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Introduction

The Floquet-Bloch theorem is widely used to investigate the wave propagation in periodic structures, initially introduced in mathematics by Floquet for [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF], before being extended in structures [START_REF] Rayleigh | on the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure[END_REF][START_REF] Brillouin | Wave Propagation in Periodic Structures[END_REF] and damped systems [START_REF] Collet | Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems[END_REF] by analysing the periodic unit cell only. One of the main interests for analysing the wave propagation in these periodic media is to identify "stop bands" or "bandgaps", i.e. frequency areas in which waves are no longer free to propagate. The knowledge of these areas in the wave number/frequency maps can be used to build frequency filters using periodic systems and to create therefore frequency bands in which wave propagation is strongly attenuated. Two types of stop bands can be identified in periodic systems. Bragg bandgaps, related to the material properties or the geometry of the unit cell, and resonant bandgaps, caused by a resonating system included in the periodic structure. In a one dimensional spring-mass resonant system, the combination of a resonating mass with the mass of the principal chain results to an apparent frequency-dependent mass, which has the specificity to become negative for a certain range of frequencies close to the eigenfrequency of the resonator. This phenomena is called negative mass effect [START_REF] Yao | Experimental study on negative effective mass in a 1d mass-spring system[END_REF], and it is related to the presence of a bandgap in those systems.

Several studies have been performed by using resonators systems in periodic structures. Examples are multi-resonators in a single unit cell [START_REF] Zhou | Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators[END_REF], or the effect of a graded metamaterial [START_REF] Banerjee | Frequency graded 1d metamaterials : A study on the attenuation bands[END_REF] to generate pseudo-periodic systems. A large portion of studies related to wave propagation in periodic arrays (also including damping effects) have been described and reviewed in [START_REF] Banerjee | Waves in structured mediums or metamaterials : A review[END_REF]. Some studies have also focused on beam sandwich structures composed by homogenised continuum media with local resonators [START_REF] Chen | Dynamic behaviour of sandwich structure containing spring-mass resonators[END_REF]. Qian [START_REF] Qian | Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators[END_REF] has investigated two-dimensional periodic sandwich plate continuum systems using resonators between the two skin panels.

Studies about periodic non-linear systems have been performed to observe the effect of the amplitude of the response during wave propagation, and more specifically on the boundaries of the bandgap compared to a linear periodic system.

Non-linear resonators in a linear periodic chain have been investigated in previous studies. Lazarov and Jensen [START_REF] Lazarov | Low-frequency band gaps in chains with attached non-linear oscillators[END_REF] have used an harmonic balance method to analyse the asymptotic behaviour of the relative displacement between the principal mass and the resonant mass. Georgiou and Valakis [START_REF] Georgiou | An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators[END_REF] have used a different type of oscillator using an geometric non-linearity originating from the angle of a pendulum attached to the principal mass of the chain.

The work presented in this paper focuses on developing a formulation to identify the dispersion curve of a non-linear resonator using the perturbation method developed by Nasiretti et al [START_REF] Narisetti | A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures[END_REF] for discrete non-linear spring-mass systems, and then extended to finite element structures by Manktelow et al [START_REF] Manktelow | Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures[END_REF]. The method has been so far applied to a full nonlinear periodic system, and here the behaviour of the nonlinear resonator only is analysed to observe the impact of the eigenfrequency of the resonant system in the corrected term of the dispersion relation. Another novelty presented in this work is the development of a numerical inverse method used on a finite periodic chain structure to obtain the dispersion relation. The method consists in imposing the wave number to the whole chain and then obtain the corresponding frequency analyzing the temporal signal obtained after releasing the system. This method is different from usually applied approaches that consist on imposing an excitation and identifying back the wave number [START_REF] Manktelow | Analysis and experimental estimation of nonlinear dispersion in a periodic string[END_REF], and has the particularity to avoid space aliasing as well as control the amplitude we want to impose to be compared with the perturbation technique. Also, the precise observation of the boundaries of the bandgap can be performed since the wavenumber is imposed.

