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SUMMARY 10

A reed instrument model with N acoustical modes can be described as a 2N dimensional autonomous
nonlinear dynamical system. Here, a simpli�ed model of a reed-like instrument having two quasi-
harmonic resonances, represented by a 4 dimensional dynamical system, is studied using the con-
tinuation and bifurcation software AUTO. Bifurcation diagrams of equilibria and periodic solutions 15

are explored with respect to the blowing mouth pressure, with focus on amplitude and frequency
evolutions along the di�erent solution branches. Equilibria and periodic regimes are connected
through Hopf bifurcations, which are found to be direct or inverse depending on the physical pa-
rameters values. Emerging periodic regimes mainly supported by either the �rst acoustic resonance
(�rst register) or the second acoustic resonance (second register) are successfully identi�ed by the 20

model. An additional periodic branch is also found to emerge from the branch of the second register
through a period-doubling bifurcation. The evolution of the oscillation frequency along each branch
of the periodic regimes is also predicted by the continuation method. Stability along each branch
is computed as well. Some of the results are interpreted in terms of the ease of playing of the reed
instrument. The e�ect of the inharmonicity between the �rst two impedance peaks is observed both 25

when the amplitude of the �rst is greater than the second, as well as the inverse case. In both cases,
the blowing pressure that results in periodic oscillations has a lowest value when the two resonances
are harmonic, a theoretical illustration of the Bouasse-Benade prescription.

1 Introduction 30

An important goal of the acoustics of wind instruments is to understand key components of into-
nation and also the ease of playing. From the physics modelling point of view, it is interesting
to study the main variables that control the playing frequency (for intonation) and the mini-
mum mouth pressure to achieve auto-oscillations (for ease of playing). It is assumed that part
of the musician's judgement of ease of playing of a note is inversely related to the sounding re- 35

sistance represented by the threshold blowing pressure. Support for this hypothesis is o�ered
by measurements on the performing properties of saxophone reeds by [Petiot et al 2017]: a sig-
ni�cant correlation was found between the soft-hard scale on which the sounding resistance of
di�erent reeds was judged by saxophonists and the threshold pressures measured in the mouths
of the performers. A useful overview of the acoustics of reed and lip wind instruments can be 40

found in books such as: [Benade 1990], [Campbell and Greated 1987], [Fletcher and Rossing 1998],
[Chaigne and Kergomard 2016], [Campbell et al 2020].

It is often commented that the �aring bore of brass instruments are designed such that the in-
put impedance are, as close as possible, harmonically related. While this alignment is said to be 45

important for intonation, it is also likely to determine the oscillation threshold and therefore im-
prove the ease of playing. Here, the necessity of an alignment in a harmonic series is called the
`Bouasse-Benade prescription' because of what Benade wrote in his famous book [Benade 1990], or
in [Benade and Gans 1968]: `The usefulness of the harmonically related air column resonances in
fostering stable oscillations sustained by a reed-valve was �rst pointed out by the French physicist 50
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Henri Bouasse in his book Instruments à vent' [Bouasse 1929]. In order to illustrate this pre-
scription, a horn was designed to provide an air column whose resonance frequencies (frequencies
of maximum input impedance) were chosen to avoid all possible integer relations between them,
called `tacet horn' in [Benade and Gans 1968]. The purpose of this instrument is to deliberately
make the conditions for oscillation unfavorable.55

The e�ect of inharmonicity of the two �rst resonance frequencies on both tone colour and ease of
playing have been examined experimentally on alto saxophone �ngerings during a project for the de-
sign of microinterval systems [Dalmont et al 1995]. An increased harmonicity by extending the bore
of the Tintignac carnyx improves its ease of playing ([Gilbert et al 2012], [Campbell et al 2017]).60

The harmonicity of resonances is also necessary for proper intonation when a reed instrument
is expected to play in upper registers, and is often used as a target in optimisation problems
([Kausel 2001], [Braden et al 2009], [Noreland et al 2013], [Coyle et al 2015], [Tournemenne et al 2019]).
This paper focuses on the assessment of the Bouasse-Benade prescription on a model of reed musical
instruments. The goal is to study the in�uence of the inharmonicity on the playing frequency and65

on the minimum mouth pressure required to achieve auto-oscillation in the �rst register. However,
it appears that this mouth pressure cannot always be determined by a study of small amplitude
oscillations only. On the contrary, a complete bifurcation diagram, including all periodic branches
with the blowing pressure as the continuation parameter, needs to be computed. To achieve this,
a simpli�ed model of a reed instrument is derived from a generic model that is valid for both70

reed and brass instruments, and constitutes a simpli�ed version of the problem. The reed is
modeled as a simple spring ([McIntyre et al 1983]), only two acoustic resonances are taken into
account ([Dalmont et al 2000], [Doc et al 2014]), and the nonlinear coupling between the reed and
the acoustic resonances through the incoming �ow is reduced to a polynomial expansion (Kergo-
mard in [Hirschberg et al 1995]). This may be considered as the simplest model of reed instruments75

that includes inharmonicity. Furthermore, this simple model helps isolate the e�ects of the main
parameters without the added complications that arise when considering real instruments.

Inharmonicity Inh between the acoustic resonances fres1 and fres2 is de�ned as the deviation from
harmonicity: Inh = fres2/(2fres1) − 1. Therefore once the �rst resonance frequency fres1 and80

the inharmonicity Inh are known, the second resonance frequency is �xed through the relation
fres2 = 2fres1(1 + Inh). Note that if the resonances are exactly harmonic (Inh = 0) the problem
can be solved analytically and two bifurcation diagrams have been obtained (Figure 8 and 10 of
[Dalmont et al 2000]).

