
HAL Id: hal-02994011
https://hal.science/hal-02994011v1

Submitted on 7 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Multiplicity and Diversity: Analyzing the Optimal
Solution Space of the Correlation Clustering Problem on

Complete Signed Graphs
Nejat Arinik, Rosa Figueiredo, Vincent Labatut

To cite this version:
Nejat Arinik, Rosa Figueiredo, Vincent Labatut. Multiplicity and Diversity: Analyzing the Optimal
Solution Space of the Correlation Clustering Problem on Complete Signed Graphs. Journal of Complex
Networks, 2020, 8 (6), pp.cnaa025. �10.1093/comnet/cnaa025�. �hal-02994011�

https://hal.science/hal-02994011v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Multiplicity and Diversity: Analyzing the Optimal Solution Space of the
Correlation Clustering Problem on Complete Signed Graphs

Nejat Arinik, Rosa Figueiredo & Vincent Labatut

November 7, 2020

Abstract

In order to study real-world systems, many applied works model them through signed graphs, i.e.
graphs whose edges are labeled as either positive or negative. Such a graph is considered as structurally
balanced when it can be partitioned into a number of modules, such that positive (resp. negative) edges
are located inside (resp. in-between) the modules. When it is not the case, authors look for the closest
partition to such balance, a problem called Correlation Clustering (CC). Due to the complexity of the
CC problem, the standard approach is to find a single optimal partition and stick to it, even if other
optimal or high scoring solutions possibly exist. In this work, we study the space of optimal solutions of
the CC problem, on a collection of synthetic complete graphs. We show empirically that under certain
conditions, there can be many optimal partitions of a signed graph. Some of these are very different
and thus provide distinct perspectives on the system, as illustrated on a small real-world graph. This is
an important result, as it implies that one may have to find several, if not all, optimal solutions of the
CC problem, in order to properly study the considered system.

Keywords: Signed Graph, Complete Graph, Correlation Clustering, Structural Balance, Multiple
Solutions, Graph Partitioning, Solution Space.

Cite as: N. Arinik, R. Figueiredo & V. Labatut. Multiplicity and Diversity: Analyzing the Optimal
Solution Space of the Correlation Clustering Problem on Complete Signed Graphs, Journal of Complex
Networks (forthcoming). DOI: 10.1093/comnet/cnaa025

1 Introduction
In a signed graph, the edges are labeled as either positive (+) or negative (−). Such a graph is
considered to be balanced, according to the Structural Balance theory, if it can be partitioned into
two [11] or more [14] modules (i.e. clusters), such that all positive (resp. negative) edges are located
inside (resp. in-between) these modules. For instance, in a social network whose edges represent
like/dislike relationships, this amounts to having mutually hostile social groups of friends. However,
it is very rare for a real-world network to be perfectly balanced, in which case one wants to assess
the magnitude of the imbalance. For a given partition, this imbalance is traditionally measured by
counting the number of frustrated edges [11, 45], i.e. positive edges located in-between the modules
and negative ones located inside them. Computing the graph imbalance amounts to identifying the
partition corresponding to the lowest imbalance measure over the space of all possible partitions. This
minimization problem is known as the Correlation Clustering (CC) problem, proven to be NP-hard [7].

In the literature, a large number of applied works solve the CC problem to get a better understanding
of some studied real-world system, or to solve a specific problem of interest. For instance, Jensen [29]
constructs a signed spatial network of retail stores to understand the commercial strategies behind
their spatial distribution and identify further interesting locations for potential new businesses. The
signed relations between vertices encode the spatial interactions between categories of stores: positive
edges model attraction (stores of these categories tend to appear in close range) whereas negative ones
model repulsion (the opposite). In the domain of time-series analysis, MacMahon & Garlaschelli [37]
want to capture the structure of different financial markets by studying and comparing the behavior of
their traders. For this purpose, they use a signed network whose vertices represent traders and edges
model the correlation between the time series of their daily stock returns. More recently, in [5] we
use multiplex signed network to model and study the voting activity of the Members of the European
Parliament (MEP). By solving CC, we identify the characteristic ways in which cohesive groups of MEPs
form through vote agreement, as well as the legislative contexts leading to such voting patterns.

1

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

+
+

–

+

+

–

–

+ +

–
+

+ v3

v2

v6
–

v5

v1

– v4v7

a)

+
+

–

+

+

–

–

+ +

–
+

+ v3

v2

v6
–

v5

v1

– v4v7

b)

+
+

–

+

+

–

–

+ +

–
+

+

–
–

v5

v6

v7 v4

v3

v2

v1

c)

Figure 1: Three (out of 22) different optimal CC solutions obtained for the same network: a) Pa = {{v1,v5,v6,v7},
{v2,v3,v4}}; b) Pb = {{v5,v6,v7}, {v1,v2,v3,v4}}; and c) Pc = {{v1,v2,v5}, {v6,v7}, {v3,v4}}. Red and green
lines represent negative and positive edges, respectively. The graph is complete, but for clarity, some negative
edges between modules are intentionally omitted. Figure available at 10.6084/m9.figshare.8233340 under CC-BY
license.

When solving an instance of the CC problem, most of these works rely on heuristic approaches,
especially when dealing with large networks, as the problem is NP-hard [7]. But a non-negligible number
of studies are also concerned with optimality, e.g. [4, 5, 10, 21]. In any case, the standard approach is
to find a single solution and focus the rest of the analysis on it, as if it was the only solution. Yet, it is
possible that several, and even many, other optimal solutions exist for the considered instance, and even
more so for quasi-optimal solutions. Moreover, these alternate solutions can be very different, in terms
of how they partition the graph [9]. Figure 1 illustrates this on a complete unweighted signed graph
(see caption). Solving the CC problem for this graph of only 7 vertices yields no less than 22 distinct
optimal solutions. We show only a few of them to highlight how different these can be. For instance,
on the one hand Pa and Pb are very similar, partition-wise, as they are both bisections differing only in
the module assignment of v1. On the other hand, Pc is quite different from them: it contains an extra
module obtained by separating an element from each module of the previous solutions, in addition to
v1.

Such a focus on a single solution raises several questions. First, as mentioned before, several optimal
solutions may coexist. If so, one can wonder which network properties lead to this situation, and how
many of these solutions are equally relevant to the application problem at hand. Perhaps it would
be necessary to design a more appropriate version of the CC problem, in order to distinguish them,
possibly based on some additional criteria related to the application context. Second, how different are
these solutions? Application-wise, very similar solutions could be given the same interpretation, whereas
substantially different ones might correspond to dramatically different ways of seeing the studied system.
Third, when dissimilar solutions coexist for the same problem, is it possible to detect classes of similar
solutions? Indeed, if such classes exist, one could need only to find one representative solution in each
class, which would ease the exploration of the solution space. Fourth and finally, in case of the existence
of multiple such classes, what distinguishes them from each other? Identifying these characteristic
differences could provide some valuable information to understand the studied system. More generally,
the answers to all these questions can drive the choice of the method used to solve CC.

In this work, our goal is to answer these questions through the characterization of the space of
optimal solutions associated with a collection of signed graphs. We proceed by randomly generating a
number of signed networks with various characteristics: number of vertices, number of modules, and
imbalance. We then identify all their optimal solutions, and study how the number and nature of these
solutions is affected by the network characteristics. Finding all optimal solutions is computationally
costly, and constrains the number of vertices that we can handle. We could instead look for quasi-
optimal solutions, which can be found faster using a heuristic method. However, we want to study the
CC problem itself, and not some of its existing resolution methods. Using a heuristic-based method
would introduce a bias in the way the solution space is explored, and thus in our study of the problem.

As a first step of a longer-term work, in this article we focus on unweighted complete signed
networks, which constitute the simplest form of signed graphs. They are far from being as popular as
sparse graphs when it comes to representing real-world systems, and are mainly restricted to certain
types of applications (e.g. vote networks [5, 32], see Section 5.1 for other examples). However we
deem them more appropriate, in the context of this first work, because they allow us to study the
problem space while focusing on the most essential parameters. We therefore leave other types of
graphs (incomplete and/or weighted) to future work, hence postponing the treatment of important (but
nevertheless secondary) issues such as the effect of density and degree distribution on the solution space.
Our main contribution is essentially twofold. First, we propose a method to study the solution space,
which is generic enough to be applied to other combinatorial problems. Second, we obtain exciting
results for the CC problem, which open some very interesting perspectives regarding the improvement
of resolution methods and their use on specific real-world applications. Finally, as a minor contribution

2 / 19

https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

we also propose an open source random model to generate complete unweighted signed graphs with
controlled balance.

The rest of the article is organized as follows. In Section 2, we review the works related to the
enumeration and analysis of solution spaces containing multiple optimal solutions. In Section 3, we
then give the formal definition of the CC problem, and justify our approach through a few simple
examples. We turn to the methods in Section 4, and explain the approach we propose for the analysis
of the space of optimal solutions for CC. In Section 5, we present our random model as well as the
synthetic signed networks generated to conduct our analysis. In Section 6, we describe and discuss our
results, in order to answer the questions asked above. Finally, in Section 7 we summarize our findings,
comment the limitations of our work and describe how they could be overcome, and how our work can
be extended.

2 Related Work
As we explain in Section 2.1, there is only a very limited number of methods proposed in the literature
to solve CC exactly. Some of them, as well as subsequent works, identify the issue of multiple optimal
solutions, but only scratch the surface, as summarized in Section 2.2. Indeed, exploring the space
of optimal solutions requires to deal with additional methodological points, in particular: getting the
complete set of optimal solutions for the considered instance, and determining how similar or different
they are. However, we could not find any work dealing with this for CC in the literature. For this reason,
we widen the scope of our review on these aspects, and consider works conducted on other problems
than CC. In Section 2.3, we focus on the comparison of solutions; in Section 2.4 we present the main
methods used to enumerate optimal solutions; and finally in Section 2.5 we review works concerned
with the diversity of these solutions.

