the regularizer independently of the
operator H. As an example, the Total Variation (TV) has been employed in denoising,
deblurring, super-resolution, etc (see e.g. [14]).

We claim that the models could benefit from the selection of a regularizer R that
takes into account the specificity of the degradation.

In what follows, we show that R =VBTV can satisfy this property for well-
chosen geometric triplets which depend on the observed degradation. More precisely,
we show that VBTV can encourage the solutions of the models (2.22) to share some
visual content with the original clean image.

2.5.2. A geometric triplet for color image denoising. For H ≡ Id, the
observed image v is a noisy version of uclean. It is well-known that the perception
of contours and textures is less affected by noise than the image intensity values (see
e.g. [5]). Hence, a good regularizer for denoising should intend to preserve, or at most
smooth in a small extent, the contours and textures of the observed noisy image. In-
deed, it would make the solutions of a model of the form (2.22) to have their contours
and textures similar to the ones of the original clean image.

VTV is an efficient regularizer for denoising color images as the piece-wise con-
stancy property aforementioned makes the models (2.22) tend to preserve the con-
tours and textures of v. However, one of the drawback of the regularizer ‖∇u‖L1 is its
isotropic property, as it encodes the local structures of the image without considering
their orientations. On the other hand, the experiments conducted in the Beltrami
framework [26] consider as regularizer the square of the L2 Riemannian norm of the
image gradient: ‖∇u‖2L2(g), g being of the form (2.9) with ω ≡ 0 and h = diag(β, β, β),
for β > 0, in the RGB space. This regularizer is anisotropic due to the particular
form of the Riemannian metric. However, by the use of the square of the L2 norm,
this approach tends to oversmooth the contours and textures of the image. As a con-
sequence, we claim that both approaches can be improved by combining them and
considering the L1 Riemannian norm.

In VTV-based models [8],[10] and in the experiments conducted in [26], the dif-
ferent color components are treated in a similar extent by assigning the Euclidean
metric or the metric diag(β, β, β) to the RGB color space. However, the contours and
textures of an image are mainly in its achromatic component. Hence, it is desirable
to denoise the achromatic component in a smaller extent than the chromatic compo-
nents. In order to address this problem, we propose to follow the approach in [20]
which assigns different weights to the different components of the image expressed in
the opponent space given by the basis

P =

Ñ
1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

é
(2.24)

in the RGB frame. These different weights can then be encoded into a vector bundle
metric given by the matrix h = diag(αβ, β, β) for α < 1 in the space (2.24).

Based on the analysis performed in the two previous paragraphs, we consider
the VBTV induced by the geometric triplet described in Table 2.1 as regularizer for
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Table 2.1
Proposed geometric triplet for denoising

Color space ω h g
Opponent space (2.24) 0 diag(αβ, β, β), α < 1 (2.9)

denoising tasks.
Finally, let us mention that it has been shown in a very recent paper [29] that

the regularizer SVTV in [20] is a VBTV induced by a particular geometric triplet.
Actually, SVTV can be derived from the proposed VBTV described in Table 2.1 by
setting β = 1 in h and considering g as the Euclidean metric on Ω. It turns SVTV
into an Euclidean restriction of the proposed VBTV.

2.5.3. A geometric triplet for color image deblurring. For H being a con-
volution with a normalized kernel of positive coefficients and n small, the observed
image v is a blurred version of uclean according to the degradation model (2.21).

As mentioned above, most approaches for image restoration consider the same
regularizer for denoising and deblurring tasks. Unlike degradation by noise, the per-
ception of colors is less affected than the perception of local structures under a degra-
dation by blur. As a consequence, VBTV induced by the geometric triplet described in
Table 2.1 is not optimal for deblurring. On the other hand, a solution of a variational
model of the form (2.22), for R=VBTV induced by the geometric triplet described in
Table 2.2 (first row) with u = v in (2.12), tends to be piece-wise parallel with respect
to Dv = d+ ωv. According to formula (2.15), it implies that, locally, we have:
1. The perceived gradient (according to Weber’s law) of its achromatic component
is equal to the one of the achromatic component of v. Moreover, assuming that the
noise is negligible, we have the following equality

dv1
v1

:=
d(Huclean1)

Huclean1
= d log(Huclean1).

Due to the particular shape of the function log, we have log(Huclean1) ' log(uclean1)
in the regions where the values of uclean1 are sufficiently high, which implies that

dv1
v1
' duclean1

uclean1
.

We deduce that, in bright regions, the model (2.22) encourages the perceived gradi-
ents of the achromatic components of the solution and the clean image to be similar.
2. Its saturation component is constant, which can be viewed as a regularity property.
3. Its hue component is identical to the one of v up to an additive constant.
Moreover, a blurring operator (with a reasonable blur level) affects the hue component
in a small extent. It implies that:
- the hues of v and uclean are similar (provided that the noise is negligible)
- the data term E(Hu, v) encourages the solution to have a hue similar to the one of
v.
All together, these properties encourage the solution of the model (2.22) to have its
hue similar to the one of uclean.