85

In section 2 of this paper the theoretical background, and particularly the equations of the elemen-
tary model of reed instruments, are brie�y presented. The behaviour of the elementary model at the
stability threshold of the equilibrium position, and the nature of the Hopf bifurcations, are discussed
in the second part of this section. Section 3 documents the procedure used to calculate bifurcation
diagrams using a continuation method, after having reformulated the two equations of the model90

into a set of four �rst-order ODE equations. The in�uence of the inharmonicity on the bifurcation
diagrams is shown and discussed in section 4. The section is divided into two parts: the �rst study
assumes that the amplitude of the �rst resonance is larger than the second resonance (Z1 > Z2),
for which preliminary results have been presented in [Gilbert et al 2019], and the second study the
opposite condition (Z2 > Z1) is considered. In order to link the Bouasse-Benade prescription to95

the ease of playing experienced by musicians, bifurcation diagrams are analysed with respect to the
minimal mouth pressure necessary to achieve oscillation. Additionally, the e�ect of inharmonicity
is also considered.
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2 Theoretical background 100

2.1 Elementary acoustical model

The model presented and used in the present publication is labeled as elementary because a number
of major simpli�cations are made in deriving it (see for example Hirschberg in [Hirschberg et al 1995],
[Fabre et al 2018]). The vibrating reeds or lips are modeled as a linear one-degree-of-freedom oscil-
lator. The upstream resonances of the player's windway are neglected, as is nonlinear propagation 105

of sound in the air column of the instrument. Wall vibrations are also ignored. Despite these simpli-
�cations, the elementary model is capable of reproducing many of the important aspects of perfor-
mances by human players on realistic reed and brass instruments (see [Fletcher and Rossing 1998],
[Chaigne and Kergomard 2016]). The model is based on a set of three equations, which have to be
solved simultaneously to predict the nature of the sound radiated by the instrument. These three 110

constituent equations of the model are presented hereafter. Besides the control parameters de�ning
the embouchure of the players, including the reed or lips parameters and the mouth pressure Pm,
and the input impedance of the wind instrument, there are three variables in the set of the forth-
coming three equations as a function of the time t: h̃(t), the reed or lip-opening height, p̃(t) the
pressure in the mouthpiece of the instrument, and ũ(t) the volume �ow entering the instrument. 115

In order to describe the vibrating reeds or lips, the �rst of the three constituent equations of the
elementary model is:

d2h̃(t)

dt2
+
ωr
Qr

dh̃(t)

dt
+ ω2

r(h̃(t)− ho) = −
Pm − p̃(t)

µ
. (1)

In this equation, which describes the reeds or lips as a one-degree-of-freedom (1DOF) mechanical
oscillator, the symbols ωr, Qr, ho and µ represent the angular reed resonance frequency, the quality
factor of the reed resonance, the value of the reed or lip-opening height at rest, and the e�ective 120

mass per unit area of the reed or lips respectively. These quantities are parameters of the model,
which are either constant (in a stable note) or changing slowly in a prescribed way (in a music
performance). Note that if µ is positive, an increase of the pressure di�erence (Pm − p̃(t)) will
imply a closing of the reed or lips aperture. It is called the `inward-striking' model, used mainly
for reed instruments. If µ is negative, an increase of the pressure di�erence will imply an opening 125

of the reed or lips aperture. It is called the `outward striking' model, used preferably for brass (lip
reed) instruments.

The second constituent equation describes the relationship between pressure and �ow velocity in
the reed channel:

ũ(t) = wh̃+(t)

√
2

ρ
|Pm − p̃(t)|sign(Pm − p̃(t)), (2)

where the square root originates from the Bernoulli equation, and the positive part of the reed or 130

lips aperture h̃+ = max(h̃, 0) implies that the volume �ow vanishes when the reed or lips are closed.

The third and last constituent equation describes the relationship between �ow and pressure in the
instrument mouthpiece. It is written in its frequency domain form by using the input impedance
Z(ω) of the wind instrument:

P̃ (ω) = Z(ω)Ũ(ω). (3)

Other than the di�erence of sign of µ between inward-striking reed instruments model and outward 135

striking brass instruments model, there is another di�erence between these two subfamilies of wind
instruments. The control parameter ωr of vibrating lips varies a lot, over four octaves, to get the
entire tessiture of a given brass instrument. On the other hand the ωr associated to reeds is more
�xed (slightly varying because of the lower lip of the clarinet or saxophone player) and most of the
time very large compared to the playing frequencies. This justi�es a low-frequency approximation 140

of the elementary model: ωr is assumed in�nite and the reed undamped. In other words, the reed
is reduced to its sti�ness only and the set of three equations becomes a set of two equations as
follows: {

ũ(t) = w[ho − Pm−p̃(t)
µω2

r
]
√

2
ρ |Pm − p̃(t)|sgn(|Pm − p̃(t)|)

P̃ (ω) = Z(ω)Ũ(ω).
(4)
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When the mouth pressure is too high, the reed can be blocked against the lay of the mouthpiece.
Then the closure pressure de�ned by PM = µω2

r .ho is the minimal mouth pressure for which the145

reed remains closed in the static regime (h becomes equal to 0). By using this closure pressure, a
dimensionless mouth pressure γ can be de�ned: γ = Pm/PM . It is convenient to de�ne another
dimensionless parameter, a dimensionless reed height at rest:

ζ = Zcwho

√
2

ρPM
, (5)

where Zc = ρc
S is the characteristic impedance for plane wave inside the resonator of input cross

section S, ρ is the air density and c is the sound velocity.150

In the following, the nonlinear equation of the model is approximated by its third-order Taylor

series around the equilibrium position de�ned by p̃eq = 0, h̃eq = ho − Pm

µω2
r
, and ũeq = wh̃eq

√
2
ρPm.