2.1 Exact Resolution of CC
In the literature, we find two works solving exactly the CC problem by using two different optimization
methods: an ad hoc combinatorial Branch-and-bound (B&B) programming method [10] and one based
on Integer Linear Programming (ILP) [15]. Both essentially rely on B&B [34]. Despite its genericity, the
ILP approach remains more powerful than the former, because it is based on mathematical modeling
(e.g. linear relaxation, dual tightening). Indeed, Figueiredo & Moura [22] performed a computational
experiment with both approaches for the CC problem, and showed that ILP (see Appendix A for their
model formulation) can handle larger graphs (in terms of number of vertices) and in most cases performs
better in terms of running time. Some works also deal with the exact solution of some variants of the
CC problem, [4, 9, 10, 22].

In any case, the primary concern of all these exact optimization methods is only to find a single
optimal solution, and they ignore or overlook the issue of multiplicity.

2.2 Existence of Multiple Optimal Solutions
To the best of our knowledge, the issue of multiple optimal solutions for the CC problem is first pointed
out by Davis [14] for perfectly balanced incomplete signed graphs, as he gives an example of how such
graphs may have several optimal partitions. In particular, he states that a signed graph should have a
unique optimal partition, otherwise, it amounts to a lack of cluster structure. The issue is then also
confirmed by Doreian and Mrvar [17] (also in [16] with more networks) for imbalanced incomplete signed
graphs, and the authors integrate this knowledge into their heuristic method to collect all discovered
best partitions across a large number of restarts, evidently with the risk of including local optima. Later,
Brusco et al. [10] overcome this local optima issue by adapting their ad hoc B&B programming method
to enumerate multiple optimal partitions with a limit up to 2, 000 partitions.

Although considerable efforts are made in both of these works to deal with the multiplicity of
solutions, their authors do not try to study the optimal solution space of the CC problem. This might
be due to the fact that the number of optimal partitions they encountered was small, around 20, for most
of the networks they considered [16]. Doreian et al. [16] suggest to use the multiplicity as an additional
criteria to select the most appropriate number of modules, in cases where the optimal imbalance value is
reached for several values of this number of modules. Brusco et al. apply this principle in [10]. However,
as we will show in Section 6, in practice the number of optimal solutions can be much larger than 20.

The problem of multiplicity is of general interest, and was studied in the context of other optimization
problems than CC. There are just a few of these works, thus for the sake of completeness we briefly
cover them here. Paris [42] proposes to take advantage of multiple optimal solutions to perform a

3 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

more thorough validation of linear programming economic models, in order to provide more flexibility
at decision-making. Liu et al. [36] tackle the multiplicity for the Optimal Load Distribution problem
to manage multiple generator units in hydropower plants. Ruiter et al. [44] show in the context of
Adjustable Robust Optimization that even when all optimal solutions have the same worst-case cost,
their mean costs can drastically differ, which allows discriminating between optimal solutions. Arthur et
al. [6] also recognize the need to identify all optimal solutions for the Maximal Covering problem in the
context of geosciences. In addition, they observe a connection between the size of the problem (number
of units) and the number of optimal solutions.

All these works show that 1) there can be multiple optimal solutions in practical contexts; and 2)
identifying all or several of these multiple solutions is informative, and therefore worthwhile, as they can
be leveraged to improve the results application-wise. Among other things, the work we present in this
article extends the findings of Davis [14] and Doreian et al. [16] by showing that the issue of multiplicity
also occurs for complete imbalanced signed graphs. Moreover, we study how certain parameters of the
problem affect the multiplicity of solutions.

2.3 Comparison Between Solutions
The works from the previous paragraph identify the existence and relevance of multiple optimal solutions,
but do not try to compare them, or only in terms of cost [6, 17]. From this perspective, the approach
of Good et al. [24] is interesting, even if it deals with sub-optimal solutions, as it aims to compare
the nature of these solutions. They study the Modularity Maximization problem, which consists in
detecting a community structure in an unsigned graph, i.e. to partition it in order to get cohesive
and well separated modules. They show that this problem admits an exponential number of distinct
quasi-optimal solutions, and that moreover, these can be structurally very different, an issue they call
degeneracy.

The connection with our own work is double. First, they deal with the partitioning of graphs, albeit
unsigned ones. Second, we perform a similar comparison between graph partitions, with the difference
that we focus only on optimal solutions. Such comparison is very important, as one can consider a
given solution as a view or interpretation of the studied system. Therefore, in addition to identifying
the multiplicity of optimal solutions, it is necessary to study how much they differ.

2.4 Enumeration of Optimal Solutions
In order to study the optimal solutions, it is necessary to enumerate them, without producing the same
solution twice. In our case, the literature provides only two main methods to do so efficiently: B&B vs.
Parameterized Enumeration.

For B&B, the enumeration of all optimal solutions has been performed using three different algo-
rithmic approaches. The first is based on ILP and relies on an iterative process: the original problem is
solved as many times as there are optimal solutions, as in [6]. This is practically possible when already-
found optimal solutions are iteratively added as constraints into the mathematical model to exclude
them. The drawback is that this requires building a branch-and-bound search tree from scratch at each
iteration. Brusco et al. [10] reduce the number of iterations with a two-step ad hoc combinatorial
B&B programming method. They first identify an optimal solution, allowing them to get the optimal
objective function value. They then use this value as input when building the branch-and-bound trees
corresponding to the remaining solutions. However, these are built from scratch, without leveraging the
first tree. Moreover, the process is repeated for each considered number of modules. Danna et al. [13]
propose a more efficient two-step method, as they not only enumerate all the optimal solutions based
on the search tree of the first step, but also take advantage of mathematical modeling to apply efficient
search techniques (e.g. dual tightening). This method is incorporated in the industrial optimization
solver CPLEX [26].

The parameterized enumeration approach is valid only if the considered problem is controlled by some
parameter. Damaschke [12] proposes an FPT (Fixed-Parameter Tractable) algorithm to enumerate all
optimal solutions in a given graph for the Cluster Editing problem, which is equivalent to the CC
problem when the input graph is complete and unweighted. A drawback about this FPT algorithm is
its problem-dependency, i.e. one cannot simply use the same enumeration algorithm to handle other
types of networks (e.g. incomplete networks), as opposed to ILP and B&B programming. Furthermore,
Damaschke does not provide the computational results in his theoretical work.

4 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

2.5 Diversity of Solutions
Enumerating all optimal solutions is costly, so one alternative is to discover only certain of them,
often with some additional criterion of diversity (similar in principle to multi-objective optimization
approaches). Appa [3] proposes an LP-based algorithm which, starting from an already-found optimal
solution, finds an alternative optimal solution which is as different as possible. One can apply the method
a number of times to sample the space of optimal solutions, and then select the most diverse ones.
Danna et al. [13] do the same but for binary linear models. In the context of Data Clustering, some
methods such as [28] have been proposed to detect multiple partitions, but these are not necessarily
optimal.

In any case, the limitation of these methods is usually the estimation of the correct number of
solutions: if it is underestimated, the solution space may not be sufficiently covered, whereas if it is
overestimated, the computational cost stays high. Here, the connection with our work is the idea that
diversity is important when dealing with multiple optimal solutions. We explore this aspect through the
notion of classes of similar solutions, which we define later in Section 4.

3 Correlation Clustering Problem
In this section, we give the mathematical formulation of the CC problem (Section 3.1), before showing
with examples how structurally very similar or very different solutions can be formed (Section 3.2).

3.1 Mathematical Formulation
Let us first introduce our notations before defining CC. Let G = (V,E) be an undirected graph, where
V and E are the sets of vertices and edges, respectively. We note n = |V | and m = |E| the numbers of
vertices (i.e. network order) and edges, respectively. Consider a function s : E → {+,−} that assigns
a sign to each edge in E. An undirected graph G together with a function s is called a signed graph,
denoted by G = (V,E, s). An edge e ∈ E is called negative if s(e) = − and positive if s(e) = +. We
note E− and E+ the sets of negative and positive edges, respectively.

Let P = {M1, ...,M`} (1 ≤ ` ≤ n) be an `-partition of V , i.e. a division of V into ` non-overlapping
and non-empty subsets Mi (1 ≤ i ≤ `) called modules. The partition P is called a solution for the
given graph. Given a solution P , an edge is called internal if it is located inside a module, or external if
it is located between any two modules. For σ ∈ {+,−}, the total number of positive or negative edges
(depending on σ) connecting two modules Mi,Mj ∈ P (1 ≤ i, j ≤ `) is noted Ωσ(Mi,Mj).

The Imbalance I(P) of a solution P is defined as the number of frustrated edges, i.e. the total
number of positive edges located between modules and of negative edges located inside them, i.e.

I(P) =
∑

1≤i≤`
Ω−(Mi,Mi) +

∑
1≤i<j≤`

Ω+(Mi,Mj). (1)

The Correlation Clustering problem is formally described as follows:

Problem 1 (CC problem). For an unweighted signed graph G = (V,E, s), the Correlation Clustering
problem consists in finding a partition P of V such that the imbalance I(P) is minimized.

To the best of our knowledge, this NP -hard minimization problem appears under this name for the
first time in Bansal’s paper [7]. Nevertheless, it was formalized before in the literature, e.g. in [17],
where a local optimization method was also presented.

3.2 Illustrative Cases
Figure 2a gives an example of the kind of situation that can lead to two very similar optimal solutions in
complete signed graphs. Other examples exist in the literature for incomplete signed graphs, e.g. [14, 16].
Note that the graph in Figure 2a is fully connected, but only the edges attached to v1 are represented,
for matters of readability. The displayed bisection (i.e. modules M1 and M2) corresponds to an optimal
solution. Consequently, the module assignment of v1 is optimal as well. This implies that the signed
sum of its external edges towards any module (currently, +1 for M2) cannot be greater than that of
its internal edges (currently, +1 for M1). This case of equality between the internal and external edges
means that moving v1 to module M2 instead of M1 does not change the imbalance. Consequently, this
change produces another optimal solution.

