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We develop a method for calculating the fundamental electronic gap of semiconductors and insulators using
grand canonical quantum Monte Carlo simulations. We discuss the origin of the bias introduced by supercell
calculations of finite size and show how to correct the leading and subleading finite size errors either based
on observables accessible in the finite-sized simulations or from density-functional theory calculations. Our
procedure is applied to carbon, silicon, and molecular hydrogen crystals, and compared to experiment for carbon
and silicon.
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I. INTRODUCTION

Insulator and semiconductors are characterized by a nonva-
nishing fundamental gap [1], defined in terms of the ground-
state energies of a system of fixed ions as the number of
electrons is varied,

�Ne = E0(Ne + 1) + E0(Ne − 1) − 2E0(Ne), (1)

where E0(Ne) is the ground-state energy of an Ne electron
system.

Within density-functional theory (DFT), it is common to
interpret the eigenvalues of the Kohn-Sham equations as exci-
tation energies, the gap being the minimum excitation energy.
However, the resulting band gap within the local density
approximation (LDA) is typically found to be too small [2].
This qualitative failure can be alleviated either by hybrid
functionals or by adding corrections based on GW many-body
perturbation theory, although the precise value depends on
the underlying functional and approximation scheme involved
[1]. In principle, the fundamental gap can be calculated from
any method for ground-state energies based on the above
formula. High-precision methods for correlation energies as,
for example, provided by quantum Monte Carlo (QMC) [3–6]
or coupled cluster methods [7,8] can be used. In this paper, we
propose a method for accurate calculations of the fundamental
gap within explicitly correlated methods and demonstrate its
use with fixed-node diffusion Monte Carlo (DMC) benchmark
studies on solid H2, C, and Si.

Methods based on correlated many-body wave functions
are usually applied to finite-sized systems, e.g., limited to
supercells containing only few unit cells. QMC calculations
of single-particle excitations for adding and removing elec-
trons [9–12] crucially rely on the imposed extrapolation law
(e.g., finite-size error ∝ 1/L in Ref. [12] opposed to 1/L3

in Ref. [11], where L denotes the linear extension of the
supercell). This introduces considerable uncertainty in the

results. Heuristically, single-particle excitations are expected
to converge slowly for electronic systems, inversely propor-
tional to L, due to the interaction of charges across the periodic
boundaries [13,14]. Extrapolations with respect to the size of
the supercells are then essential to obtain reliable values of the
gap in the thermodynamic limit.

Most of the QMC calculations [15–24] have therefore ad-
dressed charge-neutral, particle-hole excitations, where faster
convergence with respect to the size of the supercell is ex-
pected. Although the comparison with experiment is appeal-
ing [5], a later, more extended DMC study [25] of simple
semiconductor materials with larger supercells observed a
1/L dependence of the gap on the size of the supercell for
both charged single-particle and charge-neutral particle-hole
excitations. In addition, fixed-node energy differences are not
constrained to be upper bounds for particle-hole excitations
[26] since orthogonality to the ground state cannot be strictly
guaranteed. Furthermore, all QMC calculations so far have
addressed excitations at selected symmetry points contained
inside the supercell of the simulation. The fundamental gap
was then estimated indirectly by introducing a “scissor oper-
ator” [27] which assumes a rigid shift of the underlying DFT
band structure over the whole Brillouin zone.

In this paper, we show that twisted boundary conditions
within the grand canonical ensemble can be used to deter-
mine the fundamental gap from QMC without relying on
the “scissor” approximation. We prove that to leading order,
finite size effects due to two-body correlations are of order
1/L, and are related to the dielectric constant of the material.
Such effects can be understood and corrected for by using the
long wavelength properties of the electronic structure factor.
For that, we extend the approach described in Refs. [28,29]
which discusses the correction of finite size effects
on the ground-state energy based on information contained
in the static correlation functions of the finite system. Using
the static structure factor from simulation, it is possible to
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obtain estimates of finite size corrections for the band gap, and
its asymptotic functional form without the need for explicit
studies at different sizes or referring to DFT or to experimental
information external to the QMC calculation.

The paper is organized as follows. In Sec. II, we describe
the main ideas behind our band-gap method based on the
grand canonical ensemble. In Sec. III, we derive finite size
corrections to energy differences based on an explicit many-
body wave function and exact diagrammatic relations. In
Sec. IV, we describe the computational methods used to cal-
culate the fundamental gap. In Sec. V, we show results for H2,
C, and Si crystals and compare with available experimental
values of the gap in Sec. VI. Finally in Sec. VII, we summarize
general features of the method and outline possible extensions
and applications.

II. GRAND-CANONICAL TWIST-AVERAGED BOUNDARY
CONDITION (GCTABC)

In the following, we consider Ne electrons in a perfect
crystal, neglecting both zero-point and thermal motion of the
ions. A uniform background charge (depending on Ne) is
added to assure global charge neutrality when adding or sub-
tracting electrons to a charge-neutral system. The background
charge will introduce a rigid shift in the density of states.
However, the fundamental gap, Eq. (1), is unaffected, be-
cause the background charge needed when adding an electron
cancels against the one needed when removing an electron.
Periodic boundary conditions of the charge densities are used
to eliminate surface effects.

