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A B S T R A C T

Metal-based heterogeneous catalysts mostly consist of supported nanoparticles of a few nanometers in size, since
these objects provide a good compromise between exposed active surface area and structural stability. However,
far from being static, heterogeneous catalysts constantly evolve under reaction conditions, thereby creating and
removing surface sites in response to their gaseous or liquid reactive environment. Modern ex situ and in situ
investigations have shown that nanocatalysts at work can face a number of deep restructuring phenomena, such
as morphological change, compound formation, segregation, leaching, as well as redispersion and other metal-
support interaction effects. Recently emerging single-atom catalysts are – like subnanometric clusters – espe-
cially sensitive to their chemical environment. Using examples from the recent literature with a particular
emphasis on operando characterization studies, this article reviews the main dynamic effects induced by the
reaction medium on nanocatalysts (including nanoalloy catalysts) and single-atom catalysts.

1. Introduction

Located at the frontier between chemistry and materials science,
heterogeneous catalysis has numerous applications in oil refining,
chemicals synthesis, pollution abatement, and energy storage/utiliza-
tion. Realizing that the catalyst composition and structure influence the
catalytic performance through the choice of the metal precursor(s) and
the preparation method is almost as old as the catalysis concept itself.
However, heterogeneous catalysts have long been seen as static play-
grounds for catalytic reactions, and the knowledge of restructuring
phenomena is much more recent [1]. From post-reaction observation
and in situ or even operando characterization, one has increasingly be-
come aware of the dynamic character of catalytic phases [2–5]. The
latter especially holds for so-called “nanocatalysts”, i.e. the important
catalyst class of nanoparticles (generally metallic and supported) [6–8],
since their limited number of atoms provides them with enhanced re-
structuring possibilities with respect to bulk solids; and their high
surface energy can stimulate these changes. At the single atom limit, the
influence of the support and the reaction medium on the metal state
and its related catalytic performance is even more dramatic [8–11]. The
catalyst and its chemical environment should actually be seen as a
whole, where the structure of the solid catalyst affects, and is affected

by, the nature of the adsorbates and reactant/product molecules
(Fig. 1). Understanding these relationships is a prerequisite to select
optimal catalysts and catalytic conditions, and even design new cata-
lysts and reactors.

Fig. 2 shows an overview of the restructuring possibilities than can
encounter nanoparticles (NPs) in their catalytic – or chemical/reactive
– environment (most of these effects will be illustrated in Section 3 with
suitable references). The latter encompasses not only the nature of the
liquid or gaseous phase, the corresponding concentrations or pressures,
the temperature, but also aspects related to the operating conditions
such as the reactant/catalyst contact time, and the possible presence of
light (photocatalysis) or electric potential (electrocatalysis). Structural
parameters such as NP size, lattice structure, shape and composition
can deeply evolve during a reaction. The presence of a support (metal
oxide, carbon, etc.) leads to additional possible environment effects,
such as redispersion and encapsulation.1 For “large NPs”, the phase
changes can be limited to the surface top layers. In contrast, “small
NPs” (∼2 nm < size < ∼5 nm, a few hundreds to a few thousands of
atoms), “clusters” (size < ∼2 nm, a few to a few hundreds of atoms),2

or single atoms are inherently highly sensitive to their environment as
the metal species may e.g. diffuse and aggregate. Under harsh reaction
conditions such as those used in electrocatalysis in acidic media or
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under dynamic operation, the metal phase may even lose metal atoms
through gradual leaching. The time scales of usually considered catalyst
restructuring processes vary between microseconds and years [4], de-
pending on the process and the conditions of operation or storage.

The aim of this paper is to review, in a synthetic way, the various
types of restructuring effects of the gaseous or liquid reaction medium
on nanocatalysts and single-atom catalysts (SACs). The effects of che-
mical thermal treatments, such as oxidative calcination and reduction,
are also covered. Some results derived from surface-science studies of
model planar catalysts are included. Besides many examples from the
recent literature, choice has been made to illustrate environment effects
with a number of works from IRCELYON, owing both to the vastness of
the addressed topic and the context of this special issue. These works
include environmental transmission electron microscopy results re-
ported here for the first time. This minireview is mostly focused on
“thermal” heterogeneous catalysis, but a few examples concerning
electrocatalysis and photocatalysis are also given. After a brief in-
troduction of suitable characterization techniques and computational
methods (Section 2), Section 3 reviews environment effects in two
subsections, adsorption-induced restructuring and combined adsorp-
tion-support effects.

2. In situ and operando characterization methods

In complement to conventional “ex situ” characterization, the
spectroscopic or microscopic investigation of catalysts under reactive
atmosphere is becoming current practice in laboratories or at syn-
chrotrons. In the specific case where measurements are carried out in
catalytic conditions in a dedicated reaction cell with simultaneous
measurement of the catalyst performance, such an analysis is called
operando [12–14] (Fig. 3). In the other cases (single gas or liquid ex-
posure, low-pressure conditions, large chamber volume, simultaneous
heating or cooling, etc.), the techniques are referred to as in situ,3 en-
vironmental, near-ambient-pressure, or other.

Table 1 lists the most currently employed methods to investigate
nanocatalysts – as well as SACs in most cases – in the presence of gases
or liquids, and Fig. 4 illustrates the characterization of these two types
of catalysts. The next paragraphs provide a quick overview of selected
characterization techniques, while the next section will report a number
of corresponding examples. For a comprehensive presentation of herein

Fig. 1. Scheme of the interplay between catalyst structure, environment (“reaction medium”), and performance.

Fig. 2. Examples of NP structural changes induced by the catalytic environment.

3 This term being more generic than “operando”, it is sometimes used in the
present article to refer to catalyst characterization under any reactive en-
vironment.
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evoked in situ techniques and others (neutron scattering, electron
paramagnetic resonance, nuclear magnetic resonance, UV–vis spectro-
scopy, etc.), the reader may consult suitable books and reviews
[15–19].

Characterization techniques most often rely on electron and/or
photon probes. Whereas electrons strongly interact with matter and
thus have a very limited mean free path in the presence of molecules,
photonic vibrational (infrared, Raman) and X-ray techniques are in-
herently suitable for operando investigation. In particular, through the
use of a dedicated low-volume reaction cell with heating capability,
coupled to an online gas detection device such as a mass spectrometer
(MS) or a gas chromatograph (GC), conventional flow-fixed-bed reactor
conditions can be mimicked while recording spectroscopic and kinetic
data on high-surface-area catalysts.

2.1. Photon-based techniques

Raman spectroscopy, coupled with online GC, has been at the origin
of the operando spectroscopy methodology proposed by Bañares et al. in
2002 [12]. It is an especially valuable technique for monitoring oxidic,
sulfidic or graphitic species at the surface of metal oxides, as well as
structural defects such as oxygen vacancies [3,21–27]. Complementary
to Raman, IR spectroscopy [28,29], including diffuse reflectance in-
frared Fourier transform spectroscopy (DRIFTS) [30], is a convenient
and powerful method for identifying molecular adsorbates as well as
probing the surface metal site nature and oxidation state – when using
e.g. CO as a reactant – in reaction conditions [10,31,32]. Optical
spectroscopies relying on the localized surface plasmon resonance –
including direct [33] or indirect [34] nanoplasmonic sensing, and
surface- or tip-enhanced Raman scattering [35] – are also able to reveal
dynamic processes at the surface of nanocatalysts.

Synchrotron radiation X-ray absorption spectroscopy (XAS) is
widely employed to investigate the local structure of catalysts at work,
with time resolution reaching the millisecond range (QXAS). Generally

combined, XANES and EXAFS give respectively access to the oxidation
state of the chosen metal element and its coordination with neighboring
atoms (nature, number, distance), whether belonging to the metal
particle itself, the support, or even an adsorbate [10,36,37]. EXAFS is
also an invaluable complement to atomic-resolution electron micro-
scopy for gaining statistical (sample-averaged) information on metal
dispersion, and thereby checking the homogeneity of SAC samples
[20,38]. X-ray scattering techniques [39,40] such as X-ray diffraction
[41,42] and small-angle X-ray scattering (SAXS) [43] allow one to de-
termine in situ the atomic-level (crystalline phase and domain size,
atomic order/disorder) and nanoscale (NP size, shape and spatial dis-
tribution) structural characteristics of nanocatalysts, respectively, in the
course of their elaboration or evolution under catalytic conditions.
Wide angle X-ray scattering (WAXS) appears better suited to investigate
inhomogeneous atom arrangements in weakly crystalline nano-objects
(e.g. disordered nanoalloys), especially by using the atomic-pair-dis-
tribution function (PDF) analysis procedure [42,44]. Notably, SAXS and
WAXS can be employed simultaneously, using the same setup [45,46].
Finally, anomalous X-ray scattering techniques combine the advantages
of absorption and scattering methods to provide information on atom
rearrangements at several scales with element specificity [40,44,47].

Near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS),
a hybrid photon-in/electron-out surface-sensitive technique, is a recent
evolution of XPS for probing the near-surface region of planar or
powder catalysts under reactive gaseous environments, generally at low
pressure (< ∼20 mbar) [48–50]. Recent developments of NAPXPS
even allow analyzing solid-vapor and solid-liquid interfaces, and
thereby investigating electrochemical processes [51–54]. NAPXPS can
use a laboratory or a synchrotron X-ray source, and provides informa-
tion not only on the catalyst surface composition and oxidation states,
but also on the nature of the adsorbates and the gas-phase species close
to the surface [55].

Besides XPS, surface-science techniques such as scanning probe
microscopies like STM [56], and adaptations of X-ray and IR techniques

Fig. 3. Illustration of ex situ, in situ and operando catalyst characterization approaches. Orange arrows represent the radiation used for characterization of the sample,
depicted in blue.

Table 1
Main in situ nanocatalyst characterization techniques, main information they provide, and most suitable ones for operando analysis.

Technique a Information Suitable to operando characterization

IR spectroscopy (FTIR, DRIFTS, ATR, IRAS) Adsorbate nature and amount, adsorption site ✓
Raman spectroscopy (SERS, TERS) Nanoscale structure ✓
XAS (EXAFS, XANES, QXAS) Local atomic structure, oxidation state ✓
SAXS (GISAXS) NP size and morphology ✓
XRD - WAXS (PXRD, SXRD, GIWAXS) Crystal phase and size, atomic order ✓
XPS (NAPXPS) Chemical composition, oxidation states Low pressure, large volume
TEM Environmental TEM

In situ TEM
Bulk atomic and chemical structure Low pressure, large volume

Low catalyst amount
SPM (STM, AFM…) Surface structure Planar model catalysts

a Meaning of acronyms. FTIR: Fourier transform infrared. DRIFTS: diffuse reflectance infrared Fourier transform spectroscopy. ATR: Attenuated total reflectance.
IRAS: infrared reflection absorption spectroscopy. SERS: surface-enhanced Raman spectroscopy. TERS: tip-enhanced Raman spectroscopy. XAS: X-ray absorption
spectroscopy. EXAFS: extended X-ray absorption fine structure. XANES: X-ray absorption near-edge structure. QXAS: quick XAS. SAXS: small-angle X-ray scattering.
GISAXS: grazing-incidence SAXS. XRD: X-ray diffraction. PXRD: powder XRD. SXRD: surface XRD. WAXS: wide angle X-ray scattering. GIWAXS: grazing-incidence
WAXS. XPS: X-ray photoelectron spectroscopy. NAPXPS: near-ambient-pressure XPS. TEM: transmission electron microscopy. SPM: scanning probe microscopy. STM:
scanning tunneling microscopy. AFM: atomic force microscopy.
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to planar systems such as GISAXS [39,43], SXRD [57,58] and IRAS
[59], provide valuable information on the interaction of model catalysts
with chemical environments [6,60].

2.2. Transmission electron microscopy

The recent emergence of aberration-corrected transmission electron
microscopes (TEM) [61,62] has allowed gaining unprecedented atomic-
scale insight into nanocatalyst structure and dynamics, and contributed
significantly to the advent of single-atom catalysis. Two types of devices
permit the direct observation of catalysts in reactive environments [63].
In a dedicated environmental TEM (ETEM), gases at low pressure (<
∼20 mbar) are introduced directly into the microscope column thanks
to a system of apertures and differential pumping, which restrains the
introduced gas to the specimen surroundings, and preserves high va-
cuum in the other parts of the column as well as ultrahigh vacuum
(UHV) at the electron source. Two advantages of this type of instrument
are the ultimate spatial resolution attainable, similar to the one in high-
vacuum analysis [64], and the possible use of any type of specimen
holder, allowing e.g. heating, cooling, biasing, or tomographic imaging

[65,66].
Alternatively, dedicated sample holders equipped with an electron-

transparent cell allow one to work at higher pressure (up to several
bars) [67] or in liquid phase [68–70]4 within conventional high-va-
cuum TEM columns. While dedicated holders provide several orders of
magnitude higher pressures than an ETEM and permit online MS
monitoring, the sample area of investigation is limited compared to
conventional TEM grids, and the electron-transparent windows con-
straining the gas lower the spatial resolution.

To access chemical contrast, TEM is increasingly performed in
scanning mode (STEM) with high-angle annular dark field (HAADF)
detection (“Z-contrast”), and often supplemented by energy-dispersive
X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS),
or energy-filtered TEM (EFTEM) imaging [72,73].

Fig. 4. Examples of in situ characterization of supported nanocatalysts and single-atom catalysts. The left-hand-side panel corresponds to Pt/Al2O3 SACs (adapted
from Refs. [10,20]), while the right-hand-side panel relates to Ir/CeO2 catalysts synthesized by one-step solution combustion (adapted from Ref. [21]). Incoming and
outcoming radiation types are indicated. Acronyms are explained in Table 1.

4 This includes electrocatalytic conditions though there exists limitations due
to the strong interaction of the electron beam with the electrochemical medium
[71].
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2.3. Computational modeling

Theoretical modeling of catalytic processes has long relied on low-
coverage adsorption of molecules on periodic single-crystal surfaces or
few-atom clusters at zero Kelvin and in vacuum. This approach, mostly
based on the density functional theory (DFT), has been successful in
uncovering reaction mechanisms and active sites at the atomic scale,
and sometimes discovering efficient catalysts [74]. Nowadays, in sy-
nergy with the experimental approach, multiscale computational
modeling (including computational thermodynamics, molecular dy-
namics, and microkinetics), recently helped by machine learning, can
account for the interaction of complex solid catalysts with realistic re-
action environments [75–77]. Beyond temperature and pressure, the
complexity of dynamic catalytic systems is increasingly considered
through e.g. support, reactant concentration, coverage and solvent ef-
fects, towards operando computational modeling [4,75–80].

3. Overview of environment effects

3.1. Adsorption-induced restructuring

3.1.1. Surface atomic restructuring: single crystals and large nanoparticles
Gold is the noblest of all the metals [81]. However, IRAS and STM

experiments have shown that even the most stable, close-packed (111)
surface of Au single-crystals chemisorbs CO, the classical probe mole-
cule, though at relatively high partial pressure (> ∼1 mbar at RT)
[59]. CO adsorption induces a surface restructuring consisting in step-
edge roughening and lifting of the 22×√3 “herringbone” reconstruc-
tion. In the case of the more open Au(110) surface, the roughening is
even more dramatic [82]. DFT calculations have shown that the ele-
vated CO pressure enables the surface diffusion of Au-CO entities [83].
The formation of low-coordination Au sites is in turn favorable to CO
chemisorption, as surface steps and kinks bind CO twice stronger than
terraces [59]. In relation to this phenomenon, CO chemisorption has
been suggested to reconstruct Au NPs [29], and to “pull out” Au atoms
from particles [84,85]. Gold atoms may even detach from nanocatalysts
supported on reducible oxides (CeO2, TiO2) in CO oxidation conditions
through a reversible dynamic process [86,87].

Unsurprisingly, adsorption-induced surface roughening/clustering
has been observed for other metals, e.g. in the cases of CO chemi-
sorption and oxidation on Pt single-crystals investigated by in situ STM
[88,89]. On supported nanoparticles, adsorption may cause additional
phenomena owing to the simultaneous presence of facets of several
orientations, as well as edges and corners. The effect of CO adsorption
on the surface structure of carbon-supported Pt nanoparticles has been
investigated by Avanesian et al. through a combination of in situ TEM,
DRIFTS and DFT-based modeling [67]. The authors have revealed a
reversible, facet-selective reconstruction under elevated CO pressure:
the minority (100) facets of the initial truncated octahedra roughen into
vicinal stepped facets upon CO adsorption, whereas the (111) facets
remain intact, which leads to an overall rounding of the nanoparticles
(Fig. 5).

Similar shape variations have been identified by in situ TEM for
several supported metals (Au, Cu, Pd, etc.) under oxygen, hydrogen or
reaction conditions, when changing the reactive atmosphere or the
partial pressure(s) [90–95]. In all these cases, adsorption effects on the
nanoparticle morphology can be well understood by considering ar-
guments only based on surface/interface thermodynamics, such as
minimization of the facet-dependent surface tension. This also holds for
nanoparticles strongly anchored on a support, where the equilibrium
morphology, including the particle truncation induced by the substrate,
can be accounted for by the Wulff theorem and the interface energy
[96] (see also Section 3.2.1).

In turn, the NP shape/morphology obviously drives the catalytic
performance, in such a way that NP shape control allows a tuning of the
catalytic performance, as e.g. in the cases of CO + NO reaction [97]

and butadiene hydrogenation [98,99] on palladium. Imbihl and Ertl
demonstrated oscillatory (bistable) CO oxidation kinetics on extended
Pt single-crystal surfaces under steady-state conditions at low pressure
(∼10−4 mbar), which was correlated to periodic adsorption-induced
surface reconstruction [100]. More recently, in line with these early
works, an oscillatory morphology of large Pt NPs has been visualized by
in situ TEM during CO oxidation at 1 bar and ca. 700 K in a microreactor
coupled to a mass spectrometer [101]. The reaction rate is synchronous
with a periodic refacetting of the Pt NPs, which is explained, through a
model using DFT and mass transport calculations, by site-dependency
of the CO adsorption energy and oxidation rate.

3.1.2. Bulk atomic restructuring: small nanoparticles and clusters
In certain conditions, the small size of the particles (<∼5 nm) may

facilitate their global restructuring owing to the enhanced surface
contact with the reactants and the decreased mass transport needed as
compared to large NPs. An illustration is provided by the in situ time-
resolved XAS study of Eslava et al. showing the reversible 2D-to-3D
shape transition of Ru-Cs NPs (ca. 2 nm) in graphite-supported Fischer-
Tropsch catalysts upon changing the atmosphere from H2 to CO,
pointing to strong CO adsorption [102].

Au/TiO2 is a popular low-temperature CO oxidation catalyst [103].
In the example of Fig. 6, Au NPs (size 3−4 nm) supported on rutile TiO2
nanorods [104] were investigated by ETEM at 300 °C in the presence of
oxygen at low pressure (0.5 mbar). It was observed that the fcc particle
morphology switches from truncated octahedron (TO) to decahedron
(Dh), then back to TO (see also supplementary movie S1). The re-
spective effects of the temperature, the oxygen pressure, the support
and possibly the electron beam are difficult to evaluate. However, such
a morphological instability has been predicted by DFT calculations for
fcc metal particles [105–107]. The stability of a given morphology is
size- and metal- dependent, but above a few nanometers the TO and Dh
shapes of Au (and Pd) particles have similar stabilities, consistently
with our ETEM observations. The icosahedral structure is favored only
at smaller sizes, especially for Ni [108] and Cu [109].

The prototypical Pt/γ-Al2O3 system, which is relevant to industrial
hydrocarbon reforming, has been the subject of many experimental and
theoretical investigations. Supported subnanometric Pt clusters are
extremely sensitive to the reactive atmosphere, which can induce
changes in Pt-Pt bond length, electronic structure, shape, size, etc.
[110–118]. For example, DFT modeling has shown that bare Pt13
clusters exhibit a bilayer structure with Pt-Al and Pt-O bonding to the
support [119]. In contrast, in the presence of H2 at high pressures and/
or at low temperatures, the clusters adopt a cuboctahedron shape sur-
rounded by a hydrogen shell, leading to weak cluster interaction with
alumina [111,115]. This has been recently confirmed by ETEM ex-
periments, showing an enhanced Pt cluster mobility at low tempera-
ture, i.e. when the hydrogen coverage is high [20].

3.1.3. Segregation in nanoalloys
Bimetallic catalysts often exhibit superior catalytic performances

with respect to pure metals [6,120–122]. In the case of multimetallic
nanoparticles, i.e. nanoalloys, one has to consider an additional struc-
tural parameter with respect to monometallic particles, namely the
chemical structure, i.e. the atomic structure including the chemical
arrangement (or “distribution”) of the elements. Nanoalloys may pre-
sent various configurations, ranging from ordered alloy types (including
intermetallic compounds) to core-shell and Janus types [123,124].

The most evident effect of molecular adsorption on an alloy surface
is the possible change of its composition through “adsorption-induced
surface segregation” [6]. In general, upon adsorption, and provided the
temperature is high enough, the element that forms the strongest bonds
with the considered adsorbate diffuses toward the surface, which sta-
bilizes the whole system [80]. This phenomenon has been widely stu-
died on extended single-crystal surfaces. For example, in the case of
Pd70Au30 surfaces, we have shown by low energy ion spectroscopy
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(LEIS) that the topmost layer contains ca. 80 % Au after annealing
under UHV. However, under a reactant mixture of hydrogen and bu-
tadiene – introduced in the mbar range in a dedicated reactor [125] –
the surface composition gradually approaches the bulk one (“segrega-
tion reversal”), and the catalytic activity increases [126].

By exposing colloidal PdRh nanoparticles to alternating NO and CO
+ NO atmospheres, Tao et al. have evidenced oscillations of the surface
composition by NAPXPS [127]. The segregation process can be facet-
dependent, as observed by Dai et al. using in situ TEM for Pt3Co na-
noparticles exposed to oxygen at high temperature [128]: cobalt seg-
regates to the surface and gets oxidized at {111} facets, but not at {100}
ones. Moreover, as shown by Zhu et al. through DRIFTS experiments
and DFT calculations on Au-rich Au-Pd clusters in the presence of CO,
adsorption-induced surface segregation can also be favored at the
particle edges [129].

3.1.4. Compound formation including oxide, sulfide and carbide
Beyond chemisorption, the interaction of metal nanoparticles with a

reactive atmosphere under catalytic conditions may lead to the for-
mation of a near-surface or even a bulk compound, such as oxide,

sulfide, etc. If this transformation is gradual under stationary condi-
tions, a continuous activation or deactivation may be observed, de-
pending on the relative activities of the metal and compound phases.
For example, we have shown that the sulfidation of Rh during tetralin
hydrogenation in the presence of H2S traces increases Rh activity,
whereas Au nanoalloying with Rh prevents its sulfidation and thereby
limits its activity; the behavior of Pd is opposite, as the formed PdS4
phase is less active for aromatics hydrogenation than the reduced metal
[130]. Under dynamic (fluctuating) conditions such as those used by
Mutz et al. for CO2 methanation, fast bulk oxidation of supported Ni
particles was revealed by operando XAS upon removal of H2 from the
gas stream, leading to lower catalyst performance in the subsequent
reaction cycle [131].

A lively debate concerns the nature of the (most) active phase –
metal or oxide – in CO oxidation over platinum-group metals (Pt, Pd,
Rh) [132–134]. An operando DRIFTS-MS comparison between Pt/CeO2
and Rh/CeO2 catalysts suggests that the CO oxidation activity of Pt is
highly sensitive to its oxidation state, which itself depends – unlike for
Rh – on the reaction conditions; more reducing conditions are more
favorable [32]. Oxidation and reduction are the most obvious

Fig. 5. Illustration of the facet-selective surface reconstruction of carbon-supported Pt nanoparticles under CO pressure.
Reprinted with permission from Ref. [67]. Copyright 2017 American Chemical Society.

Fig. 6. Aberration-corrected ETEM images (FEI Titan ETEM G2 300 kV) showing the (reversible) shape change, from truncated octahedron to Marks decahedron, of a
gold nanoparticle supported on rutile TiO2 at 300 °C under 0.5 mbar O2.
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environment effects in nanocatalysis, and reports on structural effects of
these processes are countless.5 Nevertheless, the recent development of
aberration-corrected ETEM now permits their direct visualization at
atomic resolution, as in the example of copper [137]. In the case of
nanoalloys, oxidation and reduction can be coupled with phase segre-
gation [33,55,128,138,139].

Besides the usual negative role of carbon as a surface poison, sub-
surface diffusion of atomic carbon –from fragmented feed molecules –
during alkyne hydrogenation over palladium has been reported to
promote the catalytic selectivity by Teschner and coworkers using in
situ XPS experiments [140–142]. Actually, according to the theoretical
work of Piqué et al., the accommodation of carbon atoms in the sub-
surface region would be favorable for most late transition metals [143].
The influence of carbide phase formation at the surface of cobalt on
Fisher-Tropsch catalysis is a long-standing debate [56,144].

3.1.5. Hydrogen absorption and hydriding
A less documented case is the subsurface diffusion/absorption of

chemisorbed hydrogen atoms in metal NPs and its influence on surface
catalysis. Palladium is the only noble metal absorbing hydrogen to
significant extent by forming a β phase hydride (i.e., showing a plateau
in pressure-composition isotherms) under mild conditions [145].
However, at small particle sizes, hydrogen has been reported by Ko-
bayashi et al. to diffuse in metals such as Rh and Ir [146,147]. Fur-
thermore, Zlotea et al. have shown that carbon-supported 1−2 nm-
sized Rh NPs even form a stable hydride at low H2 pressure and RT
[148,149]. The Rh hydride catalysts appeared more active than their
metallic counterparts for the partial hydrogenation of butadiene, while
retaining a similar selectivity to butenes [150]. The enhancement was
ascribed to the stabilization of Rh–H bonds at the NP surface in the
presence of subsurface hydrogen, after the theoretical work of Neyman
and coworkers [151]. The drastic influence of subsurface hydrogen –
and in some cases its interplay with subsurface carbon – on hydro-
genation reactions was previously evidenced from surface-science stu-
dies of Ni and Pd-based systems [126,152–159].

Beyond downsizing, nanoalloying is an additional way of boosting
the hydrogen absorption capacity, as shown for Pd-Pt and Ag-Rh sys-
tems [160]. In contrast, we have found that nanoalloying Pd with Ir
strongly decreases the hydrogen absorption capacity of Pd and sup-
presses β hydriding [161,162] through the formation of a core-shell Ir@
Pd structure (Fig. 7, left-hand side) [163,164]. The decreased hydrogen
capacity is correlated to a strongly increased preferential CO oxidation
activity in the presence of H2 (PROX process) with respect to pure Pd
and Ir counterparts (Fig. 7, right-hand side) [161,165]. This Pd-Ir sy-
nergy was ascribed to the detrimental effect of hydrogen absorption on
the PROX performance of supported Pd nanocatalysts [166,167], as
near-surface hydrogen is prone to react with oxygen to form water,
making Pd an unselective catalyst [168].

3.1.6. Leaching and restructuring under liquid-phase conditions
A large fraction of operando investigations reported in the last years

concerns electrocatalysis [19,169], as it often employs severe reaction
conditions, e.g. very acidic or alkaline electrolyte and alternation of
oxidizing/reducing conditions through potential cycling, generally
leading to catalyst degradation. As shown by identical location TEM (IL-
TEM) on supported electrocatalysts, this can occur via a number of
processes, such as particle oxidation or reduction, detachment, dis-
solution, and agglomeration [71,170,171]. Recently, Ortiz Peña et al.
monitored in situ by electrochemical TEM the oxygen evolution reaction

(OER) on Co3O4 NPs in alkaline or neutral electrolyte. Their results
show the irreversible amorphization of the NP surface, leading to a
more active phase [70]. Asset et al., using STEM-EDX and operando
wide-angle and small-angle X-ray scattering, found that carbon-sup-
ported hollow Ni-Pt NPs gradually collapse and lose Ni during ageing in
oxygen reduction reaction (ORR) conditions [172]. Pavlišič et al., in-
vestigating the selective leaching of Cu from PtCu3 NPs in ORR con-
ditions, reported that dealloying is less detrimental to electrocatalytic
activity when the bimetallic NPs are atomically ordered, since in that
case Pt atoms would retain significant Pt-Cu coordination [173]. A
number of studies combining the measurement of electrocatalytic per-
formance in a flow cell and on-line analysis (e.g. inductively coupled
plasma MS to quantify dissolution products in the electrolyte [174]) or
in situ characterization (e.g. FTIR to monitor molecular adsorbates or
products [175,176]) have also been reported.

Dissolution phenomena are obviously not limited to electrocatalysis.
For example, Khanh Ly et al. recently observed a partial leaching of Re
from ReOx/Pd/TiO2 nanocatalysts after exposure to air and introduc-
tion into an aqueous solution of succinic acid [177]. Notably, sub-
sequent pressurization of the batch reactor with 150 bar H2 (to perform
acid hydrogenation) led to Re redeposition, providing an in situ method
for the preparation of bimetallic catalysts from their Pd/TiO2 parents.

3.2. Combined adsorption and support effects

The role of a catalyst support – typically a solid oxide – is to stabilize
isolated metal particles and thereby maximize the total amount of
surface metal sites available for catalysis. Beyond this primary role, the
support influences the metal active phase geometrically (wetting,
strain, etc.) and/or electronically (charge transfer), and can even di-
rectly participate in the catalytic reaction (spillover, bifunctionality,
etc.) [20,113,178–183]. The support can be itself modified by the
surrounding reaction medium through e.g. the formation of oxygen
vacancies or surface functional groups [24,184]. In the case of metal/
oxide systems, adhesion energy increases with metal oxophilicity,
which suggests that metal-oxygen bonds dominate interfacial bonding
[185,186]. Moreover, reducible oxides such as CeO2 bind metals more
strongly than irreducible oxides such as MgO [187]. Overall, the control
of metal-support interactions, primarily through the choice of the
support nature (composition, morphology) and its modification
(doping, surface functionalization, coating), is a way to enhance cata-
lytic performances [183,188]. This enhancement was found prominent
for NPs smaller than 4 nm [183].

3.2.1. Wetting and dewetting
With respect to a free nanoparticle in thermodynamic equilibrium,

the presence of a support induces NP truncation, the extent of which
depends in first approximation on the NP and support surface and in-
terface energies according to the Wulff-Kaishev law [189]. Consistently
with this rule, Duan et al. have recently shown using multiscale mod-
eling coupled with in situ TEM that the adsorption of H2 on Pt/
SrTiO3(110) leads to a decrease in the metal/support interface area
[96]. Such an adsorption-induced change of NP wetting on the support
had been previously observed in the case of Cu/ZnO [90,190]. In turn,
this phenomenon affects the nature of perimeter sites, which can play
an important role in catalysis. In addition, if the particle is in epitaxy on
its support,6 the interfacial stress can modify the overall equilibrium
shape of the particle, together with the bulk and interface structures
[189,192].

3.2.2. Support-directed segregation in nanoalloys
Another interesting structural effect of the nanoparticle5 A striking possible effect of metal compound (including alloy) formation is

to generate hollow NPs via the Kirkendall effect: outward diffusion of metal
atoms from the core is faster than inward diffusion of reactive species, resulting
in void formation [135,136]. This effect can also be used for metal redispersion
[25].

6 This refers to the case of crystalline support and NP, with a well-defined
orientation between their lattices [191].
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environment has been demonstrated for Au-Rh NPs supported on rutile
titania nanorods heated to 350 °C under hydrogen [130]: whereas the
Rh@Au core-shell configuration is favored in the unsupported state
owing to the positive Au-Rh mixing enthalpy and the lower surface
energy of Au, the supported NPs adopt a segregated Janus structure
with the Rh side located at the interface between Au and TiO2
[85,130,193,194]. This Au/Rh/TiO2 stacking is driven by the stronger
affinity of Rh with TiO2 as compared to Au. By stabilizing the entire
structure, such a segregation of Rh at the interface provides the NPs
with a high resistance to sintering, as also shown for Pd-Ir/TiO2 [163],
Au-Ir/TiO2 [195], and Cu-Ni/TiO2 [196]. Noticeably, both Cu-Ni/TiO2
[196] and Au-Rh/TiO2 [104] exhibit synergistic effects for the hydro-
deoxygenation of biomass derivatives.

Using NAPXPS to analyze the structure of Pd-Rh NPs under ethanol
steam reforming conditions, Llorca and coworkers have shown that the
ceria support enhances the reactivity of the particles while limiting
their surface rearrangement [197]. Furthermore, the support mor-
phology strongly influences the NP reorganization under reaction
conditions, and thereby the catalytic performance. Whereas on CeO2
nanocubes both Rh and Pd strongly oxidize and ethanol mainly dehy-
drogenates into H2 and acetaldehyde, on CeO2 nanorods the metals are

less oxidized, the NP surface is enriched in Pd, and H2 is the main
product (Fig. 8) [198].

3.2.3. Strong metal-support interaction
An even more dramatic effect of the reaction medium on supported

NPs is the well-known “strong metal-support interaction” (SMSI) effect,
when atoms from the support diffuse onto the NPs and encapsulate
them, generally leading to inhibition of chemisorption and deactivation
of the catalyst. This process was first reported by Tauster et al. in 1978
for noble metals supported on reducible oxides such as TiO2, V2O3 and
Nb2O5 upon reducing treatment at around 500 °C [199,200]. The SMSI
effect was later observed for many metal/oxide catalytic systems
[26,72,188,201–203]. For a given oxide support, the extent of en-
capsulation depends on the phase and the texture of the oxide [183].

The SMSI state would form after partial reduction of the support and
migration of the resulting suboxide onto the NPs. For example, en-
capsulation of Au NPs with TiOx, along with negative charging of Au,
was observed upon reducing treatment of Au/TiO2 [204]. In contrast,
oxygen thermal treatments appeared to trigger SMSI with positive Au
charging in the cases of Au NPs supported on ZnO nanorods [205] or on
phosphate supports [206]. Hydrogen thermal treatments reversed the

Fig. 7. Illustration of Pd hydriding and alloying effects on CO oxidation during PROX. The STEM-ADF image shows an Ir@Pd core-shell nanoparticle supported on
carbon. The graph plots CO conversion vs temperature during CO-PROX reaction (CO:O2:H2:He = 2:2:48:48 %) over Pd, Ir, and Pd-Ir NPs supported on amorphous
silica-alumina.
Adapted from Ref. [165].

Fig. 8. Illustration of the differences in cata-
lytic selectivities (left) and depth-dependent
compositions (right) between Rh-Pd NPs sup-
ported on ceria nanocubes and ceria nanorods
under ethanol steam reforming conditions.
TEM images of the two catalysts are displayed.
Reprinted with permission from Ref [198].
Copyright 2019 American Chemical Society.
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processes.
A fine tuning of the SMSI effect through suitable redox treatments

can enhance the catalytic performances, as in the examples of H2O2
synthesis over Pd-Sn/TiO2 nanocatalysts [207], and Fisher-Tropsch
synthesis over Co NPs supported on TiO2 or Nb2O5 [208].

Beyond the classical encapsulation described above, Matsubu et al.
have demonstrated another type of SMSI for Rh NPs supported on TiO2
or Nb2O5 under CO2-H2 conditions [209]. The migration of the sub-
oxide would here be driven by the strong adsorption of HCOx species
and lead, unlike the usual SMSI effect, to a stable amorphous shell
permeable to reactants. With respect to bare Rh, this adsorbate-medi-
ated SMSI causes a switch of selectivity from CH4 to CO.

In an attempt to generate and visualize the SMSI state, we per-
formed ETEM experiments on colloidal Au and Au-Rh NPs immobilized
on rutile TiO2 nanorods [130] under air, O2, or H2 at low pressures (<
10 mbar). Fig. 9 shows ETEM images of a gold NP anchored to TiO2,
recorded under 0.5 mbar of air at 300 °C. We observed the presence of a
TiOx encapsulation layer (left-hand-side image), and – under electron-
beam assistance – its removal accompanied by the formation of a TiO2
“nanopillar” (right-hand-side image, see also supplementary movie S2).
Whereas the encapsulated Au NP is roundish, the bare one is faceted,
which again illustrates the strong influence of the metal NP environ-
ment (here, a Ti oxide layer) on its morphology. In this experiment, the
beam was condensed to favor the NP extraction coupled to the nano-
pillar formation, which were irreversible. However, similar nanopillar
structures were also observed under standard imaging conditions,
though only under oxidizing atmosphere (air or O2, not H2 or vacuum),
whereas the SMSI state was detected both under oxidizing and reducing
atmospheres. Although these phenomena are not well understood, our
observations confronted with literature data [204,209] strongly suggest
that residual adsorbed ligands (here, polyvinyl alcohol) facilitate the
dynamics of metal/oxide wetting and dewetting. They also show how
dramatic the electron probe influence on the observed processes can be
in ETEM.7

3.2.4. Reactive metal-support interaction
The interplay between the metal NPs, the support and the atmo-

sphere can also be used to prepare supported intermetallic NPs through
“reactive metal-support interaction” (RMSI) [190,211,212]. A typical
example is the formation of PdZn, PdGa, and PdIn intermetallic phases
from Pd/ZnO, Pd/Ga2O3, and Pd/In2O3 catalysts, respectively, upon
reductive thermal treatment or under reductive reaction conditions; the
resulting supported nanoalloys appeared more efficient than their

monometallic Pd counterparts for methanol steam reforming, methanol
synthesis, or alkyne semi hydrogenation [213–222].

The RMSI strategy is not limited to oxide supports. For example, it
has been employed by Li et al. for Pt NPs supported on two-dimensional
carbides, Ti3C2 and Nb2C MXenes, in order to respectively form Pt3Ti
and Pt3Nb intermetallics at the benefit of the selectivity for light alkane
dehydrogenation reactions [223].

3.2.5. Sintering, redispersion, exsolution
Catalyst sintering is a well-known detrimental effect in catalysis, as

the loss of active surface area through NP diffusion/coalescence or – to
larger extent – Ostwald ripening8 under gaseous or liquid environment
at high temperature generally results in a decrease of catalytic activity
[112,224–229] (or a change in metal-acid site balance for bifunctional
catalysts [230]). NP size not only affects the metal surface area but also
drives the surface structure (e.g. the fraction of low-coordinated sites)
[6], and thereby the catalytic performance in the case of so-called
“structure-sensitive reactions” [231].

It is often possible to regenerate a catalyst through redispersion of
metal NPs into smaller species, including single atoms, from the use of
suitable reactive thermal treatments [25,229,232,233]. An efficient
strategy for Pt redispersion in automotive exhaust ceria-based catalysts
consists in an oxidative treatment at high temperature (>400 °C)
[234,235]. According to Nagai et al., who performed operando QXAS
and ETEM experiments on Pt/CeZrOx automotive catalysts, redisper-
sion proceeds through migration of molecular PtOx species from the Pt
nanoparticles to the support, where they strongly anchor onto Ce ca-
tions; this mechanism is much less favorable on a weakly interacting
support such as alumina [235]. A subsequent reducing treatment breaks
the PtOx–Ce bonds and leads to new Pt particles, smaller and thus more
active than their parents in CO oxidation. As further shown by Gänzler
et al. for Pt/CeO2/Al2O3 using similar techniques, a controlled reduc-
tion of the redispersed catalyst with a series of fast redox cycles (as in
diesel exhaust conditions), enables a tuning of the Pt NP size and oxi-
dation state (Fig. 10) [234]. The same group found that the CO oxi-
dation performances were optimal for reduced NPs of 1.4 nm in size,
which would maximize the Pt-ceria interface perimeter and thereby the
(beneficial) low-temperature reduction of ceria through hydrogen
spillover [236]. Moreover, CO appeared as a more efficient reductant
than H2.

Similarly, in the commercial Pd/LaFe(Co)O3 “intelligent catalyst”,
redox cycles cause Pd incorporation as cations into the perovskite lat-
tice (oxidation step) followed by surface segregation of Pd NPs

Fig. 9. Aberration-corrected ETEM images (FEI
Titan ETEM G2 300 kV), recorded under 0.5
mbar of atmospheric air at 300 °C, showing a
rutile TiO2-supported Au NP encapsulated in a
Ti oxide shell (left), and the same NP extracted
from the shell with the formation of a rutile
TiO2 “nanopillar” (right). The extracted state
was generated by condensing the TEM electron
beam.

7 The energy and momentum transferred to the atoms of a material exposed to
an electron beam have been used e.g. to investigate single-atom dynamics by
STEM [210].

8 Growth of larger particles at the expense of smaller ones, leading to a
minimization of the surface energy. In the case of nanoalloys, this process can
lead to NP size-composition correlation [224].
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(reduction step), preventing them from agglomeration during car op-
eration [226,237,238]. The controlled reduction of perovskite oxides is
also a way to grow well-defined metal or oxide NPs with enhanced
catalytic properties, including resistance to coking [239,240]. Nickel
NP exsolution from a LaCaNiTiO3 perovskite under reducing conditions
has been recently observed at atomic resolution and in real time by
ETEM; such particles are socketed in, and strained by the oxide [241].

Using in situ TEM, Liu et al. investigated the dynamic structural
transformation of subnanometric Pt species in the pores of an MCM-22
zeolite [242]. At low temperature (<400 °C), Pt clusters tend to re-
disperse under oxidative atmospheres of reaction (redispersion extent:
NO + CO > NO+H2) but grow under reductive ones (growth extent:
CO+H2O > CO + O2), while the reverse processes can be activated at
higher temperatures.

Apart from oxidation and reduction treatments, the use of halogen
species is also known to favor redispersion [243]. In particular, chlorine
is used in industrial hydrocarbon reforming (chlorination and oxy-
chlorination processes) to regenerate sintered Pt/Al2O3 catalysts. In
addition, due to the low cohesion energy of rhodium and its strong
affinity to CO, small supported Rh nanoparticles were shown to disin-
tegrate into isolated organometallic RhI(CO)2 species under several
reactive conditions [4,229,233,244].

3.2.6. Environment effects on single-atom catalysts
Single-atom catalysis [9,245,246], or more generally catalysis by

subnanometric particles showing ca. 100 % metal dispersion,9 is a re-
cent field of research which promises unexpected catalytic perfor-
mances while saving huge amounts of rare and expensive metals. SACs
most often consist of isolated metal heteroatoms anchored at the sur-
face of a carbon-based material or a metal oxide. Although they present

similarities with heterogenized homogeneous (“single-site”) catalysts
such as oxide-grafted metal complexes [246,248,249], in SACs the
metal atom is, by design, free from organic ligands; only the solid
support (or "host") is expected to stabilize it. Some authors also consider
atoms of one metal diluted at the surface another metal as a subclass of
SACs, namely “single-atom alloys” [250]. Also with this approach, the
isolation of active centers plays a key-role in modifying the adsorptive
and catalytic properties of a metal, like in the positive cases of selective
styrene and acetylene hydrogenations on Pd/Cu [250] and methanol
reforming on Cu/Ag [251]. In the latter system, according to DFT cal-
culations, the isolated Cu atoms would exhibit a free atom-like elec-
tronic structure, making their bonding to adsorbates similar to that in
molecular metal complexes. Single-atom alloys may include complex
intermetallics such as Al13M4 phases, at the surface of which transition
metal atoms M (Fe, Co…) were found to act as highly active and se-
lective isolated centers for acetylene and butadiene hydrogenations
[252–255].

Subnanometric metal species are inherently instable and tend to
agglomerate in certain reaction conditions [116,242], making the
choice of the stabilizing support critical. This is especially true for
single noble-metal atoms supported on oxides under reducing condi-
tions, as previously mentioned for Pt and Pd hosted by ceria or per-
ovskites. In a recent work on the prototypical Pt/γ-Al2O3 system, we
have shown using XAS, ETEM and DFT methods, that single Pt atoms
(cations) are stabilized in air thanks to the formation of Pt–Oads–Al
bridges (Fig. 4), whereas they aggregate into 0.9 nm-sized clusters
under hydrogen pressure [20]. Furthermore, as shown from operando
XAS and DRIFTS monitoring, even under oxygen-rich conditions Pt
atoms gradually aggregate during heating/cooling cycles of CO oxida-
tion (Fig. 11) [10]. In this case, metal clusters appear more active than
single atoms. This is also valid for Pt/TiO2 in photocatalytic hydrogen
evolution conditions, under which single Pt atoms readily aggregate
[247,256,257]. Such a dramatic sensitivity of atomic dispersion to the
atmosphere is increasingly characterized by electron microscopy
[234,242,258–260], and systems for which metal clusters are catalyti-
cally superior to single atoms are increasingly reported
[257,258,261–264]. However, depending on the catalytic conditions
and provided that the metal loading/support surface area ratio is low
enough, single atoms can anchor at specific sites of the oxide support

Fig. 10. a) Dynamic nature of Pt on ceria is
exploited to adjust noble metal dispersion. 1)
The noble metal is finely dispersed on CeO2
during oxidative treatment by exploiting me-
tal–support interaction with ceria. 2)
Formation of slightly larger noble metal parti-
cles is initiated by the application of controlled
reducing steps (for example, pulses) at a low
temperature (<400 °C). b) Redispersion step is
not applicable at moderate temperatures for
weakly interacting supports like Al2O3.
Reprinted with permission from Ref. [234].
Copyright 2017 Wiley.

9 I propose to employ the term “ultradispersion” [247] when all the metal
atoms are virtually in contact with the reactants or the support. This corre-
sponds to a metal dispersion of 100% (i.e., there are no subsurface atoms in the
particle), as in the case of bilayer clusters. Atomic dispersion is a subgroup of
ultradispersion where all the metal atoms virtually “see” both the reactants and
the support (2D rafts, multimers, single atoms). Single-atom dispersion is itself a
subcategory of atomic dispersion, as the atoms are isolated: single-atomic ⊆
atomic ⊆ ultra dispersion.
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surface in such a way that the influence of a reducing atmosphere on
their local coordination can be more subtle and avoid metal clustering
[265].

It seems that carbon-based materials such as graphene and carbon
nitride act as efficient stabilizing supports or hosts for single metal
atoms, while preserving their catalytic ability [9,246]. There have been
many demonstrations of the efficiency of such systems, especially for
liquid-phase catalysis including electrocatalysis. In particular, so-called
M–N–C catalysts, where M is a transition metal atom coordinated to
four N atoms of an N-doped carbon in a metal–porphyrin like config-
uration, are frequently reported. For example, Fe–N–C has been re-
cently shown as a highly active and stable system for CO2 electro-
reduction to form CO or CH4 [266,267].10 Karapinar et al. have
reported the selective formation of ethanol from CO2 reduction on a
Cu–N–C material [269]. However, operando XAS characterization sug-
gests that, under reaction conditions, the single Cu atoms (reversibly)
aggregate into subnanometric metallic clusters, which are likely to be
the actual active species.

In some cases, SACs could be advantageous alternative to homo-
geneous catalysts: Chen et al. have reported that single Pd atoms an-
chored on exfoliated graphitic carbon nitride, while being stable, ex-
hibit an adaptative coordination which facilitates the steps of Suzuki
coupling catalysis [270]. Similarly, the high “fluxionality” [271] or
“ductility” [118] of subnanometric clusters, which adapt their structure
to the reaction medium, enables a breakup of the scaling relationships11

that limit the possibilities of catalyst improvement [272]. This shows
that the intrinsic sensitivity of ultradispersed metal species – whether
single atoms or clusters – to their chemical environment can turn a

weakness into a strength. More generally, beyond well-reported re-
structuring events such as NP morphology changes, tiny fluctuations in
the catalyst surface atomic structure at the timescale of the catalytic
cycle can have important consequences on the overall performance.

4. Conclusive discussion and outlook

A number of restructuring effects of the chemical environment on
metal-based nanocatalysts and single-atom catalysts, in the course of
their pretreatment or catalytic operation, have been reviewed. These
effects have been rationalized and illustrated mostly with examples
from the recent literature reporting in situ/operando investigations. The
viewpoint of the metal particle (nanoparticle, cluster, or single atom)
has been adopted. Within this approach, from the attempt to categorize
dynamic environment effects, it appears that restructuring phenomena
can be categorized according to the influence of the particle support (if
any). The first category, in which the role of the support is not central
since the effects can also be observed with unsupported particles, in-
cludes particle reshaping, metal segregation, oxidation and hydriding.
The second category relates to dynamic metal-support interaction
phenomena such as SMSI, RMSI and metal redispersion. The re-
structuring effects specific to small clusters and single atoms are ne-
cessarily related to the support, owing to its fundamental stabilizing
role. A close examination of adsorbate-metal-support interaction-in-
duced restructuring processes leads to the conclusion that they exhibit
similarities and links with each other, as depicted in Fig. 12 for a metal/
oxide system under oxidizing or reducing conditions.

As underlined in this minireview, in the last twenty years, the
knowledge of restructuring phenomena in heterogeneous catalysis has
strongly benefited from the increasing use of the operando metho-
dology, combining kinetic measurements with one or more character-
ization techniques. In the case of ultradispersed metals such as oxide-
supported noble-metal single atoms prone to destabilization, this ap-
proach has appeared crucial for determining the actual nature of active
species. Moreover, aberration-corrected TEM/STEM and related tech-
niques, possibly performed “in situ”, nicely complement operando
spectroscopies by offering a direct visualization of the atomic and

Fig. 11. Operando EXAFS and DRIFTS monitoring of 0.3 wt% Pt/γ-Al2O3 catalyst in CO oxidation conditions (CO:O2 = 2:10 %), after calcination or reduction. Y-
scales indicate temperatures in °C. Color Z-scales represent EXAFS FT module and IR absorbance. The picture at the right-hand side illustrates the state of the Pt
species at each step.
Adapted from Ref. [10].

10 With relatively similar coordination environment, FeN5 centers confined in
carbon nanomaterials, so-called “single-atom nanozymes”, have been shown to
possess high oxidase-like activity [268].
11 Scaling relationships typically refer to the existence of linear correlations

between the adsorption energies of intermediate species in a given catalytic
reaction. Consequently, a more/less reactive surface will generally bind all the
reactive intermediates more/less strongly without changing the energy barriers
between them.
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chemical structures of nanocatalysts and SACs. Understanding how a 
catalyst dynamically adapts to its chemical environment is an important 
route toward the design of more structurally stable and poison-resistant 
catalysts.

In the near future, the simultaneous tracking of the catalyst struc-
ture, the surface adsorbates as well as the reactants and products, to-
gether with multiscale theoretical modeling, is expected to bring a more 
comprehensive knowledge of catalysis mechanisms. In addition, since 
most works have examined restructuring phenomena from a thermo-
dynamic perspective (e.g. experimentally at steady state before and 
after modifying the reactant mixture composition, or theoretically at 
equilibrium), significant e fforts ar e ex pected in  th e in vestigation of 
catalyst evolution kinetics and metastable/unstable active states. In 
turn, the time-resolved atomic-scale understanding of these processes is 
an important step toward the fine control of catalyst elaboration and 
the selection of pretreatment/reaction conditions. This review has 
provided some examples of knowledge-driven achievements, as e.g. the 
dynamic control of metal dispersion in car-exhaust catalysts. A more 
rational and predictive approach of catalysis will be highly beneficial to 
human kind for addressing the present and future environmental and 
energetic challenges.
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