This example shows how two similar optimal solutions can be obtained through a simple vertex
change (see also Figures 1a and 1b). Of course, the same principle can be extended to larger changes

5 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

–

+

+

M2

M1

–

–
+

+

+

v1

a)

18 –

M1 M2

18 +

b)

Figure 2: Illustrative examples regarding optimal multiplicity for the CC problem. Figure available at
10.6084/m9.figshare.8233340 under CC-BY license.

involving more vertices (e.g. Figure 1c). Our point here is that it is relatively straightforward to explain
the existence of multiple similar optimal solutions. However, it is equally easy to give examples of very
different optimal solutions, as well. For instance, Figure 2b shows the case of a network constituted
of two positive cliques, both connected by the same number of positive and negative edges. Again,
the network is complete, but only the relevant edges are displayed. Solving the CC problem for this
network yields a bisection whose modules M1 and M2 correspond to the positive cliques. But putting
all the vertices in the same module is also an optimal solution: in both cases, the imbalance is 18. This
example shows that structurally different optimal solutions can coexist for the CC problem.

In conclusion, we have shown that it is possible to obtain structurally very similar as well as very
different optimal solutions when solving the CC problem. However, we do not know whether these
situations coexist in the same solution space, how frequent they are, or how this depends on the graph
topology. These observations motivate us to adopt a more systematic approach for further investigations
in the rest of this article.

4 Methods
In this section, we describe the method that we propose to analyze the space of optimal solutions for
the CC problem. First, we need to clarify our terminology, as we handle various types of partitions.
As mentioned before, the optimal solution (or solution for short) obtained by solving CC for a given
graph is a partition of the vertex set that minimizes the imbalance measure. A subset of vertices in
this partition is called a module. We reserve the term clustering to refer to a partition of the set of all
solutions. A subset of solutions in such clustering is simply called a solution class (or a class, for short).

Signed
 Graph

Partitioning

 A signed Network All Optimal SolutionsSTEP 1

Clustering

STEP 2

Dissimilarity
Measure

Dissimilarity Matrix

Cluster
Analysis

STEP 3

o
p
ti

m
a
l

so
lu

ti
o
n
 1

o
p
ti

m
a
l

so
lu

ti
o
n
 p

1

1

p

p

S
o
lu

ti
o
n

cl
a
ss

 1
S
o
lu

ti
o
n

 C
la

ss
 2

S
o
lu

ti
o
n

 C
la

ss
 3

Core part
Identification

STEP 4

C
o
re

 p
a
rt

 1

C
o
re

 p
a
rt

 2

C
o
re

 p
a
rt

 3

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

1

2

3
4

5

7

6

Figure 3: Workflow proposed to study the solution space. Figure available at 10.6084/m9.figshare.8233340 under
CC-BY license.

Our goal here is to determine whether it is worth enumerating all optimal solutions when solving
CC for a given application. Put differently, we want to know what we lose when we consider only one

6 / 19

https://doi.org/10.6084/m9.figshare.8233340
https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

solution, while there might be multiple ones. To this aim, we propose a 4-step pipeline approach which
is represented in Figure 3. Each step allows answering a question that naturally arises in our analysis
of the space of optimal solutions, and it is implemented through a well-known existing tool deemed
appropriate for this purpose. Our methodological contribution is found in the combination of these
tools to build our pipeline. The input of the pipeline is a complete unweighted signed network. The first
step is to enumerate all optimal solutions for this network (Section 4.1), allowing to determine whether
several optimal solutions coexist. If so, the second step consists in computing the dissimilarity between
them (Section 4.2), in order to assess how different the obtained solutions are. The third step consists
in performing a cluster analysis of the solutions (Section 4.3), to check for the existence of classes of
similar solutions. If there are several of them, the fourth and final step is to identify their core parts
(Section 4.4), in order to characterize them. These cores correspond to the subset of vertices that stays
constant, partition-wise, over all solutions constituting a class. Note that our workflow is relatively
generic, in the sense that one could apply it to another optimization problem, provided steps 2 and 4
are adjusted to fit the nature of the solutions. In the rest of this section, we review the different steps
of our framework in detail.

4.1 Enumerating All Optimal Solutions
The enumeration of all distinct optimal solutions can be very time- and memory-consuming, so we
need an efficient method. We handle this step by modeling mathematically the CC problem through
Integer Linear Programming (ILP) [15] and by applying the method introduced by Danna et al. [13].
As discussed in Section 2, this choice is not only efficient among the existing ones, but also problem-
independent. Furthermore, it is straightforward to implement it when one can take advantage of a
suitably configured industrial optimization solver such as CPLEX. Although this combination of ILP
model and optimization solver is sufficient to conduct this task, it can still be time-consuming. One way
to deal with this issue is to strengthen the underlying ILP model through the cutting plane approach,
as Ales et al. [2] do. We adopt the 2-partition and the 2-chorded cycle valid inequalities proposed by
Ales et al. Namely, we use these tight valid inequalities (only) during the root relaxation phase, before
proceeding to the construction of the search tree. Adopting this cut strategy improves the processing
time during this first step. We emphasize that, in this work, the enumeration of all solutions is simply
a means rather than an end.

4.2 Computing the Dissimilarity Values
At this stage, we have identified all optimal solutions associated to the input graph. Let us denote as
p the number of solutions found. We now want to gather similar solutions together. For this purpose,
we perform a classic cluster analysis, which in turns requires the computation of a dissimilarity matrix.
This matrix is obtained by comparing each pair of solutions. The literature contains a number of
similarity or dissimilarity measures to perform such a task, each one possessing specific behavior and
characteristics [40].

We use the Variation of Information (VI) [39], which was previously selected in numerous applications
similar to our context [23, 24, 30, 41], because it is a true metric in the space of solutions, and possesses
appropriate properties (see [40] for details).

4.3 Performing the Clustering
Next, we apply the k-medoids clustering method [31] to our dissimilarity matrix. It is similar to the well-
known k-means algorithm, in the sense that it partitions the dataset into k clusters, while minimizing
the dissimilarity between the members of each cluster and some center of the cluster. The difference
is that in k-means, this center is an average value, whereas in k-medoids it is one of the actual data
points from the dataset. The k-medoids method is generally used in place of k-means when one cannot
perform the required average operation, which is true in our case (we cannot straightforwardly process
an average partition, i.e. an average optimal solution).

This method requires us to specify k, which we do not know in advance. In this situation, the
standard approach is to use all possible values of k, from 2 to p (the number of optimal solutions),
and assess the quality of the p − 1 resulting clusterings through some internal criterion. One of the
most widespread such measures is the Silhouette which characterizes the clustering in terms of internal
cohesion and external separation of the modules [43]. It takes a value between −1 and +1, where the
latter represents the best possible clustering.

In theory, the k value associated with the highest Silhouette is the best candidate. However, in
practice, one possibly has to set a threshold value large enough to ensure a reasonable cluster structure.

7 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

Obtaining a Silhouette score above this threshold indicates that each cluster contains very similar
solutions, and is at the same time clearly separated from the others. Otherwise, a Silhouette score below
this threshold means that there is no cluster structure (i.e. a single cluster containing all solutions), or
at least that the clustering is inconclusive. Kaufman & Rousseeuw recommend to use a threshold value
of 0.51 (resp. 0.71) to get a reasonable (resp. strong) cluster structure [31]. Deciding the value of such
a threshold can be considered either as an issue, as it can be a delicate operation, or an advantage, as
it allows controlling the strength of the cluster structure. An alternative to determine the existence of a
proper cluster structure is to use significance testing. However, using this type of test requires a certain
number of observations, so this approach is not always applicable in practice (as in our case).

4.4 Identifying the Core Parts
At the end of the previous step, we obtain a collection of k clusters, each corresponding to a class of
solutions that are, by construction relatively similar. We now want to assess how different these classes
can be. For this purpose, we leverage the concept that we call core part. The core part of a class is
the maximal subset of vertices whose relative module assignment stays constant over all the solutions
constituting the class. When two vertices belong to the core part, we call them core vertices, and they
are either always in the same module, or always in different modules, for all the solutions of the class.
Consequently, vertices that are always isolated (i.e. that constitute their own module) are core vertices,
as their module assignment always differ from the rest of the core part. It is also possible to obtain an
overall core part by proceeding similarly with all the solutions in the space (i.e. not focusing on a single
class).

To identify the core part of a class, we rely on the idea of consensus matrix (a.k.a. co-association
matrix) originating from Consensus Clustering [33]. The consensus matrix C of a class is an n × n
matrix, whose entry Cij indicates the number of solutions in which vertices vi and vj are assigned to
the same module, divided by the total number of solutions constituting the solution class. Entries equal
to one indicate vertices that are always assigned together to the same modules over all solutions.

5 Dataset
This section is dedicated to the description of the dataset used in our experiments. We first define the
random model that we propose to generate complete signed graphs (Section 5.1), before detailing the
properties of the generated graphs (Section 5.2).

5.1 Random Model
To answer our initial questions, we apply our framework to synthetic signed networks generated using
a random model. As mentioned in the introduction, in this article we focus on complete unweighted
graphs, the simplest form of signed graphs, and leave incomplete and/or weighted graphs to future work.
Application-wise, complete unweighted signed networks are much less used in the literature, but they
nevertheless fit certain modeling situations and methodological choices. For the unweighted aspect, it
can be that the studied relations are better represented by binary values (e.g. alliance/conflict between
countries in international relationships [18]), or that the authors prefer to use such values for practical
reasons (e.g. limited or unreliable information [19]). Regarding the completeness of the network, it can
be an artefact of the extraction process [27], but it can alternatively reflect the nature of the modeled
system. This is for example the case of certain networks representing voting behaviors [5, 32]. More
generally, authors tend to derive complete signed graphs when they work with similarity (e.g. [1]) and
correlation (e.g. [25]) matrices, in order to use CC to perform a form of cluster analysis.

As showed by our examples from Section 3.2, their simplicity does not prevent complete unweighted
signed graphs to exhibit cases of multiple and structurally very different solutions. Moreover, the
literature shows that this can also be the case in sparse graphs [14, 16, 17], so this simplicity is not the
cause of this property either. Their simplicity makes complete unweighted graphs particularly suitable
in the context of this article, which is the first step of longer-term work. Indeed, it allows us to focus
on the most essential parameters when randomly generating graphs to constitute our dataset, and later
when studying their effect on the solution space of CC. Put differently, it allows us to postpone the
study of issues related to sparse graphs, such as density, degree distribution, and proportion of negative
edges. That is not to say that these parameters do not affect the solution space of CC, but rather that
they require their own study, in complement to the present one.