The energetic cost of adding an electron to the system at
fixed volume, V = L3, defines the chemical potential:

μ+
Ne

= E0(Ne + 1) − E0(Ne). (2)

A nonvanishing gap implies a discontinuity in the chemical
potential from Eq. (1).

It is convenient to work in the grand-canonical ensemble.
There, the chemical potential μ is treated as an independent
variable and we minimize E0(Ne) − μNe with respect to Ne at
zero temperature and fixed volume. Insulators then represent
an incompressible electronic state; for values of μ within the
gap, ∂Ne/∂μ = 0.

To reduce finite size effects, we employ twisted boundary
conditions on the many-body wave function. As an electron
is moved across the supercell, e.g., by moving an electron a
distance equal to the size of the box in the x direction,

�(r1 + Lxx̂) = eiθx �(r1), (3)

the phase of the many-body wave function changes by θx.
The ground-state energy then depends on the twist angle,
E0(Ne, θ ). Twist averaging can significantly accelerate the
convergence to the thermodynamic limit [30]. Within the
grand-canonical ensemble [28,29], the optimal number of
electrons N̄e(θ ) will depend on θ for given chemical potential
μ. To fix nomenclature, we define the mean electronic density,

ne(μ) = (MθV )−1
∑

θ

N̄e(θ ), (4)

and the ground-state energy density,

e0(μ) = (MθV )−1
∑

θ

E0(N̄e(θ ), θ ). (5)

ne is determined by minimizing the free-energy density,

f = 1

MθV

∑
θ

min
Ne

[E0(Ne, θ ) − μNe], (6)

where the sum is over a uniform grid containing Mθ twist
angles. For any single-electron theory, the electronic density
ne(μ) and the ground-state energy density e0(μ) coincide ex-
actly with the corresponding thermodynamic limit values for
a sufficiently large value of Mθ , e.g., when the sum over twists
becomes an integral over the Brillouin zone. Size effects
remaining after twist averaging are due to electron-electron
correlations.

Figure 1(a) illustrates e0(μ) and ne(μ) for solid molecular
hydrogen, computed from Heyd-Scuseria-Ernzerhof (HSE)
[31] functional and from QMC (see Sec. IV for details). The
value of the band gap can be directly extracted from the width
of the incompressible region. Alternatively, if we eliminate μ

in favor of ne, and plot e0 as a function of ne [as in Fig. 1(b)],
the fundamental gap is obtained by the discontinuity of the
derivative, according to Eq. (1).

The definition of the fundamental gap can apply to different
symmetry sectors. For a perfect crystal, the total momentum
of the electrons modulo reciprocal lattice vectors, i.e., the
crystal momentum, is conserved. By requiring the total crystal
momentum of the electrons to be fixed, e.g., using Bloch-type
orbitals in the Slater determinant, the full band structure in
the Brillouin zone can be mapped out. For a spin-independent
Hamiltonian, one can also impose the total spin to determine
the fundamental gap in each spin sector. In practice, the charge
gap in the spinless sector can be determined by adding or
removing pairs of electrons. The extensions of our definitions
and formulas to this case are straightforward, e.g., �Ne =
[E0(Ne + 2) + E0(Ne − 2) − 2E0(Ne)]/2. We follow this pro-
cedure of spin-neutral excitations in the remainder of the
paper.

III. FINITE SIZE EFFECTS

A. Potential energy

A key quantity in understanding size effects is the long
wavelength behavior of the static structure factor, SNe (k) =
〈ρ−kρk〉/Ne, where ρk = ∑

j eik·r j is the Fourier transform of
the instantaneous electron density. The structure factor for a
homogeneous system obeys the bound [1,18],

SNe (k) � h̄k2

2mωp

(
1 − 1

εk

)1/2

, (7)

where ωp = 4π h̄2e2ne/m is the plasma frequency and εk the
static dielectric constant for wave vector k (to simplify the
notations, we will suppress the dependence on the wave vector
in the following). This inequality is derived by applying the
plasmon-pole approximation to the sum rules of the dynamic
structure factor S(k, ω). It implies that the structure factor
must vanish quadratically as k → 0 [32]. Equality will be
obtained if S(k, ω) reduces to a single delta function at small
k. The 1/Ne finite-size corrections of the energy per electron is
a direct consequence of this behavior of SNe (k) [28]. However,
these leading order corrections are not sufficient for excitation
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(a) (b)

FIG. 1. GCTABC analyses of the C2/c-24 structure of solid hydrogen at rs = 1.38 (234GPa). (a) The electron density, ne, as a function
of the chemical potential μ obtained from HSE functional in comparison to QMC; the inset illustrates the energy density, e0, as a function of
μ from HSE functional. (b) Energy density, e0, as a function of ne using QMC; the inset shows the derivative discontinuity, where δne is the
change of the electronic density with respect to the insulating state. Size corrections, as discussed in the text, are included.

energies, since the energy gap is of the same order as finite-
size corrections to the total energy.

As we will show below, the key to understanding size ef-
fects of energy differences is encoded in the change of SNe (k)
as electrons are added or removed. In particular, the limiting
behavior of SNe±1(k) as k → 0 will provide the dominant finite
size correction.

