Adriana Salerno 
  
Leila Schneps 
  
Mould theory and the double shuffle Lie algebra structure

HAL is

§1. Introduction

In his doctoral thesis from 2000, Georges Racinet ( [R1], see also [R2]) proved a remarkable theorem using astute combinatorial and algebraic reasoning. His proof was later somewhat simplified and streamlined by H. Furusho ([F]), but it remains really difficult to grasp the essential key that makes it work. The purpose of this article is to show how Ecalle's theory of moulds yields a very different and natural proof of the same result. The only difficulty is to enter into the universe of moulds and learn its language; the theory is equipped with a sort of standard all-purpose "toolbox" of objects and identities which, once acquired, serve to prove all kinds of results, in particular the one we consider in this paper. Therefore, the goal of this article is not only to present the mould-theoretic proof of Racinet's theorem, but also to provide an initiation into mould theory in general. Ecalle's seminal article on the subject is [E1], and a detailed introduction with complete proofs can be found in [S]; the latter text will be referred to here for some basic lemmas.

We begin by recalling the definitions necessary to state Racinet's theorem.

Definition. Let u, v be two monomials in x and y. Then the commutative shuffle product sh(u, v) is defined recursively by sh(u, v) = {{u}} if v = 1 and {{v}} if u = 1, where {{•}} denotes a multiset, i.e. an unordered list with possible repetitions; otherwise, writing u = Xu and v = Y v where X, Y ∈ {x, y} represents the first letter of the word, we have 1 the recursive rule sh(Xu, Y v) = {{X • sh(u, Y v)}} ∪ {{Y • sh(Xu, v)}},

(1.1)

where ∪ denotes the union of the two multisets which preserves repetitions and X • sh(u, v) means we multiply every member in the multiset sh(u, v) on the left by X. If u, v are two words ending in y, we can write them uniquely as words in the letters y i = x i-1 y. The stuffle product of u, v is defined by st(u, v) = {{u}} if v = 1 and {{v}} if u = 1, and st(y i u, y j v) = {{y i • st(u, y j v)}} ∪ {{y j • st(y i u, v})} ∪ {{y i+j • st(u, v)}},

(1.2)

where y i and y j are respectively the first letters of the words u and v written in the y j . For example, st(y 1 y 2 , y 1 ) = {{y 1 • st(y 2 , y 1 )}} ∪ {{y 1 • st((y 1 y 2 , 1)}} ∪ {{y 2 • st(y 2 , 1)}} = {{y 1 y 2 y 1 , y 1 y 1 y 2 , y 1 y 3 }} ∪ {{y 1 y 1 y 2 }} ∪ {{y 2 y 2 }} = {{y 1 y 2 y 1 , y 1 y 1 y 2 , y 1 y 3 , y 1 y 1 y 2 , y 2 y 2 }} Definition. The double shuffle space ds is the space of polynomials f ∈ Q x, y , the polynomial ring on two non-commutative variables x and y, of degree ≥ 3 that satisfy the following two properties:

(1) The coefficients of f satisfy the shuffle relations w∈sh(u,v)

(f |w) = 0, (1.3)
where u, v are words in x, y and sh(u, v) is the set of words obtained by shuffling them. This condition is equivalent to the assertion that f lies in the free Lie algebra Lie[x, y], a fact that is easy to see by using the characterization of Lie polynomials in the noncommutative polynomial ring Q x, y as those that are "Lie-like" under the coproduct ∆ defined by ∆(x) = x⊗1+1⊗x and ∆(y) = y⊗1+1⊗y, i.e. such that ∆(f ) = f ⊗1+1⊗f (cf. [START_REF] Serre | Lie Algebras and Lie Groups[END_REF]Ch. III,Thm. 5.4]). Indeed, when the property of being Lie-like under ∆ is expressed explicitly on the coefficients of f it is nothing other than the shuffle relations (1.3).

(2) Let f * = π y (f ) + f corr , where π y (f ) is the projection of f onto just the words ending in y, and

f corr = n≥1 (-1) n-1 n (f |x n-1 y)y n .
(1.4)

Considering f * as being rewritten in the variables y i = x i-1 y, the coefficients of f * satisfy the stuffle relations:

w∈st(u,v) (f * |w) = 0, (1.5)
where u and v are words in the y i .

The double shuffle space ds is the one defined by Racinet in [R1] (which he denoted dm, for the French term "double mélange"). It should not be confused with the bigraded space Dsh studied in [IKZ]. The space Dsh is a linearized version of ds, which has also been the subject of a great deal of study, but is more often denoted ls (cf. for example [Br]).

For every f ∈ Lie[x, y], define a derivation D f of Lie[x, y] by setting it to be

D f (x) = 0, D f (y) = [y, f ]
on the generators. Define the Poisson (or Ihara) bracket on (the underlying vector space of

) Lie[x, y] by {f, g} = [f, g] + D f (g) -D g (f ). (1.6)
This definition corresponds naturally to the Lie bracket on the space of derivations of Lie[x, y]; indeed, it is easy to check that

[D f , D g ] = D f • D g -D g • D f = D {f,g} .
(1.7)

Racinet's Theorem. The double shuffle space ds is a Lie algebra under the Poisson bracket.

The goal of this paper is to give the mould-theoretic proof of this result, which first necessitates rephrasing the relevant definitions in terms of moulds. The paper is organized as follows. In §2, we give basic definitions from mould theory that will be used throughout the rest of the paper, and in §3 we define dimorphy and consider the main dimorphic subspaces related to double shuffle. In §4 we give the dictionary between mould theory and the double shuffle situation. In §5 we give some of the definitions and basic results on the group aspect of mould theory. In §6 we describe the special mould pal that lies at the heart of much of mould theory, and introduce Ecalle's fundamental identity. The final section §7 contains the simple and elegant proof of the mould version of Racinet's theorem. Sections § §2, 3, 5 and 6 can serve as a short introduction to the basics of mould theory; a much more complete version with full proofs and details is given in [S], which is cited for some results. Every mould-theory definition in this paper is due to Ecalle, as are all of the statements, although some of these are not made explicitly in his papers, but used as assumptions. Our contribution has been firstly to provide complete proofs of many statements which are either nowhere proved in his articles or proved by arguments that are difficult to understand (at least by us), secondly to pick a path through the dense forest of his results that leads most directly to the desired theorem, and thirdly, to give the dictionary that identifies the final result with Racinet's theorem above.

In order to preserve the expository flow leading to the proof of the main theorem, we have chosen to consign the longer and more technical proofs to appendices or, for those that already appear in [S], to simply give the reference.

Acknowledgements. The authors wish to thank the ICMAT and the Women in Numbers group for hosting wonderful workshops, the referees for the careful reading of this paper and the many improvements that resulted, and Jean Ecalle for his guidance. Salerno was partially supported by the NSF-AWM Mentoring Travel grant. §2. Definitions for mould theory

This section constitutes what could be called the "first drawer" of the mould toolbox, with only the essential definitions of moulds, some operators on moulds, and some mould symmetries. We work over a base field K, and let u 1 , u 2 , . . . be a countable set of indeterminates, and v 1 , v 2 , . . . another. The definitions below arise from Ecalle's papers (see especially [E1], and are also developed at length in [S] and [Cr].

Moulds.

A mould in the variables u i is a family A = (A r ) r≥0 of functions of the u i , where each A r is a function of u 1 , . . . , u r . We call A r the depth r component of the mould. In this paper we let K = Q, and in fact we consider only rational-function valued moulds, i.e. we have A r (u 1 , . . . , u r ) ∈ Q(u 1 , . . . , u r ) for r ≥ 0. Note that A 0 (∅) is a constant. We often drop the index r when the context is clear, and write A(u 1 , . . . , u r ). Moulds can be added and multiplied by scalars componentwise, so the set of moulds forms a vector space. A mould in the v i is defined identically for the variables v i .

Let ARI (resp. ARI) denote the space of moulds in the u i (resp. in the v i ) such that A 0 (∅) = 0 * . These two vector spaces are obviously isomorphic, but they will be equipped with very different Lie algebra structures. We use superscripts on ARI to denote the type of moulds we are dealing with; in particular ARI pol denotes the space of polynomial-valued moulds, and ARI rat denotes the space of rational-function moulds.