The approximated nonlinear equation can be written in the following dimensionless form (see for
example Kergomard in [Hirschberg et al 1995]):155

u(t) = ueq +Ap(t) +Bp(t)2 + Cp(t)3, (6)

with ueq = ζ(1−γ)√γ, A = ζ 3γ−1
2
√
γ , B = −ζ 3γ+1

8
√
γ3

and C = −ζ γ+1

16
√
γ5
. The value of the dimensionless

reed height at rest ζ is chosen to be equal to 0.1.

It is this elementary low-frequency model for reed instruments which is studied in the present paper.
If a non-beating reed is assumed which is typically obtained for a dimensionless mouth pressure
γ lower than 0.5, the third order approximation of the �ow rates is appropriate. The elementary160

model based on the set of two equations has to be solved to predict the nature of the sound radiated
by the instrument. Low amplitude solutions for a few speci�c cases are reviewed in the following
subsection.

2.2 Small amplitude behaviour

The equilibrium position is the trivial permanent (steady) regime corresponding to silence. Sound165

can happen if the equilibrium position becomes unstable. For a lossless cylindrical air column, it
becomes unstable for a speci�c value of γ which is γthr = 1/3. If losses are taken into account,
then γthr is a bit higher (see [Chaigne and Kergomard 2016]). If the losses are very important, the
threshold value γthr can reach 1 and the reed channel is closed at equilibrium. In this case the
equilibrium remains stable for any value of γ. Hence no sound can be produced. For an extensive170

analysis of stability of the equilibrium position with an experimental comparison for cylindrical air
columns, see [Wilson and Beavers 1974] and [Silva et al 2008].

The step beyond the above linear stability analysis is the study of the small oscillations around the
threshold. It has been done �rst by [Worman 1971] and then extended by analysing the nature of the175

bifurcation at the threshold by [Grand et al 1997] which can be direct or inverse Hopf bifurcation.
The results are displayed in Figure 1 as a 2D map where the x-axis is C the third coe�cient of
the Taylor expansion Eqn. 6, and the y-axis is 1/Z2 − 1/Z1, the di�erence between the admittance
amplitude between the two �rst resonances (assumed to be harmonic, the ratio between their
frequencies, being equal to 2).180

In our speci�c case, the coe�cient C is negative. Then, for a speci�c negative C value, following
an imaginary vertical line coming from an in�nite positive value of 1/Z2 − 1/Z1 (second resonance
peak absent like for the cylindrical tube) the bifurcation is direct. It becomes inverse in a particular
point for a particular positive value of 1/Z2 − 1/Z1 not far from zero: 1/Z2 − 1/Z1 = −2B2/(3C).
And when 1/Z2 − 1/Z1 becomes negative, and whatever how 1/Z2 < 1/Z1 (it means whatever185

Z2 > Z1) is, the bifurcation becomes and stays direct. Properties of small amplitude oscillations of
the single-reed woodwind instruments near the oscillation threshold have been investigated more
recently by using analytical formulae with explicit dependence on the physical parameters of the
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Figure 1: Diagram showing the regions where the bifurcation is direct as well as those regions where
it is inverse. The x-axis shows the values of the third coe�ecient of the Taylor expansion Eqn. 6,
and the y-axis is the di�erence between the admittance amplitude between the two �rst resonances
(assumed to be harmonic) Y2 − Y1 = 1/Z2 − 1/Z1. The hatched region is for a direct bifurcation,
and the unhatched region for an inverse bifurcation. Adapted from [Grand et al 1997].

instrument and the instrumentist allowing to determine the bifurcation point, the nature of the bi-
furcation, the amplitude of the �rst harmonics and the oscillation frequency ([Ricaud et al 2009]). 190

Apart from a few very simpli�ed cases, such as a clarinet-like model with a lossless cylindri-
cal tube ([Maganza 1986], Kergomard in [Hirschberg et al 1995], [Chaigne and Kergomard 2016],
[Taillard et al 2010]), or by taking into account losses independent of frequency, sometimes called
Raman model [Dalmont et al 2005], the equations are not tractable analytically, and the bifurcation
diagrams can not be easilly obtained. 195

The simplest non-trivial resonator that can be studied, is a resonator having two quasi-harmonic
resonance frequencies fres1 and fres2. This kind of resonator can be obtained in practice in the
midle and high ranges of the �rst register of saxophone (see for example �gures 17 and 12 of
[Dalmont et al 1995]). Bifurcation diagrams have been analytically calculated in [Dalmont et al 2000] 200

in the restrictive case of perfect harmonicity between the two resonances. In the following sections,
this kind of resonator but with a non-zero inharmonicty Inh is analysed.

3 Typical bifurcation diagram obtained by continuation method

To overcome the di�culties of the analytical analysis of small amplitude oscillations near thresh- 205

olds, and to get results for any inharmonicity value arbitrarily far from the oscillation threshold,
simulation techniques in time domain are often used. An alternative method is possible. A nice
way to have an overview of the dynamics over small and large amplitudes is to use the bifurcation
diagram representation. Very few of them can be obtained analytically (see the previous subsec-
tion). It is possible to obtain bifurcation diagrams numerically for a large range of situations by 210

using continuation methods, such as in the AUTO software [Doedel et al 1997] or MANLAB soft-
ware [Karkar et al 2013] for example. In order to use AUTO technique in the following section, the
elementary model has to be mathematically reformulated in a set of �rst-order ODE equations.

The principle of continuation is to seek solution branches of a nonlinear algebraic system rather 215

than solution points. A solution branch is an 1D-curve in a space whose axes are an unknown to
the problem and a parameter of interest called a bifurcation parameter. In the following the di-
mensionless mouth pressure γ is chosen as the bifurcation parameter. It provides more information
than a set of solution points obtained for successive values of the bifurcation parameter. Branches
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of static and periodic solutions are computed numerically hereafter using the software AUTO, freely220

available online [AUTO 1996].