Dispersion analysis for infinite periodic structures

This section details strategies to determine dispersion relations for infinite periodic structures : the case of a linear spring resonator is first considered, then more attention is dedicated to the case of a nonlinear spring-mass resonator.

Linear spring-mass resonator

Let consider a one-dimensional principal periodic chain made of spring-mass units (mass m and stiffness k). A resonator represented by another springmass system (mass m R and stiffness k R ) is attached to each mass. This chain is considered as infinite, and an appropriate unit cell is defined to apply the Floquet-Bloch Theorem (Fig. 1). 

   m d 2 uj dt 2 + k(2u j -u j-1 -u j+1 ) -k R (q j -u j ) = 0 m R d 2 qj dt 2 + k R (q j -u j ) = 0 (1)
where u j and q j respectively denote the displacements of the j th principal mass and the j th resonator. In harmonic regime the displacements can be expressed as x j = X j e iωt , with i being a complex number such as i 2 = -1. Eq. 1 becomes :

70    -ω 2 mu j + k(2u j -u j-1 -u j+1 ) -k R (q j -u j ) = 0 -ω 2 m R q j + k R (q j -u j ) = 0 (2)
The term q j depends on u j from the second line of Eq. 2. By applying the Floquet-Bloch Theorem to the first line (u j+1 = e jµ u j ) (µ being the reduced wave number) one can obtain the following dispersion equation :

-mω 2 + 2k(1 -cos(µ)) + (k R - k 2 R k R -m R ω 2 ) = 0 (3) 
The roots of Eq. 3 are ω 1 and ω 2 , representing the two branches of the dispersion curve :

ω 1 = (m+m R )Ω 2 R +4k sin 2 (µ/2)- √ ((m+m R )Ω 2 R +4k sin 2 (µ/2)) 2 -16km sin 2 (µ/2)Ω 2 R 2m ω 2 = (m+m R )Ω 2 R +4k sin 2 (µ/2)+ √ ((m+m R )Ω 2 R +4k sin 2 (µ/2)) 2 -16km sin 2 (µ/2)Ω 2 R 2m (4) 
with

Ω R = k R
m R being the eigenfrequency of the resonator. The dispersion curve is shown Fig. 2a, with the propagative part in red and the evanescent part in blue for m R = m = 1 kg and k R = k = 1 N.m -1 . To validate numerically the result, a finite spring-mass chain of 20 unit cells has been simulated to obtain the Frequency Response Function (FRF) of the system. The boundary conditions in the numerical model are representative of a free-free state at the two extremities of the chain, while the mass located in one of the ends is excited by imposing a longitudinal propagating wave generated by the force F = F 0 cos(ωt) with F 0 = 1N . An harmonic analysis is performed by varying the value of ω, and the amplitude of the displacement is captured on the mass at the other end of the structure. The results are shown in Fig. 2b.

The FRF exhibits the presence of a frequency region in which the amplitude is considerably attenuated. This area represents the bandgap (resonant in this case). A resonant bandgap can be differentiated from a Bragg one by observing the boundaries of the propagating part [START_REF] Sharma | Local resonance and bragg bandgaps in sandwich beams containing periodically inserted resonators[END_REF]. In the resonant case, a wave will stop propagating for a value of µ = π and then propagates again for µ = 0.

The boundaries of the bandgap can be expressed by calculating the values of ω 1 (µ = π) and ω 2 (µ = 0), leading to the following expression :

ω 2 g = (m+m R )Ω 2 R +4k- √ ((m+m R )Ω 2 R +4k) 2 -16kmΩ 2 R 2m ω 2 d = Ω 2 R (1 + m R m ) (5) 
with ω g and ω d being the pulsation of the left and the right boundary, respectively. It is also important to notice that the value of Ω R is bounded by the values of ω g and ω d , and this has consequences on the value of the amplitude of the resonant mass. The rewriting of the second line of Eq. 2 leads to

q j = Ω 2 R Ω 2
R -ω 2 u j . This expression indicates that the value of the amplitude of q j The term q j will however never be able to reach an infinite value in the propagative zone, since ω -< ω g < Ω R < ω d < ω + , with ω -and ω + representing respectively the value of the pulsation before ω g and after ω d . This property of a resonating system is different from a representation of spring-mass systems with Bragg bandgaps, like the diatomic mass system of Hussein et al. [START_REF] Hussein | Dynamics of phononic materials and structures : Historical origins, recent progress, and future outlook[END_REF]. This particular periodic configuration shows amplitudes of the two masses that depend directly to the boundaries of the bandgap. This may have repercussions for the representation on the nonlinear system.