Operators on moulds. We will use the following operators on moulds in ARI:

neg(A)(u 1 , . . . , u r ) = A(-u 1 , . . . , -u r ) (2.1) push(A)(u 1 , . . . , u r ) = A(-u 1 -• • • -u r , u 1 , . . . , u r-1 ) (2.2) mantar(A)(u 1 , . . . , u r ) = (-1) r-1 A(u r , . . . , u 1 ). (2.3)
We also introduce the swap, which is a map from ARI to ARI given by

swap(A)(v 1 , . . . , v r ) = A(v r , v r-1 -v r , v r-2 -v r-1 , . . . , v 1 -v 2 ), (2.4)
and its inverse, also called swap, from ARI to ARI:

swap(A)(u 1 , . . . , u r ) = A(u 1 + • • • + u r , u 1 + • • • + u r-1 , . . . , u 1 + u 2 , u 1 ).
(2.5) Thanks to this formulation, which is not ambiguous since to know which swap is being used it suffices to check whether swap is being applied to a mould in ARI or one in ARI, we can treat swap like an involution: swap • swap = id.

Let us now introduce some notation necessary for the Lie algebra structures on ARI and ARI.

Flexions. Let w = (u 1 , • • • , u r ). For every possible way of cutting the word w into three (possibly empty) subwords w = abc with

a = (u 1 , . . . , u k ), b = (u k+1 , . . . , u k+l ), c = (u k+l+1 , . . . , u r ), set a = (u 1 , u 2 , • • • , u k-1 , u k + u k+1 + • • • + u k+l ) if b = ∅, otherwise a = a c = (u k+1 + • • • + u k+l+1 , u k+l+2 , • • • , u r ) if b = ∅, otherwise c = c.
If now w = (v 1 , . . . , v r ) is a word in the v i , then for every decomposition w = abc with

a = (v 1 , . . . , v k ), b = (v k+1 , . . . , v k+l ), c = (v k+l+1 , . . . , v r ), we set b = (v k+1 -v k+l+1 , v k+2 -v k+l+1 , . . . , v k+l -v k+l+1 ) if c = ∅, otherwise b = b b = (v k+1 -v k , v k+2 -v k , . . . , v k+l -v k ) if a = ∅, otherwise b = b.
Operators on pairs of moulds. (2.7)

For any mould B ∈ ARI, we define two operators on ARI, amit (B) and anit (B), defined by

amit(B) • A (w) = w=abc b,c =∅ A(a c)B(b) anit(B) • A (w) = w=abc a,b =∅ A(a c)B(b).
(2.8)

For any mould B ∈ ARI, the operators amit (B) and anit (B) are derivations of ARI for the lu-bracket (see [S], Prop. 2.2.1). We define a third derivation, arit (B), by

arit(B) • A (w) = amit(B) • A -anit(B) • A.
(2.9) (2.11)

If
Remark. The condition b = ∅ in the definitions of amit and anit above are not necessary in (2.8) and (2.10), since we are assuming that B ∈ ARI, so it has the property that B(∅) = 0; this means that including decompositions with b = ∅ in the sum would not actually change the values. However, we chose to reproduce Écalle's definition, which also applies to moulds with non-zero value in depth 0, so as to make it easier to consult his articles and recognize the same definitions.

Since arit(B) is a derivation for lu, the ari-operator is easily shown to be a Lie bracket. Note that although we use the same notation ari for the Lie brackets on both ARI and ARI, they are two different Lie brackets on two different spaces. Indeed, while some formulas and properties (such as mu, or alternality, see (2.12) below) are written identically for ARI and ARI, others, in particular all those that use flexions, are very different, since the definitions of upper flexions (on the u i ) and lower flexions (on the v i are very different. This can be seen in the following examples.

Examples. We give a few of the expressions above explicitly in low depth. The moulds amit (B) • A and amit (B) • A are all zero in depth 1. Let A, B ∈ ARI and let us compute the mould amit (B) • A in depth 2. The only possible decomposition of w = (u 1 , u 2 ) as abc with b, c = 0 is abc = (∅)(u 1 )(u 2 ), so using the upper flexions as in (2.8), we have c = (u 1 + u 2 ) and amit(B)

• A (u 1 , u 2 ) = A(u 1 + u 2 )B(u 1 ).
(Note that if we don't include the condition b = 0 in the sum, we would also consider the decomposition abc = (u 1 )(∅)(u 2 ) so we would add on the term A(u 1 , u 2 )B(∅), but as pointed out in the remark above, this term is zero since B ∈ ARI.) Now let us compute the mould anit(B)

• A in depth 3. Let w = (u 1 , u 2 , u 3 ). The decompositions w = abc with a, b = 0 are given by (u 1 )(u 2 )(u 3 ), (u 1 , u 2 )(u 3 )(∅) and (u 1 )(u 2 , u 3 )(∅), so anit(B)•A)(u 1 , u 2 , u 3 ) = A(u 1 +u 2 , u 3 )B(u 2 )+A(u 1 , u 2 +u 3 )B(u 3 )+A(u 1 +u 2 +u 3 )B(u 2 , u 3 ).
If A, B ∈ ARI, we again compute amit (B) • A in depth 2 and anit (B) • A in depth 3, but now using the lower flexions of (2.10); we obtain the expressions

amit(B) • A (v 1 , v 2 ) = A(v 2 )B(v 1 -v 2 ) anit(B)•A (v 1 , v 2 , v 3 ) = A(v 1 , v 3 )B(v 2 -v 1 )+A(v 1 , v 2 )B(v 3 -v 2 )+A(v 1 )B(v 2 -v 1 , v 3 -v 1 ).
Symmetries. A mould in ARI (resp. ARI) is said to be alternal if for all words u, v in the u i (resp. v i ),

w∈sh(u,v) A(w) = 0.
(2.12)

The relations in (2.12) are known as the alternality relations, and they are identical for moulds in ARI and ARI. Let us now define the alternility relations. Écalle defined families of alternility relations for moulds in ARI and in ARI (and indeed, for general bimoulds), but for the purposes of this article we only need to introduce these relations on moulds in ARI. Just as the alternality conditions are the mould equivalent of the shuffle relations, the alternility conditions on ARI are the mould equivalent of the stuffle relations, translated in terms of the alphabet {v 1 , v 2 , . . .} as follows. Let Y 1 = (y i 1 , . . . , y i r ) and Y 2 = (y j 1 , . . . , y j s ) be two sequences; for example, we consider Y 1 = (y i , y j ) and Y 2 = (y k , y l ). Let w be a word in the stuffle product st Y 1 , Y 2 , which in our example is the 13-element multiset {{(y i , y j , y k , y l ), (y i , y k , y j , y l ), (y i , y k , y l , y j ), (y k , y i , y j , y l ), (y k , y i , y l , y j ), (y k , y l , y i , y j ), (y i , y j+k , y l ), (y i+k , y j , y l ), (y i , y k , y j+l ), (y i+k , y l , y j ), (y k , y i , y j+l ), (y k , y i+l , y j ), (y i+k , y j+l )}}.