Let us now consider the VBTV induced by the geometric triplet in Table 2.2 (second
row). We deduce from the analysis of the parallel sections of the covariant derivative
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Table 2.2
Proposed geometric triplets for deblurring

Color space ω h g
Opponent space (2.24) (2.12) diag(β, β, β) (2.9)
Opponent space (2.24) (2.18) diag(β, β, β) (2.9)

induced by the dual connection 1-form (2.18) that the properties 2. and 3. of the
solutions of models (2.22) induced by the geometric triplet in Table 2.2 (first row) still
hold, but not the first one. Nonetheless, we will see in the experiments conducted in
Sect. 3.3 that image restoration benefits from the use of this VBTV in some cases.

3. DIP-VBTV for image restoration. In this Section, we test the model
DIP-VBTV θ = arg min

θ

1

2
‖H(Tθ(z))− v‖2L2(h) + λV BTV (Tθ(z)), λ > 0

u = Tθ(z),
(3.1)

with the geometric triplet (g, h, ω) described in Table 2.1 for denoising (H ≡ Id) and
with the geometric triplets (g, h, ω) described in Table 2.2 for deblurring (H is a blur
operator). Here, v denotes the input degraded image and u is the output of the model.
We show that DIP-VBTV provides state-of-the-arts results.

We use the same network Tθ in all the experiments conducted in this Section.
It is an encoder-decoder with skip connections between the down and up layers. It
corresponds to the default network in [27], to which we refer for details about the
architecture. In particular, for an input image v of size M × N × 3 (3 represents
the number of color channels), the input z of the network is a random image of size
M ×N × 32.

3.1. On the numerical scheme to solve the optimization problem.

3.1.1. A boosting numerical scheme. Following the approach in [27], and
denoting by E(θ; z) the energy in (3.1), we consider the following numerical scheme
in order to approximate a solution of the model DIP-VBTV


nk+1 ∼ N (0, σ)
zk+1 = z0 + nk+1

θk+1 = θk − lr∇E(θk; zk+1)
uk+1 = γ uk + (1− γ)Tθk+1

(zk+1),

(3.2)

where u0 = v, z0 is a fixed random image, lr denotes the learning rate, ∇E(θk; zk+1)
stands for the gradient of E with respect to θk, and 0 < γ < 1. The iterative scheme
is stopped after a certain number of iterations k and the output image is u = uk.
We can observe from (3.2) that the input zk of the network differs at each iteration by
perturbing the initial random image z0 with additive white Gaussian noise of variance
σ. This technique is called noise-based regularization, and experiments showed that
the restoration benefits from this type of regularization.

Last line in (3.2) reveals another boosting technique employed in the numerical
scheme, which consists of using an exponential sliding window for some weight γ.

Finally, a last boosting technique employed in [27] consists of averaging the output
images of the numerical scheme (3.2) over two different runs.
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3.1.2. Stopping criteria. It has been observed in [27] that the numerical scheme
(3.2) applied to DIP generates first the low frequencies, then the high frequencies of
the image. In particular, it generates noise when the number of iterations is too large.

The numerical scheme can also suffer from destabilization. It means that a sig-
nificant increase of the energy E(θk; zk) can occur during the iterative procedure,
generating blur in the image Tθk(zk). Then, from such destabilization point, the
energy goes down again till destabilized one more time. In order to prevent desta-
bilization, the strategy adopted in [27] consists of tracking the optimization loss and
return to parameters from the previous checkpoint iteration if the loss difference be-
tween two consecutive checkpoint iterations is higher than a certain threshold.

As a consequence, the stopping criteria of the numerical scheme should be care-
fully chosen. Indeed, the final iteration k should be early enough so that the image
uk does not possess noise, but it should also stop late enough so that the image uk
possesses details.

In [30], an automated stopping method named Orthogonal Stopping Criterion
(OSC) has been proposed, which adds a pseudo noise to the corrupted image and
measures the pseudo noise component in the recovered image of each iteration based
on the orthogonality between signal and noise. In [16], the need of early stopping is
avoided by conducting posterior inference using stochastic gradient Langevin dynam-
ics.

In the experiments conducted in this paper, we follow the strategy in [27].

3.1.3. Parameters of the model and the numerical scheme. We split the
parameters in two categories:

1. The parameters of the model DIP-VBTV (3.1):
- The geometric triplet (g, h, ω).
- The trade-off parameter λ between the data term and the penalty term. As in TV-
based standard restoration models (see e.g. [14]), the output image in DIP-VBTV
can be over-smoothed if λ is too high.

2. The parameters of the numerical scheme (3.2):
- The variance σ of the noise-based regularization, the learning rate lr, the weight γ
of the exponential sliding window, whose values are discussed below.
- The number of iterations, which has to be carefully chosen according to Sect. 3.1.2.

3.2. DIP-VBTV for denoising. In this Section, we test DIP-VBTV for de-
noising, i.e. we consider the model (3.1) with H ≡ Id, on a dataset of 9 color images
http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results corrupted with
additive white Gaussian noise of variance 25. The parameters of the model are de-
scribed in Table 3.1, where the trade-off parameter λ has be manually tuned with
the aim of providing the best average PSNR over the dataset. The parameters of
the numerical scheme (3.2) are the default parameters of DIP for denoising [27]:
σ = 1/30, lr = 0.01, γ = 0.99.

We compare DIP-VBTV to state-of-the-art unsupervised denoising methods. The
results show that, for a well-chosen stopping criteria, DIP-VBTV combined with a
boosting technique provides the best average PSNR.