The model analysed in this paper is a nonlinear dynamical system. In order to obtain a nonlinear
algebraic system in which numerical continuation can be applied, some additional work may be
required. For instance, for continuing periodic solutions of a dynamical system, a discretisation225

is necessary to come down to an algebraic system. Many approaches are possible among which a
time-domain discretisation of the (unknown) solution over one (unknown) period. The unknowns
of the resulting nonlinear algebraic system are the sampled values of the periodic solution and the
period. The time discretisation implemented in AUTO is called orthogonal collocation and relies on
the use of Lagrange polynomials. The stability of each solution is also assessed. Stability is a very230

important information for the interpretation of the bifurcation diagram since only stable solutions
are observable. Stability of both equilibria and periodic solutions is found through a linearization
of the system of equations around the solution considered. The solution is stable if and only if
the real parts of all the eigenvalues of a matrix characteristic of the linearized system are negative.
This matrix is the Jacobian matrix if the solution considered is an equilibrium, and the so-called235

monodromy matrix if the solution considered is periodic. Stability of a solution along a branch
is an output of AUTO. For comprehensive details about continuation of static/periodic solutions
using AUTO, please refer to [Doedel et al 1997].

In order to use the AUTO technique, the input impedance equation (Eqn. 3) is reformulated by a240

sum of individual acoustical resonance modes in the frequency domain, and then translated them
in the time domain. There are two ways to manage that: sum of real modes (see for example
[Debut et al 2004]), sum of complex modes (see for example [Silva et al 2014]). These two ways of
approximating the input impedance in the frequency domain lead to two di�erent sets of �rst-order
equations dX

dt = F (X) with two di�erent X vectors. In the present paper the real mode represen-245

tation of the input impedance Z is used.

The modal-�tted input impedance with N resonance modes, is written as follows:

Z(ω) =

N∑
n=1

Zn
jωωn/Qn

ω2
n + jωωn/Qn − ω2

, (7)

where the nth resonance is de�ned by three real constants, the amplitude Zn, the dimensionless
quality factor Qn and the angular frequency ωn.250

Translation of Eqn. 7 in the time domain and reconstruction of p(t) from real modal components

pn, such that the acoustical pressure is p(t) =
∑N
n=1 pn(t), results in a second order ODE for each

pn:
d2pn
dt2

+ ωn/Qn
dpn
dt

+ ω2
npn(t) = Znωn/Qn

du

dt
. (8)

Taking into account the other equation of the elementary model, the time derivative of the volume
�ow nonlinear equation (Eqn. 6), the previous set of N second order ODE (Eqn. 8) can be rewritten255

by using the following expression of dudt :

du

dt
= A(

N∑
n=1

dpn
dt

) + 2B(

N∑
n=1

dpn
dt

)(

N∑
n=1

pn(t)) + 3C(

N∑
n=1

dpn
dt

)(

N∑
n=1

pn(t))
2. (9)

Then the equations can be put into a state-space representation dX
dt = F (X), where F is a nonlinear

vector function, and X the state vector having 2N real components de�ned as follows:

X =

[
p1; ...; pN ;

dp1
dt

; ...;
dpN
dt

]′
. (10)
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In practice, because our paper is dedicated to a two quasi harmonic resonance instrument, the state

space representation is based on the state vector of 4 real components X =
[
p1; p2;

dp1
dt ;

dp2
dt

]
, and 260

the nonlinear vector function F can be written as:

d

dt


X(1)
X(2)
X(3)
X(4)

 =
d

dt


p1
p2
dp1
dt
dp2
dt



=


X(3)
X(4)

− ω1

Q1
X(3)− ω2

1X(1) + Z1
ω1

Q1

du
dt

− ω1

Q2
X(4)− ω2

2X(2) + Z2
ω2

Q2

du
dt

 . (11)

Before discussing extensively bifurcation diagrams for di�erent values of inharmonicity and for 265

di�erent con�gurations of relative amplitudes between Z1 and Z2 of the two resonances, let us begin
by showing and discussing typical elements of a bifurcation diagram. Figure 2 has been obtained
by choosing Z1 = 1.5Z2 and two harmonic resonances (i.e. Inh = 0). The values of the modal
parameters of the two resonance's air column given in Table 1 are inspired from [Dalmont et al 1995]
and [Doc et al 2014]. The main plot displays the continuation results obtained with AUTO, whereas 270

the six smaller plots above correspond to time-domain simulations of the same system between t = 0
and t = 0.5s, for di�erent values of γ pointed by numbers. Time integration is performed with an
ordinary di�erential equation solver, namely ode15s from the Matlab ODE Suite.

The main plot displays max|p|, the maximum of the absolute value of pressure in the mouthpiece
over one period with respect to the blowing pressure γ. While it is not highlighted here, the 275

horizontal line max|p| = 0 corresponds to the equilibrium solution. Below a certain critical value of
γ (namely γ < γthr1), the equilibrium is stable as illustrated by the three time domain simulations
calculated for γ = 0.32, γ = 0.36 and γ = 0.40. For initial conditions chosen around the equilibrium,
these oscillating solutions decay in time back to the (stable) equilibrium. It is worth noting that
the decaying transient lasts all the longer as the value of γ is approaching the critical value γthr1. 280

When γ = γthr1, the equilibrium becomes unstable and a branch of periodic solution emerges from
the equilibrium. This branch is represented in green on the main plot of �gure 2: it �rst goes
backward in terms of γ and is unstable (thin line), then after a turning point (also called a fold)
goes forward and is stable (thick line). This scenario is called an inverse Hopf bifurcation and the
value γ = γsubthr the sub-critical threshold (see for example [Strogatz 2019]). 285

As explained above, the bifurcation point γ = γthr1 is reached when the real part of one eigenvalue
of the jacobian matrix crosses the imaginary axis. The imaginary part of the eigenvalue concerned
gives the angular frequency of the emerging periodic solution. In the present case, it is close to
ω1. Hence the periodic solution is classi�ed as � �rst register � or fundamental regime. If the
angular frequency of the emerging periodic solution had been close to ω2, the periodic solution 290

would have been classi�ed as � second register � or octave regime. Note that the frequency of the
periodic solution along the green branch is not locked at any value but is modi�ed according to the
nonlinearity. This is exempli�ed and discussed in the next section. Two time domain simulations
are shown with γ = 0.4 and γ = 0.45 and reveal that the solution is repelled form the equilibrium
and converges toward a periodic solution. Note that in the case of γ = 0.4 the choice of the initial 295

condition is crucial since two stable solutions exist: the equilibrium (plot number 3 in Figure 2)
and the periodic solution (plot number 4). A thorough look at the time domain simulation would
reveal that max|p| deduced from the steady-state (periodic) regime is equal to the ordinate of the
green curve at the corresponding value of γ.