Nonlinear spring-mass resonator system

Perturbation method for identification of non-linear dispersion diagram

A Duffing spring mass resonator is added between the masses m and m R . In this case the non-linear force is expressed as :

f nl = k R (q j -u j ) + εΓ(q j -u j ) 3 ( 6 
)
where Γ is the nonlinear stiffness constant and ε a small perturbation parameter. Replacing f nl in Eq. 1 leads to :

   m d 2 uj dt 2 + k(2u j -u j-1 -u j+1 ) -k R (q j -u j ) -εΓ(q j -u j ) 3 = 0 m R d 2 qj dt 2 + k R (q j -u j ) + εΓ(q j -u j ) 3 = 0 (7)
The objective here is to idenify the correction term in the dispersion relation using the Lindstedt-Poincaré adapted method developed in [START_REF] Narisetti | A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures[END_REF]. The main goal is to generate a first order asymptotic development on the displacements of the masses and on the frequency, corresponding to the following expressions :

u j = u (0) j + εu (1) j + O(ε 2 ), q j = q (0) j + εq (1) j + O(ε 2 ), ω = ω 0 + εω 1 + O(ε 2 ). (8) 
Replacing expressions 8 in Eq. 7 gives, after development and separation of the equations in the ε 0 and ε 1 orders :

ε 0 :    ω 2 0 d 2 u (0) j dτ 2 + (2u (0) j -u (0) j-1 -u (0) j+1 ) -β(q (0) j -u (0) j ) = 0, κ 2 ω 2 0 d 2 q (0) j dτ 2 + (q (0) j -u (0) j ) = 0, (9) 
ε 1 :    ω 2 0 d 2 u (1) j dτ 2 + (2u (1) j -u (1) j-1 -u (1) j+1 ) -β(q (1) j -u (1) j ) = -2ω 0 ω 1 d 2 u (0) j dτ 2 + Γ(q (0) j -u (0) j ) 3 κ 2 ω 2 0 d 2 q (1) j dτ 2 + (q (1) j -u (1) j ) = -2κ 2 ω 0 ω 1 d 2 q (0) j dτ 2 -Γ β (q (0) j -u (0) j ) 3 (10) 
with

ω 2 n = ω 2 n Ω 2 0 , Ω 2 0 = k m , α = m R m , β = k R k , κ = α β , Γ = Γ k , τ = ωt. 120
Assuming an harmonic regime is reached, the displacements u (0) j and q (0) j can be expressed in the following form :

u (0) j = Au 2 e jiµ e iτ + Āu 2 e -jiµ e -iτ q (0) j = Aq 2 e jiµ e iτ + Āq 2 e -jiµ e -iτ (11) 
The second order derivatives are then :

d 2 u (0) j dτ 2 = -u (0) j d 2 q (0) j dτ 2 = -q (0) j (12)
Replacing Eq. 11 and 12 into Eq. 9 yields

ε 0 :    -ω 2 0 u (0) j + (2u (0) j -u (0) j-1 -u (0) j+1 ) -β(q (0) j -u (0) j ) = 0 -κ 2 ω 2 0 q (0) j + (q (0) j -u (0) j ) = 0 (13) 
Eq. 13 is equivalent to Eq. 2. Following the same process as in the linear case, roots are now expressed as

(ω (1) 0 ) 2 = 1+α+4κ 2 sin 2 ( µ 2 )- √ (1+α+4κ 2 sin 2 ( µ 2 )) 2 -16κ 2 sin 2 ( µ 2 ) 2κ 2 , (ω (2) 0 ) 2 = 1+α+4κ 2 sin 2 ( µ 2 )+ √ (1+α+4κ 2 sin 2 ( µ 2 )) 2 -16κ 2 sin 2 ( µ 2 ) 2κ 2 . ( 14 
)
When adopting the same approach used during the linear analysis, the purpose is to isolate the corrected displacement q