We propose a simple yet principled random model designed to produce complete unweighted networks

8 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

with built-in modular structure. Its R implementation is publicly available online1. This model relies
on only three parameters: n (number of vertices), `0 (initial number of modules) and qm (proportion
of misplaced edges, i.e. edges meant to be frustrated by construction). First, we produce a graph
containing n vertices, divided into `0 approximately equal-sized modules to form a partition P0. We
connect them with negative and positive edges, in such a way that this complete graph is perfectly
balanced. Second, we introduce some imbalance into the graph, so as to match parameter qm. For this
purpose, we randomly select a pair of well-placed negative and positive edges, then switch their signs
in order to make both of them misplaced. The process is repeated to other pairs of edges. On the
one hand, this mechanism causes a restriction on the upper bound of qm. But on the other hand, it
allows preserving the ratio of positive to negative edges in the graph, and therefore avoids introducing
another parameter in the model. It is important to note that the detected graph imbalance I(P) does
not necessarily match qm, as it may be possible to find a better partition P than the initial P0 due to
the introduction of imbalance.

5.2 Generated Data
It is well known that exact approaches solving most clustering problems (including ours) do not scale
well, even when looking for a single optimal solution, due to their NP-hard nature. In that respect,
according to our preliminary tests, our strengthened ILP model can handle CC on complete graphs
containing up to approximately 80 vertices in a reasonable time. However, in our case we must look for
all optimal solutions in order to retrieve the complete solution space of each considered instance of the
problem. Enumerating all optimal solutions through CPLEX requires a large amount of RAM and a long
execution time, which lowers the maximum network order that we can practically handle to 36 vertices.
It is worth noting that this graph order is on par with the other works dealing with spaces of optimal
solutions (e.g. up to 20 geographic units in [6]). Moreover, as far as our experiments go, our results
from Section 6.1 show no noticeable effect of the graph order on the number of solutions –whether this
holds for larger graphs remains to be tested, though.

Our experiments are conducted on random instances with a built-in modular structure, where `0 ∈
{2, 3, 4} and n ∈ {16, 20, 24, 28, 32, 36}. For replication, this generation process is repeated 100 times
for each parameter set. In total, we produce 10, 200 instances for `0 = 2; 7, 000 instances for `0 = 3;
and 5, 000 instances for `0 = 4, which makes a total of 22, 200 instances. All these data as well as the
solutions we identified are publicly available online2.

6 Results
We now investigate the space of optimal solutions. We first consider the generated dataset (Sections 6.1
to 6.3): we present the results in the order that our workflow follows (see Section 4), since it is a pipeline.
In addition, we apply our method to a small network of international relations (Section 6.4) to show its
relevance on real-world data.

Regarding the synthetic graphs, we present a selection of the most relevant results in Figures 4 to 9,
for `0 ∈ {2, 3, 4}. The complete results2 as well as our source code3 are available online, though. We
first describe these plots generically here, for matters of convenience, before interpreting them. In these
figures there are 3 subfigures (identified by a letter: a, b, c). Each subfigure is a block of 6 plots, and
focuses on a specific variable of interest, represented on the y-axis of the plots. The x-axis can either
represent parameter qm (Figures 4, 5, 6), or the detected graph imbalance I(P) (Figures 7, 8, 9). Each
plot in a subfigure corresponds to a different graph order n (number of vertices). The plots in Figure 8
represent the data as histograms, whereas the others contain violin plots, each one representing the
results from 100 replications for the same parameter set. In each violin plot, the interquartile range is
shown as a purple thick line, the mean as a green triangle and the median as a blue dot. In case of a
unique value, only the mean and median appear.

6.1 Number of Solutions
We first study how frequent multiple optimal solutions are. Subfigures 4a, 4b and 4c show the number of
optimal solutions as a function of qm, for different graph orders n, and for `0 = 2, 3 and 4, respectively.
Note that the y-axis uses a logarithmic scale to cope with the fast growth of the number of solutions. We
observe that for all `0 values and a small qm, there is a unique solution in most of the cases. Nonetheless,

1https://github.com/CompNet/SignedBenchmark
2https://doi.org/10.6084/m9.figshare.8233340
3https://github.com/CompNet/Sosocc

9 / 19

https://github.com/CompNet/SignedBenchmark
https://doi.org/10.6084/m9.figshare.8233340
https://github.com/CompNet/Sosocc

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

Table 1: Average and maximal numbers of optimal solutions obtained over 100 replications, for `0 = 2.

qm

n 16 20 24 28 32 36
Average Max. Average Max. Average Max. Average Max. Average Max. Average Max.

0.05 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1
0.10 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1
0.15 1.09 3 1.01 1 1.00 1 1.00 1 1.00 1 1.00 1
0.20 1.33 5 1.13 3 1.10 4 1.02 2 1.03 2 1.00 1
0.25 2.71 23 1.95 6 1.71 18 1.35 4 1.32 6 1.15 6
0.30 4.63 36 4.04 20 3.23 17 3.49 19 2.51 16 2.25 11
0.35 7.02 119 6.91 113 5.75 75 5.12 33 5.73 39 5.93 72
0.40 6.16 69 6.94 54 5.79 41 6.98 39 8.75 64 6.80 60
0.45 5.77 34 5.83 38 9.58 151 6.31 44 6.94 72 5.33 34
0.50 5.87 45 6.89 46 5.38 51 9.39 135 5.63 43 9.82 159
0.55 6.32 150 5.90 73 5.85 28 6.99 58 7.02 47 6.27 64
0.60 6.05 53 6.23 71 7.66 45 8.72 91 5.98 36 9.41 116
0.65 8.23 74 5.99 56 8.59 93 5.87 52 7.31 62 8.28 49
0.70 6.79 48 9.18 75 6.67 107 6.74 50 11.42 182 5.94 31
0.75 8.62 78 6.95 84 11.42 171 12.3 204 9.30 108 10.52 68
0.80 20.01 361 21.53 720 17.05 202 17.1 183 17.93 321 14.82 127
0.85 77.07 2,948 63.37 1,488 43.13 917 37.21 473 30.18 435 31.00 347
0.90 4,946.40 10,009 3,610.40 13,403 10,811.50 71,875 2,529.40 8,150 7,196.00 65,667 588.30 2,767

when qm increases, i.e. when we introduce more misplaced edges, multiple optimal solutions are more
and more frequent (see Table 1). There is a unique optimal solution in 45% of the graph instances
generated for `0 = 2, 28% for `0 = 3 and 21% for `0 = 4. These proportions, completed by visual
inspection, indicate that there are more optimal solutions when `0 increases, despite the upper bound
restriction of qm mentioned in Section 5.1.

This fact can be explained by considering the detected graph imbalance I(P) as a function of qm,
as illustrated in Figure 5. For all `0 values, we observe that when qm increases, I(P) also increases for
small qm values, but then reaches a plateau. Yet, one would expect the imbalance to directly depend on
the number of misplaced edges introduced in the graph. However, when qm exceeds some threshold, the
number of misplaced edges (relative the initial partition) becomes so large that it provides some form of
flexibility to graph partitioning. Consequently, even if these misplaced edges are randomly distributed,
it becomes possible to partition the graph into a larger number of smaller modules allowing to reach a
lower imbalance than expected (though still high). In addition, this flexibility also allows finding several
equally good partitions into such small modules, which leads to multiple optimal solutions. This is
illustrated in Figure 6, which displays the number of detected modules as a function of the number of
misplaced edges qm. One can observe an increase in the number of detected modules and/or in their
dispersion when qm increases, up to a certain point. We also note that this effect is stronger when the
initial number of modules `0 increases.

We expected the order of the graph to affect the number of solutions, as one could suppose that
a larger graph offers more possible partitions. However, this does not seem to be the case in our
results, at least for `0 = 2, as the trends observed in Subfigure 4a and Table 1 are very similar for all
considered graph orders. There seems to be a slight increase for `0 = 3 and `0 = 4, though, as shown
by Subfigures 4b and 4c, respectively. This is apparent for intermediate values of qm, but at this point
it is not clear whether this holds for its other values. We adopt a different angle by considering the
number of solutions as a function of the detected imbalance I(P) in Figure 7. As for Figure 4, note
that the y-axis uses a logarithmic scale. This figure confirms that the number of solutions tends to
increase with the imbalance, whereas the graph order does not have a clear effect. For instance, when
considering I(P) = [0.20, 0.25[in Subfigure 7b, we see an alternation of increase and decrease in both
the average number of solutions and their dispersion when n increases.