The black curve corresponds to emerging branch of periodic solutions in the case where only one 300

acoustic resonance is considered (Z2 = 0). In that case, the amplitude max|p| is simply a square-
root shaped function of the bifurcation parameter γ in the neighbourhood of the threshold. The

7



thick line denotes a stable periodic solution. Such a scenario is called a direct Hopf bifurcation.
Just above the Hopf bifurcation point (γ = γthr1), the direct scenario leads to stable periodic
oscillations with in�nitely small amplitudes. Sounds can be played with the nuance pianissimo.305

On the contrary, in the case of an inverse bifurcation, stable periodic oscillations found just above
the Hopf bifurcation point have �nite amplitude. Playing with the pianissimo nuance is no longer
possible.

For pedagogical purposes, the bifurcation diagram is limited here to the neighborhood of one Hopf
bifurcation point, coming from the value γ = γthr1. However, it will be shown in the next section310

that for other values of γ, another Hopf bifurcation point is found as well as other bifurcations of
the periodic branches.

ωn = 2πfresn Zn Qn
1st resonance 1440 50 36.6
2nd resonance 2× 1440× (1 + Inh) 50/1.5 41.2

Table 1: Values of the modal parameters of the two resonance's air column.

D
im

en
si

on
le

ss
 P

re
ss

su
re

1 2 3

4

5

6

1 2 3 4 5 6

Figure 2: Bifurcation diagram and time domain simulations of the two harmonic resonance air
column (parameter's values in Table 1 with Z2 = Z1/1.5 or with Z2 = 0, and Inh = 0) with respect
to the control parameter γ.
Upper plots: six time domain simulations of the dimensionless pressure p = p1 + p2 calculated
between t = 0 and t = 0.5s for γ = 0.32, γ = 0.36, γ = 0.40 (two simulations with di�erent initial
conditions), γ = 0.45 and γ = 0.53. The dimensionless pressure of the plots numbered from 1 to 3
(respectively 4 to 6) is displayed between −0.3 and +0.3 (respectively −1.2 and +1.2).
Lower plot: Maximum of the absolute value of the periodic solution p over one period with respect
to γ. The branch in green (respectively in black) corresponds to the case Z2 = Z1/1.5 (respectively
Z2 = 0), and illustrates an inverse (respectively direct) Hopf bifurcation scenario. Stable (respec-
tively unstable) solutions are plotted with thick (respectively thin) lines. For each scenario, the
Hopf bifurcation point where the equilibrium becomes unstable, is noted γthr. In the case of an
inverse bifurcation the subcrital threshold γsubthr is highlighted with a vertical dashed line.

4 E�ects of the inharmonicity. Results and discussion

4.1 Large �rst resonance amplitude

The discussion is initiated by analysing the case corresponding to Z1 slightly higher than Z2 (in315

practice Z1/Z2 = 3/2). Three bifurcation diagrams corresponding to Inh = 0, Inh = 0.02 and
Inh = 0.04 are shown Figure 3 (remember that a semi tone corresponds to 0.059).
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(a) (b) (c)

Figure 3: Three bifurcation diagrams of the two quasi-harmonic resonance air column (with
Z1 > Z2, in practice Z1/Z2 = 3/2; parameters values in Table 1) with respect to the control
parameter γ. From top to bottom: Inh = 0 (a), Inh = 0.02 (b) and Inh = 0.04 (c). Each case is
described with two plots.
Upper plot: Maximum of the absolute value of the periodic solution with respect to γ. The branch
in green (respectively in red, and in blue) corresponds to the fundamental regime, the standard
Helmholtz motion (respectively the octave regime, and the inverted Helmholtz motion fundamental
regime).
Note that a black curve corresponding to a direct Hopf bifurcation is branched at γ = γthr1. This
fundamental regime corresponds to an air column having only one resonance at the frequency fres1.
Lower plot: Frequency with respect to γ. The frequency branch in green (respectively in red) cor-
responds to the fundamental frequency of the fundamental regime (respectively the octave regime,
frequency divided by 2). The reference dashed horizontal lines are the reference frequencies: fres1
and fres2/2.

The results shown in Figure 3 for the case Inh = 0 are qualitatively consistent with the one pub-
lished in [Dalmont et al 2000] (see in particular its Figure 8). Note that the continuation method
gives an additional information: the stability nature of the periodic oscillations. 320

In Figure 3a the bifurcation diagram shows two branches coming from the equilibrium position:

1. The �rst branch originates from the linear threshold γ = γthr1, associated to the �rst res-
onance fres1, originating through an inverse Hopf bifurcation. This fundamental regime, or
�rst register regime, is a standard Helmholtz motion according to [Dalmont et al 2000]. The 325

branch is unstable and then becomes stable at the limit point at γ = γsubthr (sub-critical
threshold). Compared to the case of a single mode (black curve), important di�erences are
observed, including the nature of the bifurcation.

2. The second branch originates from the linear threshold γ = γthr2 and is associated to the
second resonance fres2, originating through a direct Hopf bifurcation. Note that γthr2 is 330

above γthr1, because Z1 is bigger than Z2. This branch which would correspond to the octave
regime, or second register regime, is not observable in practice, because the periodic solutions
are unstable.