For concreteness, we will assume a Slater-Jastrow form for
the ground-state wave function �0 ∝ D exp[−U ]. The deter-
minant, D, is built out of Bloch orbitals, φqn(r) with q inside
the first Brillouin zone, n is the band index, and U is a general,
symmetric n-body correlation factor [33]. For simplicity, we
assume it is two body: U = ∑

i< j u(ri, r j ). Let us consider
the action of eik·r j on a single-particle orbital φqn(r j ) in the
Slater determinant of the ground state. In the limit of small
k, this can be approximately written as φq+kn(r j ). Expanding
the determinant in terms of its cofactors δD

δφqn(r j )
and making

the excitation, we have

ρk�0 ∝
∑

j

∑
q,n

δD

δφqn(r j )
eik·r j φqn(r j )e

−U . (8)

and the resulting determinant after summation over j vanishes
for small k if the Bloch orbital (q + k, n) is already occupied
in the ground-state determinant. Considering Ne ± 1 electron
wave functions, �0(Ne ± 1; ±q, m), where Ne corresponds to
the insulating state with fully occupied bands in the Slater de-
terminant, and qm denotes the additional particle/hole orbital,
we get

lim
k→0

ρk�0(Ne ± 1; q, m) ∼ ±�0(Ne ± 1; q + k, m) (9)

for k �= 0, where different signs for particle or hole exci-
tations on the right hand side (r.h.s.) are chosen to match
the most common sign convention, e.g., of Ref. [34]. The
limit k → 0 is discontinuous since ρk=0�0(Ne ± 1; q, m) ≡
(Ne ± 1)�0(Ne ± 1; q, m).

Kohn [34,35] has pointed out that in the insulating state,
the matrix elements

lim
q′→q

〈�0(Ne ± 1; q, m)|ρq−q′ |�0(Ne ± 1; q′, m)〉

= ±1

ε
(10)

approach the inverse dielectric constant, ε−1, up to a sign.
Substituting Eq. (9) into Eq. (10) suggests the following

finite-size behavior of the static structure factor of insulators

lim
k→0

S±
k = α± + O(k2), (11)

S±
k ≡ (Ne ± 1)SNe±1(k) − NeSNe (k), (12)

where α± is proportional to ε−1. However, α± in general
differs from ε−1 unless Eq. (9) is an exact equality.

Figure 2 shows the behavior of S±
k for carbon and silicon

crystals. Note that these functions extrapolate to a nonzero
value as k → 0.

The long wavelength behavior of the structure factor,
Eq. (11), then gives rise to size corrections to excitation
energies through the potential energy term⎡

⎣∫
d3k

(2π )3
− 1

V

∑
k �=0

⎤
⎦vk

2
S±

k 
 α±
|vM |

2
, (13)

where we have defined the Madelung constant as

vM =
⎡
⎣ 1

V

∑
k �=0

−
∫

d3k

(2π )3

⎤
⎦vk ∼ L−1 ∼ N−1/3

e . (14)

For the Coulomb potential, vM is proportional to L−1, the
inverse linear extension of the simulation cell. The negative
proportionality constant depends on the boundary conditions,
e.g., cell geometry, and can be calculated by the Ewald image
technique [36].
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FIG. 2. Change in the static structure factor as an electron (upper curves) or a hole (lower curves) is added to the insulating system with N
atoms. The lines are fits to the data points. The horizontal lines show the expected k → 0 limit based on the experimental dielectric constants.
We have used c = 0.41 for C and c = 0.57 for Si.

B. Kinetic energy

Following Ref. [29], we now discuss the kinetic energy
contribution h̄2[∇U ]2/2m which arises from electron correla-
tion. For a two-body Jastrow, U = ∑

k ukρkρ−k/2V , and we
are only interested in the long-wavelength limit, k → 0, of the
electron-electron correlation, with wave vectors smaller than
the reciprocal lattice vectors of the crystal, G. Isolating the
singular contributions involving ρk=0 ≡ Ne in the spirit of the
rotating (random) phase approximation (RPA) we have

〈[∇U ]2〉 = − 1

V 2

∑
k �=0,k′ �=0

(k · k′)ukuk′ 〈ρk+k′ρ−kρ−k′ 〉


 1

V 2

∑
k �=0

Nek2u2
k〈ρkρ−k〉. (15)

Therefore, for systems with explicit long-range correlations
uk ∼ k−2, the kinetic energy will also contribute to the leading
order size corrections with⎡

⎣∫
d3k

(2π )3
− 1

V

∑
k �=0

⎤
⎦neh̄2k2u2

k

2m
S±

k 
 α±c
|vM |

2
, (16)

where c = limk→0 neh̄2k2u2
k/(mvk ) is approximately given by

the ratio of the 1/Ne finite-size corrections of the kinetic to
potential energy of the ground-state energy per particle due to
two-body correlations [29].