To conclude this part, our experiment reveals that it is possible to obtain many optimal solutions
when solving the CC problem on certain networks. If the order of the graph does not seem to affect
the number of solutions much, on the contrary the graph imbalance certainly plays a key role. A larger
imbalance generally leads to more optimal solutions, and in addition our plots show that the dispersion
of this number also increases, resulting in extreme values. Thus, it certainly seems necessary to assess
the multiplicity of solutions in case of relatively imbalanced networks. From a practical point of view
though, certain types of real-world networks are known to have a low imbalance [35]. In this case,
identifying all optimal solutions might not seem necessary. But there is no absolute guarantee to get a

10 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ●

●
● ● ● ● ●

● ● ●
●

●

●

Graph order=16

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●

●

Graph order=20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ●

●
● ●

●

● ●
●

● ●
● ●

●

Graph order=24

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ●

●
●

●
●

●
●

●
● ●

●
●

●

Graph order=28

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ● ●

●
● ●

● ● ●
● ● ●

●
●

Graph order=32

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

● ● ● ● ● ●

● ●
●

●
● ●

● ● ● ●

●

Graph order=36

Proportion of misplaced links (qm) Proportion of misplaced links (qm) Proportion of misplaced links (qm)

Proportion of misplaced links (qm) Proportion of misplaced links (qm) Proportion of misplaced links (qm)

a)
N

u
m

b
e
r

o
f

so
lu

ti
o
n
s

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

●

●
● ● ● ●

● ● ●
●

●

●

Graph order=16

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

● ●

●
● ●

● ● ● ● ●
●

●

Graph order=20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

● ●

●

●
● ●

●
● ● ●

● ●

Graph order=24

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

● ●

●
●

● ● ● ●
● ● ● ●

Graph order=28

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

● ●

●

● ●

●
●

●
● ● ● ●

Graph order=32

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

● ● ●

●

● ● ●
●

●

●
●

●

Graph order=36

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

b)

Proportion of misplaced links (qm) Proportion of misplaced links (qm)

Proportion of misplaced links (qm)Proportion of misplaced links (qm)

Proportion of misplaced links (qm) Proportion of misplaced links (qm)

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

● ●

● ● ● ● ●

●

Graph order=16

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

●
●

●
●

●
● ●

●

Graph order=20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

●

● ●

●
●

● ●

●

Graph order=24

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

● ●
●

● ●
●

●

●

Graph order=28

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

●

●

● ● ● ● ●
●

Graph order=32

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

●

●

● ● ● ●
● ●

●

Graph order=36

Proportion of misplaced links (qm)

c)

Proportion of misplaced links (qm)

Proportion of misplaced links (qm)Proportion of misplaced links (qm)

Proportion of misplaced links (qm) Proportion of misplaced links (qm)

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

Figure 4: Number of solutions (log-scaled) as a function of qm, (a) for `0 = 2, (b) for `0 = 3 and (c) for `0 = 4.
Notice that an x-axis value may be empty if the parameter set is not defined or no data is available. Plots available
at 10.6084/m9.figshare.8233340 under CC-BY license.

0
10

30

0.05 0.35 0.65

●

●

●

●

●
●
● ● ● ● ● ● ● ● ● ●

●

0
10

30

0.05 0.35 0.65

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

0
10

30

0.05 0.35 0.65

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

0
10

30

0.05 0.35 0.65

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

0
10

30

0.05 0.35 0.65

●

●

●

●

●

●
●
● ● ● ● ● ● ● ● ● ●

0
10

30

0.05 0.35 0.65

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

a)

D
e
te

ct
e
d
 G

ra
p
h
 I
m

b
a
la

n
ce

Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

0
10

30

0.05 0.3 0.5

●

●
●

● ● ● ● ● ● ● ●

● 0
10

30

0.05 0.3 0.5

●

●

●
●

● ● ● ● ● ● ●

●

0
10

30

0.05 0.3 0.5

●

●

●
●

● ● ● ● ● ● ● ●

0
10

30

0.05 0.3 0.5

●

●

●
●

● ● ● ● ● ● ● ●

0
10

30

0.05 0.3 0.5

●

●

●

●
● ● ● ● ● ● ● ●

0
10

30

0.05 0.3 0.5

●

●

●

●
●

● ● ● ● ● ● ●

b) Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=32

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●
● ● ● ● ● ●

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●
● ● ● ● ● ●

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●
●

● ● ● ● ●

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●
●

● ● ● ● ●

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●

●
● ● ● ● ● ●

0
1

0
3

0

0.05 0.2 0.3 0.4

●

●

●
● ● ● ● ● ●

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

c) Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Figure 5: Detected graph imbalance I(P) as a function of qm, (a) for `0 = 2, (b) for `0 = 3 and (c) for `0 = 4.
Notice that an x-axis value may be empty if the parameter set is not defined or no data is available. Plots available
at 10.6084/m9.figshare.8233340 under CC-BY license.

unique, or even few optimal solutions when the imbalance is low. For instance, we get a maximum of
55 (and an average of 4.25) solutions for `0 = 3, n = 16, I(P) = [0.10, 0.15[, which is already quite
a large number of solutions for such a low imbalance. This motivates us to go on with our study and

11 / 19

https://doi.org/10.6084/m9.figshare.8233340
https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ● ●
●

● ● ● ● ● ●
●

●
● ● ● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ● ●
●

● ● ●
● ● ● ● ● ● ● ● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ● ●
● ●

●
● ● ● ● ● ● ● ● ● ●

2
6

10
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

● ● ●
● ●

●
● ● ● ● ● ● ● ● ● ●

Proportion of misplaced
links (qm)

Graph order=16 Graph order=20 Graph order=24

Graph order=28 Graph order=32 Graph order=36

a)
N

u
m

b
e
r

o
f

D
e
te

ct
e
d
 M

o
d
u
le

s

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

●
●

● ●
● ● ● ● ● ● ●

●

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

●
● ●

● ●
● ● ● ● ● ●

●

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

● ●
●

●
● ● ● ● ● ●

● ●

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

● ●

●
●

●
● ● ● ● ● ● ●

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

● ●
●

●
●

● ● ● ●
●

● ●

2
6

10
14

0.05 0.15 0.25 0.35 0.45 0.55

● ●
●

●
●

●
● ● ● ● ● ●

Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

b)

N
u
m

b
e
r

o
f

D
e
te

ct
e
d
 M

o
d
u
le

s

2
6

10
14

0.05 0.2 0.3 0.4

●
●

● ●
● ● ●

●

●

2
6

10
14

0.05 0.2 0.3 0.4

●
●

●
●

● ● ●
●

●

2
6

10
14

0.05 0.2 0.3 0.4

●
●

●
●

●
●

● ●

●

2
6

10
14

0.05 0.2 0.3 0.4

●

●

●
●

● ● ● ●

●

2
6

10
14

0.05 0.2 0.3 0.4

●

●

●
●

●
● ● ● ●

2
6

10
14

0.05 0.2 0.3 0.4

●
●

●

●
● ● ●

●
●

Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

Proportion of misplaced
links (qm)

c)

Figure 6: Number of detected modules as a function of qm, (a) for `0 = 2, (b) for `0 = 3, and (c) for `0 = 4. No-
tice that an x-axis value may be empty if the parameter set is not defined or no data is available. Plots available at
10.6084/m9.figshare.8233340 under CC-BY license.

consider the diversity of optimal solutions.

6.2 Diversity of the Solutions
Our second question is how different the obtained solutions are, in case of multiplicity. We answer
it by analyzing the numbers of classes of solutions produced by our framework. Remember that, by
construction, a class is a cluster of highly similar solutions. Figure 8 displays the proportions of cases
for which there is a single solution class, as a function of the detected imbalance I(P). Note that we
do not include the instances for which there is only a unique optimal solution, as they were already
discussed before. This results in the absence of certain histogram bars in the plot.

For all values of `0, it appears that our method always detects a single class for slightly imbalanced
graphs, and that the number of classes increases with the imbalance. There is an exception for `0 = 2
though, as the proportion of single class cases increases again for I(P) = [0.30, 0.35[in small graphs.
This is surprising, as it corresponds to the largest number of solutions (see Subfigure 7a), but could
be explained by the concept of elongated class developed next. Overall, single class instances represent
66% of the cases for `0 = 2, 68% for `0 = 3 and 74% for `0 = 4.

To summarize our findings up to now, graphs with small imbalance tend to lead to a unique solution,
and even when there are several, these tend to constitute a single class (98% of the cases with a detected
imbalance I(P) ∈ [0.05, 0.15[and `0 ∈ {2, 3, 4}). Again, since certain real-world networks exhibit such
a small imbalance, this seems to indicate that it is not necessary to explore further the solution space in
this case. However, this statement does not hold in general, as many of our generated graphs do have
a higher imbalance. Moreover, the results shown in Figure 8 do not reflect the inner structure of the
detected classes, which can take an “elongated” shape. If such a class is indeed a dense group of locally

12 / 19

https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

●

● ● ● ●

●

●

●

Graph order=16

● ● ● ● ●

●

●

●

Graph order=20

● ● ● ● ●

●

●

●

Graph order=24

● ● ● ● ●

●

●

●

Graph order=28

● ● ● ● ● ●

●

●

Graph order=32

● ● ● ● ● ●

●
●

Graph order=36

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

a)

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

● ●

●
●

●

Graph order=16

● ●

●
●

●

Graph order=20

● ●

●

●

●

Graph order=24

● ●

●
●

●

Graph order=28

● ●

●

●

●

Graph order=32

● ● ●

●

●

Graph order=36

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

b)

N
u
m

b
e
r

o
f

so
lu

ti
o
n
s

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
,0

.0
5[

[0
.0

5,
0.

10
[

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

●

●

●

●

Graph order=16

●

●
●

●

Graph order=20

●

●

●

●

Graph order=24

●

● ●

●

Graph order=28

●

●

●

●

Graph order=32

●

●

● ●

Graph order=36

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

C)

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

Detected graph imbalance I(P)

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
,0

.0
5[

[0
.0

5,
0.

10
[

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

200

2000

20

2

Figure 7: Number of solutions (log-scaled) as a function of I(P), (a) for `0 = 2, (b) for `0 = 3 and (c) for
`0 = 4. Notice that an x-axis value may be empty if the parameter set is not defined or no data is available.
Figures available at 10.6084/m9.figshare.8233340 under CC-BY license.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

[0
.2

5,
0.

30
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

[0
.3

0,
0.

35
[

[0
.3

5,
0.

40
[

a)

Detected graph imbalance I(P) Detected graph imbalance I(P)

Detected graph imbalance I(P) Detected graph imbalance I(P)

Detected graph imbalance I(P) Detected graph imbalance I(P)

Graph order=16 Graph order=20

Graph order=24 Graph order=20

Graph order=32 Graph order=36

P
ro

p
o
rt

io
n
 o

f
si

n
g
le

cl
a
ss

 c
a
se

s

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

b) Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

c)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

[0
.2

0,
0.

25
[

[0
.1

5,
0.

20
[

[0
.1

0,
0.

15
[

Detected graph imbalance I(P)

[0
.0

5,
0.

10
[

Graph order=16 Graph order=20

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Figure 8: Proportion of single-class cases as a function of the detected imbalance, (a) for `0 = 2, (b) for `0 = 3
and (c) for `0 = 4. Notice that an x-axis value may be empty if the parameter set is not defined or no data is
available. Plots available at 10.6084/m9.figshare.8233340 under CC-BY license.

similar solutions, its most extreme members are nevertheless quite different. Our core part analysis is
meant to study this aspect, and more generally to assess class quality.