3. The nature of the bifurcation of the two branches originating from the linear thresholds
γ = γthr1 and γ = γthr2 is in agreement with the publication of [Grand et al 1997]. 335

4. There is a third branch which originates from the unstable octave branch, thanks to a period
doubling bifurcation. This branch which would correspond to another fundamental regime
(the inverted Helmholtz motion according to [Dalmont et al 2000]) is unstable.

The associated lower plot shows the frequency of the periodic oscillations corresponding to the
branches of the bifurcation diagram. In particular the frequency of the fundamental regime (green 340
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curve) is almost locked to the value fres1 = fres2/2 for any value of γ.

For an inharmonicity of 0.02 (Figure 3b). The bifurcation diagram is quite close to the one with
Inh = 0. However two things are pointed out. First, at the threshold γ = γthr1 the Hopf bi-
furcation has become direct as it can be predicted theoretically [Gazengel 1994]. Second, again345

there are periodic oscillations for values of the mouth pressure γ under γ = γthr1 until a new value
γ = γsubthr which is a bit larger than the one of the case Inh = 0. This is due to the occurence
of two folds (limit points on the solution branch) corresponding to saddle-node bifurcations. Note
that the frequency of the fundamental regime (green curve) is not locked at the value fres1 anymore
but is partially pulled towards the value fres2/2, which is reasonable. If the inharmonicity was350

negative, the same kind of results would have been obtained, the frequency being pulled towards
fres2/2 lower than fres1.

For an inharmonicity of 0.04 (Figure 3c). Now the branch coming from the threshold γ = γthr1,
corresponding to the fundamental regime, looks like a classical branch associated to the direct Hopf355

bifurcation, there is no γsubthr anymore, since the folds noted in the previous case have disappeared,
γ = γthr1 is now the threshold of oscillation. In fact, when the inharmonicity increases, the dynamics
of the system behaves more and more like the dynamics of a single-resonance system. The frequency
of the fundamental regime comes from the threshold value fthr1 at the direct Hopf bifurcation point,
and then is partially pulled toward the value fres2/2. Note that in Figure 3 a curve corresponding360

to a direct Hopf bifurcation is branched at γ = γthr1, this curve corresponds to an air column
having only one resonance at the frequency fres1.

Under certain circumstances, for instance when the inharmonicity is high enough, a branch of
quasi-periodic solutions may emerge from a Neimark-Sacker bifurcation (often refered as a Hopf
bifurcation for a periodic regime). Above this bifurcation point, the periodic branch still ex-365

ists but it becomes unstable. Such bifurcation has not been encountered in this work, but it
has been observed experimentally with a modi�ed saxophone played in the medium range of its
tessitura [Dalmont et al 1995], simulated by [Gazengel and Gilbert 1995], extensively studied in
[Doc et al 2014], and it has been studied with continuation on a toy model of saxophone in Section
3 of [Guillot et al 2019].370

The above analysis illustrates signi�cant things because of the inverse Hopf bifurcation (cases Inh =
0 and Inh = 0.02):

1. On the one hand, there may be a minimum value γ = γsubthr lower than γthr1 above which
there are stable periodic oscillations. This particular value γsubthr can be thought of as a
quantitative characterisation of the ease of playing. In Figure 3 it is shown that the lowest375

value of γsubthr is obtained when the two resonances are perfectly harmonic (Inh = 0). If it is
assumed that a lower γsubthr corresponds to an instrument easier to play, then it suggests the
reed instrument considered is the easiest to play when Inh = 0. In a way that is a theoretical
illustration of the Bouasse-Benade prescription. The threshold of oscillation, equal to γsubthr
for low inharmonicities, and equal to γthr1 for higher inharmonicities, is displayed in Figure380

4. The minimum of the threshold of oscillation correspond to Inh = 0.

2. On the other hand, the stable periodic oscillations which appear for γ slightly above γsubthr
can have fundamental frequencies signi�cantly di�erent from fthr1 = fres1 because of the e�ect
of the second resonance which controls partially the intonation of the fundamental regime.
This study highlights the intrinsic limitation of the linear stability analysis: it should be only385

considered to assess the stability of the equilibrium. Conclusions concerning the existence of
periodic solutions can only be provided through a nonlinear analysis, analitycally in speci�c
cases or with tools like AUTO otherwise.

In addition an animation showing the evolution of the bifurcation diagram as a function of the
inharmonicity increasing from Inh = −0.05 to Inh = +0.05 is viewable from the link given by390

the reference [Animation 1]. Most of the illustrations displayed in the �gures are corresponding
to a positive inharmonicity Inh, but the animation and the Figure 4 illustrate the fact that the
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Figure 4: Minimum value of the mouth pressure γ (green line) corresponding to a stable periodic
solution (fundamental regime) with respect to the inharmonicity Inh (case Z1 > Z2; in practice
Z1/Z2 = 3/2). Linear threshold γthr1 (blue dashed line).

behaviour is qualitavely the same for negative values of Inh.

In order to illustrate the bifurcation diagram (Figure 3), it is interesting to do simulations by solving 395

the equation dX
dt = F (X) in the time domain (sounds available from the links given by the references

[Sound 1] and [Sound 2]). Figures 5 and 6 show a signal corresponding to an inharmonicity Inh =
0.040 and Z1 = 1.5Z2:

1. In Figure 5 the control parameter increases linearly from γ = 0.43 to γ = 0.50 (crescendo).
Because the branch is coming from a direct Hopf bifurcation in the bifurcation diagram, the 400

amplitude of the oscillation is a smoothly increasing mathematical function with respect to γ.
Therefore, in the time domain simulation, the amplitude of the signal (fundamental regime)
is increasing smoothly, as it is with a resonator having only one resonance fres1.

2. In Figure 6 the control parameter decreases slowly from γ = 0.55 to γ = 0.50 (decrescendo).
Because of the chosen initial conditions, the periodic regime obtained is corresponding to the 405

upper octave, but when γ reaches the value 0.53, the branch coming from γ = γthr2 becomes
unstable, and then the periodic solution jumps on the �rst branch one octave below, the stable
branch coming from γ = γthr1 (fundamental regime).

Figure 5: Signal (dimensionless acoustical pressure) obtained by simulation in time domain with an
inharmonicity Inh = 0.040 and Z1 = 1.5Z2 (like in Figure 3c). The dimensionless mouth pressure
is printed in black, and is increasing linearly from γ = 0.43 (constant before t = 2s) to γ = 0.50
(constant after t = 9s).
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Figure 6: Signal (dimensionless acoustical pressure) obtained by simulation in time domain with an
inharmonicity Inh = 0.040 and Z1 = 1.5Z2 (like in Figure 3c). The dimensionless mouth pressure
is printed in black, and is decreasing linearly from γ = 0.55 (constant before t = 2s) to γ = 0.50
(constant after t = 9s).

4.2 Large second resonance amplitude

The discussion continues by analysing the case corresponding to Z1 slightly lower than Z2 (in410

practice Z2/Z1 = 3/2). Three bifurcation diagrams corresponding to Inh = 0, Inh = 0.015 and
Inh = 0.03 are shown Figure 7.

(a) (b) (c)

Figure 7: Three bifurcation diagrams of the two quasi-harmonic resonance air column (with
Z1 < Z2, in practice Z2/Z1 = 3/2) with respect to the control parameter γ. From top to bot-
tom: Inh = 0 (a), Inh = 0.015 (b) and Inh = 0.030 (c). Each case is described with two plots.
Upper plot (a): Maximum of the absolute value of the periodic solution with respect to γ. The
branch in red (respectively in blue, and in green) corresponds to the octave regime (respectively
the fundamental regime associated to the standard Helmholtz motion, and the inverted Helmholtz
motion fundamental regime).
Lower plot (c): Frequency with respect to γ. The frequency branch in red (respectively in blue) cor-
responds to the fundamental frequency of the octave regime (respectively the fundamental regime).
The frequency of the red branch has been divided by 2 for sake of clarity. The reference dashed
horizontal lines are the reference frequencies: fres1 and fres2/2.

The results shown in Figure 7 for the case Inh = 0 are qualitatively consistent with the one pub-
lished in [Dalmont et al 2000] (see in particular its Figure 10).

415

In Figure 7a the bifurcation diagram shows two branches coming from the equilibrium position:

1. On the left-hand side, the �rst branch originates from the linear threshold γ = γthr2, associated
to the second resonance fres2, originating through a direct bifurcation. This octave regime is
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stable until a period doubling bifurcation point, and then becomes unstable. At the bifurcation
point, there is an emerging branch corresponding to a fundamental regime. It is a standard 420

Helmholtz motion according to [Dalmont et al 2000]. This fundamental regime is unstable
until a turning point (a fold) corresponding to a minimum value of γ = γsubthr where the
periodic oscillations become stable. Note that the threshold of oscillation of the fundamental
regime γ = γsubthr is signi�cantly lower than the value γthr1 predicted by the linear stability
analysis. 425

2. The second branch originates from the linear threshold γ = γthr1, associated to the �rst
resonance fres1, originating through a direct bifurcation. Note that γthr1 is bigger than γthr2,
because Z1 is lower than Z2. This branch which would correspond to a second fundamental
regime is not observable in practice, because the periodic solutions are unstable. This branch
would correspond to the inverted Helmholtz motion according to [Dalmont et al 2000]. 430

The associated lower curve shows the frequency of the periodic oscillations corresponding to the
branches of the bifurcation diagram. In particular the frequency of the stable fundamental regime
(blue curve) is close to the value fres1 = fres2/2 for any value of γ.

For an inharmonicity of 0.015 (Figure 7b). The bifurcation diagram is qualitatively quite close to 435

the one with Inh = 0. Two things are now pointed out. Once again there are periodic oscillations
for dimensionless mouth pressure γ values below γ = γthr2 < γthr1 until a new value γ = γsubthr
which is a bit bigger than the one in the case of Inh = 0. Note that the frequency of the funda-
mental regime (blue curve) is surprisingly close to the value fres1, the fundamental frequency is
not much pulled towards the value fres2/2. Note that the range of γ where there are two stable 440

periodic regimes, octave and the standard Helmholtz motion fundamental regime, is larger: from
γ = γthr2 to the value of γ where the period doubling bifurcation point occurs.

For an inharmonicity of 0.03 (Figure 7c). Again the bifurcation diagram is qualitatively quite close
to the ones with Inh = 0 and Inh = 0.015. The minimum pressure of fundamental periodic oscil- 445

lations γsubthr (on the blue branch keeps increasing with inharmonicity, and becomes higher than
γ = γthr2.

The above discussion illustrates signi�cant things:

1. There may be a minimum value γ = γsubthr lower than γthr2 < γthr1 where there are stable 450

periodic oscillations. This particular value γsubthr can be chosen as a kind of quantitative
characterisation of the ease of playing. In Figure 8 it is shown again (as in Figure 4) that the
lowest value of γsubthr is obtained when the two resonances are perfectly harmonic (Inh = 0).
If it is assumed that a lower γsubthr corresponds to an instrument easier to play, then it suggests
that the reed instrument considered to be the easiest to play when Inh = 0. In a way, even 455

if Z1 < Z2, again that is a theoretical illustration of the Bouasse-Benade prescription. The
threshold of oscillation is displayed on Figure 8: the minimum of the threshold of oscillation
is corresponding to Inh = 0.

2. The stable periodic oscillations which appear for γ slightly bigger than γsubthr have funda-
mental frequencies quite close to fres1. 460

3. It is worth emphasising that, whatever the inharmonicity, the fundamental regime does never
come from the �rst threshold γ = γthr1, but comes through a period-doubling bifurcation
point attached to the octave branch. A naive analysis of the time domain simulations (at
least with Inh = 0) would probably suggest that the fundamental regime emerges from the
equilibrium trough an inverse Hopf bifurcation, but this is not correct. It is also worth noting 465

that a linear stability analysis (LSA) of the equilibrium is useless here to give some hints
about the oscillation behaviour of the model.

4. Note as well that sometimes, there are several stable regimes (equilibrium position and periodic
regime, or two periodic regimes) for a given value of γ. For such cases, the stable regime
reached is the consequence of the initial conditions. 470
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Figure 8: Minimum value of the mouth pressure γ (blue line) corresponding to a stable periodic
solution (fundamental regime) with respect to the inharmonicity Inh (case Z1 < Z2; in practice
Z2/Z1 = 3/2). Linear threshold γthr1 (green dashed line).

In addition, an animation showing the evolution of the bifurcation diagram as a function of the
inharmonicity increasing from Inh = −0.05 to Inh = +0.05 is viewable from the link given by the
[Animation 2]. Most of the illustrations displayed in the �gures correspond to a positive inharmonic-
ity Inh, but the animation and the Figure 8 illustrate the fact that the behaviour is qualitavely the
same for negative values of Inh. Unlike Figure 4, it can be noted that the plot is slightly asymetric475

with respect to the vertical axis Inh = 0.

In order to illustrate the bifurcation diagrams (Figure 7), it is interesting to do simulations by
solving the equation dX

dt = F (X) in the time domain (sound available from the link given by the
reference [Sound 3]). Figure 9 shows a signal corresponding to an inharmonicity Inh = 0.015 and
Z1 = Z2/1.5. The control parameter increases slowly from γ = 0.38 (just below the period doubling480

bifurcation) to γ = 0.45 (crescendo). Because of the chosen initial conditions, the periodic regime
obtained corresponds to the octave, but when γ reaches the value 0.39, the branch coming from
γ = γth2 becomes unstable, and then the periodic solution jumps to the only stable branch one
octave below (branch coming from the period-doubling bifurcation).

Figure 9: Signal (dimensionless acoustical pressure) obtained by simulation in time domain with an
inharmonicity Inh = 0.015 and Z1 = Z2/1.5 (like in Figure 7b). The dimensionless mouth pressure
is printed in black, and is increasing linearly from γ = 0.38 (constant before t = 2s) to γ = 0.45
(constant after t = 9s).
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5 Conclusion 485

Bifurcation diagrams of a basic reed instrument modeled by two quasi-harmonic resonances have
been computed by using a continuation method (AUTO software), where the mouth pressure is
the control parameter. Some of the mouth pressure thresholds results are interpreted in terms of
the ease of playing of the reed instrument. When there is an inverse Hopf bifurcation (perfect
harmonicity) or of a double fold after a direct Hopf bifurcation (moderate inharmonicity), there 490

may be a minimum value γ = γsubthr lower than γthr1 for which periodic stable oscillations can
be observed. This value γsubthr may be considered as a quantitative characterisation of the ease of
playing. It has been shown that the lowest value of γsubthr is obtained when the two resonances
are harmonic, harmonicity equal to 2. This is a theoretical illustration of the Bouasse-Benade pre-
scription ([Bouasse 1929], [Benade 1990]). Even if a few AUTO simulations using other parameter's 495

values than the one used in the present study have been done, a large set of other tests should be
done with many other parameter's values to verify that the conlusions of the present paper are
robust.

An interesting direction for future work could include experimental validation, particularly using 500

the modi�ed saxophone used in [Dalmont et al 1995]. There, the saxophone was modi�ed by the
addition of two closed side tubes on the neck. Movable pistons are used to change the volume of the
side tubes, which results in a shift of the resonant frequencies. As explained in this publication, it
is possible to choose particular positions and volumes of the closed tubes to ensure a control of the
inharmonicity. This strategy is used with �ngerings corresponding to the middle and high ranges 505

of the �rst regime of the saxophone, where its input impedance consists essentially of two resonances.

The results provided in the current manuscript depend on a physical model of reed instruments based
on three strong approximations: the reed dynamics is ignored, only two acoustic resonances are
taken into account, and the nonlinear equation describing the incoming volume �ow is approximated 510

by its third order Taylor series expansion. Therefore, the conclusions above cannot be directly
extended to real instruments until further research is carried out on more complex models. At that
point, many other interesting topics could be explored, such as sound production of low-pitched
notes by conical reed instruments such as saxophones, oboes or bassoons. Replacing the inward-
striking reed model by an outward-striking lip model is also planned in order to study nonlinear 515

dynamics of brass instruments (preliminary results in [Freour et al 2019]). More precisely, it is
expected that numerical continuation could clarify their pedal note regime, recently simulated
using a time-domain �nite di�erences method in [Velut et al 2016].
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[Animation 2] Animation showing the evolution of the bifurcation diagram as a function of the625

inharmonicity increasing from Inh = −0.05 to Inh = +0.05 (case Z1 < Z2), corresponding to
Figure 7, in http://perso.univ-lemans.fr/~jgilbert/output_Z2_sup_Z1_stab.webm

[Sound 1] Time domain simulation corresponding to Figure 5 in http://perso.univ-lemans.fr/

~jgilbert/Inh0p040_10s.wav

[Sound 2] Time domain simulation corresponding to Figure 6 in http://perso.univ-lemans.fr/630

~jgilbert/gamma0p55a0p50.wav

[Sound 3] Time domain simulation corresponding to Figure 9 in http://perso.univ-lemans.fr/

~jgilbert/Inh0p015_Z2supZ1_10s.wav
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