C. Total gap corrections from Coulomb singularity

Up to now, we have shown how the long-range behavior of
the structure factor and Jastrow factor can give rise to a 1/L
correction to the excitation gap with a proportionality factor
determined by the structure factor changes. In the following,
we will further demonstrate that, given that the trial wave
functions coincide with the exact ground-state wave function
for Ne and Ne ± 1 electrons, this proportionality factor is

indeed given by the dielectric constant

�∞ − �V = |vM |
ε

+ O
(

1

V

)
, (17)

as phenomenologically assumed in previous work [14,25].
We prove this by an independent argument based on

commutation relations. Let us denote the exact insulating
ground state of the Ne electron system as |�Ne

0 〉, its energy
as ENe

0 , and the exact excited state of the Ne ± 1 electron
system as |�Ne±1

k 〉 with energy ENe±1
k ; k indicates that the

additional/subtracted electron adds/subtracts the crystal mo-
mentum k. We have

ENe+1
k − ENe

0 =
〈
�

Ne+1
k

∣∣[H, a†
k]

∣∣�Ne
0

〉
〈
�

Ne+1
k

∣∣a†
k

∣∣�Ne
0

〉 (18)

for particle and

ENe−1
k − ENe

0 =
〈
�

Ne−1
k

∣∣[H, ak]
∣∣�Ne

0

〉
〈
�

Ne−1
k

∣∣ak
∣∣�Ne

0

〉 (19)

for hole excitations. In second quantization, the Hamiltonian,
H = T + Vee, is given by

T =
∑

k

[
h̄k2

2m
a†

kak +
∑

G

u(G)a†
k+Gak

]
, (20)

Vee = 1

2V

∑
q �=0

vq[ρqρ−q − Ne], (21)

where ak is the annihilation operator for plane-wave states of
wave vector k, u(G) the periodic crystal potential, and vq is
the Coulomb potential between electrons, ρq = ∑

k a†
k+qak,

and Ne = ∑
k a†

kak.
The commutator involving the single-particle energy term

is

[T, a†
k] = h̄2k2

2m
a†

k +
∑

G

u(G)a†
G+k. (22)
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FIG. 3. Upper bound to the inverse dielectric constant Eq. (7), where k ≡ 2mωpSNe (k)
h̄k2 . Lines are fits to the low-k data. The horizontal lines

mark experimental inverse dielectric constants.

There are corresponding terms for hole excitations, but none
of these terms involve singular contributions responsible for
anomalous size effects, so these terms do not contribute at
leading order. However,

[Vee, a†
k] = 1

V

∑
q �=0

vq[ρqa†
k−q − 1] (23)

and

[Vee, ak] = − 1

V

∑
q �=0

vqρqak+q (24)

involve terms approaching the Coulomb singularity, vq ∼
q−2 → ∞ for q → 0.

From these terms, we get the leading order size corrections
by noting that

lim
k,q→0

〈
�

Ne+1
k

∣∣ρqa†
k−q

∣∣�Ne
0

〉
〈
�

Ne+1
k

∣∣a†
k

∣∣�Ne
0

〉 = 1

2

[
1

ε
+ 1

]
(25)

and

lim
k,q→0

〈
�

Ne−1
k

∣∣ρqak+q
∣∣�Ne

0

〉
〈
�

Ne−1
k

∣∣ak
∣∣�Ne

0

〉 = −1

2

[
1 + 1

ε

]
. (26)

Both relations can be obtained [37] by extending Kohn’s di-
agrammatic approach [34] (see Supplemental Material [38]).
Integrating around the vq singularity for small q in Eq. (23),
we obtain the leading order finite size corrections. As be-
fore, this involves the Madelung constant, Eq (14). In the
particle channel, we get |vM |

2 ( 1
ε

− 1) and in the hole channel,
|vM |

2 ( 1
ε

+ 1). The corrections independent of ε correspond to
the change in the background charge which cancel for the
fundamental gap and we obtain Eq. (17).

Previous, heuristic approaches [25] have suggested that
one can use experimental or DFT values of the dielectric
constant for finite-size extrapolation. Our approach further
suggests that this value can be determined from the QMC
structure factor extrapolated to zero wave vector

2

ε
≡ (1 + c) lim

Ne→∞
lim
k→0

[S+
k + S−

k ], (27)

with the singular behavior of the Jastrow factor determining
c. We emphasize that the order of the limits involved above is
crucial.

An independent estimate is based on the inequality of
Eq. (7). We can bound and estimate the value of the dielectric
constant using the structure factor of the insulating ground
state. By extrapolating 1 − 2

k vs k to k = 0 we obtain an
upper bound to the inverse dielectric constant, where k ≡
2mωpSNe (k)/h̄k2. This involves only the extensive part of the
density-density correlations, thus, it is less sensitive to noise
and has much smaller statistical uncertainty. In Fig. 3, we
show that for C and Si, this inequality gives accurate values
of the dielectric constant.

D. Twist correction of two-particle correlations

The above size effects explain the leading order 1/L cor-
rection to the single-particle gap. However, as we will see
in our results, the asymptotic region, where this law can be
reliably applied, may still be difficult to reach for currently
used system sizes and next-to-leading order effects are impor-
tant. Here, we show that an important part can be corrected
for, by further restoring the full symmetry properties in the
contribution of the direct Coulomb interaction.

For inhomogeneous systems, it is convenient to separate
the mean density from its fluctuating components in the static
structure factor [29], i.e.,

SNe (k) = 1

Ne
〈ρk〉〈ρ−k〉 + δSNe (k), (28)

δSNe (k) = 1

Ne
〈(ρk − 〈ρk〉)(ρ−k − 〈ρ−k〉)〉. (29)

For crystals with periodic density distributions, the Fourier
components of the mean density, 〈ρk〉, only contribute for re-
ciprocal lattice vectors, k ∈ G. The long wavelength behavior
of the structure factor is entirely due to the fluctuating part
δSNe (k), which therefore contains the leading order size ef-
fects [29]. However, the mean single particle density, 〈ρ(r)〉 =
V −1 ∑

k〈ρk〉eik·r, of the finite system may significantly differ
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from the infinite one, particularly in cases where the supercell
is not compatible with the full symmetry group of the crystal.

Averaging over twisted boundary conditions is designed to
restore the symmetry of the crystal and thus accelerate the
convergence of single-particle densities to the thermodynamic
limit. In the following, we denote the twist averaged expecta-
tion value by

O ≡ 1

Mθ

∑
θ

〈O〉Ne,θ , (30)

where we have explicitly indicated the Ne and θ dependence
on the expectation value on the r.h.s. For any single-particle
theory, ρ(r) approaches its thermodynamic limit for calcula-
tions at fixed Ne by averaging over a dense grid of twist angles
(Mθ → ∞). Within many-body calculations, twist-averaging
[30] takes over a large part of this property to any observable
linear in the density. Here, we extend this approach to also
correct the quadratic expression entering the two-body contri-
butions of the total energy.

For the potential energy, this correction to the twist-
converged QMC calculation is

δV s
Ne

= 1

2V

∑
k

vkδC(k), δC(k) = ρk ρ−k − ρkρ−k. (31)

For the ground-state energies, this correction provides only a
small improvement over our previous correction [28,29].

For the gap, many terms entering Eqs. (31) cancel and
the expression can be simplified. Let us consider the case
of adding/removing one electron at twist φ to the insulating
ground state, denoting �±

k the difference of the respective
densities:

�±
k ≡ 〈ρk〉Ne±1,φ − 〈ρk〉Ne,φ. (32)

In the thermodynamic limit, the density of the ground-state
system with Ne electrons coincides with the twist-averaged
ground-state density ρk, whereas we obtain ρk + �±

k for the
density of the Ne ± 1 electron system. Inserting into Eqs. (31),
we obtain the correction for the difference between the two
states,

δV s
Ne±1,φ − δV s

Ne
= 1

V

∑
k∈G

vkRe[(ρk − 〈ρk〉Ne,φ )�±
−k], (33)

where only wave vectors of the reciprocal crystal lattice con-
tribute to the sum. The corresponding finite size correction for
the gap, denoted by δ�s in the following, is of order 1/Ne or
smaller, mainly determined by the changes of the ground-state
densities at the first Bragg peaks due to twist averaging.

Equation (33) can be understood quite intuitively:
It corrects the direct Coulomb interaction between the
electron/hole in the excited state (�±) with the unexcited
electrons. The density of those electrons is expected to change
by ρk − 〈ρk〉Ne,φ in the thermodynamic limit.

Converged ground-state densities are naturally calculated
within GCTABC. It is straightforward to apply the correc-
tion Eq. (33) to all excitation energies. Alternatively, the
corresponding DFT densities may be used. This removes
the stochastic error at the cost of introducing a small bias
in the next-to-leading order size correction.

IV. COMPUTATIONAL METHODS

We have performed electronic QMC calculations on three
insulating solids: molecular hydrogen at high pressure, and
carbon and silicon in the diamond structure at zero pressure.
Since we are interested in the spin-neutral charge gap, we
used an equal number of spin-up and spin-down electrons.
We used a Slater-Jastrow trial wave function with backflow
(BF) corrections [39,40]. The Jastrow and BF functions were
fully optimized within variational Monte Carlo, including the
long-range (reciprocal lattice) contributions. The orbitals in
the Slater determinant were taken from DFT calculations
using QUANTUM ESPRESSO [41,42]. The carbon and silicon
orbitals were generated using the LDA functional, whereas the
hydrogen orbitals were generated using the PBE functional,
which has been shown to provide a good trial QMC wave
function [43,44].

Molecular hydrogen was placed in the C2/c-24 structure
[45] at two different densities (rs = 1.38 and rs = 1.34),
roughly corresponding to pressures of 234GPa and 285 GPa,
respectively. Energies and structure factors were obtained
from reptation Quantum Monte Carlo calculations using the
BOPIMC code [46]. For carbon and silicon, DMC calcula-
tions have been performed with the QMCPACK code [47] at
the experimentally measured zero pressure valence densities,
rs = 1.318 and rs = 2.005, respectively. The crystal struc-
tures were optimized by DFT using the vdW-DF1 functional.
For hydrogen, the QMC calculations have been done with
the bare Coulomb interaction. The PAW pseudopotential has
been used for the DFT results shown in Fig. 1. For carbon
and silicon, pseudopotentials were used to remove the core
electrons: carbon ions modeled by the Burkatzki-Filippi-Dolg
pseudopotential [48], and silicon ions by the Trail-Needs
pseudopotential [49]. These are considered good pseudopo-
tentials for correlated calculations, but their use within DFT
calculations produces slightly different results from the liter-
ature even with the same functional. For hydrogen, we used
a supercell with 2 × 2 × 1 primitive cells so the supercell
is nearly cubic and contained 96 protons. For carbon, we
used two system sizes: the cubic cell containing eight atoms
and a 2 × 2 × 2 supercell containing 64 atoms. For silicon,
in addition to these systems, we used a 3 × 3 × 3 supercell
containing 216 atoms. For hydrogen, twist convergence has
been achieved using a 8 × 8 × 8 twist grid. For C and Si,
the twist grid density decreases with increasing system size.
The Supplemental Material [38] contains the QMC-calculated
energies and variances of the insulating ground states of the
various systems obtained after twist averaging and two-body
finite-size corrections.

V. RESULTS

For any single-particle theory, such as Kohn-Sham DFT,
the densities and energies, ne(μ) and e0(μ), are obtained
by occupying all single-particle states below the chemical
potential μ. By construction, the gap, as determined from the
incompressible region of ne(μ) or from the discontinuity in
the derivative of de0/dne (see Fig. 1), then coincides with the
one obtained from the band structure.

The LDA band gaps of carbon and silicon in the diamond
structure are indirect and lie along the X direction where
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FIG. 4. Fundamental gap before and after finite-size corrections.
�N is the DMC gap from a simulation with N atoms in the su-
percell without any finite-size correction, vM/ε is the leading-order
Madelung correction using the experimental value of ε−1, δ�N

s is the
next-to-leading-order density correction, which is related to the static
part of the structure factor. The line is a fit to �N + δ�N

s .

 is the origin of the Brillouin zone and X the Brillouin
zone boundary in the (100) direction. By looking directly at
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) states with LDA, it
is found that the carbon gap is 3.89 eV and the silicon gap
is 0.34 eV. The bands immediately above and below the
gap can be fit to a quadratic form which implies e0(μ) =
μ±ne(μ) + b±ne(μ)5/3. Therefore, the derivative de0/dne =
μ± + 5b±

3 n2/3
e has a discontinuity at ne = 0 and behaves as

n2/3
e above and below the gap. Applying our GCTABC proce-

dure to a single-particle theory, all states with energies below
the chemical potential are occupied. Varying the chemical
potential thus scans the underlying density of states. The
band gap is then determined by locating the band edges, μ±,
disregarding the location in the Brillouin zone [50]. Figure 5
illustrates the density of states obtained from GCTABC giving
an LDA gap of 3.95 eV for the carbon gap and 0.38 eV for the
silicon gap. The small differences (∼0.05 eV) from the values

TABLE I. Energy gaps obtained from GCTAB QMC in eV. The
bare gap, �N , was calculated from Eq. (1) for a finite supercell con-
taining N atoms. The leading-order finite-size corrections are given
by the screened Madelung constants |vM |/ε, the next-to-leading
order by the twist correction of two-particle density correlations,
δ�s. We used the experimental value of ε for C and Si (5.7 and
11.7, respectively) and the value 18.8 for H2 extracted from S(k).
Finite-size corrections were also applied to the band edges, μ±.
The estimate of the gap in the thermodynamic limit is �∞ = �Ne +
|vM |/ε + δ�s. From our LDA analysis, we estimate a systematic bias
of ∼0.1 eV from the finite twist grid. This bias is larger than the
statistical error. SJ indicates Slater-Jastrow trial wave function, while
BF indicates backflow. The lattice constants of carbon and silicon are
3.567 Å and 5.43 Å, respectively.

rs N �N |vM |/ε δ�s μ−
∞ μ+

∞ �∞

H2 (BF) 1.38 96 3.3(1) 0.40 0.020 6.9(1) 10.7(1) 3.8(1)

1.34 96 2.4(1) 0.20 0.018 8.6(1) 11.2(1) 2.6(1)

C (BF) 1.318 8 3.9(1) 2.01 0.69 11.5(1) 18.1(1) 6.6(1)

C (SJ) 1.318 8 4.0(1) 2.01 0.69 11.5(1) 18.2(1) 6.7(1)
64 5.8(1) 1.00 0.02 11.9(1) 18.7(1) 6.8(1)

Si (BF) 2.005 8 0.6(1) 0.64 0.55 5.2(1) 6.9(1) 1.7(1)

Si (SJ) 2.005 8 0.6(1) 0.64 0.58 5.2(1) 7.0(1) 1.9(1)
64 1.4(1) 0.32 0.08 5.5(1) 7.3(1) 1.8(1)
216 1.6(1) 0.21 0.01 5.6(1) 7.4(1) 1.8(1)

obtained before are due to the finite resolution of the twist
grid, and can be controlled by using denser grids.

As can be seen in the same figure, the effective band
edge densities of states from GCTABC-DMC have a similar
functional form, but with a larger gap than the DFT ones. The
QMC computed gaps for the different sizes of the supercell are
summarized in table I. The results from different supercells
clearly show the important bias on gap introduced by the finite
size of the supercell. In Fig. 4, we show the bare gap, �N , the
Madelung-corrected one, �N + |vM |/ε, and our best correc-
tion, �∞ = �N + |vM |/ε + δ�s, for both systems against the
linear size of the supercell, where N is the number of atoms in
the supercell and ε is the experimental value of the dielectric
constant. We see that the next-to-leading-order corrections
are comparable to the leading-order one, in particular for the
eight-atom supercell of Si, whereas they rapidly decay for the
larger sizes.

The finite-size corrected values, �∞, of all different sizes
C and Si supercells agree with each other within the statistical
uncertainty, yielding the DMC-SJ values �∞ = 6.8(1) and
�∞ = 1.8(1) for the C and Si gap, respectively. We further
note that these values also agree with a numerical N−1/3

extrapolation of the gap values corrected by δ�s. For any
numerical N−1/3 extrapolation, it is very important to reduce
any bias due to higher order corrections as much as possible,
since the outcome of a fit is sensitive to the smallest system
sizes since they have the smallest statistical uncertainty. For
Si, a N−1/3 extrapolation of the bare �N values yields an
overestimation of 0.3 eV compared to �∞.

Since our finite-size corrected gaps show size convergence
for the smallest system size, it is now feasible to address
the systematic error due to the fixed node approximation.
To reduce this bias, we have added BF correlations in the
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(b)

FIG. 5. Density of states for carbon and silicon near the band edge. Each plot shows the derivative of the mean electron density with respect
to the chemical potential. This is the electronic density of states (DOS) in DFT, so the gap appears as a depleted region. The calculated DOS
is only valid near the band edge because only the two bands closest to the gap are considered within DFT and QMC. The DFT bands (done in
a primitive cell) have been folded into the Brillouin zone (BZ) of the 64-atom supercell to allow comparison with QMC.

Slater orbitals. Our BF correlations lower the SJ gap by
0.1 eV for both, C and Si. Previous BF calculations [25]
on Si have reported a 0.2 eV lowering compared to SJ. The
difference might be due to a different functional form or
optimization procedure. A systematic study on the bias of the
fixed-node approximation such as done with more general BF
correlations [51,52] or multideterminant trial wave functions
[53], possible for small supercells, could be done in the future.

So far, in our analysis of C and Si, we have imposed the
experimentally known dielectric constant in the leading order
Madelung correction. As described in Sec. III, there is no need
for any external knowledge to perform the size extrapolation
as the value of the Madelung correction can be obtained from
the behavior of the static structure factor, calculable within
the same QMC run, see Figs. 2 and 3. However, since the ex-
trapolation involved introduces an additional uncertainty, we
have preferred to use the experimental values to benchmark
our theory and better distinguish leading from next-to-leading
order size effects.

Using the dielectric bound Eq. (7) on the ground-state
structure factor to determine ε, we get ε0 = 6.2 ± 0.4 for
C and ε0 = 10.3 ± 1.3 for Si, which are compatible with
the experimental values of 5.7 and 11.7. The correspond-
ing leading-order finite-size corrections on the gap of the
64-atom system are then 0.92 ± 0.06 eV for C and 0.36 ±
0.14 eV for Si using the ab initio ε−1, as opposed to
1.00 eV for C and 0.32 eV for Si based on the experimental
values of ε−1.

As shown in Fig. 2, the asymptotic values of the finite-
sized structure factors, S±

k , are affected by a much larger
uncertainty, introducing larger systematic bias when used for
ab-initio size corrections. Still, already the extrapolation to a
nonzero value fixes the leading order size corrections to decay
as 1/L. This information alone can be crucial as calculations
for only two different supercell sizes will be sufficient to
determine size effects, whereas more supercell sizes would be
needed if the asymptotic form was not known.

We have also computed the band gap of solid hydrogen
using GCTABC in BF-RQMC calculations for one of the pos-
sible molecular structures predicted for phase III: C2/c-24 at
rs = 1.38 and rs = 1.34 (roughly corresponding to pressures
of 234 and 285 GPa, respectively). The results, in Table I,
show that the gap and size effects decrease with increasing
pressure. For these calculations, we use calculations for one
supercell and use its structure factor to estimate the dielectric
constant. From Fig. 1, we see that HSE DFT slightly underes-
timates the gap; however, the deviations from the plateau on
both sides are quite similar.

VI. COMPARISON WITH EXPERIMENT

Our best values for the fundamental electronic gap (BF-
DMC) significantly overestimate the experimentally mea-
sured values for C and Si by 1.1 and 0.5 eV, respectively as
shown in Table II. There are two main sources of systematic
errors which need to be taken into account: the use of pseu-
dopotentials and the neglect of electron-phonon coupling.

The QMC values for C and Si presented above are based
on pseudopotentials to replace the core electrons of the atoms.
Pseudopotentials are usually designed for accurate prediction
of static structural quantities. Excitation spectra, in particular,
the single-particle excitation gap, may be less well described.

TABLE II. Extrapolated band gap of Si and C from backflow
DMC calculations, �BF compared to the experimental values (exp).
We tabulated two main corrections: the difference between the gap of
an all-electron (AE) and the pseudopotential (PP) calculation within
GW calculations, and the neglect of electron-phonon coupling (e-ph).