13 / 19

https://doi.org/10.6084/m9.figshare.8233340
https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

6.3 Analysis of the Core Parts
We now turn to the characterization and comparison of the classes, through the analysis of their core
parts. As a reminder, the core part corresponds to the maximal subset of vertices that always belong
to the same modules over all solutions constituting the class. We express the size of a core part in
terms of proportion of the graph order n (number of vertices). Our assumption is that, for a class to be
considered as cohesive, its core part should be large enough. On the contrary, if the classes are clearly
separated, the overall core part (processed over all solutions) should be small.

k=1 k=1 2 2 3 4 5 7 9 2 3 4 5 7

●
●

●

●
●

●
● ●

●

●

●

● ●

●
●

●

●

Graph order=16

2 3 4 6 8 2 3 4 5 6 7 8 9 2

● ●

●
● ●

● ● ●
●

●
● ●

● ● ● ● ●

●

●
●

Graph order=20

2 5 2 3 4 5 6 7 2 3 4 5 6 9

● ● ● ● ●
● ● ● ● ●

● ●
●

●
●

● ● ●

●

● ● ●

●

●

Graph order=28

1012 10 12 14

k=1

k=1k=1 k=1 k=1

k=1 k=1

[0.20,0.25[[0.25,0.30[[0.30,0.35[[0.35,0.40[

I(P)=[0.15,0.20[[0.20,0.25[[0.25,0.30[[0.30,0.35[[0.35,0.40[

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

10

[0.35,0.40[[0.30,0.35[[0.25,0.30[I(P)=[0.15,0.20[

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

k=1 k=1 k=1 k=1 k=1

I(P)=
[0.15,0.20[]

a)

C
la

ss
 c

o
re

 p
a
rt

 s
iz

e
 (

%
)

2 2 3 4 2 3 4 5 6 7 8 9 2 4 5 7 9

●
● ●

●
●

●

●

●
● ● ●

●
●

●
● ●

●
●

●
● ●

●

Graph order=24

[0.35,0.40[[0.30,0.35[[0.25,0.30[[0.20,0.25[

k=1 k=1k=1

2 3 2 3 4 5 6 7 8 2 3 4 5 6 7 8

●
● ●

● ● ● ● ● ● ● ●
●

●
●

●
● ● ● ●

●

●

● ●

Graph order=32

2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8

Graph order=36

10 13

[0.35,0.40[[0.30,0.35[[0.20,0.25[[0.25,0.30[

k=1

[0.25,0.30[[0.30,0.35[[0.35,0.40[

12k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1

I(P)=[0.15,0.20[

●

●

●

●
● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ●
● ●

●
● ●

2 9 10

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

2 3 4 2 3 4 5 6 2 3

●
● ● ●

●

●
●

●
● ● ●

●

●

●

Graph order=16

2 2 3 4 5 6 9 2 3 4 5 6 7

● ●

●
● ●

●

●

● ●

●

●
● ● ●

●

● ●

Graph order=20

2 4 2 3 4 5 7 2 3 4 5 6 7 8 9

● ●
●

● ●
●

● ●
● ●

●
● ● ● ● ●

● ●
● ●

Graph order=32

2 3 2 3 4 5 6 7 8 9

● ● ●
●

●
● ●

● ●
●

●
● ●

●
●

Graph order=36

I(P)=[0.10,0.15[

b)

2 2 3 4 8 2 3 4 5 6 8 9

●
●

●
● ● ●

●

●

●
● ●

●
●

●
●

●

Graph order=24

[0.15,0.20[[0.20,0.25[

2 2 3 4 7 2 3 4 5 6 7 8 9

● ●
● ● ●

● ●

●
● ● ● ● ●

● ● ● ●
● ●

Graph order=28

[0.15,0.20[[0.20,0.25[I(P)=[0.10,0.15[I(P)=[0.10,0.15[

12 1311k=1 k=1 k=1 k=1 k=1

k=1 k=1 k=1 k=1 k=1 k=1

k=1 k=1 k=1 k=1 k=1 k=115 11

16

10 1112 11

k=1

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

C
la

ss
 c

o
re

 p
a
rt

 s
iz

e
 (

%
)

[0.15,0.20[[0.20,0.25[

[0.15,0.20[[0.20,0.25[[0.15,0.20[[0.20,0.25[I(P)=[0.10,0.15[

I(P)=[0.10,0.15[[0.15,0.20[[0.20,0.25[

I(P)=[0.10,0.15[

2 2 3 4 6

●

●
●

●

●

●
●

●

2 2 3 4 5

●

● ●

●

● ● ● ●

2 1 2 3 4 7 1 2 3 4 5 9

●

●

●

●
●

●
●

●

●

●

●

●
●

●

1 2 3 4 1 2 3 4 5 6 7 8 11

●

●

● ●

●

●

●
● ●

●

●

●
● ● ●

2 1 2 3 7 1 2 3 4 5 6 7 8 10 11

● ● ●

●
●

●
●

●
●

● ● ● ●
● ● ● ●

I(P)=
[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[

I(P)=
[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[

I(P)=
[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[

c)

2 2 3 4 7 11 1 2 5

● ●
●

●

●
●

● ● ●

●

●

●

k=1k=1k=1k=1k=1

k=1 k=1 k=1 k=1 k=1

k=1

k=1 k=1 k=1 k=1

I(P)=

[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[
I(P)=

[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[

I(P)=

[0,0.05[[0.05,0.10[[0.10,0.15[[0.15,0.20[

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

0.
0

1.
0

0.
2
0.
4
0.
6
0.
8

Graph order=24 Graph order=28

Graph order=32 Graph order=36

Graph order=16 Graph order=20

Figure 9: Proportion of the graph covered by the class core parts, as a function of the detected imbalance I(P)
and number of classes k, (a) for `0 = 2, (b) for `0 = 3 and (c) for `0 = 4. Notice that an x-axis value may be
empty if the parameter set is not defined or no data is available. Plots available at 10.6084/m9.figshare.8233340
under CC-BY license.

Figure 9 shows the distribution of class core part sizes as a function of k, the number of solution
classes (bottom x-axis). In addition, the values are grouped using the detected imbalance I(P) (top
x-axis of each plot). Like before, these plots do not show cases with only a unique solution.

Our first observation is that the core part size seems to increase with the number of classes k, at
least until it reaches a plateau. This means that the classes are more and more cohesive internally.
Moreover, the dispersion also decreases when k increases. In the single-class case, the core part size
can be extremely small, close to zero. This indicates that, in certain cases, the cluster analysis is not
conclusive: the Silhouette score is too low (below the threshold) to conclude there are several classes, but
the single class is not cohesive, and contains some sensibly different solutions. For a specific real-world
application, one would need to manually consider this situation.

Let us now conclude this section related to synthetic networks. We empirically identified four different

14 / 19

https://doi.org/10.6084/m9.figshare.8233340

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

types of solution spaces. In the first, which tends to happen in only slightly imbalanced graphs, there is
only one optimal solution. The second type corresponds to the case where there are multiple solutions
distributed over several distinct and cohesive classes. This tends to happen for larger imbalance values.
In the third type, we have a single class containing multiple solutions that are very similar, resulting in
a large core. A small core means that this class is not cohesive, and corresponds to the fourth type.
This typology shows that the answers to our initial questions are multiple and depend on the considered
graph. Our work highlights the necessity to develop a method allowing to handle these different cases.

6.4 Real-World Example

Solution 1 Solution 2 Solution 3

Solution 4 Solution 5 Solution 6

Iran and Hezbollah
Kurds

Russia

Iraq

Syrian Gov.

Turkey

Syrian Rebels

ISIS

Jabhat al-Nusra

Saudi Arabia, Gulf States

U.S. and Allies

b) c)

e)

d)

f) g)

a)

Figure 10: a) Signed graph representing the Syria conflict in 2015. b–g) show optimal solutions. The graph
is complete, but for the sake of clarity, only positive edges are shown (the missing ones thus represent negative
edges). Colored vertices constitute the core part in a) (non-core vertices are white), and the module assignments
for the other graphs. Figure available at 10.6084/m9.figshare.8233340 under CC-BY license.

To show the relevance of the questions at the origin of our work, as well as the usefulness of our
method, we further analyze a small real-world graph representing the relations between the main actors
of the ongoing Syrian conflict. We choose this dataset because of its size, which eases the interpretation
of the obtained CC solutions, but also because it depicts a very interesting situation, as the affiliations
of the involved parties are multiple: they are positioned relative to terrorist group ISIS, the Syrian
government, and various other geopolitical interests.

Our source is the 2015 press article A Guide to Who Is Fighting Whom in Syria published by Keating
& Kirk in the online news magazine Slate4, which aims at depicting the Syrian situation as it was in
2015. This is a journalistic work, not an academic work, and it contains certain simplifications, for
instance several distinct entities are collapsed together to ease understanding. However, we deem it
sufficient in our case, as we are not Political Science or International Relations scholars ourselves, and
do not intend at making a thorough political analysis of the situation, but simply use the article content
for illustration purposes.

The article is constituted of a chart and its textual description. The chart is an update of the so-
called Middle East Friendship Chart, which lists the actors of the conflict as well as the nature of their
interactions: enmity, friendship, or complicated. The latter do not correspond to neutral relationships,
but rather to undetermined ones, corresponding to a mix of hostile and friendly interactions. The
associated text discusses this chart and explains the undetermined relationships. To build a signed graph
based on this article, we interpret the chart as the adjacency matrix of a signed graph, representing
the operating forces by vertices and their enmity and friendship relationships with negative and positive
edges, respectively. Moreover, to keep the network complete and for the sake of illustration, we resolve
undetermined relationships into hostile or friendly ones, by leveraging the analysis carried in the text.
This results in the network presented in Figure 10.

We apply our framework to the Syria graph, like we did with the synthetic networks. Solving the
CC problem yields 6 optimal solutions, each containing 7 frustrated edges (i.e. 12% of the edges).