3.2.1. Evolution of the PSNR of DIP and DIP-VBTV with respect to
the number of iterations on the whole dataset. In the denoising experiments
performed in [27] with DIP and [23] with DeepRED on this dataset, the numeri-
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Table 3.1
Model DIP-VBTV tested for denoising

Model Color space ω h g λ
DIP-VBTV Opponent space (2.24) 0 diag(900, 3000, 3000) (2.9) 0.05

Fig. 3.1. Denoising: Evolution of the PSNR with respect to the number of iterations for two
different models: DIP (left plot) and DIP-VBTV (right plot).

Table 3.2
Denoising: Highest PSNR value over one run (in parenthesis, iteration at which it is reached).

Model House Peppers Lena Baboon F16 Kod.1 Kod.2 Kod.3 Kod.12 Average
DIP 32.06 30.51 31.79 25.16 32.58 27.94 31.63 33.16 32.40 30.80

(1415) (2753) (2587) (5181) (2686) (3593) (2735) (3367) (3672) (3110)
DIP-VBTV 32.48 30.66 32.04 25.39 32.98 28.52 31.86 33.76 32.81 31.17

(1840) (3330) (3383) (5916) (3440) (4896) (4286) (4399) (5144) (4070)

cal schemes are stopped after different numbers of iterations (1.8K for DIP and 6K
for DeepRED). It shows that the number of iterations at which a DIP-based model
reaches its maximum PSNR value greatly varies with the model itself. In this Section,
we show that the optimal stopping criteria for DIP and DIP-VBTV greatly varies with
the image as well.

We run the numerical scheme (3.2) on each of the 9 images of the dataset for both
models, and stop it after 10K iterations. Fig. 3.1 shows the evolution of the PNSR
with respect to the clean image for each model. The results show that DIP-VBTV is
more stable than DIP. Indeed, for each image, the curve is more flat around the peak.

Table 3.2 shows the highest PSNR value reached by each model. The cor-
responding iteration is indicated in parenthesis. We observe that DIP reaches its
highest PSNR at earlier iterations but DIP-VBTV gives better results (mean im-
provement of 0.37 dB). In this table, images are ordered according to their size from
left to right: 256x256 (“House”), 512x512 (“Peppers”, “Lena”, “Baboon”, “F16”),
768x512 (“Kodim1”, “Kodim2”, “Kodim3”, “Kodim12”).

Fig. 3.2 compares intermediate results at the iterations 1K, 2.5K, 5K, 7.5K. They
confirm that DIP generates noise when the number of iterations is large enough. By
adding a VBTV regularizer, we observe that noise is still generated, but in a smaller
extent. Indeed, as in any variational model containing a data fidelity term and a
regularizer, the trade-off parameter λ in DIP-VBTV determines the amount of the
contribution of each term. Hence, if the trade-off parameter is small enough (which
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Fig. 3.2. Denoising: Intermediate results of two different models tested on the image “Kodim3”.
Top row: DIP - Bottom row: DIP-VBTV. From left to right: 1K, 2.5K, 5K, 7.5K.

is the case here), then the data term contributes more than the regularizer in the
minimization problem. As a consequence, when the number of iterations is large
enough, i.e. when we get closer to the solution of the variational problem, the effect
of the data fidelity term DIP (generation of noise) has more impact than the effect of
the regularizer (smoothing of the image).

A closer look at Fig. 3.1 and Table 3.2 shows a correlation between the iteration
corresponding to the highest PSNR and the image size. Note that the synthetic image
“Baboon” is an exception as its highest PSNR is reached after a very large number
of iterations. We argue that the behavior of the two models comes from:
1) The particular form of the network Tθ(z), which makes the numerical scheme
reconstruct the image from its lowest to highest frequencies throughout the iterative
process (see Fig. 3.2).
2) For natural images, the bigger the image size the finer the details (in general).
3) The synthetic image “Baboon” possesses a lot of fine details.

3.2.2. Results of DIP and DIP-VBTV for an image size-based auto-
matic stopping criteria. Following the results in Sect. 3.2.1, we propose a stopping
criteria for each model based on image size, and which is detailed in Table 3.3.

Table 3.4 reports the mean PSNR over 5 runs and its standard deviation for DIP
and DIP-VBTV tested with the automated stopping criteria described in Table 3.3.
We observe that the improvement of DIP-VBTV over DIP (+0.37 dB) reported in
Table 3.2 has increased (+0.52 dB). We argue that the main reason for this improve-
ment (+0.15 dB) is that, as mentioned previously, the curve describing the evolution
of the PSNR of DIP-VBTV is more flat around its peak than the one of DIP. As a
consequence, an automatic stopping criteria is more likely close to the optimal stop-
ping criteria in the case of DIP-VBTV. It explains why the drop of PSNR from Table
3.2 to Table 3.4 is 0.29 dB for DIP and only 0.14 dB for DIP-VBTV.

Finally, note that the standard deviation is rather small in both cases (0.04 for
DIP and 0.05 for DIP-VBTV). It shows the stability of the numerical scheme (3.2)
with the chosen parameters.

3.2.3. Boosting the results by averaging over several runs. We consider
the boosting technique mentioned in Sect. 3.1.1, and which consists of averaging the
output images over several runs. Whereas an averaging over 2 runs has been used in
[27], we noticed that an averaging over 5 runs provides a bigger improvement. Results
are reported in Table 3.5, and they show that DIP benefits slightly more from the
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Table 3.3
Denoising: Iteration at which the numerical scheme (3.2) is stopped.

Model 256× 256 512× 512 768× 512
DIP 1500 2500 4000

DIP-VBTV 2000 3500 5000

Table 3.4
Denoising: Average PSNR and standard deviation over 5 runs

Model House Peppers Lena Baboon F16 Kod.1 Kod.2 Kod.3 Kod.12 Average
DIP 32.05 30.45 31.73 23.80 32.52 27.88 30.81 32.97 32.37 30.51

± 0.02 ± 0.02 ± 0.04 ± 0.06 ± 0.02 ± 0.02 ± 0.13 ± 0.04 ± 0.03 ± 0.04
DIP-VBTV 32.45 30.63 31.98 24.60 32.97 28.52 31.67 33.67 32.74 31.03

± 0.03 ± 0.02 ± 0.02 ± 0.07 ± 0.02 ± 0.03 ± 0.11 ± 0.08 ± 0.04 ± 0.05

Table 3.5
Denoising: PSNR of the mean image over 5 runs

Algorithm House Peppers Lena Baboon F16 Kod.1 Kod.2 Kod.3 Kod.12 Average
DIP 32.58 30.73 32.09 23.98 33.02 28.50 31.46 33.49 32.87 30.97

DIP-VBTV 32.83 30.91 32.31 24.86 33.42 29.10 32.24 34.11 33.16 31.44

Table 3.6
Denoising: Comparison between DIP-VBTV and unsupervised methods.

Algorithm PNSR (in dB)
NL-Means 30.26

Bayesian DIP 30.81
DeepRED 31.24
C-BM3D 31.42

DIP-VBTV 31.44

boosting technique than DIP-VBTV does (+0.46 dB for DIP and +0.41dB for DIP-
VBTV with respect to the results in Table 3.4).

Fig. 3.3 compares the results of DIP and DIP-VBTV boosted by averaging over
5 runs applied to the image “Kodim12”. It shows that DIP-VBTV (bottom-right)
provides an image which is perceptually closer to the clean image (top-left) than
DIP (bottom-left image). Indeed, we can observe that the noise has been completely
removed and the sharpest details of the clean image are better recovered (compare
for instance the textures in the sand area).

3.2.4. Comparison to other unsupervised methods. We compare DIP-
VBTV (boosted by averaging over 5 runs) to other unsupervised methods tested on
this dataset for additive white Gaussian noise of variance 25: DeepRED [23], Bayesian
DIP [16], NL-Means [11],[12] and C-BM3D [18],[21]. Table 3.6 shows the average
PSNR of each of these methods over the dataset. For DeepRED and Bayesian DIP,
the results are the ones reported in [23] and [16] respectively. The results of NL-Means
and C-BM3D are the ones reported in [27]. The table shows that the best method
among these four ones is C-BM3D (PSNR 31.42 dB), which is slightly worse than the
results of DIP-VBTV (PSNR 31.44 dB).
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Fig. 3.3. Comparison between DIP and DIP-VBTV. Clockwise from top-left to bottom-left:
Clean ground truth image “Kodak12” - Input noisy image - Result of DIP-VBTV with the boosting
technique (PSNR 33.16 dB) - Result of DIP with the boosting technique (PSNR 32.87 dB).

Table 3.7
DIP-VBTV models tested for deblurring

Name Color space ω h g λ
DIP-VTV RGB 0 I3 I2 0.0001

DIP-VBTV Optimal Opponent space (2.24) (2.12) diag(3000, 3000, 3000) (2.9) 0.0005
DIP-VBTV Dual Opponent space (2.24) (2.18) diag(3000, 3000, 3000) (2.9) 0.001

3.3. DIP-VBTV model for deblurring. In this Section, we test DIP-VBTV
for deblurring, i.e. we consider the model (3.1) for H being a blur operator, on
a dataset of 4 color images of size 256x256 corrupted first with a 25x25 Gaussian
blur of variance 1.6 and then with additive white Gaussian noise of variance

√
2 (we

reproduce the experiments conducted in [23]). The parameters of the models are
described in Table 3.7. Note that the trade-off parameter λ for each model has been
manually tuned with the aim of providing the best average PSNR over the dataset.
The parameters of the numerical scheme (3.2) for each model are the ones used in
[23] for DIP: σ = 0.01, lr = 0.001, γ = 0.99.

3.3.1. Evolution of the PSNR of DIP and DIP-VBTV with respect to
the number of iterations on the whole dataset. We run the numerical scheme
(3.2) for DIP, and the three DIP-VBTV models described in Table 3.7 for a very large
number of iterations (30K). We report the highest PSNR and the iteration at which
it is reached for each image in Table 3.8. The results confirm the ones obtained for
denoising: the model DIP-VBTV, for a well-chosen geometric triplet, provides higher
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Table 3.8
Deblurring: Highest PSNR over one run (in parenthesis, iteration at which it is reached).

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 33.39 32.37 35.50 35.35 34.15

(9363) (12317) (10259) (10630) (10642)
DIP-VTV 33.35 31.92 35.88 35.76 34.23

(8650) (10565) (12731) (12544) (11122)
DIP-VBTV Optimal 33.46 32.54 36.30 36.07 34.59

(12168) (15538) (22949) (12259) (15728)
DIP-VBTV Dual 33.88 32.51 36.01 35.84 34.56

(12727) (20789) (13146) (11097) (14440)

Fig. 3.4. Deblurring: Evolution of the PSNR with respect to the number of iterations for three
different models: DIP (left), DIP-VBTV Optimal (center), DIP-VBTV Dual (right).

PSNR values than DIP. We also observe that the model DIP-VBTV Optimal provides
the best average result and the best results in three of the four images.

Fig. 3.4 compares the evolution of the PSNR throughout the iterative process
for DIP (left), DIP-VBTV Optimal (center) and DIP-VBTV Dual (right). It shows
that the models DIP-VBTV are more stable than DIP in the sense that the PSNR
decreases slower after the peak in all the four cases.

Fig. 3.5 compares intermediate results at the iterations 2.5K, 5K, 10K, 30K of
DIP (top row) and DIP-VBTV Optimal (bottom row) tested on the image “Parrots”.
The images confirm the evolution of the PSNR for this image in Fig. 3.4 (compare the
red curves in the left and center plots). Indeed, the images at 10K (which corresponds
more or less to the peak of the PSNR for both models) and at 30K are much more
different in the case of DIP. In particular, DIP generates a very noisy image at 30K
(top row, right column) which coincides with the low PSNR observed in the red curve
at 30K (left plot in Fig. 3.4).

3.3.2. Results of DIP and DIP-VBTV for an automatic stopping cri-
teria. Based on the results reported in Table 3.8, we propose an automatic stopping
criteria for DIP and the three DIP-VBTV models (see Table 3.9).

Table 3.10 reports the mean PSNR over 5 runs and its standard deviation for
the four models tested on the whole dataset. The corresponding stopping criteria
are described in Table 3.9. We observe that the results of the previous experiment
reported in Table 3.8 are preserved. Indeed, the ranking of the average PSNR among
the four models is the same, with DIP-VBTV Optimal giving the best results (34.50
dB) and DIP giving the worse results (34.06 dB). Moreover, we observe that the dif-
ferences between the average PSNR of the four models is almost maintained (compare
the columns “Average” in both Tables), which demonstrates the accuracy of the pro-
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Fig. 3.5. Deblurring: Intermediate results of two models tested on the image “Parrots”: Top
row: DIP - Bottom row: DIP-VBTV Optimal. From left to right: 2.5K, 5K, 10K, 30K.

Table 3.9
Deblurring: Iteration at which the numerical scheme (3.2) is stopped.

Model Stopping criteria (number of iterations)
DIP 10K

DIP-VTV 11K
DIP-VBTV Optimal 12K

DIP-VBTV Dual 12K

posed stopping criteria. Finally, let us point out that DIP provides the most stable
results in the sense that the mean standard deviation (± 0.111) is the lowest among
the four models.

In Fig. 3.6, we compare the images providing the best results among the 5 runs (in
terms of PSNR) of DIP and DIP-VBTV Optimal tested on the four images. Whereas
the best PSNR for DIP is 33.38 dB for “Butterfly”, 32.23 dB for “Leaves”, 35.69
dB for “Parrots” and 35.49 dB for “Starfish”, DIP-VBTV Optimal reaches 33.71
dB for “Butterfly”, 32.36 dB for “Leaves”, 36.43 dB for “Parrots” and 36.16 dB for
“Starfish”. We observe that DIP (third column) provides noisier images than DIP-
VBTV Optimal (last column), which might explain the difference in PSNR.

3.3.3. Boosting the results by averaging over several runs. We apply the
boosting technique aforementioned by considering the mean of the output images of
each model over the 5 runs. Table 3.11 reports the PSNR of the mean images. By
comparing the ”Average” columns of Table 3.10 and Table 3.11, we observe that DIP
is the model which benefits the most of the boosting technique (+1.12 dB) and DIP-
VTV is the one which benefits the less (+0.73 dB). We also observe that DIP-VBTV
Dual benefits more than DIP-VBTV Optimal (+0.92 dB for DIP-VBTV Dual and
+0.79 dB for DIP-VBTV Optimal).

In Fig. 3.7, we compare the results of the boosting technique applied to DIP and
DIP-VBTV Optimal on the image ”Parrots”. We observe that, while the boosting
technique does reduce the noise of the model DIP (compare the image in the third
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Table 3.10
Deblurring: Average PSNR and standard deviation over 5 runs

Model Butterfly Leaves Parrots Starfish Average
DIP 33.30 32.06 35.51 35.38 34.06

± 0.119 ± 0.101 ±0.151 ± 0.073 ± 0.111
DIP-VTV 33.36 31.82 35.74 35.85 34.19

± 0.11 ± 0.197 ± 0.156 ± 0.081 ± 0.136
DIP-VBTV Optimal 33.57 32.14 36.26 36.04 34.50

± 0.114 ± 0.192 ± 0.162 ± 0.114 ± 0.146
DIP-VBTV Dual 33.74 32.57 35.88 35.70 34.47

±0.238 ± 0.117 ± 0.05 ± 0.107 ± 0.128

Fig. 3.6. Deblurring: Comparison of DIP and DIP-VBTV Optimal (best results among the 5
runs in terms of PSNR). From left to right: Clean ground truth image - Corrupted image - Result
of DIP - Result of DIP-VBTV Optimal.
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Table 3.11
Deblurring: PSNR of the mean image over 5 runs

Model Butterfly Leaves Parrots Starfish Average
DIP 34.28 33.14 36.47 36.83 35.18

DIP-VTV 33.98 32.55 36.33 36.78 34.91
DIP-VBTV Optimal 34.24 32.98 36.86 37.08 35.29

DIP-VBTV Dual 34.49 33.47 36.74 36.85 35.39

Fig. 3.7. Comparison of DIP and DIP-VBTV Optimal (averaging over 5 runs). From left to
right: Clean ground truth image - Corrupted image - Result of DIP (PSNR 36.47 dB)- Result of
DIP-VBTV Optimal (PSNR 36.86 dB).

column in Fig. 3.7 to the image in third row and third column in Fig. 3.6), the average
of DIP still possesses more noise than the average of DIP-VBTV.

3.3.4. On the comparison to DeepRED. Since DeepRED [23], even when
applied to color images, is evaluated on their luminance channel, it would be fair to
evaluate DIP-VBTV on the luminance channel as well in order to compare the two
methods. However, for some reasons we ignore, we do not obtain the results reported
in [23] when computing the PSNR of the luminance channel of the input corrupted
images with respect to the luminance channel of the ground truth images. As a
consequence, it makes unfair a direct comparison of the PSNR of the results of both
methods. Note also that DeepRED reports an improvement of +0.89dB with respect
to DIP, but the authors do not mention the number of iterations used to evaluate
DIP.

3.4. Comparison between the models DIP-VBTV, DIP, and L2-VBTV
for denoising and deblurring on the Kodak dataset. In this Section, we test
different models on the Kodak dataset (http://r0k.us/graphics/kodak/), which
contains 24 color images. For denoising, we consider the images at their original sizes
(768x512 or 512x768) corrupted with additive white Gaussian noise of variance 25.
For deblurring, we reduce the image size (384x256 or 256x384) and corrupt them first
with a 25x25 Gaussian blur of variance 1.6 and then with additive white Gaussian
noise of variance

√
2. Note that the aim of reducing image size is to limit the number

of iterations required for DIP-based models.

3.4.1. Coupling DIP with VTV respectively SVTV improves both DIP
and L2-VTV respectively L2-SVTV. In this Section, we compare the model DIP-
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Algorithm 1 Primal-Dual Algorithm

1: Initialization: Choose τ, ν > 0 with ντ ≤ 1/‖∇‖22 and (u0, η0) ∈ L2(Ω;R3) ×
C∞(Ω;R6)), θ ∈ (0, 1]

2: Iterations: For n = 0, 1, . . . until a stopping criterion is reached

un+1 = F−1
Å

(τ/λ)F(v)F(K) + F(un − τ∇∗ ηn)

(τ/λ)F(K)2 + 1

ã
un = 2un+1 − un

ηn+1 =
ηn + ν∇un

max(1, ‖ηn + ν∇un‖2)

Table 3.12
Geometric triplets of the different models tested

Name Model Color space ω h g
L2-VTV (3.5) RGB 0 I3 I2

DIP RGB (3.4) RGB - I3 -
DIP-VTV (3.3) RGB 0 I3 I2
L2- SVTV (3.5) Opponent space (2.24) 0 diag(0.3,1,1) I2
DIP Opp (3.4) Opponent space (2.24) - diag(0.3,1,1) -

DIP-SVTV (3.3) Opponent space (2.24) 0 diag(0.3,1,1) I2

VBTV  θ = arg min
θ

1

2
‖H(Tθ(z))− v‖2L2(h) + λV BTV (Tθ(z))

u = Tθ(z)
(3.3)

to the model DIP  θ = arg min
θ

1

2
‖H(Tθ(z))− v‖2L2(h)

u = Tθ(z),
(3.4)

and to the model L2-VBTV

arg min
u∈BV ∩L2(E)

1

2
‖H(u)− v‖2L2(h) + λV BTV (u), (3.5)

where H is a convolution with a kernel K (K is a Gaussian blur for deblurring and
K is the Dirac delta function for denoising) with the geometric triplets described in
Table 3.12.

Solutions of models L2-VTV and L2-SVTV can be computed through the primal-
dual algorithm described in Algorithm 1 [15], where F ,F−1 denote, respectively, the
Fourier transform and its inverse, and ∇,∇∗ the Jacobian operator and its adjoint.

In order to solve the model L2-SVTV with Algorithm 1, we first have to express u
in an orthonormal basis with respect to the metric given by the matrix diag(0.3, 1, 1)
in the opponent space (2.24). One possible basis is

P =

Ñ
1/
√

0.9 1/
√

2 1/
√

6

1/
√

0.9 −1/
√

2 1/
√

6

1/
√

0.9 0 −2/
√

6

é
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Table 3.13
Denoising: Trade-off parameter, stopping criteria and average PSNR over the Kodak database

for each model.

Name Trade-off parameter Stopping criteria PNSR (in dB)
L2-VTV 30 MSE (un+1, un) < 0.001 in Algorithm 1 28.70

DIP RGB - 4K iterations 30.23
DIP-VTV 0.01 4.5K iterations 30.29
L2- SVTV 75 MSE (un+1, un) < 0.001 in Algorithm 1 29.20
DIP Opp - 4.5K iterations 30.42

DIP-SVTV 0.01 5K iterations 30.65

in the RGB frame.
Table 3.13 and Table 3.14 report the average PSNR for each model on denoising

and deblurring respectively. The trade-off parameter and the stopping criteria for each
model and degradation have been manually tuned in such a wey that they provide
the best average PSNR over the dataset.

According to the results, we have the following inequalities for denoising

PSNR(DIP−VTV) > PSNR(DIP RGB) > PSNR(L2−VTV)
∧ ∧ ∧

PSNR(DIP− SVTV) > PSNR(DIP Opp) > PSNR(L2− SVTV),
(3.6)

and the following inequalities for deblurring

PSNR(DIP−VTV) > PSNR(DIP RGB) > PSNR(L2−VTV)
∧ ∨ ∧

PSNR(DIP− SVTV) > PSNR(DIP Opp) > PSNR(L2− SVTV).
(3.7)

The inequalities in (3.6) and (3.7) corroborate the results in [20] in which it has
been shown that L2-SVTV outperforms L2-VTV for denoising and deblurring. Note
that the comparison in [20] has been done on another dataset and with a differ-

ent model (the authors consider
1

2
‖H(u) − v‖2L2 as data term whereas we consider

1

2
‖H(u)− v‖2L2(h)). These inequalities also corroborate the results in [22] in which it

has been shown that DIP combined with an (anisotropic) TV outperforms DIP RGB
and L2-(anisotropic) TV on denoising and deblurring.

Finally, note that the results reported in Table 3.14 show that replacing VTV by
SVTV gives only a minor improvement for deblurring.

3.4.2. DIP-VBTV gives better results than DIP-VTV and DIP-SVTV.
In this Section, we test the model DIP-VBTV described in Table 3.1 for denoising and
the model DIP-VBTV Optimal described in Table 3.7 for deblurring on the Kodak
dataset. The stopping criteria for both degradations have been manually tuned in
such a way that they provide the best average PSNR over the dataset. The results,
which are reported in Table 3.15 and Table 3.16, show an improvement with respect to
the ones reported in Table 3.13 and Table 3.14. In particular, there is an improvement
of 0.1 dB on denoising and 0.13 dB on deblurring with respect to DIP-SVTV, and
an improvement of 0.46 dB on denoising and 0.14 dB on deblurring with respect to
DIP-VTV. Note that the improvement with respect to DIP-VTV on deblurring was
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Table 3.14
Deblurring: Trade-off parameter, stopping criteria and average PSNR over the Kodak database

for each model.

Name Trade-off parameter Stopping criteria PNSR (in dB)
L2-VTV 0.075 MSE (un+1, un) < 0.001 in Algorithm 1 28.44

DIP RGB - 13K iterations 28.84
DIP-VTV 0.0001 20K iterations 29.14
L2- SVTV 0.1 MSE (un+1, un) < 0.001 in Algorithm 1 28.49
DIP Opp - 13K iterations 28.81

DIP-SVTV 0.0001 22K iterations 29.15

Table 3.15
Denoising: Stopping criteria and average PSNR of DIP-VBTV over the Kodak dataset

Name Stopping criteria PSNR (in dB)
DIP-VBTV 5K iterations 30.75

Table 3.16
Deblurring: Stopping criteria and average PSNR of DIP-VBTV Optimal over the Kodak dataset

Name Stopping criteria PSNR (in dB)
DIP-VBTV Optimal 25K iterations 29.28

higher on the dataset of 4 images tested in Sect. 3.3 (0.31 dB according to Table 3.10).
Fig. 3.8 compares the results of DIP-VBTV and DIP-SVTV on the image “Kodim3”

for denoising (PSNR 33.76 dB for DIP-VBTV and PSNR 33.48 dB for DIP-SVTV).
We observe in this case that image quality is correlated to PSNR as DIP-VBTV pro-
vides an image perceptually closer to the original clean image (for instance, it does
not generate noise unlike DIP-SVTV). Nonetheless, there are some details (see for in-
stance the shade under the yellow cap) which are still not reconstructed by DIP-VBTV
after 5K (there are partially reconstructed after 7.5K iterations according to Fig. 3.2).

Fig. 3.9 compares the results of DIP-VBTV Optimal and DIP-SVTV on “Kodim23”
for deblurring (PSNR 32.44 dB for DIP-VBTV and PSNR 32.05 dB for DIP-SVTV).
We observe that the models provide similar results on the recovery of the contours of
the original image (see close-up images in the third row). However, as in the denois-
ing case in Fig. 3.8, DIP-VBTV provides an image perceptually closer to the original
image in the sense that DIP-VBTV does note generate noise unlike DIP-SVTV (see
close-up images in the fourth row).

Finally, let us mention that we did not test the model L2-VBTV for the non
Euclidean geometric triplets described in Table 3.1 and Table 3.7 because the non
Euclidean metric (2.9), which depends on u, makes the model be non convex and the
computation of its solutions not straightforward.

3.5. On the computational time of DIP-based models and the ways to
reduce it. DIP-VBTV provides better results than DIP, but at the cost of higher
computational time. Indeed, in the previous experiments, we showed that DIP-VBTV
requires more iterations than DIP in order to reach its optimal result. Moreover,
by computing the time taken by each model to execute one iteration, we observe
that DIP-VBTV is slightly slower than DIP. This is actually coherent as DIP-VBTV

26



Fig. 3.8. Denoising: Comparison between DIP-VBTV and DIP-SVTV on “Kodim3”. First
row from left to right: original image, corrupted image. Second row from left to right: DIP-SVTV
(PSNR 33.48 dB), DIP-VBTV (PSNR 33.76 dB). Third and fourth rows: Close-up on some image
regions, from left to right: original image, noisy image, DIP-SVTV, DIP-VBTV.

possesses an extra term (the regularizing term). In Table 3.17 and Table 3.18, we
report the computational times of DIP and DIP-VBTV for denoising and deblurring,
where the GPU environment (in its free version) provided by Google Colab has been
used for the experiments. These results show that the main flaw of DIP-based models
is their low computational efficiency.

Different strategies can then be adopted in order to reduce the computational time
of DIP-based models. The first approach consists of using a faster GPU. Then, one can
reduce the computational time per iteration by reducing the number of parameters
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Fig. 3.9. Deblurring: Comparison between DIP-SVTV and DIP-VBTV models on “Kodim23”.
First row from left to right: original image, corrupted image. Second row from left to right: DIP-
SVTV (PSNR 32.05 dB) - Right: DIP-VBTV (PNR 32.44 dB). Third row: Close-up on some image
region, from left to right: original image, blurred image, DIP-SVTV, DIP-VBTV.

of the network. Finally, one can reduce the number of iterations required to reach
the optimal result by improving the optimization process. For instance, we can tune
the parameters of the numerical scheme (the learning rate lr and the variance σ in
formula 3.2). A more challenging approach consists of developing a mathematical
description of the optimization space (the space of parameters of the neural network),
from which would derive a more accurate gradient descent. Note that improving the
optimization process could also prevent from the destabilization problem mentioned
in Sect. 3.1.2.
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Table 3.17
Denoising: Computational times of DIP and DIP-VBTV in function of the image size

Name Image size Stopping criteria Computational time (in min and sec)
DIP-VBTV 256x256 2K 6.37
DIP-VBTV 512x512 3.5K 11.26
DIP-VBTV 768x512 5K 23.48

DIP 256x256 1.5K 5.5
DIP 512x512 2.5K 8.19
DIP 768x512 4K 19.12

Table 3.18
Deblurring: Computational times of DIP and DIP-VBTV in function of the image size

Name Image size Stopping criteria Computational time (in min and sec)
DIP-VBTV 256x256 12K 13.45
DIP-VBTV 384x256 25K 38.51

DIP 256x256 10K 11.7
DIP 384x256 13K 20.09

4. Conclusion. In this paper, we have introduced a variational model, called
DIP-VBTV, for color image restoration which combines two priors: a Vector Bundle
Total Variation (VBTV) determined by a geometric triplet, and a Deep Image prior
(DIP) determined by a neural network. We showed that, for well-chosen geometric
triplets arising as critical points of an energy, the minimization of VBTV encourages
the solutions of DIP-VBTV to share some visual content with the clean image. Then,
we showed on experiments that the restoration benefits from this property. Indeed,
we tested DIP-VBTV with these geometric triplets on denoising and deblurring, and
results showed that it outperforms other methods involving DIP. Results also showed
that the geometric triplet which provides the best result depends on both the image
and the degradation operator. Further work is devoted to investigate whether there
exist geometric triplets providing better results on denoising and deblurring and to
test DIP-VBTV on other image restoration problems.

Appendix A. Proof of Proposition 2.8. We have

Dvu = 0⇐⇒



du1 − u1
dv1
v1

= 0

du2 + u3

Å
v2dv3 − v3dv2

v22 + v23

ã
= 0

du3 − u2
Å
v2dv3 − v3dv2

v22 + v23

ã
= 0
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⇐⇒ 

du1
u1

=
dv1
v1

u2du2 + u2u3

Å
v2dv3 − v3dv2

v22 + v23

ã
= 0

u3du2 + (u3)
2
Å
v2dv3 − v3dv2

v22 + v23

ã
= 0

u2du3 − (u2)
2
Å
v2dv3 − v3dv2

v22 + v23

ã
= 0

u3du3 − u3u2
Å
v2dv3 − v3dv2

v22 + v23

ã
= 0.

(A.1)

Hence, we have to show that

(Dvu)2,3 = 0⇐⇒


d‖u2,3‖ = 0

u2du3 − u3du2
‖u2,3‖22

=
v2dv3 − v3dv2
‖v2,3‖22

.
(A.2)

Summing the second and fifth equations in (A.1) yields

u2du2 + u3du3 = 0,

i.e. d‖u2,3‖2 = 0, which implies that d‖u2,3‖ = 0.
Subtracting the fourth equation from the third equation in (A.1) gives

u3du2 − u2du3 + ‖u2,3‖2
Å
v2dv3 − v3dv2
‖v2,3‖2

ã
= 0,

i.e.

u2du3 − u3du2
‖u2,3‖2

=
v2dv3 − v3dv2
‖v2,3‖2

,

which proves that

(Dvu)2,3 = 0 =⇒

 d‖u2,3‖ = 0
u2du3 − u3du2

u22 + u23
=
v2dv3 − v3dv2

v22 + v23
.

On the other hand, assuming that

u2du3 − u3du2
u22 + u23

=
v2dv3 − v3dv2

v22 + v23
,

i.e. (ωv)2,3 = (ωu)2,3, we have (Dvu)2,3 = (Duu)2,3. Then,

d‖u2,3‖ = 0 =⇒ (Duu)2,3 = 0

according to (2.14), and it leads to (Dvu)2,3 = 0 as (Dvu)2,3 = (Duu)2,3.
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