(1) j in the second line of Eq. 10 and inject it in the first line. In this way it is possible to obtain all the nonlinear terms in the same equation. To do so, it is assumed that the displacement q (1) j can be expressed under the form :

q (1) j = Be iτ + Be -iτ (15) 
Where B the amplitude of q

(1) j , whose the value does not have importance for the following calculations. Replacing Eq. 15 in the second line of Eq. 10 we obtain :

ε 1 :    ω 2 0 d 2 u (1) j dτ 2 + (2u (1) j -u (1) j-1 -u (1) j+1 ) -β(q (1) j -u (1) j ) = -2ω 0 ω 1 d 2 u (0) j dτ 2 + Γ(q (0) j -u (0) j ) 3 q (1) j = 1 1-κ 2 ω 2 0 (u (1) j -2κ 2 ω 0 ω 1 d 2 q (0) j dτ 2 -Γ β (q (0) j -u (0) j ) 3 ) (16) 
By injecting expression of q

(1) j in the first line of Eq. 10 we have :

ω 2 0 d 2 u (1) j dτ 2 + (2u (1) 
j -u (1) 
j-1 -u (1) j+1 ) -β κ 2 ω 2 0 1 -κ 2 ω 2 0 u (1) 
j = F (τ ) (17) 
with :

F (τ ) = 2ω 0 ω 1 α + (1 -κ 2 ω 2 0 ) 2 (1 -κ 2 ω 2 0 ) 2 u (0) j -Γ κ 2 ω 2 0 1 -κ 2 ω 2 0 4 (u (0) j ) 3 (18) 
Replacing u (0) j by its expression 11, the equation becomes :

F (τ ) = ω 0 ω 1 α + (1 -κ 2 ω 2 0 ) 2 (1 -κ 2 ω 2 0 ) 2 A u - 3 Γ 8 κ 2 ω 2 0 1 -κ 2 ω 2 0 4 A 2 u Āu e iτ e ijµ +d 1 e 3iτ e 3ijµ (19) 
The terms d 1 are associated to the 3 rd order of the nonlinearity. The linear kernel of Eq. 17 is similar to the one in Eq. 3 ; this implies that one needs to have all the coefficients in e ijµ must be equal to 0 not to obtain a secular term in the temporal expression of u

j . By imposing this condition and rearranging the equation, we obtain the following expression for ω 1 :

ω 1 = 3 Γ|A u | 2 8 κ 8 ω 7 0 (1 -κ 2 ω 2 0 ) 2 (α + (1 -κ 2 ω 2 0 ) 2 ) (20) 
Equation 20 leads to the establishment of the final expression describing the corrected dispersion relation for the periodic structure :

ω (p) = ω (p) 0 + ε 3 Γ|A u | 2 8 κ 8 (ω (p) 0 ) 7 (1 -κ 2 (ω (p) 0 ) 2 ) 2 (α + (1 -κ 2 (ω (p) 0 ) 2 ) 2 ) (21)
with p = 1 representing the left branch, and p = 2 being the right branch of the dispersion curve. Eq. 21 illustrates the importance of the pulsation of the resonator to determine the value of ω 1 . If κ 2 ω 2 0 approaches 1 (i.e., equivalent to say that ω approaches Ω R ), the value of ω 1 will increase and might reach a point where it becomes greater than ω 0 . This would however contradict the hypothesis underlying the current perturbation method. That condition shows that the value of the parameters for the resonators plays a crucial role in the distance that Ω R must possess compared to the boundaries of the bandgap.

During the following analyses we will consider the parameters α,κ, Γ are considered to be equal to 1 (unless Γ = 0, and this to obtain the linear case).

The graphic representation of the corrected dispersion curve obtained is shown Fig. 4.