4www.slate.com/blogs/the_slatest/2015/10/06/syrian_conflict_relationships_explained.html

15 / 19

https://doi.org/10.6084/m9.figshare.8233340
www.slate.com/blogs/the_slatest/2015/10/06/syrian_conflict_relationships_explained.html

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

We describe and discuss each of them for the sake of completeness. In all the solutions, the actors
are positioned relative to terrorist group ISIS, which is always detected as a single-vertex module. On
top of that, the first to fifth solutions are bipolar: they contrast a pro- (Syrian government, Russia,
Iran-Hezbollah, and Iraq) and an anti-Syrian government modules, whereas the module assignments
of the rest of the actors (Kurds, Jabhat al-Nusra, and ISIS) are not consistent. The sixth (and last)
solution is tripolar: the anti-Syrian government module is split in two: a pro-Kurds module (Kurds, U.S.
and Allies, and Saudi Arabia-Gulf States) and an anti-Kurds one (Jabhat al-Nusra, Syrian rebels, and
Turkey). Overall, the solution space shows that even for solutions differing only in the assignment of
one vertex, the interpretation may change substantially (e.g. whether Kurds forms an alliance with the
Syrian government or not). This confirms the necessity to explore the solution space.

When performing the cluster analysis over the space of optimal solutions, we obtain a maximal
Silhouette score of 0.315 for k = 2, which corresponds to the two types of solutions identified manually
above (1st–5th vs. 6th). Although this value is below Kaufman & Rousseeuw’s 0.51 threshold (cf.
Section 4.3), this clustering makes a lot of sense here, and shows that this threshold is not necessarily
always relevant. The overall core part for these classes is represented by the vertex colors in Subfig-
ures 10a: each color corresponds to a maximal group of vertices always assigned to the same module
over all solutions. This highlights how core parts can be used to interpret the differences/similarities
between the solution classes. Indeed, the figure reflects common knowledge regarding the geopolitical
situation: the tight relationship between the USA and Saudi Arabia, Turkey supporting the Free Syrian
Army to create a buffer zone in northern Syria from Kurds, and the disagreement between the USA and
Turkey regarding Kurds. Interestingly, ISIS is a core vertex, as it is never placed with other vertices.

7 Conclusion
In this work, we empirically studied the space of optimal solutions for the CC problem. We randomly
generated a collection of complete synthetic networks and identified all their optimal solutions to obtain
their respective solution spaces. We then analyzed these spaces through our cluster analysis-based
framework. Our main finding is the identification of 4 different situations: 1) unique solution; 2) single
class of similar solutions; 3) several classes of similar solutions; 4) multiple solutions without a clear
clustering structure. We also showed that slightly imbalanced networks (I(P)m < 0.15) tend to be of
type 1 or 2, whereas a higher imbalance leads to more solutions, and often several classes. Finally, we
illustrated the usefulness of our framework on a small real-world network.

Our work can be extended in several ways. First, the most straightforward perspectives are to apply
our framework to incomplete and/or weighted signed graphs; and to consider quasi-optimal solutions
for large graphs, following the example of Good et al. [24] with unsigned networks. Second, certain
steps of our pipeline could be improved. The detection of single-class cases is not satisfying, as it
can lead to undetermined situations. Maybe certain solution spaces do not have a crisp clustering
structure, in which case a fuzzy clustering method could be more appropriate. Third, we plan to do a
thorough investigation in order to determine whether core vertices possess certain specific topological
properties compared to other vertices. Fourth, our results could be used to improve the search for
optimal solutions. From a practical perspective, it is not possible to exhaustively enumerate all optimal
solutions. However, we could leverage the concept of class of similar solutions to design algorithms
able to exploit a known optimal solution and find optimal solutions belonging to other classes. Such
an approach would produce a set of diverse optimal solutions offering a better summary of the whole
solution space than the traditional single optimal solution discussed in this paper. Fifth, we could
work directly on the CC problem itself to reduce the number of optimal solutions. This can be done
by optimizing a different imbalance measure (e.g. cycle- [11] or walk-based measures [20]), capable
to discriminate between partitions otherwise considered optimal by the classic imbalance used in this
article. It is also possible to add extra constraints in the problem formulation, e.g. by requiring modules
to be internally connected in a stronger way (similarly to [8] for the clique partitioning problem).

Acknowledgments
This research benefited from the support of Agorantic research federation (FR 3621), as well as the
FMJH (Jacques Hadamard Mathematics Foundation) through PGMO (Gaspard Monge Program for
Optimisation and operational research), and from the support to this program from EDF, Thales,
Orange and Criteo.

16 / 19

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

References
[1] S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian. “Fair Correlation Clustering”. In: arXiv cs.DS

(2020), p. 2002.02274. url: https://arxiv.org/abs/2002.02274.
[2] Z. Ales, A. Knippel, and A. Pauchet. “Polyhedral Combinatorics of the K-partitioning Problem with

Representative Variables”. In: Discrete Applied Mathematics 211 (2016), pp. 1–14. doi: 10.1016/j.
dam.2016.04.002.

[3] G. Appa. “On the uniqueness of solutions to linear programs”. In: Journal of the Operational Research
Society 53.10 (2002), pp. 1127–1132. doi: 10.1057/palgrave.jors.2601320.

[4] S. Aref, A. J. Mason, and M. C. Wilson. “A modeling and computational study of the frustration index
in signed networks”. In: Networks 75.1 (2019), pp. 95–110. doi: 10.1002/net.21907.

[5] N. Arinik, R. Figueiredo, and V. Labatut. “Multiple partitioning of multiplex signed networks”. In: Social
Networks 60 (2020), pp. 83–102. doi: 10.1016/j.socnet.2019.02.001.

[6] J. L. Arthur, M. Hachey, Sahr K., M. Huso, and A. R. Kiester. “Finding all optimal solutions to the
reserve site selection problem”. In: Environmental and Ecological Statistics 4.2 (1997), pp. 153–165. doi:
10.1023/a:1018570311399.

[7] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: 43rd Annual IEEE Symposium on
Foundations of Computer Science. 2002, pp. 238–247. doi: 10.1109/SFCS.2002.1181947.

[8] S. Benati, J. Puerto, and A. M. Rodríguez-Chía. “Clustering data that are graph connected”. In: European
Journal of Operational Research 261.1 (2017), pp. 43–53. doi: 10.1016/j.ejor.2017.02.009.

[9] M. Brusco, P. Doreian, A. Mrvar, and D. Steinley. “Two Algorithms for Relaxed Structural Balance Parti-
tioning”. In: Sociological Methods & Research 40.1 (2010), pp. 57–87. doi: 10.1177/0049124110384947.

[10] M. Brusco and D. Steinley. “K-balance partitioning: An exact method with applications to generalized
structural balance and other psychological contexts”. In: Psychological Methods 15.2 (2010), pp. 145–
157. doi: 10.1037/a0017738.

[11] D. Cartwright and F. Harary. “Structural balance: A generalization of Heider’s theory”. In: Psychological
Review 63 (1956), pp. 277–293. doi: 10.1037/h0046049.

[12] P. Damaschke. “Fixed-Parameter Enumerability of Cluster Editing and Related Problems”. In: Theory of
Computing Systems 46.2 (2010), pp. 261–283. doi: 10.1007/s00224-008-9130-1.

[13] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling. “Generating Multiple Solutions for Mixed Integer
Programming Problems”. In: International Conference on Integer Programming and Combinatorial Opti-
mization. Vol. 4513. Lecture Notes in Computer Science. 2007, pp. 280–294. doi: 10.1007/978-3-540-
72792-7_22.

[14] J. A. Davis. “Clustering and structural balance in graphs”. In: Human Relations 20.2 (1967), pp. 181–187.
doi: 10.1177/001872676702000207.

[15] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. “Correlation clustering in general weighted
graphs”. In: Theoretical Computer Science 361.2-3 (2006), pp. 172–187. doi: 10.1016/j.tcs.2006.
05.008.

[16] P. Doreian, V. Batagelj, and A. Ferligoj. Generalized Blockmodeling. Cambridge University Press,
2005. url: https : / / www . cambridge . org / core / books / generalized - blockmodeling /
E9B040215C13C1819EA98F2F932BE0CE.

[17] P. Doreian and A. Mrvar. “A partitioning approach to structural balance”. In: Social Networks 18.2 (1996),
pp. 149–168. doi: 10.1016/0378-8733(95)00259-6.

[18] P. Doreian and A. Mrvar. “Structural balance and signed international relations”. In: Journal of Social
Structure 16 (2015), p. 1. doi: 10.21307/joss-2019-012.

[19] J. Esteban, L. Mayoral, and D. Ray. “Ethnicity and Conflict: An Empirical Study”. In: American Economic
Review 102.4 (2012), pp. 1310–1342. doi: 10.1257/aer.102.4.1310.

[20] E. Estrada. “Rethinking structural balance in signed social networks”. In: Discrete Applied Mathematics
268 (2019), pp. 70–90. doi: 10.1016/j.dam.2019.04.019.

[21] R. M. V. Figueiredo, M. Labbé, and C. C. de Souza. “An exact approach to the problem of extracting
an embedded network matrix”. In: Computers & Operations Research 38.11 (2011), pp. 1483–1492. doi:
10.1016/j.cor.2011.01.003.

[22] R. Figueiredo and G. Moura. “Mixed Integer Programming Formulations for Clustering Problems Related
to Structural Balance”. In: Social Networks 35.4 (2013), pp. 639–651. doi: 10.1016/j.socnet.2013.
09.002.

[23] S. Fortunato and D. Hric. “Community detection in networks: A user guide”. In: Physics Reports 659
(2016), pp. 1–44. doi: 10.1016/j.physrep.2016.09.002.