�BF AE - PP e-ph exp

C 6.6(2) −0.26 (G0W0) [54] −0.6 (GW ) [56] 5.48 [67]
Si 1.7(1) −0.25 (G0W0)[54] −0.06 (DFT ) [57] 1.17 [67]
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This has been found in many-body perturbation theory calcu-
lations within the GW framework where all-electron calcula-
tions have been shown to lower the gap of C and Si by ∼ −
0.3 eV [54,55] with respect to pseudopotential calculations.
Although the actual pseudopotentials of our QMC simulations
differ from those used in the GW calculations, we expect that
our QMC values will be shifted by a similar amount; we can
roughly transfer the all-electron correction of GW to our QMC
results.

For lighter atoms, electron-phonon coupling leads to a
further reduction of the gap values, even at zero temperature,
due to the presence of zero point motion of the ions in the
crystal. For C, GW predicts a significant lowering of the gap
by −0.6 eV [56], whereas a smaller shift between −60 meV
[57] and −0.1 eV [58] is expected from DFT for Si. The effect
of thermal expansion is to lower the gap by about 0.01 eV at
room temperature for both carbon [59,60] and silicon [61,62],
beyond the resolution of present calculations.

Considering both, the bias due to the pseudopotential
approximation and the neglect of electron-phonon coupling,
our BF-DMC calculations for C and Si overestimate the gap
by ∼0.1 − 0.2 eV (see Table II), larger than our statistical
uncertainty. This remaining offset to experiment may either
be due to residual bias of the fixed-node approximation, or
due to effects in pseudopotential and e-ph coupling beyond
our simple estimations based on GW and DFT. They could be
addressed by more accurate calculations in the future.

For hydrogen, we do not compare to experiment since
electron-phonon coupling is expected to be very large, and the
experimental results are not precise. If we do not make size
corrections, our results are comparable to the Slater-Jastrow
DMC calculations of Ref. [27], where the DFT band structure
was corrected by a “scissor operator” based on QMC runs at
the  point of the supercell. However, no size effects were
observed within the statistical error in Ref. [27], so their
extrapolated results differ from ours by 0.3 − 0.8 eV (3.0 and
2.3 eV for 250 and 300 GPa). Comparison to GW values
are also not conclusive: Whereas Ref. [63] provides smaller
values of the gaps (1.8 and 1.0 eV for 250 and 300 GPa), the
results of Ref. [64] (3.7 and 2.8 eV for 250 and 313 GPa) are
close to our predictions. However, we note that the GW calcu-
lations were done with slightly different crystal structures. In
Ref. [63], the PBE functional was used to optimize the lattice
structure in contrast to the vdW-DF1 functional of Ref. [64],
shown to be the most accurate functional at this density [65].
The smaller gap can then be seen as a consequence of a larger
bond length as it was shown that structures optimized with
PBE functional have a larger bond length than the ones with
vdW-DF1 [64]. We have recently completed a more detailed
analysis of the band gap of molecular hydrogen [66] using the
method introduced here. This discusses extension to disorder
coming from nuclear quantum and thermal effects.

VII. CONCLUSIONS

We have introduced a method to calculate the fundamental
gap of insulators and semiconductors using QMC. Using
grand-canonical twist averaging, the value of the gap can be
determined at any point in the Brillouin zone whether the sys-
tem has a direct or indirect gap. Although it is possible to map

out the whole band structure, we have focused on the minimal,
fundamental gap in this paper. We have shown that for charged
systems, finite size supercell calculations are necessarily bi-
ased by a finite size error decaying as 1/L, where the prefactor
is determined by the absolute value of the Madelung constant
and the inverse dielectric constant. We have pointed out that
the 1/L functional form is encoded in the long wavelength
behavior of the finite size structure factor extrapolating to a
nonvanishing value at the origin. Next-to-leading order effects
can be corrected by proper use of twist-averaging in the two-
particle part of the static Coulomb potential.

We have applied this procedure to determine the fundamen-
tal gap of molecular hydrogen at high pressure and carbon
and silicon in the diamond structure at zero pressure. Our
finite-size corrected gap values for carbon and silicon are
larger than the experimental ones. We have argued that the
bias may be due to the pseudopotential approximation and the
neglect of electron-phonon coupling.

We note that this procedure is not restricted to QMC calcu-
lations, but can be applied within any method which calculates
the many-body wave functions and ground-state energies,
e.g., for coupled cluster methods [8]. Our results for C and
Si demonstrate that the bias due to the finite size supercell
can be corrected for, so precise values in the thermodynamic
limit can be obtained for small supercells without need for
numerical extrapolation.

The procedure here has been developed for perfect crys-
tals but can be generalized to systems with disorder, either
due to thermal or quantum effects. Furthermore, the pro-
cedure provides a starting point to address optical—-i.e.,
charge neutral—excitations. Although neutral excitations are
expected to be less sensitive to finite-size effects, recent
calculations [24,25] have observed the same slow 1/L decay
for the optical gap. Since it is often not practical to perform
calculations for more than two significantly different supercell
sizes, our method suggests that the asymptotic behavior of
the structure factor provides the needed insight to whether
1/L or 1/L3 should be used as a functional form for the size
extrapolation.
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