Domain of amplitude validity

The perturbation analysis assumes an asymptotic development of the term ω to obtain the nonlinear corrected result. However, the asymptotic development of the term ω 2 = (ω 0 + εω 1 ) 2 = ω 2 0 + 2εω 0 ω 1 leading to Eq. 10 is true only if 2εω 0 ω 1 ω 2 0 , which can be rewritten as 2ε leading to the following condition :

3|A u | 2 ε 4 ω 6 0 (1 -ω 2 0 ) 2 (1 + (1 -ω 2 0 ) 2 ) 1 (22) 
By assuming that the order of magnitude of is the same as ε, the following condition for the amplitude can be written :

|A u |h(ω 0 ) < 1 (23) 
where h(ω 0 ) = 3 This means that the hypothesis of linearisation will be true, even for very high values of amplitude. However, the amplitude results to be much lower when the wave number increases, approaching a maximum theoretical limit of 0.48. The opposite behaviour however happens in the right branch (Fig. 5b) ; in this case it is possible to observe a limit for A u , with a minimum value around 0.6 in the low wave numbers ranger and reaching 1.8 for high values of µ. 

Identification of dispersion curves from analysis of finite nonlinear periodic structures

This section presents a numerical method to obtain the apparent wave number of the structure, followed then by results related to this approach and a comparison with the method described in 2.

Inverse method

In general the techniques used to identify the apparent wave number of a periodic structure are based on applying an harmonic excitation to one of the masses of the periodic structure and then evaluating the response. This paper introduces here other numerical method to compare the results obtained from the perturbation theory. The idea underpinning this methodology is to impose the wave number of the whole structure as an initial condition, releasing the system and observing how it evolves in the time, and then obtain the frequency of the corresponding imposed wavenumber as output. One of the advantages of this novel methodology is that a time-domain analysis is required, rather than the space-domain analysis one to obtain the wave number in direct methods [START_REF] Berthaut | K-space identification of apparent structural behaviour[END_REF]. The use of a time-domain analysis helps to reduce the error made due to the spatial discretisation of the periodic structure. In particular for spring-mass systems, the distance between two consecutive masses does not need to be represented in the model, and this allows to fix the element length to unity. According to the Shannon theorem, a minimum of 2 elements per wavelength is necessary to avoid space aliasing. However, to represent a sinusoidal excitation in a correct way, it is common to use at least 6 elements per wavelength, and that condition can not be reached when the wavenumber exceeds 1. Fig. 6 illustrates this problem by showing the space representation for two different wave numbers. It is however important to note that this method fits mainly numerical simulations, since imposing a displacement as an initial conditions could be much less practical in an experiment than imposing an harmonic excitation to the whole structure.

The finite structure here is represented by an assembly of 300 unit cells in a linear chain. The equation of motion of the finite structure with a free-free boundary condition is written and solved using ODE45 in Matlab. A perfectly matched layer (PML) is also used at the boundaries of the structure to avoid wave reflection. The PML consists in a viscous damping force c(x p ). ẋp applied to all the masses of the principal chain under the form :

c(x p ) = Ce 1- 1 (1-xp ) n (24)
with C a constant positive value, x p ∈ [0; 2] a value interpolating the mass 210 at the p th position such as c(0) = c(2) = C and c(1) = 0, and n an even number representing the order of the PML. The higher the value of n is, the less the masses close to the boundaries will be affected by the damping. Fig. 7 shows the trend of the PML for two different values of n and C = 2.

The resolution of the linear system (i.e. with Γ = 0) is has to be done in 215 order to obtain the values of ω 0 (µ) corresponding to the dispersion curve in the linear case. This step is necessary to impose the initial condition of the resonating system, written as

A q = A u 1 -κ 2 ω 2 0 . (25) 
Those initial conditions are then written under the following form :

                     U j (t = 0) = A u cos(µ(x j -x 0 )) Uj (t = 0) = 0 Q j (t = 0) = A q cos(µ(x j -x 0 )) Qj (t = 0) = 0 j ∈ [[1; 300]] (26) 
The terms U j and Q j are the values of the displacements of the j th principal and resonating mass of the system, respectively. The location of the mass considered to obtain the time-displacement response is x 0 , and µ is the reduced wave number. The value of x 0 has to be chosen carefully in order to obtain a coherent representation of the results : if the chosen mass is too close to the boundaries, the PML and eventually residual wave reflections will provide incoherent results.