17 / 19

https://arxiv.org/abs/2002.02274
https://doi.org/10.1016/j.dam.2016.04.002
https://doi.org/10.1016/j.dam.2016.04.002
https://doi.org/10.1057/palgrave.jors.2601320
https://doi.org/10.1002/net.21907
https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/10.1023/a:1018570311399
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1016/j.ejor.2017.02.009
https://doi.org/10.1177/0049124110384947
https://doi.org/10.1037/a0017738
https://doi.org/10.1037/h0046049
https://doi.org/10.1007/s00224-008-9130-1
https://doi.org/10.1007/978-3-540-72792-7_22
https://doi.org/10.1007/978-3-540-72792-7_22
https://doi.org/10.1177/001872676702000207
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.tcs.2006.05.008
https://www.cambridge.org/core/books/generalized-blockmodeling/E9B040215C13C1819EA98F2F932BE0CE
https://www.cambridge.org/core/books/generalized-blockmodeling/E9B040215C13C1819EA98F2F932BE0CE
https://doi.org/10.1016/0378-8733(95)00259-6
https://doi.org/10.21307/joss-2019-012
https://doi.org/10.1257/aer.102.4.1310
https://doi.org/10.1016/j.dam.2019.04.019
https://doi.org/10.1016/j.cor.2011.01.003
https://doi.org/10.1016/j.socnet.2013.09.002
https://doi.org/10.1016/j.socnet.2013.09.002
https://doi.org/10.1016/j.physrep.2016.09.002

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

[24] B. H. Good, Y.-A. de Montjoye, and A. Clauset. “Performance of modularity maximization in practical
contexts”. In: Physical Review E 81.4 (2010), p. 046106. doi: 10.1103/PhysRevE.81.046106.

[25] F. Harary. “Signed graphs for portfolio analysis in risk management”. In: IMA Journal of Management
Mathematics 13.3 (2002), pp. 201–210. doi: 10.1093/imaman/13.3.201.

[26] IBM. IBM ILOG CPLEX 12.8 User Manual IBM Corporation. 2018. url: https://www.ibm.com/
analytics/cplex-optimizer.

[27] A. Ilany, A. Barocas, L. Koren, M. Kam, and E. Geffen. “Structural balance in the social networks of a wild
mammal”. In: Animal Behaviour 85.6 (2013), pp. 1397–1405. doi: 10.1016/j.anbehav.2013.03.032.

[28] P. Jain, R. Meka, and I. Dhillon. “Simultaneous Unsupervised Learning of Disparate Clusterings”. In:
Statistical Analysis and Data Mining 1.3 (2008), pp. 195–210. doi: 10.1002/sam.10007.

[29] P. Jensen. “Network-based predictions of retail store commercial categories and optimal locations”. In:
Physical Review E 74.3 (2006), 035101(R). doi: 10.1103/PhysRevE.74.035101.

[30] B. Karrer, E. Levina, and M. E. J. Newman. “Robustness of community structure in networks”. In: Physical
Review E 77.4 (2008). doi: 10.1103/physreve.77.046119.

[31] L. Kaufman and P. J. Rousseeuw. “Partitioning Around Medoids”. In: Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley & Sons, 2009. doi: 10.1002/9780470316801.ch2.

[32] S. Kropivnik and A. Mrvar. “An Analysis of the Slovene Parliamentary Parties Network”. In: Metodološki
Zvezki / Advances in Methodology and Statistics 12 (1996), pp. 209–216. url: http://dk.fdv.uni-
lj.si/metodoloskizvezki/Pdfs/Mz12KropivnikMrvar.pdf.

[33] A. Lancichinetti and S. Fortunato. “Consensus clustering in complex networks”. In: Scientific Reports 2.1
(2012). doi: 10.1038/srep00336.

[34] A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete Programming Problems”. In:
Econometrica 28.3 (1960), pp. 497–520. doi: 10.1007/978-3-540-68279-0_5.

[35] J. Leskovec, D. Huttenlocher, and J. Kleinberg. “Signed networks in social media”. In: SIGCHI Conference
on Human Factors in Computing Systems. 2010, pp. 1361–1370. doi: 10.1145/1753326.1753532.

[36] P. Liu, T.-D. Nguyen, X. Cai, and X. Jiang. “Finding Multiple Optimal Solutions to Optimal Load Distri-
bution Problem in Hydropower Plant”. In: Energies 5.5 (2012), pp. 1413–1432. doi: 10.3390/en5051413.

[37] M. MacMahon and D. Garlaschelli. “Community detection for correlation matrices”. In: Physical Review
X 5.2 (2015), p. 021006. doi: 10.1103/PhysRevX.5.021006.

[38] A. Mehrotra and M. A. Trick. “Cliques and clustering: A combinatorial approach”. In: Operations Research
Letters 22.1 (1998), pp. 1–12. doi: 10.1016/s0167-6377(98)00006-6.

[39] M. Meilă. “Comparing Clusterings by the Variation of Information”. In: 16th Annual Conference on
Learning Theory and 7th Kernel Workshop. Vol. 2777. Lecture Notes in Computer Science. Springer,
2003, pp. 173–187. doi: 10.1007/978-3-540-45167-9_14.

[40] M. Meilă. “Criteria for comparing clusterings”. In: Handbook of cluster analysis. Chapman and Hall/CRC,
2015, pp. 640–657. doi: 10.1201/b19706-36.

[41] N. P. Nguyen. “A Note on Clustering Difference by Maximizing Variation of Information”. In: International
Conference on Computational Social Networks. Vol. 9197. Lecture Notes in Computer Science. Springer,
2015, pp. 148–159. doi: 10.1007/978-3-319-21786-4_13.

[42] Q. Paris. “Multiple Optimal Solutions in Linear Programming Models”. In: American Journal of Agricul-
tural Economics 63.4 (1981), p. 724. doi: 10.2307/1241218.

[43] P. J. Rousseeuw. “Silhouettes: a Graphical Aid to the Validation of Cluster Analysis”. In: Journal of
Computational and Applied Mathematics 20 (1987), pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.

[44] F. J. C. T. de Ruiter, R. C. M. Brekelmans, and D. den Hertog. “The impact of the existence of multiple
adjustable robust solutions”. In:Mathematical Programming 160.1-2 (2016), pp. 531–545. doi: 10.1007/
s10107-016-0978-6.

[45] T. Zasĺavsky. “Balanced decompositions of a signed graph”. In: Journal of Combinatorial Theory, Series
B 43.1 (1987), pp. 1–13. doi: 10.1016/0095-8956(87)90026-8.

A ILP Model for CC on Weighted Signed Graphs
The CC problem can be modeled with ILP, as proposed by Demaine et al. [15] for the Uncapacitated
Clustering problem [38]. We include the model here for the sake of completeness, and our source code
is publicly available5. Note that the model can handle weighted graphs, but we use it on unweighted
ones in the context of this article.

5https://github.com/CompNet/ExCC

18 / 19

https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.1093/imaman/13.3.201
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1016/j.anbehav.2013.03.032
https://doi.org/10.1002/sam.10007
https://doi.org/10.1103/PhysRevE.74.035101
https://doi.org/10.1103/physreve.77.046119
https://doi.org/10.1002/9780470316801.ch2
http://dk.fdv.uni-lj.si/metodoloskizvezki/Pdfs/Mz12KropivnikMrvar.pdf
http://dk.fdv.uni-lj.si/metodoloskizvezki/Pdfs/Mz12KropivnikMrvar.pdf
https://doi.org/10.1038/srep00336
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.3390/en5051413
https://doi.org/10.1103/PhysRevX.5.021006
https://doi.org/10.1016/s0167-6377(98)00006-6
https://doi.org/10.1007/978-3-540-45167-9_14
https://doi.org/10.1201/b19706-36
https://doi.org/10.1007/978-3-319-21786-4_13
https://doi.org/10.2307/1241218
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s10107-016-0978-6
https://doi.org/10.1007/s10107-016-0978-6
https://doi.org/10.1016/0095-8956(87)90026-8
https://github.com/CompNet/ExCC

Arinik et al. – Analyzing the Optimal Solution Space of the Correlation Clustering Problem

For an undirected signed graph, let E− and E+ the sets of negative and positive edges in the signed
graph, respectively. Moreover, a signed graph is weighted if there is a function w : E− ∪ E+ → IR+.

For all vertices i, j ∈ V : i < j, a binary set is first defined to describe pairs of vertices that are in
the same module

xij =
{

1, if i and j are in a same module,
0, otherwise.

Then, the ILP formulation of the CC problem for weighted signed graphs is written as follows:

Min
∑

i,j∈V :ij∈E−

wijxij +
∑

i,j∈V :ij∈E+

wij(1− xij) (2)

s.t. xij + xjr − xir ≤ 1, ∀i < j < r ∈ V (3)
xij − xjr + xir ≤ 1, ∀i < j < r ∈ V (4)
− xij + xjr + xir ≤ 1, ∀i < j < r ∈ V (5)
xij ∈ {0, 1}, ∀i, j ∈ V. (6)

Our goal is to minimize the objective function (2) by finding a valid assignment for the set of xij
variables. An assignment is valid (corresponds to a partition) if xij is either 0 or 1 (6); and the xij
variables satisfy the triangle inequalities (3, 4, 5). For instance, the triangle inequality in (3) says that
if vertices i and j are in a same module, as well as vertices j and r, then vertices i and r are also in
this same module.

As explained in Section 4.1, we further strengthen this ILP model with tight valid inequalities
generated during the root relaxation phase through a cutting plane approach. We use the 2-partition
and the 2-chorded cycle inequalities, whose efficiency is empirically proved by Ales et al. [2].

19 / 19

	1 Introduction
	2 Related Work
	2.1 Exact Resolution of CC
	2.2 Existence of Multiple Optimal Solutions
	2.3 Comparison Between Solutions
	2.4 Enumeration of Optimal Solutions
	2.5 Diversity of Solutions

	3 Correlation Clustering Problem
	3.1 Mathematical Formulation
	3.2 Illustrative Cases

	4 Methods
	4.1 Enumerating All Optimal Solutions
	4.2 Computing the Dissimilarity Values
	4.3 Performing the Clustering
	4.4 Identifying the Core Parts

	5 Dataset
	5.1 Random Model
	5.2 Generated Data

	6 Results
	6.1 Number of Solutions
	6.2 Diversity of the Solutions
	6.3 Analysis of the Core Parts
	6.4 Real-World Example

	7 Conclusion
	References
	A ILP Model for CC on Weighted Signed Graphs