(2.13)

To each such word we associate an alternility term for the mould A, given by associating the tuple (v 1 , v 2 , v 3 , v 4 ) to the ordered tuple (y i , y j , y k , y l ) and taking

1 (v i -v j ) A(. . . , v i , . . .) -A(. . . , v j , . . .) (2.14)
for each contraction occurring in the word w. For instance in our example we have the six alternility terms

A(v 1 , v 2 , v 3 , v 4 ), A(v 1 , v 3 , v 2 , v 4 ), A(v 1 , v 3 , v 4 , v 2 ), A(v 3 , v 1 , v 2 , v 4 ), A(v 3 , v 1 , v 4 , v 2 ), A(v 3 , v 4 , v 1 , v 2 ) (2.15)
corresponding to the first six words in (2.13), the six terms

1 (v 2 -v 3 ) A(v 1 , v 2 , v 4 ) -A(v 1 , v 3 , v 4 ) , 1 (v 1 -v 3 ) A(v 1 , v 2 , v 4 ) -A(v 3 , v 2 , v 4 ) , 1 (v 2 -v 4 ) A(v 1 , v 3 , v 2 ) -A(v 1 , v 3 , v 4 ) , 1 (v 1 -v 3 ) A(v 1 , v 4 , v 2 ) -A(v 3 , v 4 , v 2 ) , 1 (v 2 -v 4 ) A(v 3 , v 1 , v 2 ) -A(v 3 , v 1 , v 4 ) , 1 (v 1 -v 4 ) A(v 3 , v 1 , v 2 ) -A(v 3 , v 4 , v 2 ) (2.16)
corresponding to the next six words, and the final term

1 (v 1 -v 3 )(v 2 -v 4 ) A(v 1 , v 2 ) -A(v 3 , v 2 ) -A(v 1 , v 4 ) + A(v 3 , v 4 ) (2.17)
corresponding to the final word with the double contraction. Let us write A w for the alternility term of A associated to a word w in the stuffle product st(Y 1 , Y 2 ); note that the alternility terms (for example those in (2.15), (2.16) and (2.17) associated to the words w in the list (2.13)) are not all terms of the form A(w) or even linear combinations of such terms (due to the denominators). However, the alternality terms A w are all polynomials in the v i , since the zeros of the denominators all correspond to zeros of the numerator.

The alternility relation associated to the pair (Y 1 , Y 2 ) on A is the sum of the alternility terms associated to words in the stuffle of Y 1 and Y 2 ; it is given by

w∈st(Y 1 ,Y 2 ) A w = 0.
(2.18)

Let A r,s denote the left-hand side of (2.18). Note that indeed, A r,s does not depend on the actual sequences Y 1 and Y 2 , but merely on the number of letters in Y 1 and in Y 2 . For example when r = s = 2, the alternility sum A 2,2 is given by the sum of the terms (2.15)-(2.17) above. Furthermore, like for the shuffle, we may assume that r ≤ s by symmetry.

Thus we have the following definition: a mould in ARI is said to be alternil if it satisfies the alternility relation A r,s = 0 for all pairs of integers 1 ≤ r ≤ s. §3. Lie subalgebras of ARI In this section, we show that the spaces of moulds satisfying certain important symmetry properties are closed under the ari-bracket. In particular, we introduce the following dimorphic spaces investigated by Écalle, where the term dimorphy refers to the double description of a mould by a symmetry property on it and another one on its swap. 

Definitions

) consisting of moulds A such that A 1 is an even function, i.e. A(-u 1 ) = A(u 1 ).
The first main theorem of this paper is the following result, which is used constantly in Ecalle's work although no explicit proof appears to have been written down, and the proof is by no means as easy as one might imagine.

Theorem 3.1. The subspace ARI al ⊂ ARI of alternal moulds forms a Lie algebra under the ari-bracket, as does the subspace ARI al of ARI.

The full proof is given in Appendix A. The idea is as follows: if C = ari(A, B), then by (2.11) it is enough to show separately that if A and B are alternal then lu(A, B) is alternal and arit (B) • A is alternal. This is done via a combinatorial manipulation that is fairly straightforward for lu but actually quite complicated for arit.

We next have a simple but important result on polynomial-valued moulds.

Proposition 3.2. The subspace ARI pol of polynomial-valued moulds in ARI forms a Lie algebra under the ari-bracket.

Proof. This follows immediately from the definitions of mu, arit and ari in (2.6)-(2.9), as all the operations and flexions there are polynomial. ♦

Now we give another key theorem, the first main result concerning dimorphy. This result, again, is used repeatedly by Ecalle but we were not able to find a complete proof in his papers, so we have reconstructed one here (see also [S, §2.5]). (B) . But this is also alternal by Theorem 3.1, so C ∈ ARI al/al . Furthermore, it follows directly from the defining formula for the ari-bracket, which is additive in the mould depths, that if C is an ari-bracket of two moulds in ARI, i.e. with constant term equal to 0, we must have C(u 1 ) = 0, so C ∈ ARI al/al . Now we consider the more general situation where A, B ∈ ARI al * al . Let A 0 , B 0 be the constant-valued moulds such that swap(A) + A 0 and swap(B) + B 0 are alternal. From the definitions (2.6)-(2.9), we see that for any constant-valued mould M 0 , we have arit(M 0 ) • M = 0. Indeed if M 0 is constant-valued, say with constant value c r in depth r,

then arit(M 0 ) • M )(w) = w=abc b,c =0 M (a c)M 0 (b) - w=abc a,b =0 M (a c)M 0 (b).
Writing w = abc = (u 1 , . . . , u i )(u i+1 , . . . , u i+j )(u i+j+1 , . . . , u r ), we can rewrite this as

r-2 i=0 r-1 j=1 c j M (u 1 , . . . , u i , u i+1 + • • • + u i+j+1 , u i+j+2 , . . . , u r ) - r-1 i=1 r-1 j=1 c j M (u 1 , . . . , u i-1 , u i + • • • + u i+j , u i+j+1 , . . . , u r ).
But by renumbering i as i+1 in the first sum shows that these two sums are in fact equal, so their difference is zero. An analogous computation shows that arit(M )

• M 0 = lu(M, M 0 ).
Thus by (2.11), we have ari(M, M 0 ) = 0, so we find that We will see in the next section that the double shuffle space ds defined in §1 is isomorphic to the space of polynomial-valued moulds ARI pol al * il , with the alternality property translating shuffle and the alternility property translating stuffle. Thus dimorphy is closely connected to double shuffle, but much more general, since the symmetry properties of alternality or alternility on itself or its swap can hold for any mould, not just polynomial ones. §4. Dictionary with the Lie algebra and double shuffle framework

Let C i = ad(x) i-1 y ∈ Q x, y
, where ad(x)y = [x, y]. By Lazard elimination (see [START_REF] Bourbaki | Éléments de Mathématique[END_REF]Prop. 10a]), the subring Q C 1 , C 2 , . . . , which we denote simply by Q C , is free on the C i . Let Q 0 C denote the subspace of polynomials in the C i with constant term equal to 0. Define a linear map ma :

Q 0 C ∼ → ARI pol C a 1 • • • C a r → A a 1 ,...,a r (4.1)
where A a 1 ,...,a r is the polynomial mould concentrated in depth r defined by

A a 1 ,...,a r (u 1 , . . . , u r ) = (-1) a 1 +•••+a r -r u a 1 -1 1 • • • u a r -1 r . (4.2)
This map ma is trivially invertible and thus an isomorphism of vector spaces. Let Lie [C] denote the free Lie algebra Lie[C 1 , C 2 , . . .] on the C i . Note that, again by Lazard elimination, we can write Lie[x, y] = Qx ⊕ Lie [C]. Since by its definition, all elements of the double shuffle space ds ⊂ Lie[x, y] are polynomials of degree ≥ 3, we have

ds ⊂ Lie[C] ⊂ Q 0 C .
Definition. Let MT 0 denote the Lie algebra whose underlying space is the space of polynomials Q 0 C , equipped with the Poisson bracket (1.6), and let mt denote the subspace of Lie polynomials in the C i , i.e. the vector space Lie [C] equipped with the Poisson bracket. Observe that mt is closed under the Poisson bracket since if f, g are Lie then so are D f (g), D g (f ) and [f, g], so mt is a Lie algebra. The letters "M-T" stand for twisted Magnus (cf. [R1]). Let MT denote the universal enveloping algebra of mt. It is isomorphic as a vector space to Q C , and like all universal enveloping algebras, it is equipped with a pre-Lie * law . In the special case where g ∈ mt, the pre-Lie law on MT reduces to the expression f g = f g -D g (f ), so that we have f g -g f = {f, g} as befits the pre-Lie law of a universal enveloping algebra. Let us also define the twisted Magnus group as the exponential M T = exp (mt), where exp Proof. In view of the fact that ma is invertible as a linear map, the isomorphism (4.3) follows from the following identity relating the Poisson bracket and the ari-bracket on polynomial-valued moulds, which was proven by Racinet in his thesis ([R1, Appendix A], see also [START_REF] Schneps | An introduction to Ecalle's theory of multizeta values[END_REF]Corollary 3.3.4]):

(f ) = n≥0 1 n! f n . Note that f n = f (n-1) f = f n -D f (f n ),
ma {f, g} = ari ma(f ), ma(g) , (4.5)

The isomorphism (4.4), identifying Lie polynomials with alternal polynomial moulds, follows from a standard argument that we indicate briefly, as it is merely an adaptation to Lie [C] of the similar argument following the definition of the shuffle relations in (1.3). Let ∆ denote the standard cobracket on

Q C defined by ∆(C i ) = C i ⊗ 1 + 1 ⊗ C i .
Then the Lie subspace Lie [C] of the polynomial algebra Q C is the space of primitive elements for ∆, i.e. elements f ∈ Lie [C] satisfying ∆(f ) = f ⊗ 1 + 1 ⊗ f . This condition on f is given explicitly on the coefficients of f by the family of shuffle relations

D∈sh(C a 1 •••C a r ,C b 1 •••C b s ) (f |D) = 0,
where (f |D) denotes the coefficient in the polynomial f of the monomial D in the C i . But these conditions are exactly equivalent to the alternality relations Proof. By (4.4), since ds ⊂ mt, we have ma : ds → ARI pol al . If an element f ∈ ds has a depth 1 component, i.e. if the coefficient of x n-1 y in f is non-zero, then n is odd; this is a simple consequence of solving the depth 2 stuffle relations (see [START_REF] Carr | Multizeta Values: Lie algebras and periods on M 0[END_REF]Theorem 2.30 (i)] for details). Thus, if the mould ma(f ) has a depth 1 component, it will be an even function, since by the definition of ma the degree of ma(f )(u 1 ) is equal to the degree of f minus 1. This shows that ma maps ds to moulds that are even in depth 1, i.e. ma : ds → ARI pol al .

It remains only to show that if f ∈ ds then swap ma(f ) is alternil up to addition of a constant mould, i.e. that the stuffle conditions (1.5) imply the alternility of swap ma(f ) . By additivity, we may assume that f is of homogeneous degree n. Let C be the constant mould concentrated in depth n given by C(u 1 , . . . , u n ) = (-1) n-1 n (f |x n-1 y), and let A = swap ma(f ) + C. Écalle showed (see [START_REF] Racinet | Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel[END_REF]Appendix A] or [S, (3.2.6)] for full details) that we have the following explicit expression for swap ma(f ) . If for r ≥ 1 we write the depth r part of f * as

(f * ) r = a=(a 1 ,...,a r ) c a y a 1 • • • y a r , (4.7) then swap ma(f ) is given by swap ma(f ) (v 1 , . . . , v r ) = a=(a 1 ,...,a r ) c a v a 1 -1 1 • • • v a r -1 r . (4.8)
Note that since f is homogeneous of degree n, the associated mould A = swap ma(f ) + C is concentrated in depths ≤ n. We will use this close relation between the polynomial f * and the mould A to show that the stuffle relations (1.5) on f * are equivalent to the alternility of A.

For any pair of integers 1 ≤ r ≤ s, let A r,s denote the alternility sum associated to the mould A as in (2.18). By definition, A is alternil if and only if A r,s = 0 for all pairs 1 ≤ r ≤ s. Recall from §2 that the alternility sum A r,s is a polynomial in v 1 , . . . , v r+s obtained by summing up polynomial terms in one-to-one correspondence with the terms of the stuffle of two sequences of lengths r and s. By construction, the coefficient of a monomial

w = v b 1 -1 1 • • • v b r+s -1 r+s
in the alternility term corresponding to to a given stuffle term is equal to the coefficient in f * of the stuffle term itself. This follows from a direct calculation obtained by expanding the alternility terms; for example, the alternility term corresponding to the stuffle term (y i , y j+k , y l ) in (2.13) is given by

1 v 2 -v 2 A(v 1 , v 2 , v 4 ) -A(v 1 , v 3 , v 4 )
(see (2.15)), whose polynomial expansion is given by a=(a 1 ,a 2 ,a 3 )

c a v a 1 -1 1 a 2 -2 m=0 v m 2 v a 2 -2-m 3 v a 3 -1 4 ,
and the coefficient of the monomial v i-1

1 v j-1 2 v k-1 3 v l-1 4 in this alternility term corresponds to a 1 -1 = i -1, m = j -1, a 2 -2 -m = k -1 and a 3 -1 = l -1, i.e. a 1 = i, a 2 = j + k, a 3 = l,
so it is equal to c i,j+k,l which is exactly the coefficient (f * |y i y j+k y l ) in (4.7). The alternility sum is equal to zero if and only the coefficient of each monomial in v 1 , . . . , v r+s is equal to zero, which is thus equivalent to the full set of stuffle relations on f * . ♦

In view of (4.5) and (4.6), a mould-theoretic proof of Racinet's theorem consists in proving that ARI pol al * il is a Lie algebra under the ari-bracket. To prove this mould-theoretic version, we need to make use of the Lie group GARI associated to ARI, defined in the next section. In §6 we give the necessary results from Ecalle's theory, and the theorem is proved in §7. §5. The group GARI In this section we introduce several notions on the group GARI of moulds with constant term 1, which are group analogs of the Lie notions introduced in §2. To move from the Lie algebra ARI to the associated group GARI, Ecalle introduces a pre-Lie law on ARI, defined as follows:

preari(A, B) = arit(B) • A + mu(A, B),
(5.1)

where arit and mu are as defined in (2.9) and (2.6). Indeed, if A, B ∈ ARI then preari(A, B) also lies in ARI, and it is straightforward to check that preari satisfies the defining condition of pre-Lie laws given in §4. Using preari, Écalle defined an exponential map on ARI in the standard way:

exp ari (A) = n≥0 1 n! preari(A, . . . , A n ), (5.2) where preari(A, . . . , A n ) = preari(preari(A, . . . , A n-1 ), A).
This map is the exponential isomorphism exp ari : ARI → GARI, where GARI is nothing other than the group of all moulds with constant term equal to 1, equipped with the multiplication law, denoted gari, that comes as always from the Campbell-Hausdorff law ch(•, •) on ARI: gari exp ari (A), exp ari (B) = exp ari (ch(A, B)).

(5.

3)

The gari-inverse of a mould B ∈ GARI is denoted inv gari (B). The inverse isomorphism of exp ari is denoted by log ari . Like all Lie algebras, ARI is equipped with an action of the associated group GARI, namely the standard adjoint action, denoted Ad ari (Ecalle denotes it simply adari, but we have modified it to stress the fact that it represents the adjoint action of the group GARI on ARI):

Ad ari (A) • B = gari preari(A, B), inv gari (A) = d dt | t=0 gari A, exp ari (tB), inv gari (A) = B + ari log ari (A), B + 1 2 ari log ari (A), ari log ari (A), B + • • • (5.4)
Finally, to any mould A ∈ GARI (i.e. any mould in the u i with constant term 1), Ecalle associates an automorphism ganit(A) of the ring of all moulds in the u i under the mu-multiplication which is just the exponential of the derivation anit log ari (A) .

The analogous objects exist for moulds in the v i . If preari denotes the pre-Lie law on ARI given by (5.1) (but for the derivation arit of ARI), then the formula (5.2) defines an analogous exponential isomorphism ARI → GARI, where GARI consists of all moulds in the variables v i with constant term 1 and multiplication determined by (5.3) (note that this definition depends on that of arit, so just as the Lie bracket ari is different for ARI and ARI, the multiplication is different for GARI and GARI). As above, we let the automorphism ganit(A) of GARI associated to each A ∈ GARI be defined as the exponential of the derivation anit log ari (A) of ARI.

Definition.

A mould A ∈ GARI (resp. GARI) is symmetral if for all words u, v in the u i (resp. in the v i ), we have w∈sh(u,v) A(w) = A(u)A(v).

(5.7)

Following Ecalle, we write GARI as (resp. GARI as ) for the set of symmetral moulds in GARI (resp. GARI). The property of symmetrality is the group equivalent of alternality; in particular, A ∈ ARI al (resp. ARI al ) ⇔ exp ari (A) ∈ GARI as (resp. GARI as ).

(5.8)

Remark. Let M T denote the twisted Magnus group of power series in Q C 1 , C 2 , . . . with constant term 1, identified with the exponential of the twisted Magnus Lie algebra mt defined by

exp (f ) = n≥0 1 n! f n
for f ∈ mt, where is the pre-Lie law f g = f g + D f (g) (5.9) defined for f, g ∈ mt (see §4). The group M T is equipped with the twisted Magnus multiplication f g (x, y) = f (x, gyg -1 )g(x, y).

(5.10)

Notice that it makes sense to use the same symbol for (5.9) and (5.10), because in fact is the multiplication on the completion of the universal enveloping algebra of mt, and (5.9) and (5.10) merely represent the particular expressions that it takes on two elements of mt resp. two elements of M T .

The multiplication (5.10) corresponds to the gari-multiplication in the sense that the map ma defined in (4.1) yields a group isomorphism M T ∼ → GARI pol . If g ∈ M T , then the automorphism ganit ma(g) is the GARI-version of the automorphism of M T given by mapping x → x and y → yg.

The fact of having non-polynomial moulds in GARI gives enormously useful possibilities of expanding the familiar symmetries and operations (derivations, shuffle and stuffle relations etc.) to a broader situation. In particular, the next section contains some of Ecalle's most important results in mould multizeta theory, which make use of moulds with denominators and have no analog within the usual polynomial framework. §6. The mould pair pal/pil and Ecalle's fundamental identity

In this section we enter into the "second drawer" of Ecalle's powerful toolbox, with the mould pair pal/pil and Ecalle's fundamental identity.

Definition. Let dupal be the mould defined explicitly by the following formulas: dupal(∅) = 0 and for r ≥ 1,

dupal(u 1 , . . . , u r ) = B r r! 1 u 1 • • • u r r-1 i=0 (-1) i r -1 i u i+1 , (6.1) 
where B r denotes the r-th Bernoulli number. This mould is actually quite similar to a power series often studied in classical situations. Indeed, if we define dar to be the mould operator defined by

dar • A(u 1 , . . . , u r ) = u 1 • • • u r A(u 1 , . . . , u r ),
then dar • dupal is a polynomial-valued mould, so it is the image of a power series under ma; explicitly

dar • dupal = ma x - ad(-y) exp(ad(-y)) -1 (x) .
Ecalle gave several equivalent definitions of the key mould pal, but the most recent one (see [E2]) appears to be the simplest and most convenient. If we define dur to be the mould operator defined by

dur • A(u 1 , . . . , u r ) = (u 1 + • • • + u r ) A(u 1 , . . . , u r ),
then the mould pal is defined recursively by dur • pal = mu(pal, dupal).

(6.2)

Calculating the first few terms of pal explicitly, we find that

         pal(∅) = 1 pal(u 1 ) = 1 2u 1 pal(u 1 , u 2 ) = u 1 +2u 2 12u 1 u 2 (u 1 +v 2 ) pal(u 1 , u 2 , u 3 ) = -1 24u 1 u 3 (u 1 +u 2 ) .
Let pil = swap(pal). The most important result concerning pal, necessary for the proof of Ecalle's fundamental identity below, is the following. Theorem 6.1. The moulds pal and pil are symmetral.

In [E1, §4.2], the mould pil (called ess) is given an independent definition which makes it easy to prove that it is symmetral. Similarly, it is not too hard to prove that pal is symmetral using the definition (6.2). The real difficulty is to prove that pil (as defined in [E1]) is the swap of pal (as defined in (6.2)). Ecalle sketched beautiful proofs of these two facts in [E2], and the details are fully written out in [S, § §4.2,4.3].

Before proceeding to the fundamental identity, we need a useful result in which a very simple v-mould is used to give what amounts to an equivalent definition of alternility. * Proposition 6.2. Let pic be the v-mould defined by pic(v 1 , . . . , v r ) = 1/v 1 • • • v r . Then for any alternal mould A ∈ ARI, the mould ganit(pic) • A is alternil.

Proof. The proof is deferred to Appendix C.

♦

We now come to Ecalle's fundamental identity.

Ecalle's fundamental identity: For any push-invariant mould A, we have swap Ad ari (pal)

• A = ganit(pic) • Ad ari (pil) • swap(A) . (6.
3)

The proof of this fundamental identity actually follows as a consequence of (3.2) and a more general fundamental identity, similar but taking place in the group GARI and valid for all moulds. It is given in full detail in [START_REF] Schneps | An introduction to Ecalle's theory of multizeta values[END_REF]Thm. 4.5.2]. §7. The main theorem

In this section we give Ecalle's main theorem on dimorphy, which shows how the mould pal transforms moulds with the double symmetry al * al to moulds that are al * il. We then show how Racinet's theorem follows directly from this. We first need a useful lemma. Proof. [START_REF] Baumard | Aspects modulaires et elliptiques des relations entre multizêtas[END_REF]Corollary 4.43] We apply the fundamental identity (6.3) in the case where

A = swap(A) = C is a constant-valued mould, obtaining swap Ad ari (pal) • C = ganit(pic) • Ad ari (pil) • C.
So it is enough to show that the left-hand side of this is equal to C, i.e. that Ad ari (pal)•C = C, since a constant mould is equal to its own swap. As we saw just before (3.3), the definitions (2.6)-(2.9) imply that ari(A, C) = 0 for all A ∈ ARI. Now, by (5.4) we see that Ad Now for a fixed splitting of each x and y into three parts, we have the following possibilities.

Case I. Both x 2 = y 2 = ∅. Then B(∅) = 0 so we are done.

Case II. Both x 2 and y 2 are nonempty. The trick here is that because of the flexion operations, no matter how b = sh(x 2 , y 2 ) is shuffled, the part being added together with the last letter in a and the first letter in c remains the same. Thus, if we further fix a particular a and c, we get that Recall that by definition sh(x 1 , y 1 ) = sh(x 1 , y 1 )(last letter in x 1 ) + sh(x 1 , y 1 )(last letter in y 1 ) and sh(x 3 , y 3 ) = (first letter in x 3 )sh(x 3 , y 3 ) + (first letter in y 3 )sh(x 3 , y 3 ).

Thus, a c = sh(x 1 , y 1 )(sum of letters in y 2 plus first letter in x 3 )sh(x 3 , y 3 ) (A.1) or a c = sh(x 1 , y 1 )(sum of letters in y 2 plus first letter in y 3 )sh(x 3 , y 3 ) (A.2) and a c = sh(x 1 , y 1 )(sum of letters in y 2 plus last letter in x 1 )sh(x 3 , y 3 ) (A.3) or a c = sh(x 1 , y 1 )(sum of letters in y 2 plus last letter in y 1 )sh(x 3 , y 3 ). (A.4)

Recall that, since x 2 is assumed to be empty, then for a given x 1 , x 3 , we can let x 1 , x 3 be so that x 1 is x 1 with an additional letter given by the first letter of x 3 and x 3 is defined in the logical way. That means that equations (A.1) and (A.3) are exactly the same. Thus, we get direct cancellation for all possible choices of x 1 , x 3 (this is compatible with the restrictions on nonemptiness given by the definition).

We cannot do the same for (A.2) and (A.4), since y 2 is assumed to be nonempty. For these, notice that if we keep y fixed and sum over all possible partitions of x = x 1 x 2 x 3 where x 2 = ∅, and x 3 = ∅ we get that each a c = sh(x 1 , y 1 )(sum of letters in y 2 plus first letter in y 3 )sh(x 3 , y 3 ) could be seen as a term in the shuffle sh(x, y 1 y 3 ). To see this, suppose that

x = u 1 • • • u k |u k+1 • • • u l = x 1 |x 3 and that y = u l+1 • • • u l+i |u l+i+1 • • • u l+j |u l+j+1 • • • u n = y 1 |y 2 |y 3 .
Then

a c = sh((u 1 • • • u k ), (u l+1 • • • u l+i ))(u l+i+1 +• • •+u l+j +u l+j+1 )sh((u k+1 • • • u l ), (u l+j+2 • • • u n )).
And so if we allow the k to shift from 1 to l, this is essentially the shuffling of the words u

1 • • • u l = x and u l+1 • • • u l+i (u l+i+1 + • • • + u l+j + u l+j+1 )u l+j+2 • • • u n = y 1 y 3 . Thus we have x=x 1 x 3
x 3 =∅ a=sh(x 1 ,y 1 ) b=y 2 ,c=y f irst sh(x 3 ,y

3 )

A(a c) = w=sh(x,y 1 y 3 )

A(w) = 0 by alternality of A.

A similar argument holds for the terms corresponding to the other flexion (the terms corresponding to equation (A.4)).

Putting all of these cases together, we see that indeed, C is alternal. ♦ Proof. As with the proof for ARI al , we have to show that w=sh(x,y)

C(w) = 0,
for all pairs of non-trivial words x, y. Again, this can be rewritten as follows:

w=sh(x,y) arit(B) • A(w) = w=sh(x,y)    w=abc c =∅ A(ac)B(b ) - w=abc a =∅ A(ac)B( b)    = x=x 1
x 2 x 3 y=y 1 y 2 y 3 ,x 3 y 3 =∅ a=sh(x 1 ,y 1 ) b=sh(x 2 ,y 2 ),c=sh(x 3 ,y 3 ) A(ac)B(b ) -x=x 1 x 2 x 3 y=y 1 y 2 y 3 ,x 1 y 1 =∅ a=sh(x 1 ,y 1 ) b=sh(x 2 ,y 2 ),c=sh(x 3 ,y 3 )

A(ac)B( b)

Again, for a fixed splitting of each x and y into three parts, we have the following possibilities.

Case I. Both x 2 = y 2 = ∅. Then B(∅) = 0 so we are done.

Case II. Both x 2 and y 2 are nonempty.

Here, no matter how b = sh(x 2 , y 2 ) is shuffled, the part being subtracted from b, which is either the last letter in a or the first letter in c, remains the same if we fix a particular a and c. Thus, we get that b i = sh(x 2 , y 2 ) i -first letter in c = sh((x 2 k -first letter in c), (y 2 k -first letter in c)) i and b i = sh(x 2 , y 2 ) i -last letter in a = sh((x 2 k -last letter in a), (y 2 k -last letter in a)) i . Case III. Either x 2 = ∅ or y 2 = ∅, but not both. Without loss of generality, assume x 2 = ∅.

Recall, again, that by definition sh(x 1 , y 1 ) = sh(x 1 , y 1 )(last letter in x 1 ) + sh(x 1 , y 1 )(last letter in y 1 ) and sh(x 3 , y 3 ) = (first letter in x 3 )sh(x 3 , y 3 ) + (first letter in y 3 )sh(x 3 , y 3 ).

Since x 2 = ∅, we can see that

b i = y 2 i -first letter in c and b i = y 2 i -last letter in a.
For a given x 1 , x 3 , we can let x 1 , x 3 be so that x 1 is x 1 with an additional letter given by the first letter of x 3 and x 3 is defined in the logical way. That means that A(sh(x 1 , y 1 )(last letter in x 1 )sh(x 3 , y 3 ))B( b) and A(sh(x 1 , y 1 )(first letter in x 3 )sh(x 3 , y 3 ))B(b ) are identical (for each fixed shuffling). Thus, we get direct cancellation for all possible choices of x 1 , x 3 (this is compatible with the restrictions on nonemptiness given by the definition).

The only terms that have not cancelled out are the ones coming from the second term in the shuffle equations above. Now, suppose that

x = v 1 • • • v k |v k+1 • • • v l = x 1 |x 3 and that y = v l+1 • • • v l+i |v l+i+1 • • • v l+j |v l+j+1 • • • v n = y 1 |y 2 |y 3 ,
and fix this splitting of y. Then

ac = sh(v 1 • • • v k , v l+1 • • • v l+i )v l+j+1 sh(v k+1 • • • v l , v l+j+2 • • • v n ).
And so if we allow the k to shift from 1 to l, this is essentially the shuffling of the words

v 1 • • • v l = x and v l+1 • • • v l+i , v l+j+1 , v l+j+2 • • • v n = y 1 y 3 . Notice that this shuffling fixes b , since b = (v l+i+1 -v l+j+1 , . . . , v l+j -v l+j+1 ).
Thus we have x=x 1 x 3 x 3 =∅ a=sh(x 1 ,y 1 ),b=y 2 c=y f irst sh(x 3 ,y 3 )

A(ac)B(b ) = B(b )
w=sh(x,y 1 y 3 )

A(w) = 0 by alternality of A.

A similar argument holds for the terms corresponding to the other flexion. Combining all the cases, we see that indeed, C is alternal. ♦ so A is neg • push-invariant. Now suppose that A ∈ ARI al * al , so A is alternal and swap(A) + A 0 is alternal for some constant mould A 0 . By additivity, we may assume that A is concentrated in depth r. First suppose that r is odd. Then mantar(A 0 )(v 1 , . . . , v r ) = (-1) r-1 A 0 (v r , . . . , v 1 ), so since A 0 is a constant mould, it is mantar-invariant. But swap(A) + A 0 is alternal, so it is also mantar-invariant by Lemma B.1; thus swap(A) is mantar-invariant, and the identity neg • push = mantar • swap • mantar • swap shows that A is neg • push-invariant as in (B.2).

Finally, we assume that A is concentrated in even depth r. Here we have mantar(A 0 ) = -A 0 , so we cannot use the argument above; indeed swap(A) + A 0 is mantar-invariant, but mantar(swap(A)) = swap(A) + 2A 0 .

(B.3)

Instead, we note that if A is alternal then so is neg(A). Thus we can write A as a sum of an even and an odd function of the u i via the formula A = 1 2 (A + neg(A)) + 1 2 (A -neg(A)). (B.4) So it is enough to prove the desired result for all moulds concentrated in even depth r such that either neg(A) = A (even functions) or neg(A) = -A (odd functions). First suppose that A is even. Then since neg commutes with push and push is of odd order r + 1 and neg is of order 2, we have Thus (neg • push) r+1 (A) = A -2(r + 1)A 0 , and this is equal to A by (B.5), so A 0 = 0; thus in fact A ∈ ARI al/al and that case is already proven. Finally, if A is odd, i.e. neg(A) = -A, the same argument as above gives A -2(r + 1)A 0 = -A, so A = (r + 1)A 0 , so A is a constant-valued mould concentrated in depth r, but this contradicts the assumption that A is alternal since constant moulds are not alternal, unless A = A 0 = 0. Note that this argument shows that all moulds in ARI al * al that are not in ARI al/al must be concentrated in odd depths. ♦

We can now complete the proof of Proposition 3.4 * . Because A = neg • push(A), we have neg(A) = push(A), so in fact we only need to show that neg(A) = A. As before, we may assume that A is concentrated in depth r. If r = 1, then A is an even function by assumption. If r is even, then as before we have A = (neg • push) 2s+1 (A) = neg(A). Finally, assume r = 2s + 1 is odd. Since we can write A as a sum of an even and an odd part as in (B.4), we may assume that neg(A) = -A. Then, since A is alternal, using the shuffle sh (u 1 , . . . , u 2s )(u 2s+1 ) , we have -A(u 0 , u 2 , . . . , u i , u 1 , u i+1 , . . . , u 2s ) -A(u 0 , u 2 , . . . , u 2s , u 2s+1 ) = 0.

We apply neg • push again to the final term of this sum in order to get the u 2s+1 to disappear, obtaining 2s i=1 -A(u 0 , u 2 , . . . , u i , u 1 , u i+1 , . . . , u 2s ) + A(u 1 , u 0 , u 2 , . . . , u 2s-1 , u 2s ) = 0.

Making the variable change u 0 ↔ u 1 in this identity yields 

C(v 1 , v 2 , v 4 ) -C(v 1 , v 3 , v 4 ) e(v 2 -v 3 ), C(v 1 , v 2 , v 4 ) -C(v 3 , v 2 , v 4 ) e(v 1 -v 3 ), C(v 1 , v 3 , v 2 ) -C(v 1 , v 3 , v 4 ) e(v 2 -v 4 ), C(v 1 , v 4 , v 2 ) -C(v 3 , v 4 , v 2 ) e(v 1 -v 3 ), C(v 3 , v 1 , v 2 ) -C(v 3 , v 1 , v 4 ) e(v 2 -v 4 ), C(v 3 , v 1 , v 2 ) -C(v 3 , v 4 , v 2 ) e(v 1 -v 4 ) (cf.
(2.16)), and finally the single term with two contractions,

C(v 1 , v 2 ) -C(v 3 , v 2 ) -C(v 1 , v 4 ) + C(v 2 , v 4 ) e(v 1 -v 3 )e(v 2 -v 4 ).
The e-alternality sum C r,s is defined to be the sum of all the e-alternality terms corresponding to words in the stuffle set st(Y 1 , Y 2 ); this sum is independent of the actual sequences Y 1 , Y 2 , depending only on their lengths r, s. The mould C is said to satisfy the e-alternality relations if C r,s = 0 for all 1 ≤ r ≤ s. Comparing with (2.14-15) we see that the notion of alternality is nothing but the special case of e-alternality for the flexion unit e(v 1 ) = 1/v 1 . The associated mould ez is thus equal to pic, so we find that ganit(pic) • A is alternil if A is alternal.

  , x) = {{x • sh(y, x)}} ∪ {{x • sh(xy, 1)}} = {{x • {{yx, xy}} }} ∪ {{x • {{xy}} }} = {{xyx, xxy}} ∪ {{xxy}} = {{xyx, xxy, xxy}}

  For A, B ∈ ARI or A, B ∈ ARI, we set mu(A, B)(w) = w=ab A(a)B(b) (2.6) lu(A, B) = mu(A, B) -mu(B, A).

  B ∈ ARI we have derivations of ARI given by amit(B) • A (wdefine the derivation arit(B) as in (2.9). Finally, for A, B ∈ ARI or A, B ∈ ARI, we set ari(A, B) = arit(B) • A + lu(A, B) -arit(A) • B.

  Theorem 3.3. The subspaces ARI al/al and ARI al * al form Lie algebras under the aribracket. The proof is based on the following two propositions. Proposition 3.4. If A ∈ ARI al * al , then A is neg-invariant and push-invariant. The proof of this proposition is deferred to Appendix B. Proposition 3.5. If A and B are both push-invariant moulds, then swap ari swap(A), swap(B) = ari(A, B), (3.1) Proof. Explicit computation using the flexions shows that for all moulds A, B ∈ ARI we have the general formula: swap ari(swap(A), swap(B)) = axit B, -push(B) • A -axit A, -push(A) • B + lu(A, B), (3.2) where here ari is the Lie bracket on ARI, and axit is the operator on ARI defined for a general pair of moulds B, C ∈ ARI by the formula axit(B, C) • A = amit(B) • A + anit(C) • A. (See [S, §4.1] for complete details of this flexion computation.) Comparing with (2.9) shows that arit(B) = axit(B, -B). Thus if A and B are push-invariant, (3.2) reduces to swap ari swap(A), swap(B) = arit(B) • A -arit(A) • B + lu(A, B), which is exactly ari(A, B) by (2.11). ♦ Proof of Theorem 3.3. Using these two propositions, the proof becomes reasonably easy. We first consider the case where A, B ∈ ARI al/al . In particular A and B are alternal. Set C = ari(A, B). The mould C is alternal by Theorem 3.1. By Proposition 3.4, we know that A and B are push-invariant, so by Proposition 3.5 we have swap(C) = swap ari(A, B) = ari swap(A), swap

  ari(A + A 0 , B + B 0 ) = ari(A, B) + ari(A, B 0 ) + ari(A 0 , B) + ari(A 0 , B 0 ) = ari(A, B). (3.3) Now, A and B are push-invariant by Proposition 3.4, and constant-valued moulds are always push-invariant, so A + A 0 and B + B 0 are also push-invariant; thus we have swap(C) = swap ari(A, B) = swap ari(A + A 0 , B + B 0 ) by (3.3) = ari swap(A + A 0 ), swap(B + B 0 ) by (3.1). But since swap preserves constant-valued moulds, we have swap(A + A 0 ) = swap(A) + A 0 and swap(B + B 0 ) = swap(B) + B 0 . These two moulds are alternal by hypothesis, so by Theorem 3.1, their ari-bracket is alternal, i.e. swap(C) is alternal. Since as above we have C(u 1 ) = 0, we find that in fact C is not just in ARI al * al but in ARI al/al . This completes the proof of Theorem 3.3. ♦

  which gives an explicit recursive expression for f n . Theorem 4.1. (Racinet) The linear isomorphism (4.1) is a Lie algebra isomorphism ma :

  D∈sh((a 1 ,...,a r ),(b 1 ,...,b s ))

  Lemma 7.1. If C is a constant-valued mould, then ganit(pic) • Ad ari (pil) • C = C. (7.1)

  ari (pal) • C is a linear combination of iterated ari-brackets of log ari (pal) with C, but since pal ∈ GARI, log ari (pal) ∈ ARI, so ari(log ari (pal), C) = 0, i.e. all the bracketed terms in (5.4) are 0. Thus Ad ari (pal) • C = C. This concludes the proof. 3 ,x 1 y 1 =∅ a=sh(x 1 ,y 1 ) b=sh(x 2 ,y 2 ),c=sh(x 3 ,y 3 ) A(a c)B(b).

  b=sh(x 2 ,y 2 ) A(a c)B(b) = A(a c) b=sh(x 2 ,y 2 ) B(b) = 0 and b=sh(x 2 ,y 2 ) A(a c)B(b) = A(a c) b=sh(x 2 ,y 2 ) B(b) = 0, by alternality of B. And thus,a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) b=sh(x 2 ,y 2 ) A(a c)B(b) = 0 and a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) b=sh(x 2 ,y 2 ) A(a c)B(b) = 0.Case III. Either x 2 = ∅ or y 2 = ∅, but not both. Without loss of generality, assume x 2 = ∅. Then we have:a=sh(x 1 ,y 1 ) b=y 2 ,c=sh(x 3 ,y 3 ) A(a c)B(b) = B(y 2 ) a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) A(a c)And similarly a=sh(x 1 ,y 1 ) b=y 2 ,c=sh(x 3 ,y 3 ) A(a c)B(b) = B(y 2 ) a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) A(a c)

Proposition A. 3 .

 3 If A and B are alternal moulds in ARI, then C = arit(B) • A is alternal.

  2 ,y 2 ) A(ac)B( b) = A(ac) b=sh(x 2 ,y 2 ) B( b) = 0, by alternality of B. And thus, a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) b=sh(x 2 ,y 2 ) A(ac)B(b ) = 0 and a=sh(x 1 ,y 1 ) c=sh(x 3 ,y 3 ) b=sh(x 2 ,y 2 ) A(ac)B( b) = 0.

(

  neg • push) r+1 (A) = neg(A) = A. (B.5) However, we also have neg • push(A) = mantar • swap • mantar • swap(A) = mantar • swap swap(A) + 2A 0 by (B.3) = mantar A + 2A 0 = A -2A 0 .

  1 , . . . , u i , u 2s+1 , u i+1 , . . . , u 2s ) = 0.Making the variable change u 0 ↔ u 2s+1 gives2s i=0 A(u 1 , . . . , u i , u 0 , u i+1 , . . . , u 2s ) = 0. (B.6)Now consider the shuffle relation sh((u 1 )(u 2 , . . . , u 2s+1 )), which gives2s+1 i=1 A(u 2 , . . . , u i , u 1 , u i+1 , . . . , u 2s+1 ) = 0. (B.7) Set u 0 = -u 1 -• • • -u 2s+1 .Since neg • push acts like the identity on A, we can apply it to each term of (B.7) to obtain 2s i=1

  u 1 , u 2 , . . . , u i , u 0 , u i+1 , . . . , u 2s ) + A(u 0 , u 1 , u 2 , . . . , u 2s-1 , u 2s ) = 0. (B.8)Finally, adding(B.6) and (B.8) yields 2A(u 0 , u 1 , . . . , u 2s ) = 0, so A = 0. This concludes the proof that neg(A) = A for all A ∈ ARI al * al , and thus, by Lemma B.2, that push(A) = A. This concludes the proof of Proposition 3.4. ♦ (cf. (2.15)), then the six terms with a single contraction

  . Let ARI al denote the set of alternal moulds. Let ARI al/al (resp. ARI al/il ) denote the set of alternal moulds with alternal (resp. alternil) swap. Let ARI al * al (resp. ARI al * il ) denote the set of alternal moulds whose swap is alternal (resp. alternil) up to addition of a constant-valued mould. Finally, let ARI al/al (resp. ARI al * al , ARI al/il , ARI al * il ) denote the subspace of ARI al/al (resp. ARI al * al , ARI al/il , ARI al * il

* Écalle works with bimoulds, which are moulds that are simultaneously in the variables u i and v i . However, while bimoulds are well-adapted to the study of certain more complex objects such as multizeta values colored by roots of unity, they do not arise naturally in the context of the simple multizeta values used here, and we found that using moulds in only the u i or only the v i made the proofs and the notation considerably simpler.

* A pre-Lie law must satisfy the defining relation (fg) h -f (g h) = f h) g -f (h g) .

* This is just one example of a general identity valid for flexion units, see[E1, p. 64] where Ecalle explains the notion of alternality twisted by a flexion unit and asserts that alternility is merely alternality twisted by the flexion unit 1/v 1 .

* Ecalle states this result in[E1, §2.4] and there is also a proof in the preprint [E2, §12], but we were not able to follow the argument, so we have provided this alternative proof.

We can now state the main theorem on moulds. (7.2)

Thus in particular ARI al * il forms a Lie algebra under the ari-bracket.

Proof. The proof we give appears not to have been published anywhere by Ecalle, but we learned its outline from him through a personal communication to the second author, for which we are grateful. Note first that Ad ari (pal) preserves the depth 1 component of moulds in ARI, so if A is even in depth 1 then so is Ad ari (pal) • A. We first consider the case where A ∈ ARI al/al , i.e. swap(A) is alternal without addition of a constant correction. By (5.8), the mould Ad ari (pal) • A is alternal, since pal is symmetral by Theorem 6.1. By Proposition 3.4, A is push-invariant, so Ecalle's fundamental identity (6.3) holds. Since A ∈ ARI al/al , swap(A) is alternal, and by Theorem 6.1, pil is alternal; thus by (5.8), Ad ari (pil)•swap(A) is alternal. Then by Proposition 6.2, ganit(pic) • Ad ari (pil) • swap(A) is alternil, and finally by (6.3), swap Ad ari (pal) • A is alternil, which proves that Ad ari (pal) • A ∈ ARI al/il as desired.

We now consider the general case where A ∈ ARI al * al . Let C be the constant-valued mould such that swap(A) + C is alternal. As above, we have that Ad ari (pal) • A is alternal, so to conclude the proof of the theorem it remains only to show that its swap is alternil up to addition of a constant mould, and we will show that this constant mould is exactly C. As before, since swap(A) + C ∈ ARI is alternal, the mould

is also alternal. Thus by Proposition 6.2, applying ganit(pic) to it yields the alternil mould ganit(pic) Proof. By Proposition 3.2, ARI pol is a Lie algebra under the ari-bracket, so since ARI al * il is as well by Theorem 7.2, their intersection also forms a Lie algebra. ♦

In view of (4.5) and (4.6), this corollary is equivalent to Racinet's theorem that ds is a Lie algebra under the Poisson bracket. Proof. We have

so we need to show that the following sum vanishes:

This sum breaks into three pieces: the terms where a contain letters from both u and v, the case where a contains only letters from u or from v but b contains letters from both, and finally the cases

The first type of terms add up to zero because we can break up the sum into smaller sums where a lies in the shuffle of the first i letters of u and j letters of b, and these terms already sum to zero since A and B are alternal.

The second type of term adds up to zero for the same reason, because even though a may contain only letters from one of u and v, b must contain letters from both and therefore the same reasoning holds.

The Pick an arbitrary pair of non-trivial words x, y, of appropriate length (that is, so that their lengths add up to the length of A plus the length of B). We will be shuffling x and y together, and the resulting word is then broken up into three parts (all possible ones) in order to compute the flexions. Thus, if we break up w = abc, a must be a shuffle of some parts at the beginning of each word x, y, b must come from shuffling their middles, and c can only come from shuffling the last parts. Then we can rewrite this computation as follows:

Proof of Proposition 3.4. By additivity, we may assume that A is concentrated in a fixed depth d, meaning that A(u 1 , . . . , u r ) = 0 for all r = d. We use the following two lemmas.

Lemma B.1. If A ∈ ARI al , then A(u 1 , . . . , u r ) = (-1) r-1 A(u r , . . . , u 1 ); in other words, A is mantar-invariant. Similarly, if A ∈ ARI al then again A is mantarinvariant Proof. We give the argument for ARI; the result in ARI comes from the identical computation with u i replaced by v i . We first show that the sum of shuffle relations sh (1), (2, . . . , r) -sh (2, 1), (3, . . . , r) + sh (3, 2, 1), (4, . . . , r) + • • • +(-1) r-2 sh (r -1, . . . , 2, 1), (r) = (1, . . . , r) + (-1) r (r, . . . , 1). Indeed, using the recursive formula for shuffle, we can write the above sum with two terms for each shuffle, as (1, . . . , r) + 2 • sh (1), (3, . . . , r) -2 • sh (1), (3, . . . , r) -3 • sh (2, 1), (4, . . . , r) + 3 • sh (2, 1), (4, . . . , r) + 4 • sh (3, 2, 1), (5, . . . , r)

+ (-1) r-2 (r -1) • sh (r -2, . . . , 1), (r) + (-1) r-2 (r, r -1, . . . , 1) = (1, . . . , r) + (-1) r (r, . . . , 1).

Using this, we conclude that if A satisfies the shuffle relations, then A(u 1 , . . . , u r ) + (-1) r A(u r , . . . , u 1 ) = 0, which is the desired result. We follow Ecalle's more general construction of twisted alternality from [E1, pp. 57-64]. Let e ∈ ARI be a flexion unit, which is a mould concentrated in depth 1 satisfying e(v 1 ) = -e(-v 1 ) and e(v 1 )e(v 2 ) = e(v 1 -v 2 )e(v 2 ) + e(v 1 )e(v 2 -v 1 ).

Associate to e the mould ez ∈ GARI defined by

Then a mould A ∈ ARI is said to be e-alternal if A = ganit(ez) • B where B ∈ ARI is alternal. The conditions for e-alternality can be written out using the explicit expression for ganit, using flexions, computed by Ecalle [E1, (2.36)]:

where the sum runs over the decompositions of the word w = (u 1 , . . . , u r ) (r ≥ 1) as

where all b i and c i are non-empty words except possibly for c s . For example in small depths, setting C = ganit(B) • A, we have

Using the expression (C.1) for ganit (B) • A, the e-alternality relations can be written explicitly as follows. Let Y 1 = (y 1 , . . . , y r ) and Y 2 = (y r+1 , . . . , y r+s ). Then for each word in the stuffle set st(Y 1 , Y 2 ), we construct the associated e-alternality term, with an expression of the form C(. . . , v i , . . .) -C(. . . , v j ) e(v i -v j ) corresponding each contraction (cf. (2.14). For example, taking Y 1 = (y i , y j ) and Y 2 = (y k , y l ), the stuffle set st(Y 1 , Y 2 ) is given in (2.13), and the corresponding 13 e-alternality terms are, first of all the six shuffle terms