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Abstract 

A reliable power distribution strategy is of great significance towards the performance enhancement of 

fuel cell electric vehicles. In this work, a novel model predictive control-based energy management is 

developed for a fuel cell based light-duty range-extended hybrid electric vehicle. To fulfill the model 

predictive control framework, a cooperative speed forecasting method based on Markov Chain and fuzzy 

C-means clustering technique is proposed, which contains multiple predictive sub-models for handling 

different driving patterns. The final prediction results are obtained by synthesizing the forecasted speed 

profiles from all sub-models with the quantified fuzzy membership degrees. Besides, an adaptive battery 

State-of-Charge reference generator is built, which can regulate the SoC depleting rates against various 

power requirements. Combined with the forecasted speed and SoC reference, the desirable control actions 

are derived through minimizing the performance index over each finite time horizon. As a result, under 

the realistic urban-based postal-delivery mission profiles, the proposed strategy can achieve over 3.79% 

equivalent hydrogen consumption saving and over 40.04% fuel cell power dynamics decrement against 

benchmark strategy. Moreover, the presented predictive energy management is robust to certain level of 

trip duration estimation errors, further indicating its suitability for real applications. 

Key words: Energy Management Strategy, Multi-objective Optimization, Velocity Forecasting, PHEV, 

Fuel Cell. 
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Nomenclature 

 
ABBREVIATIONS �� Aerodynamic coefficient 

EMS Energy Management Strategy ���� Mechanical transmission efficiency 

FCPHEV Fuel Cell Plug-in Hybrid Electric Vehicles ��� Electrical machine efficiency 

MPC Model Predictive Control �	
 Efficiency of fuel cell system 

SoC State-of-Charge ��
 Chemical energy density of H2 

PHEV Plug-in Hybrid Electric Vehicles ��
 H2 mass consumption 

PEMFC Proton Exchange Membrane Fuel Cell ��������� Theoretical power supplied by H2 

ICE Internal Combustion Engine ������ Fuel cell stack power 

HEV Hybrid Electric Vehicles ���� Power consumed by auxiliaries 

FCS Fuel Cell System ������� , ��"##� $ High efficiency region of FCS 

DP Dynamic Programming  ���% Maximum fuel cell system efficiency 

PMP Pontryagin's Minimum Principle �&�' Battery efficiency 

GA Genetic Algorithm (&�' Battery current 

ECMS Equivalent Consumption Minimization Strategy )&�' Battery nominal capacity 

FC Fuel Cell *+
 Open-circuit voltage 

MC Markov Chain ,&�' Battery internal resistance 

NN Neural Network *-
 DC bus voltage 

PEMS Predictive Energy Management Strategy .�/�/0  Motor rotational speed 

CD-CS Charge-Depleting Charge-Sustaining 1�/�/0 Motor torque 

RBF Radial Basis Function ��/�/0 Motor efficiency 

TPM Transition Probability Matrix *∗ Forecasted speed profile 

BPNN Back Propagation Neural Network 1�0�3 Estimated trip duration 

SQP Sequential Quadratic Programming 4. 60�7 Reference value 

RMSE Root Mean Square Errors 8/3� Optimal control policy 

MSMC Multi-Step Markov Chain 9� Number of cluster centers 

ITS Intelligent Transportation Systems 
:= <�=, … , �?@A Fuzzy cluster centers 

GPS Global Positioning Systems 8 ∈ ,C×?@ Fuzzy partition matrix 

L-MPC Model Predictive Control with Linear SoC reference E�F Fuzzy membership degree 

A-MPC Model Predictive Control with Adaptive SoC reference G1�H�F Transition probability 

EM Electrical Machine ∆1 Sampling period  

FCM-MC Fuzzy C-means enhanced Markov Chain predictor J�/�/J�/�L  Reference/adjusted SoC depleting rate 

OCV Open-circuit voltage �4M6 Adjusting factor 
 
SYMBOLS N� k-th MPC cost function 

�O Vehicle mass :=, :P, :Q MPC cost terms R Vehicle speed S� Speed sample length �30/ Propulsion power demand ∆�	
 Fuel cell power transients �	
 PEMFC system net power T = GVVWX, VYZ[, AVWXH Normalized feature vector �&�' Battery power .=, .P, .Q MPC penalty coefficients �� DC bus power demand M] Positive constant �0 Rolling resistance coefficient S3 Prediction horizon ^ Gradational acceleration _`:�C� Terminal SoC a Road slope ��
�bc
 Equivalent H2 consumption ���0 Air density d∆�7�deeeeeeee  Average fuel cell power transients g7 Vehicle frontal surface area 1��� Calculation time per step �-
/-
/�-
/�
 Efficiency of DC-DC/DC-AC converter J��h� High efficiency ratio 

Section I. Introduction 

Nowadays, technique advancements on plug-in hybrid electric vehicles (PHEVs) have attracted 

substantial attentions because of its potential in reducing the emission of greenhouse gases [1]. To further 

mitigate the dependency on fossil fuels, the onboard proton exchange membrane fuel cell (PEMFC) 



systems, which can transform the hydrogen energy into electricity power, are becoming the competitive 

alternative to traditional internal combustion engines (ICE). As the combination of these advanced 

technologies, FC-based PHEVs (FCPHEV) have become one of the research hotspots in the 

transportation electrification field during past few years [2]. 

A robust energy management strategy (EMS) is indispensable in achieving the efficient power allocation 

among multiple energy/power sources within the vehicles’ hybrid powertrain. Among existing EMSs for 

conventional PHEVs, improving the fuel economy is regarded as one of the primary optimization 

objectives. In contrast, owing to the extremely high costs of the vehicular fuel cell systems (FCS), slowing 

down its performance degradations caused by improper operations (e.g. frequent on-off cycles and 

dynamic loading conditions [3] etc.) is another significant EMS objective [4]. Despite numerous efforts 

made in previous researches, how to devise a multi-objective real-time applicable EMS for FCPHEVs 

that can both improve fuel efficiency and prolong the FCS’s lifetime still needs to be sufficiently 

investigated. 

1.1. