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DEEP IMAGE PERCEPTUAL PRIOR FOR COLOR IMAGE
RESTORATION

THOMAS BATARD∗, GLORIA HARO † , AND COLOMA BALLESTER †

Abstract. In this paper, we introduce a new prior for image restoration which relies on the
assumption that the degradation process preserves some visual attributes of the original scene. We
formulate this prior as a penalty term whose minimization expresses the invariance of the visual
attributes with respect to the degradation operator. The proposed penalty term is inspired by
geometric models in visual psychophysics and neuroscience. More precisely, it combines a model of
the perception of colors based on the notion of covariant derivative and a model of edges/textures
based on the notion of Riemannian metric, and it yields a non Euclidean extension of the Total
Variation (TV) penalty term called Vector Bundle Total Variation (VBTV). Then, under the extra
assumption of a Deep Image Prior (DIP), we introduce a variational model DIP-VBTV for image
restoration involving the two priors. The proposed model generalizes DIP [31] and DIP-TV [26]
models and we show that it outperforms them on denoising and deblurring, turning DIP-VBTV to
a state-of-the-art unsupervised method for image restoration.

1. Introduction.

1.1. New perspective on image restoration. There is a growing interest
in designing human vision-inspired mathematical models in image processing and
computer vision (see e.g. [1],[5],[6],[7],[8],[10],[18],[29]). Dealing with restoration of
natural images, this approach is justified by the fact that one aims to maintain the
perception of the original scene rather than reproducing its light intensity. This is
a very challenging task as the property of the Human Visual System (HVS) to be
included in the restoration model depends on the degradations observed on the input
image, and it is likely that the vision model describing the desired property of the
HVS has to be adapted in order to fit into an image processing model.

From the observation that a clean image and a degraded version of it (noisy,
blurry, downsampled,...) still share some visual content, we claim that a model for
image restoration should take this information into account, which can be done by
making the model preserve, or at most slightly modify, some visual attributes of the
degraded image. Nonetheless, the features which should be preserved depend on the
nature of the degradation. For instance, dealing with noise, the colors of the original
clean image are widely altered (e.g. the hue is modified), whereas local structures
(edges, textures) are still visible if the noise is not too high, which is the case in
realistic situations. On the other hand, when the degradation comes from a blurring
operator, local features are more degraded than colors. Hence, a model for image
restoration should, on one hand, be general enough to encode some invariance of the
perception of both local structures and color, but also be able to adapt the invariance
to a given degradation operator.

1.2. Related work.

1.2.1. Penalty terms of variational models to express perceptual invari-
ance. Over the last 30 years, variational models have demonstrated their efficiency to
tackle several tasks in color image restoration, e.g. denoising, deblurring, inpainting,
super-resolution, etc (see e.g. [32] and references therein), which are often expressed
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as a convex combination of a data term and one or more penalty terms, the lat-
ter(s) being determined by some image prior(s). The fact that the perception of
local structures is almost invariant under (realistic) noise degradation has been used
in many approaches for image denoising, and is implicitly encoded into a penalty
term. Among the seminal penalty terms encoding such invariance, we have the Total
Variation (TV) [14],[15],[28] whose minimization encourages the preservation of local
structures by means of the L1 norm of the Euclidean gradient, and the Polyakov ac-
tion [30] whose minimization encourages the preservation of local structures by means
of the L2 norm of a Riemannian gradient, the Riemannian metric being related to
the structure tensor of the image. These two penalty terms can be extended to color
images in the straightforward manner, replacing the gradient of a scalar function by
the Jacobian of a vector-valued function. For instance, TV extends to the so-called
Vectorial Total Variation (VTV) [9],[11]. A more perceptually-based color extension
is the Saturation-Value Total Variation (SVTV) [24] in which the fact that the spa-
tial variations of the local structures of a natural image are mainly in its achromatic
component is taken into account, making the model penalize the smoothing of the
achromatic component of the image.

These penalty terms have also been applied to various image restoration prob-
lems as deblurring, inpainting, super-resolution. However, none of them encode some
invariance of the perception of colors with respect those degradations.

1.2.2. The Vector Bundle Total Variation (VBTV). This penalty term
has been introduced in [4], in which a multi-channel image u : Ω ⊂ R2 −→ Rn is
considered as a section of a vector bundle over a Riemannian manifold. Then, VBTV
arises as the natural extension of VTV in this geometric context, and is defined by
V BTV (u) = ‖Du‖L1(g−1⊗h), where g stands for a Riemannian metric on the base
manifold, D is a covariant derivative and h is a vector bundle metric, making VBTV
be determined by the geometric triplet g,D, h.

In the experiments they conducted on image denoising, the authors considered
the following triplet: g, h are Euclidean metrics, and D is the flat covariant derivative
whose connection 1-form vanishes in a moving frame P , introduced in [2], describing
the local geometry of the corrupted image. In this context, the minimization of VBTV
implicitly assumes that the moving frame P and consequently the local geometry it
encodes is invariant with respect to a noise degradation. Experiments corroborated
the relevance of this approach as the results showed that VBTV-L2 model outperforms
various variational models for image denoising based on the minimization of a penalty
term, including the VTV-L2 model [11]. Whereas such an invariance is coherent when
dealing with noise, it might be less efficient in the context of other image restoration
tasks where the degradation operator greatly affects the local geometry like deblurring.

1.3. Contribution. Our contribution in this paper is two-fold:

1.3.1. The minimization of VBTV can express some perceptual invari-
ance of colors and local features with respect to a degradation operator.
We propose a new interpretation of the geometric triplet g,D, h, in which each el-
ement has a perceptual meaning. Following [5], we use covariant differentiation to
describe color perception. Then, we use the metric h as a weight function describing
the non uniformity of colors in the perception of visual attributes. Finally, we follow
the Beltrami framework [30] and use the Riemannian metric g to describe the local
structures of an image. We show that this new interpretation enables to express some
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perceptual invariance of colors and local features with respect to a degradation oper-
ator through the minimization of VBTV. More precisely, the main results we obtain
are the following ones.

Covariant derivative to express color perception and its invariance through the
minimization of VBTV. We show that, for well-chosen covariant derivatives D in-
duced by connection 1-forms derived from the optimal connection 1-forms constructed
in [3] and determined by the degraded image u0, the sections u minimizing VBTV
satisfy

Fu = Fu0 (1.1)

for some operator F . Moreover, we show that F has a perceptual interpretation,
which makes equality (1.1) describe some invariance related to the perception of col-
ors.

Weighting image components through the vector bundle metric h. By definition
of VBTV, the vector bundle metric h can assign different weights to the different
image components. Hence, through the minimization of VBTV, it enables to process
some image components in a smaller extent than others, which can be desirable in the
context of image restoration. In particular, we show that SV-TV, in which different
weights are assigned to the achromatic and chromatic components, is a particular case
of VBTV for a particular triplet g,D, h.

Riemannian metric derived from a perceptual structure tensor. Under the percep-
tual interpretations of a covariant derivative and a vector bundle metric, we introduce
a generalization of the structure tensor (at the finer scale, scale 0), replacing the Jaco-
bian operator by a covariant derivative and the Euclidean metric by a vector bundle
metric, and which we call perceptual structure tensor. Then, we derive a Riemannian
metric g from the perceptual structure tensor given, for β > 0, by the symmetric
matrix Å

1 + β h(D∂xu,D∂xu) β h(D∂xu,D∂yu)
β h(D∂xu,D∂yu) 1 + β h(D∂yu,D∂yu)

ã
(1.2)

in the frame (∂x, ∂y) induced by the Cartesian coordinates system (x, y) on Ω. This
Riemannian metric generalizes the one considered in [30]. In what follows, with a
slight abuse of notation, we will identify the Riemannian metric g with the matrix
(1.2).
We also show in this paper that the Riemannian metric (1.2) is a critical point of an
energy.

1.3.2. A variational model for image restoration including VBTV as
penalty term which outperforms standard methods. In order to corroborate
our claim that a restoration model should take into account that a clean image and
a degraded version of it share some visual content, the proposed approach considers
VBTV as a penalty term of a variational problem for image restoration, yielding a
model of the form

arg min
u∈X

1

2
‖H(u)− u0‖2h + λV BTV (u) (1.3)
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for λ > 0, where u0 is the observed degraded image, H is the degradation operator,
and X a certain functional space. Whereas variational models assuming that X is a
bounded variation space have been widely considered in the past (see [3] for a VBTV-
L2 model), we consider here a new class of functional space, where X is the set of
images which can be generated through a given neural network.

Recently, a Deep Image Prior (DIP) has been introduced by Ulyakov et al. [31] for
image restoration, in which it is assumed that the restored image u can be generated
through a neural network, yielding the following optimization problem θ = arg min

θ

1

2
‖H(Tθ(z))− u0‖22

u = Tθ(z),
(1.4)

where Tθ is a neural network parametrized by θ whose input z is a random image
of the same size as u0. Note that the optimization is performed here on the set of
parameters of the neural network rather than on a space of images. Experiments
conducted in [31] showed that model (1.4) outperforms TV-based variational models
in a great extent on denoising and super-resolution. The model (1.4) has then been
combined with a TV prior, leading to the so-called DIP-TV model [26], given by θ = arg min

θ

1

2
‖H(Tθ(z))− u0‖22 + λTV (Tθ(z))

u = Tθ(z),
(1.5)

for λ > 0. We consider here the DIP-VBTV model, which consists of replacing TV
by VBTV in model (1.5).

In Sect. 4, we show that, for well-chosen covariant derivatives D and metrics h, the
model DIP-VBTV outperforms DIP and DIP-VTV, a vectorial extension of DIP-TV,
on denoising and deblurring. For denoising, the covariant derivative and the metric
are inspired by the work [24] in which different weights are assigned to the achromatic
and chromatic components of the image. For deblurring, the covariant derivatives are
derived by the optimal connection 1-forms constructed in [3], and which encode some
psychophysical laws.
We also compare DIP-VBTV to other methods making use of the DIP prior: DeepRED
[27] and a Bayesian approach [16], and we show that better results are obtained with
DIP-VBTV.

2. Connection of the geometric triplet to vision. In this section, we show
that each element of the geometric triplet g,D, h can have an interpretation in terms
of vision science. Let u : Ω ⊂ R2 −→ R3 be a color image, and E be the trivial vector
bundle R3×Ω −→ Ω. In what follows, we consider u as the expression of a section of
E in a moving frame.

2.1. Covariant derivative and perceptual gradient. We denote by T ∗Ω the
cotangent bundle of Ω and by End(E) the bundle of endomorphisms of E. In what
follows, we denote by Γ(T ∗Ω⊗End(E)) the set of smooth sections of T ∗Ω⊗End(E).

A covariant derivative on E is a differential operator D := d+ω, where d stands for
the standard differential operator and ω ∈ Γ(T ∗Ω⊗End(E)) is called a connection 1-
form. Assuming that E is equipped with a G-associated bundle structure, where G is a
Lie group acting on the fibers of E through a representation ρ, then the connection 1-
form is such that is satisfies a certain transformation law under a moving frame change,
and which makes the covariant derivative satisfy a G-equivariance with respect to a
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moving frame change. More precisely, let ω be the expression of a connection 1-form
in a moving frame, ϕ the expression of a section of E in the same moving frame, and
G be another moving frame. Then, the expression of ω in the frame G is given by

GdG−1 + GωG−1 (2.1)

The transformation law (2.1) makes D satisfy a G-equivariance property with respect
to the moving frame change, i.e.

DGϕ = GDϕ (2.2)

Note that by formula (2.1), a connection 1-form is completely determined by its value
in a moving frame.
Let us assume that E is endowed with a G-associated bundle. Then, assuming that
a moving frame change describes a lighting change, a covariant derivative satisfies a
G-equivariance property with respect to a lighting change according to (2.2). In this
context, Georgiev [22],[23] interprets a covariant derivative of an image as a perceptual
gradient and relates the G-equivariance property of this perceptual gradient to the
color constancy property of the HVS.

2.2. Weighting image components through the vector bundle metric h.

2.2.1. Vector bundle metric and brightness perception. It has been shown
in [5] that, the brightness of the image u, according to the Helmholtz-Kohlrausch effect
[20] in visual psychophysics, can be interpreted as its norm ‖u‖h for a well-chosen
metric h.

2.2.2. Vector bundle metric and local structures perception. Given a
geometric triplet g,D, h, we have

V BTV (u) := ‖Du‖L1(g−1⊗h)

=

∫
Ω

 ∑
i,j

gijh(D∂xi
u,D∂xj

u) dΩ,

where gij denotes the coefficients of the inverse matrix of g. In particular, let P be a
moving frame in which h is of the form

h =

Ñ
α 0 0
0 1 0
0 0 1

é
, (2.3)

for α > 0, then

‖Du‖g−1⊗h =
(∑
i,j

gij
î
α(D∂xi

P−1u)1(D∂xj
P−1u)1 + (D∂xi

P−1u)2(D∂xj
P−1u)2

+(D∂xi
P−1u)3(D∂xj

P−1u)3

ó)1/2

. (2.4)

Hence, a different weight is assigned to the first component (DP−1u)1, which enables
to process this component in a greater (α > 1) or smaller (α < 1) extent than the
other components (DP−1u)k, k = 2, 3, which can be desirable in image restoration.

As an example, let us consider the (constant) frame P given by the matrix
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P =

Ñ
1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

é
(2.5)

in the RGB frame, D given by the connection 1-form ω ≡ 0 and h given by (2.3) in
the frame P , and g given by the Euclidean metric on Ω. Then VBTV(u) corresponds
to the SVTV aforementioned, which assigns to the achromatic component (for α < 1)
less weight than the chromatic components. As a consequence, a SVTV-L2 variational
model will smooth less the achromatic component than the chromatic ones. This is a
desirable property in image denoising as the perception of local structures, which are
mainly in the achromatic component, is less affected by noise than the perception of
colors.

2.3. Riemannian metric induced by a generalization of a structure ten-
sor and its relation to local structures perception and processing. Visual
edges and textures are well described by the structure tensor which encodes image
derivatives at different scales [21].

As pointed out by Chossat and Faugeras [17], there is a “strong evidence that the
visual system of many species is organized in such a way that quantities related to
image derivatives are extracted, and hence represented, by neuronal activity”. Then,
they proposed to model the processing of image edges and textures in the V1 area of
the visual cortex. To this end, they suggested the presence of neuronal populations in
V1 representing the structure tensor, organized as a hypercolumn at each point of the
retinal plane, and whose activity evolves by equations similar to the Wilson-Cowan
equations [33],[34].

With the perceptual interpretation of covariant derivatives and vector bundle
metrics aforementioned, one can then generalize the structure tensor, replacing the
image derivative by a covariant derivative and the Euclidean scalar product between
image vectors by the one associated to a vector bundle metric. At the scale 0, it givesÅ

h(D∂x1
u,D∂x1

u) h(D∂x1
u,D∂x2

u)
h(D∂x1

u,D∂x2
u) h(D∂x2

u,D∂x2
u)

ã
. (2.6)

Denoting by Γ(SP2(Ω)) the set of smooth 2x2 symmetric positive semi-definite
matrix fields over Ω, we have the following result.

Proposition 2.1. The matrix field (2.6) is a critical point of the energy
X : Γ(SP2(Ω)) −→ R+, given by

X(g) = ‖Du‖2L2(g−1⊗h). (2.7)

Proof. See Appendix A.

From (2.6), we derive a Riemannian metric

g∗ =

Å
1 + β h(D∂x1

u,D∂x1
u) βh(D∂x1

u,D∂x2
u)

βh(D∂x1
u,D∂x2

u) 1 + β h(D∂x2
u,D∂x2

u)

ã
(2.8)
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for β > 0, which endows (Ω, g∗) with a Riemannian manifold structure. In particular,
for h represented by I3, the 3x3 Identity matrix, and D given by the connection
1-form ω ≡ 0 both expressed in the RGB color space, then g∗ corresponds to the
Riemannian metric in the Beltrami framework [30] used for edge-preserving image
denoising through the heat diffusion of the corresponding Laplace-Beltrami operator.

3. A class of covariant derivatives and their parallel sections. Under the
assumption that the metrics g and h are positive definite, we have

V BTV (u) = 0⇐⇒ Du = 0, (3.1)

i.e. the sections minimizing VBTV are the parallel sections of D, provided that D does
possess parallel sections. Recall that a covariant derivative admits parallel sections
if and only if the curvature of the corresponding connection 1-form vanishes identically.

In [3], a family of connection 1-forms ωu parametrized by a set of Lie groups
G acting on the pixel values of images u has been constructed. In what follows,
we focus on the connection 1-forms induced by G = R+∗, SO(2), SO(3) acting re-
spectively on R (gray-level image), R2 (chrominance image), R3 (color image). In
Sect. 3.1, we show that the corresponding covariant derivatives Du := d+ ωu satisfy
a G-equivariance with respect to u, in the sense that

DGu(Gu) = GDuu

for any G-valued moving frame G.
Moreover, we show that these covariant derivatives can describe some invariance of
a perceptual attribute with respect to a degradation operator through their parallel
sections (the existence of parallel sections for these covariant derivatives has been
proved in [5]). Indeed, let v be a degraded image and the corresponding covariant
derivative Dv := d+ ωv. We show that the parallel sections u of Dv satisfy

Fu = Fv (3.2)

for some operator F describing some perceptual attribute. Finally, in Sect. 3.2 and
Sect. 3.3, we construct new covariant derivatives derived from the three covariant
derivatives analyzed in Sect. 3.1 and we study the existence of parallel sections for
these new covariant derivatives.

3.1. Covariant derivatives whose parallel sections have a perceptual
interpretation.

3.1.1. Covariant derivative induced by the action of R+∗ on R and the
corresponding parallel sections. Let us assume that u is a gray-level image. The
connection 1-form induced by the action of R+∗ on R is given by

ωu = −du
u
. (3.3)

The quantity du/u can be interpreted as the perceptual gradient of the image accord-
ing to Weber’s law in brightness perception. In this case, the R+∗-equivariance of Du

with respect to u is trivial as we have

Duu = 0. (3.4)

7



Let v be a degraded gray-level image and Dv := d + ωv the covariant derivative
induced by ωv. Then, we have

Dvu = 0⇐⇒ du

u
=
dv

v
. (3.5)

In the context of image restoration, formula (3.5) together with (3.1) show that the
minimization of VBTV encourages the preservation of the perceived gradient accord-
ing to Weber-Fechner’s law.

3.1.2. Covariant derivative induced by the action of SO(2) on R2 and
the corresponding parallel sections. Let us assume that u = (u1, u2) is a chromi-
nance image. The connection 1-form induced by the action of SO(2) on R2 is

ωu =

Ö
0

u1du2 − u2du1

‖u‖2

−u1du2 − u2du1

‖u‖2
0

è
. (3.6)

It gives

Duu = d log(‖u‖)u, (3.7)

which proves the SO(2)-equivariance of Du with respect to u.

Let v = (v1, v2) be a degraded R2-valued image, and Dv := d + ωv the covariant
derivative induced by ωv. We have the following result.

Proposition 3.1. The parallel sections of Dv are the sections u satisfying d‖u‖ = 0
u1du2 − u2du1

‖u‖2
=
v1dv2 − v2dv1

‖v‖2
.

(3.8)

Proof. See Appendix B.

In polar coordinates u = (r(u), ϕ(u)) and v = (r(v), ϕ(v)), the coordinate r
corresponds to the saturation component (up to the multiplication by a constant)
and the coordinate ϕ to the hue. Moreover, the second equality in (3.8) reads

dϕ(u) = dϕ(v). (3.9)

In the context of image restoration, formulas (3.8) imply that the minimization of
VBTV favours the preservation of the variations of the hue of the image through the
equality (3.9) and it encourages images with smooth saturation through the equality
d‖u‖ = 0.
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3.1.3. Covariant derivative induced by the action of SO(3) on R3 and
the corresponding parallel sections. Let u = (u1, u2, u3) be a color image. The
connection 1-form ωu induced by the action of SO(3) on R3 is given by

ωu =



0
(u1du2 − u2du1)

‖u‖2
(u1du3 − u3du1)

‖u‖2

− (u1du2 − u2du1)

‖u‖2
0

(u2du3 − u3du2)

‖u‖2

− (u1du3 − u3du1)

‖u‖2
− (u2du3 − u3du2)

‖u‖2
0


. (3.10)

As in the SO(2) case, the covariant derivative Du : = d+ ωu induced by ωu satisfies

Duu = d log(‖u‖)u. (3.11)

which proves the SO(3)-equivariance of Du.
Let v = (v1, v2, v3) be a degraded color image and Dv : = d+ωv the covariant deriva-
tive induced by ωv. We have the following result.

Proposition 3.2. The parallel sections of Dv are the sections u satisfyingß
d‖u‖ = 0
ωuu = ωvu

(3.12)

Proof. See Appendix C.

Assuming that u, v are expressed with their RGB components and the norm is the
one describing the Helmholtz-Kohlrausch effect (see [5]), formula d‖u‖ = 0 in (3.12)
implies that the minimization of VBTV encourages images with smooth brightness.

3.2. Combining the connection 1-forms induced by R+∗, SO(2) and
SO(3). New connection 1-forms ωu for color images u = (u1, u2, u3) can be derived
from the connection 1-forms (3.3),(3.6),(3.10).

Let us first consider the following combination of the connection 1-forms induced
by R+∗ (3.3) and SO2 (3.6)

ωu =


−du1

u1
0 0

0 0
u2du3 − u3du2

‖u2,3‖2

0 −u2du3 − u3du2

‖u2,3‖2
0

 (3.13)

where u2,3 denotes the R2-valued image (u2, u3). We have

Duu = (0, d log (‖u2,3‖)u2, d log (‖u2,3‖)u3)T ,

which shows that the covariant derivative Du satisfies an R+∗× SO(2)-equivariance
according to (3.4),(3.7).
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Let v = (v1, v2, v3) be a degraded color image, and Dv : = d + ωv the covariant
derivative induced by ωv. We deduce from (3.5) and (3.8) that

Dvu = 0⇐⇒



d u1

u1
=
d v1

v1

d‖u2,3‖ = 0

u2du3 − u3du2

‖u2,3‖2
=
v2dv3 − v3dv2

‖v2,3‖2
.

(3.14)

Then, the existence of parallel sections is a direct consequence of the existence of
parallel sections for the connection 1-forms (3.3) and (3.6).

Assuming that u, v are expressed in an opponent color space, in which u1, v1 is the
achromatic component and (u2, u3), (v2, v3) the chromatic components, we deduce
from (3.14) that the minimization of VBTV encourages the preservation of the per-
ceptual gradient of the achromatic component and the preservation of the gradient of
the hue. Moreover, it encourages images with smooth saturation.

Let us now consider a combination of the connection 1-forms induced by R+∗ (3.3)
and SO(3) (3.10). To that purpose, we first extend the connection 1-form (3.3) to a
connection 1-form on a vector bundle of rank 3 for color imagesâ

−du1

u1
0 0

0 −du2

u2
0

0 0 −du3

u3

ì
, (3.15)

which can be associated to the action of the group DC(3) of diagonal 3x3 matrices
with positive entries on R3. Then, we combine the connection 1-form (3.15) with
(3.10), giving the connection 1-form

ωu =



−du1

u1

(u1du2 − u2du1)

‖u‖2
(u1du3 − u3du1)

‖u‖2

− (u1du2 − u2du1)

‖u‖2
−du2

u2

(u2du3 − u3du2)

‖u‖2

− (u1du3 − u3du1)

‖u‖2
− (u2du3 − u3du2)

‖u‖2
−du3

u3


. (3.16)

The covariant derivative Du induced by ωu satisfies

Duu = −du+ d log(‖u‖)u,

which shows that it does not satisfy a G-equivariance.

Let v be a color image, and Dv := d + ωv the covariant derivative induced by ωv.
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Unlike the previous cases, this covariant derivative does not admit parallel sections.
Indeed, we have the following result.

Proposition 3.3. The curvature of the connection 1-form (3.16) does not iden-
tically vanish.

Proof. See Appendix D.

The non existence of parallel sections for this covariant derivative makes more
difficult to perform an analysis of the minimization of VBTV.

3.3. Dual connections. To any connection 1-form ω is associated a connection
1-form ω∗ by means of an involution on Γ(T ∗Ω ⊗ End(E)). ω and ω∗ are said to be
dual to each other.
Let us consider the Cartan involution on gln(R), given by

θ(X) = −XT . (3.17)

The Cartan involution extends in a straightforward way to an involution Θ on Γ(T ∗Ω⊗
End(E)). Then, given any connection 1-form ω, the dual connection 1-form induced
by Θ is ω∗ := Θ ◦ ω.

3.3.1. Dual of the connection 1-form (3.13). The dual of the connection
1-form ωu in (3.13) is

ωu∗ =



du1

u1
0 0

0 0
u2du3 − u3du2

‖u2,3‖2

0 −u2du3 − u3du2

‖u2,3‖2
0

 (3.18)

where u2,3 := (u2, u3). It gives

Duu = (2du1, d log (‖u2,3‖)u2, d log (‖u2,3‖)u3)T ,

which shows that, unlike (3.13), the covariant derivative induced by the connection
1-form (3.18) does not satisfy a R+∗× SO(2)-equivariance.

Let v = (v1, v2, v3) be a degraded color image, and Dv := d + ωv∗ the covariant
derivative induced by ωv∗. We have

Dvu = 0⇐⇒



d u1

u1
= −d v1

v1

d‖u2,3‖ = 0

u2du3 − u3du2

‖u2,3‖2
=
v2dv3 − v3dv2

‖v2,3‖2
.

(3.19)

Let us assume that u, v are expressed in an opponent color space. Then, as the con-
nection 1-form (3.13), the minimization of VBTV induced by (3.18) encourages the
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preservation of the gradient of the hue and it favours images with smooth saturation.
However, unlike (3.13), it does not encourage the preservation of the perceptual gra-
dient of the achromatic component as it encourages the reversion of its sign.

3.3.2. Dual of the connection 1-form (3.16)). The dual of the connection
1-form ωu (3.16) according to the involution Θ is the connection 1-form

ωu∗ :=



du1

u1

(u1du2 − u2du1)

‖u‖2
(u1du3 − u3du1)

‖u‖2

− (u1du2 − u2du1)

‖u‖2
du2

u2

(u2du3 − u3du2)

‖u‖2

− (u1du3 − u3du1)

‖u‖2
− (u2du3 − u3du2)

‖u‖2
du3

u3


, (3.20)

and the covariant derivative induced by this connection 1-form satisfies

Duu = du+ d log(‖u‖)u,

which shows that it does not satisfy a G-equivariance.

Let v be a degraded color image, and Dv := d + ωv∗ the covariant derivative in-
duced by ωv∗. As in the case of the covariant derivative induced by the connection
1-form (3.16), the covariant derivative Dv does not admit parallel sections. Indeed,
we have the following result.

Proposition 3.4. The curvature of the connection 1-form (3.20) does not iden-
tically vanish.

Proof. The proof is the same as the one of Proposition 3.3.

As in the case of the covariant derivative induced by the connection 1-form (3.16),
the non existence of parallel sections for this covariant derivative makes more difficult
to perform an analysis of the minimization of VBTV.

4. DIP-VBTV model for image restoration. In this Section, we consider
the DIP-VBTV model θ = arg min

θ

1

2
‖H(Tθ(z))− u0‖22 + λV BTV (Tθ(z))

u = Tθ(z),
(4.1)

for different degradation operators H: noise (Sect. 4.2) and blur (Sect. 4.3). We test
the model for different geometric triplets g,D, h and the results show that the best
geometric triplet depends not only on the degradation considered but also on the
image u0 to process.

4.1. On the numerical scheme to solve the optimization problem. We
use the same network Tθ in all the experiments conducted in this paper, i.e. an
encoder-decoder with skip connections between the down and up layers. It corre-
sponds to the default architecture in [31], which we refer to for details about the
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architecture. The same network is actually used in the DIP-TV [26], DeepRED [27]
and Bayesian DIP [16] models.

Assuming that the size of the input image u0 (gray-level or color) is M ×N× (1
or 3), we take as input z of the network a random image of size M ×N × 32, as it is
done in the aforementioned papers.

4.1.1. A boosting numerical scheme. Following the approach in [31], and
denoting by E(θ; z) the energy in (4.1), we consider the following numerical scheme
in order to approximate a solution of the DIP-VBTV model


nk+1 ∼ N (0, σ)
zk+1 = z0 + nk+1

θk+1 = θk − lr∇E(θk; zk+1)
uk+1 = γ uk + (1− γ)Tθk+1

(zk+1),

(4.2)

where z0 is a fixed random image, lr denotes the learning rate, ∇ stands for the gra-
dient with respect to the first argument, and 0 < γ < 1.
We can observe from (4.2) that the input zk of the network differs at each iteration
by perturbing the input random image z0 with additive white Gaussian noise of vari-
ance σ. This technique is called noise-based regularization, and experiments showed
that the restoration benefits from this type of regularization. Note that, it has been
pointed out in [31] that, even if the noise-based regularization impedes the optimiza-
tion process of the model (1.4), this latter eventually reaches the value 0 of the energy
for a large enough number of iterations.

Last line in (4.2) reveals another boosting technique employed in the numerical
scheme, which consists of using an exponential sliding window for a well-chosen weight
γ.

Finally, a last boosting technique employed in [31] consists of averaging the out-
put images of the numerical scheme (4.2) over two different runs.

4.1.2. Stopping criteria. It has been observed in [31] that the numerical scheme
(4.2) applied to DIP generates noise when the number of iterations is too large. We
observed the same behavior when applied to DIP-VBTV.

Another property of the numerical scheme is that it can suffer from, what is called
in [31], destabilization, i.e., a significant increase of the energy E(θk; zk) and blur in
the generated image Tθk(zk) can occur during the iterative procedure. Then, from
such destabilization point, the energy goes down again till destabilized one more time.
In order to prevent destabilization, the strategy adopted in [31] consists of tracking
the optimization loss and return to parameters from the previous checkpoint iteration
and stop the numerical scheme if the loss difference between two consecutive check-
point iterations is higher than a certain threshold.

As a consequence, the stopping criteria of the numerical scheme should be care-
fully chosen. Indeed, the final iteration k∗ should be early enough so that the image
u∗k does not possess noise and destabilization has not occurred yet, but it should also
stop late enough so that the degradations generated by H are not presented in u∗k.

In [35], an automated stopping method named Orthogonal Stopping Criterion
(OSC) has been proposed, which adds a pseudo noise to the corrupted image and
measures the pseudo noise component in the recovered image of each iteration based
on the orthogonality between signal and noise. In [16], they avoid the need of early
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stopping by conducting posterior inference using stochastic gradient Langevin dynam-
ics.

In the experiments conducted in this paper, we follow the strategy in [31].

4.1.3. Parameters of the model and the numerical scheme. The proposed
approach for image restoration has several parameters, which can be split into two
categories.

1. The parameters of the model (4.1):
- The connection 1-form ω which determines the covariant derivative D.
- The vector bundle metric h.
- The trade-off parameter β between spatial and color variations in the Riemannian
metric (2.8).
- The trade-off parameter λ between the data term and the penalty term in (4.1).

2. The parameters of the numerical scheme (4.2):
- The variance σ of the noise-based regularization.
- The learning rate lr.
- The weight γ of the exponential sliding window.
- The number of iterations.

4.2. Denoising. In this Section, we test DIP-VBTV on denoising, i.e. we con-
sider the model (4.1) for H being the Identity operator. The chosen covariant deriva-
tive and vector bundle metric are the ones described in Sect. 2.2.2, i.e. the covariant
derivative is given by the connection 1-form ω ≡ 0 and the metric h is given by (2.3)
for α = 0.3 both in the frame (2.5). As pointed out in Sect. 2.2.2, this choice for ω
and h aims at smoothing the chromatic components of the input noisy image in a
greater extent than its achromatic component. Indeed, the perception of local details
of the clean image, which are mainly in the achromatic component, is less affected by
noise than the perception of colors.

The parameter of the Riemannian metric (2.8) is taken as β = 3000, and the
trade-off parameter of the model is λ = 0.1. The parameters of the numerical scheme
(4.2) are the default parameters of the DIP model [31] for denoising: σ = 1/30, lr =
0.01, γ = 0.99, except the number of iterations as we will see below.

We follow [31] and test our model on a database of 9 color images http://www.

cs.tut.fi/~foi/GCF-BM3D/, which contains 8 natural images and 1 synthetic image,
for additive white Gaussian noise of variance 25.

4.2.1. Dependence of the optimal number of iterations to the image
size and the prior. In the denoising experiments, the numerical schemes of DIP
[31] and DeepRED [27] are stopped after different numbers of iterations (1800 for DIP
and 6000 for DeepRED), which shows that the number of iterations at which a model
reaches its best PSNR greatly varies with the model itself.

We aim at analyzing the evolution of the PSNR of DIP-VBTV with respect to
the number of iterations and compare it to the one of DIP. To this end, we run the
numerical scheme (4.2) for both models applied to each of the 9 images of the dataset
and stop it after 10K iterations. The results, shown on Fig. 4.1, reveal that DIP-VBTV
is more stable than DIP in the sense that, for any image, the drop of the PSNR after
the peak is less important. Table 4.1 indicates the highest PSNR value of both models,
and the iteration at which it is reached is indicated in parenthesis. In this table,
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Fig. 4.1. Evolution of the PSNR with respect to the number of iterations for two models: DIP
(left plot) and DIP-VBTV (right plot).

Fig. 4.2. Evolution of the image “Kodim3” at different iterations tested on denoising with two
models. Top row: DIP - Bottom row: DIP-VBTV. From left to right: 1K, 2.5K, 5K, 7.5K.

images are ordered according to their size from left to right: 256x256 (House), 512x512
(Peppers, Lena, Baboon, F16), 768x512 (Kodim1, Kodim2, Kodim3, Kodim12). The
results show that DIP reaches its highest PSNR at earlier iterations but DIP-VBTV
gives better results with a mean improvement of 0.4 dB.

Fig. 4.2 compares intermediate results at the iterations 1K, 2.5K, 7.5K, 10K of the
two models tested on the image “Kodim3”. We observe that DIP tends to generate
more noise than DIP-VBTV.

A closer look at Fig. 4.1 and Table 4.1 shows a correlation between the iteration
at which the highest PSNR is reached and the image size, with the exception of the
synthetic image Baboon whose highest PSNR is reached after a number of iterations
similar to the ones of bigger images. We argue that this behavior of the models comes
from:
1) the particular form of the network Tθ(z) makes the numerical scheme reconstruct
the image from its lowest to highest frequencies throughout the iterative process (see
Fig. 4.2).
2) natural images of bigger size possess finer details in general.
3) the synthetic image Baboon possesses a lot of fine details.

4.2.2. Automation of the stopping criteria and boosting of the results.
Based on the results obtained in the previous experiment, we deduce that an auto-
mated stopping criteria should depend on the image size and the model itself. The
proposed stopping criteria for the images of the database is given in Table 4.2.

Table 4.3 reports the mean and the standard deviation of the PSNR after 5 runs
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Table 4.1
Denoising: Max PSNR over one run (in parenthesis, iteration at which the max PSNR value

is reached)

Algorithm House Peppers Lena Baboon F16 Kodak1 Kodak2 Kodak3 Kodak12 Average
DIP 32.06 30.51 31.79 25.16 32.58 27.94 31.63 33.16 32.40 30.80

(1415) (2753) (2587) (5181) (2686) (3593) (2735) (3367) (3672) (3110)
DIP-VBTV 32.63 30.72 31.98 25.42 33.01 28.63 32.00 33.72 32.68 31.20

(2015) (3883) (3729) (5976) (3616) (5880) (4745) (5143) (6498) (4609)

Table 4.2
Denoising: Iteration at which the numerical scheme (4.2) is stopped.

Algorithm 256× 256 512× 512 768× 512
DIP 1500 2500 3000

DIP-VBTV 2000 4000 5000

of DIP and DIP-VBTV tested on the whole dataset with the automated stopping
criteria described in Table 4.2. We observe that the improvement of DIP-VBTV over
DIP (+0.4 dB) reported in Table 4.1 has increased (+0.51 dB). This small difference
(+0.11 dB) shows the accuracy of the proposed stopping criteria, even if stopping the
DIP model at 2500 iterations for the image Baboon seems to be too early (compare
the PSNR of the image Baboon at Table 4.1 and Table 4.3). The difference is even
smaller (+0.02dB) if we disregard the image Baboon as the improvement of DIP-
VBTV over DIP gets +0.43dB.
Note that the standard deviation is rather small in both cases (0.03 for DIP and 0.04
for DIP-VBTV), which shows the stability of the numerical scheme for the chosen
parameters.
Fig. 4.3 compares the best results over the 5 runs of DIP (left images, second and
fourth row) and DIP-VBTV (right images, second and fourth row) on the images
“Kodak3” and “Kodim12”. In this case, the best results of DIP-VBTV have a PSNR
of 33.70 dB for “Kodak3”, 32.67 dB for “Kodak12”, and the best results of DIP
have a PSNR of 33.07 dB for “Kodak3” and 32.17 dB for “Kodak12”. We observe
that DIP-VBTV provides images which are perceptually closer to the clean images
(left images, first and third row). Indeed, we can see for instance that the details
are sharper (textures on the walls, letters on the caps for “Kodak3”, textures in the
sand area for “Kodak12”) and the homogeneous regions are more preserved (caps for
“Kodak 3” and skin of the people for “Kodak 12”).

Finally, we consider the boosting technique mentioned in Sect. 4.1.1, and which
consists of averaging the output images over several runs. Whereas an averaging over
2 runs has been used in [31], we noticed that an averaging over 5 runs provides a
bigger improvement. Results are reported in Table 4.4, and it shows that DIP-VBTV
outperforms DIP by 0.42 dB (by 0.33dB if we disregard the image Baboon), which
means that DIP benefits more from the boosting than DIP-VBTV does.

4.2.3. Comparison to other methods. The same database and noise level
have been used to test DeepRED [27] and Bayesian DIP [16]. Results report a score
of 31.24 dB for DeepRED and 30.81dB for Bayesian DIP. The standard nonlocal meth-
ods NL-Means [12] and CBM3D [19] have also been tested on this dataset. Ulyanov
et al. [31] report a score of 30.26 dB for NL-Means with the implementation [13] and
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Table 4.3
Denoising: Mean PSNR and standard deviation over 5 runs

Algorithm House Peppers Lena Baboon F16 Kodak1 Kodak2 Kodak3 Kodak12 Average
DIP 32.05 30.45 31.73 23.80 32.52 27.73 31.67 33.03 32.13 30.57

± 0.02 ± 0.02 ± 0.04 ± 0.06 ± 0.02 ± 0.03 ± 0.04 ± 0.02 ± 0.05 ± 0.03
DIP-VBTV 32.59 30.70 31.97 24.83 32.94 28.54 31.90 33.64 32.59 31.08

± 0.02 ± 0.02 ± 0.03 ± 0.08 ± 0.03 ± 0.02 ± 0.02 ± 0.04 ± 0.06 ± 0.04

Table 4.4
Denoising: PSNR of the mean image over 5 runs

Algorithm House Peppers Lena Baboon F16 Kodak1 Kodak2 Kodak3 Kodak12 Average
DIP 32.58 30.73 32.09 23.98 33.02 28.16 32.15 33.40 32.47 30.95

DIP-VBTV 32.84 30.89 32.20 25.10 33.28 29.02 32.26 33.91 32.81 31.37

a score of 31.42 dB for CBM3D with the implementation [25].
Hence, with our score of 31.37 dB, we are approaching the state-of-the-art unsuper-
vised denoising method CBM3D.

Finally, let us mention the DIP-TV model (1.5) introduced in [24], which has been
applied and compared to DIP on another dataset containing 8 color images of size
512x512. The results, which tell that DIP-TV outperforms DIP, have been reported
in SNR, which makes difficult to compare against our results. Moreover, as pointed
out in [27], both DIP-TV and DIP have been stopped after 5000 iterations, in which
DIP might not perform well for such image size (see e.g. Fig. 1 (left) which shows that
higher PSNR is obtained at smaller iterations). Hence, the performance of DIP-TV
is questionable.

4.3. Deblurring. In this Section, we test DIP-VBTV on deblurring, i.e. we
consider the model (4.1) for H being a blur operator. We reproduce the experiments
conducted in [27] in which two types of blur operators are considered: a 25x25 Gaus-
sian blur with variance 1.6 and 9x9 uniform blur. In both cases, the blurry image is
further contaminated by white additive Gaussian noise of variance

√
2. The experi-

ments are conducted on a set of four color images of same size (256x256).
Here, we test DIP-VBTV for six different geometric triplets (see Table 4.5 and

Sect. 4.1.3). Note that, unlike the denoising case, we use the Identity matrix as the
metric in the opponent space (2.5). One can also observe that the trade-off parameter
is smaller for DIP-VBTV Euclidean (λ = 0.0001). Indeed, preliminary experiments
showed that DIP-VBTV Euclidean gives better results when applied with λ = 0.0001.
In particular, it produces over-smoothed images for λ = 0.001. The parameters of the
numerical scheme (4.2) are: σ = 0.01, lr = 0.001, γ = 0.99. The same parameters are
used to test DIP.

4.3.1. Optimal number of iterations. Following the results in Sect. 4.2.1 in
which it has been shown that, for a given image, DIP and DIP-VBTV reach their
optimal PSNR at very different iterations, we run the numerical scheme (4.2) for
both DIP and the six DIP-VBTV models for a very large number of iterations (30K).
In such a way, we get some insight about the value of the iteration at which the PSNR
is maximized for each model.
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Fig. 4.3. Comparison of DIP and DIP-VBTV models for denoising. Clockwise from top-left
to bottom-left for each image: Clean ground truth images “Kodak3” and “Kodak12” - Input noisy
image obtained by adding white Gaussian noise of variance 25 to the clean images - Result of DIP-
VBTV model - Result of DIP model. In both cases, best results, in terms of PSNR, over the 5
runs.

In Table 4.6 and Table 4.7, we report the results for Gaussian and uniform blur
respectively. Results show that, for each image and degradation operator, the best
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Table 4.5
Configurations of the model (4.1) tested for deblurring

Name ω Color space h β λ
DIP-VBTV Euclidean 0 RGB I3 0 0.0001

DIP-VBTV Riemannian 0 RGB I3 3000 0.001
DIP-VBTV (3.13) (3.13) Opponent space (2.5) I3 3000 0.001
DIP-VBTV (3.18) (3.18) Opponent space (2.5) I3 3000 0.001
DIP-VBTV (3.16) (3.16) RGB I3 3000 0.001
DIP-VBTV (3.20) (3.20) RGB I3 3000 0.001

result is obtained by a DIP-VBTV model for ω 6= 0, this latter varying with both
the image and the degradation. The average columns confirm the improvement of
DIP-VBTV models for ω 6= 0 with respect to DIP. Indeed, the improvement goes
from +0.34 dB for the connection 1-form (3.16) to +0.49 dB for the connection 1-
form (3.18) in the Gaussian blur case. In the uniform blur case, the improvement goes
from +0.38 dB for the connection 1-form (3.20) to +0.54 dB for the connection 1-form
(3.16). Note that DIP-VBTV Euclidean and DIP-VBTV Riemannian models, where
ω ≡ 0, perform worse than DIP-VBTV for ω 6= 0 but outperform DIP in average
(except DIP-VBTV Euclidean in the uniform blur case).
By observing the iterations at which the highest PSNR are attained, we observe a
strong correlation between the values of the iteration and the values of the PSNR.
Indeed, in most of the cases, the model providing the best PSNR is the one where
the highest PSNR is obtained at the latest iteration. On the other hand, in most
of the cases, (if we disregard DIP-VBTV Euclidean which uses a different trade-off
parameter), the model providing the worse PSNR is the one where the highest PSNR
is obtained at the earliest iteration. Finally, we observe that the four DIP-VBTV
models with ω 6= 0 reach their highest PSNR later than DIP. The models DIP-VBTV
Euclidean and Riemannian reach their highest PSNR at intermediate iterations.

Fig. 4.4 and Fig. 4.5 compare the evolution of the PSNR throughout the iterative
process for DIP (left plots) and DIP-VBTV (3.16) (right plots) models tested for
both Gaussian and uniform blur on the whole dataset. We observe that DIP-VBTV
is more stable than DIP in the sense that the PSNR decreases slower after the peak
in all the cases. Fig. 4.6 compares intermediate results at the iterations 2.5K, 5K,
10K, 30K of the two models tested on the image “Parrots” with uniform blur. The
images confirm the difference in the behavior of the PSNR curves observed in Fig. 4.5.
Indeed, the images at 10K (which corresponds more or less to the peak of the PSNR
in both models) and at 30K are very different in the case of DIP and much less in the
case of DIP-VBTV. In particular, DIP generates a very noisy image at 30K (top row,
right column) which coincides with the low PSNR observed in the red curve at 30K
(left plot in Fig. 4.5).

4.3.2. Automation of the stopping criteria. Following the results shown in
Sect. 4.3.1, we propose the following stopping criteria for DIP and the six DIP-VBTV
models (see Table 4.8).

Table 4.9 and Table 4.10 report the mean and standard deviation of the PSNR
of DIP and the six DIP-VBTV models over 5 runs, tested on the whole dataset with
the numerical scheme (4.2) stopped after the optimal number of iterations reported
in Table 4.8.

As in the previous experiment, we observe that all the DIP-VBTV models, except
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Table 4.6
Deblurring (Gaussian): Max PSNR over one run (in parenthesis, iteration at which the max

PSNR value is reached)

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 33.39 32.37 35.50 35.35 34.15

(9363) (12317) (10259) (10630) (10642)
DIP-VBTV Euclidean 33.35 31.92 35.88 35.76 34.23

(8650) (10565) (12731) (12544) (11122)
DIP-VBTV Riemannian 33.19 32.01 35.77 35.86 34.21

(6920) (10075) (14740) (11608) (10836)
DIP-VBTV (3.13) 33.37 32.32 36.55 36.20 34.61

(8686) (11193) (17547) (13142) (12642)
DIP-VBTV (3.18) 34.19 32.51 36.01 35.84 34.64

(13818) (20789) (13146) (11097) (14713)
DIP-VBTV (3.16) 33.31 32.11 36.40 36.12 34.49

(9405) (11515) (14207) (11992) (11780)
DIP-VBTV (3.20) 33.74 32.75 36.02 35.76 34.57

(13683) (20751) (13487) (11652) (14893)

Table 4.7
Deblurring (Uniform): Max PSNR over one run (in parenthesis, iteration at which the max

PSNR value is reached)

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 31.81 30.57 33.00 31.74 31.78

(9997) (11910) (10611) (9558) (10519)
DIP-VBTV Euclidean 31.80 29.67 32.67 31.94 31.52

(11237) (13041) (13478) (13289) (12761)
DIP-VBTV Riemannian 31.85 30.19 33.56 32.12 31.93

(11134) (11204) (13055) (11591) (11746)
DIP-VBTV (3.13) 32.42 30.29 33.64 32.42 32.19

(11851) (12230) (11919) (13055) (12264)
DIP-VBTV (3.18) 32.16 30.78 33.78 32.24 32.24

(12063) (14645) (11953) (11159) (12455)
DIP-VBTV (3.16) 32.31 30.45 34.08 32.43 32.32

(11172) (12969) (15911) (12073) (13031)
DIP-VBTV (3.20) 32.18 30.65 33.59 32.20 32.16

(10855) (13788) (11365) (11941) (11987)

DIP-VBTV Euclidean for uniform blur, outperform DIP in average over the dataset.
Moreover, focusing on the DIP-VBTV models with ω 6= 0, the improvement goes from
+0.35 dB to +0.49 dB for Gaussian blur and from +0.4dB to +0.5dB for uniform
blur. Those results are similar to the results obtained in the previous experiment,
which shows the accuracy of proposed stopping criteria. Let us also mention that
DIP-VBTV (3.16) gives the most stable results for both degradation operators as it
has the smallest standard deviation in average. Finally, let us mention one difference
with respect to the previous experiment. In the Gaussian blur case, the best average
score is now given by the model induced by the connection 1-form (3.20) whereas it
was given by the model DIP-VBTV (3.18) in the previous experiment (Table 4.6).
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Fig. 4.4. Evolution of the PSNR for two different models tested on the whole dataset corrupted
with Gaussian blur. DIP (left) and DIP-VBTV (3.16) (right).

Fig. 4.5. Evolution of the PSNR for two different models tested on the whole dataset corrupted
with uniform blur. DIP (left) and DIP-VBTV (3.16) (right).

In Fig. 4.7, we compare the images providing the best results over the 5 runs (in
terms of PSNR) of DIP and DIP-VBTV (3.16) tested on the four images for uniform
blur. Whereas the best PSNR for DIP are 32.01 dB for “Butterfly”, 30.31 dB for
“Leaves”, 31.93 dB for “Starfish” and 32.94 dB for “Parrots” (second column from
the right), DIP-VBTV (3.16) reaches 32.24 dB for “Butterfly”, 30.36 dB for “Leaves”,
32.57 dB for “Starfish” and 33.93 dB for “Parrots” (first column from the right). We
observe that DIP provides much noisier images, which might explain the difference in
PSNR.

4.3.3. Boosting of the results. We apply the boosting technique aforemen-
tioned by considering the mean of the output images of each model over the 5 runs.
Table 4.11 and Table 4.12 report the PSNR of the mean images. We observe that
the DIP-VBTV models which gave the best mean PSNR among the 6 DIP-VBTV
models in Table 4.9 and Table 4.10 do not provide the best results after averaging the
5 images anymore. Indeed, the DIP-VBTV (3.18) model now gives the best results
in both cases according to the results in the columns ”Average”.
As in the denoising case, DIP benefits more from this boosting technique than the
DIP-VBTV models. Indeed, DIP has increased its average PSNR by an amount of
1.12 dB on Gaussian blur and 1.03 dB on uniform blur. On the other hand, the best
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Fig. 4.6. Evolution of the image “Parrots” at different iterations tested with two models for
uniform blur: Top row: DIP - Bottom row: DIP-VBTV (3.16). From left to right: 2.5K, 5K, 10K,
30K.

Table 4.8
Deblurring: Iteration at which the numerical scheme (4.2) is stopped.

Algorithm Stopping criteria (number of iterations)
DIP 10K

DIP-VBTV for ω = 0 11K
DIP-VBTV for ω 6= 0 12K

increase of PSNR among the DIP-VBTV models occurs with the DIP-VBTV (3.18)
model and represents 0.92 dB for Gaussian blur and 0.66 dB for uniform blur. This
result makes sense as the averaging of the 5 images does reduce the noise, which is
much more present in DIP results (compare the last two columns in Fig. 4.7). Hence,
we intuit that we could improve the results of DIP-VBTV by considering a greater
number of iterations in the numerical scheme (4.2). It would provide images with more
details and noise, this latter being removed afterwards by this boosting technique.

4.3.4. Comparison to DeepRED. Because DeepRED [27], even when applied
to color images, is evaluated on their luminance channel, we evaluate DIP-VBTV on
the luminance channel as well. However, for some reasons we ignore, we do not obtain
the results reported in [27] when computing the PSNR of the luminance channel of
the input blurred images with respect to the luminance channel of the ground truth
images, which makes unfair a direct comparison of the PSNR of the results of both
methods. For this reason, we made the choice of comparing the increase of PSNR of
the two models with respect to the PSNR of the blurred images obtained in each case.
Here, we consider the luminance channel of the first result over 5 runs of the model
DIP-VBTV (3.18). Results are reported in Table 4.13 for Gaussian blur and Table 4.14
for uniform blur. We observe in both cases that DIP-VBTV outperforms DeepRED
in a great extent. Note also that DeepRED reports an improvement of +0.92dB on
uniform blur and +0.89dB on Gaussian blur with respect to DIP. However, the authors
do not mention the number of iterations used to evaluate DIP in that experiment.
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Table 4.9
Deblurring (Gaussian): Mean PSNR and standard deviation over 5 runs

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 33.30 32.06 35.51 35.38 34.06

± 0.119 ± 0.101 ±0.151 ± 0.073 ± 0.111
DIP- VBTV Euclidean 33.36 31.82 35.74 35.85 34.19

± 0.11 ± 0.197 ± 0.156 ± 0.081 ± 0.136
DIP- VBTV Riemannian 32.88 32.08 35.87 35.70 34.13

± 0.174 ± 0.208 ± 0.198 ± 0.113 ± 0.173
DIP-VBTV (3.13) 33.41 31.91 36.20 36.11 34.41

± 0.159 ± 0.126 ± 0.177 ± 0.216 ± 0.17
DIP-VBTV (3.18) 33.74 32.57 35.88 35.70 34.47

±0.238 ± 0.117 ± 0.05 ± 0.107 ± 0.128
DIP- VBTV (3.16) 33.57 32.19 36.15 36.08 34.50

± 0.111 ± 0.076 ± 0.133 ± 0.069 ± 0.097
DIP- VBTV (3.20) 33.78 32.53 36.06 35.83 34.55

± 0.114 ± 0.19 ± 0.091 ± 0.126 ± 0.13

Table 4.10
Deblurring (Uniform): Mean PSNR and standard deviation over 5 runs

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 31.89 30.21 32.82 31.88 31.70

± 0.064 ± 0.058 ± 0.071 ± 0.038 ± 0.058
DIP- VBTV Euclidean 31.81 29.66 32.56 31.70 31.42

± 0.073 ± 0.045 ± 0.083 ± 0.06 ± 0.065
DIP- VBTV Riemannian 31.78 30.20 33.24 32.21 31.86

± 0.107 ± 0.072 ± 0.161 ± 0.046 ± 0.096
DIP-VBTV (3.13) 32.01 30.29 33.76 32.53 32.15

± 0.083 ± 0.042 ± 0.146 ± 0.07 ± 0.085
DIP-VBTV (3.18) 32.15 30.70 33.58 32.21 32.16

± 0.089 ± 0.03 ± 0.146 ± 0.067 ± 0.083
DIP-VBTV (3.16) 32.19 30.34 33.81 32.46 32.20

± 0.038 ± 0.02 ± 0.07 ± 0.071 ± 0.05
DIP-VBTV (3.20) 32.14 30.68 33.36 32.21 32.10

± 0.071 ± 0.064 ± 0.183 ± 0.104 ± 0.101

Table 4.11
Deblurring (Gaussian) - PSNR of the mean image over 5 runs

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 34.28 33.14 36.47 36.83 35.18

DIP-VBTV Euclidean 33.98 32.55 36.33 36.78 34.91
DIP-VBTV Riemannian 33.38 32.89 36.47 36.74 34.87

DIP-VBTV (3.13) 34.00 32.59 36.67 36.97 35.06
DIP-VBTV (3.18) 34.49 33.47 36.74 36.85 35.39
DIP-VBTV (3.16) 34.18 32.95 36.74 36.97 35.21
DIP-VBTV (3.20) 34.45 33.39 36.71 36.90 35.36
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Fig. 4.7. Comparison of DIP and DIP-VBTV (3.16) model for deblurring (uniform blur and
best results, in terms of PSNR, over the 5 runs). From left to right: Clean ground truth image -
Clean image corrupted by uniform blur - Result of DIP - Result of DIP-VBTV (3.16).

Table 4.12
Deblurring (Uniform) - PSNR of the mean image over 5 runs

Algorithm Butterfly Leaves Parrots Starfish Average
DIP 32.91 31.23 33.83 32.96 32.73

DIP-VBTV Euclidean 32.31 30.15 32.91 32.14 31.88
DIP-VBTV Riemannian 32.20 30.77 33.70 32.79 32.37

DIP-VBTV (3.13) 32.56 30.91 34.22 33.10 32.70
DIP-VBTV (3.18) 32.73 31.48 34.19 32.88 32.82
DIP-VBTV (3.16) 32.79 30.99 34.31 33.07 32.79
DIP-VBTV (3.20) 32.69 31.43 33.96 32.88 32.74
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Table 4.13
Deblurring (Gaussian) - Comparison to DeepRED on the luminance channel by comparing the

increase of PSNR with respect to the input blurred image

Algorithm Butterfly Leaves Parrots Starfish Average
DeepRED + 9.38 + 10.15 + 5.88 +6.91 +8.08

DIP- VBTV (3.18) + 11.90 +11.22 +9.72 +10.34 +10.8

Table 4.14
Deblurring (Uniform) - Comparison to DeepRED on the luminance channel by comparing the

increase of PSNR with respect to the input blurred image.

Algorithm Butterfly Leaves Parrots Starfish Average
DeepRED +12.37 +12.93 +8.16 +8.5 + 10.49

DIP- VBTV (3.18) +14.44 +13.80 + 11.01 +10.42 +12.42

5. Conclusion. In this paper, we introduced a variational model for color image
restoration which combines two priors: a Vector Bundle Total Variation (VBTV)
prior determined by three geometric quantities, called geometric triplet, and a Deep
Image prior (DIP) determined by a neural network. We showed that, for well-chosen
geometric triplets, the minimization of VBTV can reveal some perceptual invariance of
colors and local features with respect to a degradation operator. We tested our model
with different geometric triplets on denoising and deblurring, and results showed that
it outperforms other methods involving DIP. Finally, results show that the geometric
triplet which provides the best result depends on both the image and the degradation
operator, which makes us believe that our results can be improved by including some
additional learning about the geometric triplet.

Appendix A. Proof of Proposition 2.1.

Proof. Denoting byA the quantity h(D∂x1
u,D∂x1

u), B the quantity h(D∂x1
u,D∂x2

u)
and C the quantity h(D∂x2

u,D∂x2
u), the critical points of the functional (2.7) satisfy



∂X

∂g11
= C(g11g22 − g2

12)− 1

2
g22(g22A− 2g12B + g11C) = 0

∂X

∂g22
= A(g11g22 − g2

12)− 1

2
g11(g22A− 2g12B + g11C) = 0

∂X

∂g12
= B(g11g22 − g2

12)− 1

2
g12(g22A− 2g12B + g11C) = 0.

(A.1)

Reordering the terms in the first equation gives

g11 = 2
g2

12

g22
− 2g12

B

C
+ g22

A

C
. (A.2)
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Substituting g11 according to (A.2) in the second and third equations in (A.1) yields
the system 

−2g12A+ 6
g2

12

g22
B − 4g12

B2

C
+ 2g22

AB

C
− 2

g3
12

g2
22

C = 0

−g12g22A+ 3g2
12B − 2g12g22

B2

C
+ g2

22

AB

C
− g3

12

g22
C = 0.

(A.3)

These two equations are linearly dependent. Fixing g22, we obtain an equation of the
form p(g12) = 0 where p is a polynomial of order 3, which guarantees the existence of
at least one solution of this equation. Hence, the system (A.3) has an infinite number
of solutions (g∗12, g

∗
22), and consequently the original (A.1) system does.

In particular, we observe that the triplet g∗11 = A, g∗12 = B, g∗22 = C is a solution
of (A.1).

Appendix B. Proof of Proposition 3.1.

Proof. We have

Dvu = 0⇐⇒


du1 + u2

Å
v1dv2 − v2dv1

‖v‖2

ã
= 0

du2 − u1

Å
v1dv2 − v2dv1

‖v‖2

ã
= 0

⇐⇒ 

u1du1 + u1u2

Å
v1dv2 − v2dv1

‖v‖2

ã
= 0

u2du1 + (u2)
2
Å
v1dv2 − v2dv1

‖v‖2

ã
= 0

u1du2 − (u1)
2
Å
v1dv2 − v2dv1

‖v‖2

ã
= 0

u2du2 − u2u1

Å
v1dv2 − v2dv1

‖v‖2

ã
= 0.

(B.1)

Summing the first and fourth equations in (B.1) yields

u1du1 + u2du2 = 0,

i.e. d‖u‖2 = 0, which implies that d‖u‖ = 0.
Subtracting the third equation from the second equation in (B.1) gives

u2du1 − u1du2 + ‖u‖2
Å
v1dv2 − v2dv1

‖v‖2

ã
= 0,

i.e.

u1du2 − u2du1

‖u‖2
=
v1dv2 − v2dv1

‖v‖2
,

which proves that

Dvu = 0 =⇒

 d‖u‖ = 0
u1du2 − u2du1

‖u‖2
=
v1dv2 − v2dv1

‖v‖2
.
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On the other hand, assuming that

u1du2 − u2du1

‖u‖2
=
v1dv2 − v2dv1

‖v‖2
,

i.e. ωv = ωu, we have Dvu = Duu. Then,

d‖u‖ = 0 =⇒ Duu = 0

according to (3.7), and it leads to Dvu = 0 as Dvu = Duu.

Appendix C. Proof of Proposition 3.2.

Proof. We have Dvu⇐⇒

du1 + u2

Å
v1dv2 − v2dv1

‖v‖2

ã
+ u3

Å
v1dv3 − v3dv1

‖v‖2

ã
= 0

du2 − u1

Å
v1dv2 − v2dv1

‖v‖2

ã
+ u3

Å
v2dv3 − v3dv2

‖v‖2

ã
= 0

du3 − u1

Å
v1dv3 − v3dv1

‖v‖2

ã
− u2

Å
v2dv3 − v3dv2

‖v‖2

ã
= 0

(C.1)

Denoting by (a),(b),(c) the three equalities from top to bottom in (C.1), we have that
u1(a) + u2(b) + u3(c) yields

u1du1 + u2du2 + u3du3 = 0, (C.2)

i.e. d‖u‖2 = 0 and consequently d‖u‖ = 0.

Then, u2(u2(a)− u1(b)) + u3(u3(a)− u1(c)) yields

u2
(u1du2 − u2du1)

‖u‖2
+ u3

(u1du3 − u3du1)

‖u‖2
= u2

(v1dv2 − v2dv1)

‖v‖2
+ u3

(v1dv3 − v3dv1)

‖v‖2
.

(C.3)
Moreover, u1(u2(a)− u1(b))− u3(u3(b)− u2(c)) yields

u1
(u1du2 − u2du1)

‖u‖2
+ u3

(u3du2 − u2du3)

‖u‖2
= u1

(v1dv2 − v2dv1)

‖v‖2
+ u3

(v3dv2 − v2dv3)

‖v‖2
.

(C.4)
Finally, u1(u3(a)− u1(c)) + u2(u3(b)− u2(c)) yields

u1
(u1du3 − u3du1)

‖u‖2
+ u2

(u2du3 − u3du2)

‖u‖2
= u1

(v1dv3 − v3dv1)

‖v‖2
+ u2

(v2dv3 − v3dv2)

‖v‖2
.

(C.5)
Then, (C.2) together with (C.3),(C.4),(C.5) give

Dvu = 0 =⇒
ß

d‖u‖ = 0
ωuu = ωvu.

On the other hand, assuming that ωuu = ωvu, we have Duu = Dvu. Then, by (3.11),
we have d‖u‖ = 0 =⇒ Duu = 0 and consequently Dvu = 0.
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Appendix D. Proof of Proposition 3.3.

Proof. Let G be a Lie group and g its Lie algebra. Recall that a connection 1-form
on a G-associated bundle is g-valued, and the curvature F (ω) of a connection 1-form
ω is given by dω + 1

2 [ω, ω], where d stands for the exterior derivative and [·, ·] stands
for the Lie algebra wedge product on g.
The connection 1-form ω in formula (3.16) is gl(3,R)-valued. This Lie algebra is
generated by the single entry matrices Eij , i, j = 1, 2, 3, which are equipped with the
following Lie bracket

[Eij , Ekl] = δjkEil − δilEkj , (D.1)

where δ is the Dirac delta function. It gives

[ω, ω] =
3∑

i,j,k,l=1

ωij ∧ ωkl ⊗ [Eij , Ekl].

In order to show that F (ω) 6= 0, we show that F (ω)12 6= 0 in what follows.
Let us denote by ωSO(3) the connection 1-form described in formula (3.10). From the
fact that ω12 = ωSO(3)12

, we have

(dω)12 = (dωSO(3))12. (D.2)

Let us now consider the term [ω, ω]12. According to (D.1), it is given by

1

2
[ω, ω]12 = ω11 ∧ ω12 + ω12 ∧ ω22 + ω13 ∧ ω32. (D.3)

On the other hand, we have

1

2
[ωSO(3), ωSO(3)]12 = ω13 ∧ ω32

by property of so(3), the set of 3× 3 skew-symmetric matrices.
Hence, (dωSO(3))12 = −ω13 ∧ω32 since F (ωSO(3))12 = 0 (it has been shown in [5] that
F (ωSO(3)) ≡ 0), and we deduce from (D.2) that

(dω)12 = −ω13 ∧ ω32. (D.4)

(D.4) together with (D.3) give that

F (ω)12 = ω11 ∧ ω12 + ω12 ∧ ω22.

Finally, a straightforward computation yields

ω11 ∧ ω12 + ω12 ∧ ω22 6= 0
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