For that reason the observed mass should be located in the middle of the structure. Also, even if the displacement is imposed, the spatial discretisation will still be inaccurate for wave numbers greater than one ; this implies however the risk of not always obtaining the maximum value of the amplitude if a random mass is selected as an output. The writing of the initial spatial displacement as in Eq. 26 ensures that the amplitude A u will be observable for the mass located in x 0 for any value of µ, when x j = x 0 .

After the masses being released for an imposed wave number µ 0 and after a time equivalent to t = 25T 0 such as T 0 = 2π ω0(µ0) , the frequency of the time signal coming from the mass located in x 0 is measured. One example of input and output signal obtained for a µ = 1 on the right branch of the dispersion curve is shown Fig. 8. Fig. 8b shows that the amplitude does not remain constant and equal to A u as long as the time goes by. Consequently, a Fast Fourier Transform would not give accurate results here, since the obtained signal have variations of amplitude and therefore variations of frequency due to the nonlinear behaviour. Alternatively, an average of the periods of the signal is done to get the global value of the frequency. Depending on the imposed wave number, the value of the output average amplitude will become different, which makes not A u by comparing it with the output amplitude of the system (noted A out ). After an iteration, the value of A out is estimated performing a Hilbert transform of the signal :

A out = |H(U 0 (t))| (27) 
If A out < A u , the value of A u0 is slightly increased and the process is repeated until A out = A u with a certain tolerance. Once this condition is done, one can capture the average frequency of the signal to obtain the combination (µ, ω).

Fig. 8 shows the results using initial conditions shown in Fig. 9, with a value of A u0 = 0.53 to get an average value A out = 0.5. The dashed line represents the value of amplitude equal 0.5.

Numerical results

Before obtaining the numerical nonlinear dispersion curves, a verification of the condition estimated in subsection 2.2.2 has to be performed to verify that the domain of validity of the amplitudes matches with the prediction when using 

f err = |f num -f per | f per (28) 
with f num the frequency obtained with the numerical simulations and f per the frequency obtained with the perturbation method. On the other hand, the value of 2 ω 0 ω 1 representing the condition leading to Eq. is calculated 23 is calculated. The highest the value of this function, the higher the error of the perturbation hypothesis. Fig. 10a shows that for high values of µ and amplitudes, the error increases rapidly. This curve actually generalises figure 5a, in which the relative error was fixed to 1, to give an overview of how fast this error is evolving for higher values of amplitude. Fig. 10b shows that the error tends to follow patterns similar to the previous result, and it also shows the same behaviour for high values of amplitude. Similar comments can be provided for the results presented in Fig. 11. Also this case, the error rapidly increases after A u 0.3. Those estimations are close to the ones found with the asymptotic assumption shown in 2.2.2 ; they are however not exactly the same because of the numerical precision of the solver used for the finite structure, and the estimation of taking 280 ε as "small".

The corrected dispersion curve for a amplitude value of A u = 0.3 is represented Fig. 12, and zooms on the branches are shown Fig. 13 and14. From the close looks it is possible to observe the difference between the numerical method and the perturbation approach. One can observe that for this particular value 285 of amplitude, numerical and theoretical results provide a close match, and the dispersion curve is shifted to higher frequencies compared to the linear case. demonstrates that the results will be inaccurate up to a certain value of wavenumber (around 0.8 in that case) but will still remain correct after this value. 

Conclusion

Nonlinear periodic resonating systems made of baseline linear chains and distributed Duffing oscillators have been evaluated in this work using a perturbation approach. A quantitative study of the maximum admissible amplitude has been performed to provide an overview of the limits of the proposed method.

A new inverse approach imposing the wavenumber has also been developed and applied to a finite structure with a large number of unit cells to confirm the results obtained with the perturbation method. This numerical inverse identification approach provides a different way of analysing the wave propagation of nonlinear periodic structures. The approaches proposed in this work could be also extended to multi dimensional structures, as well as finite element structures to observe the influence of the only resonant part of a system and perform the inverse method in more complex cases.
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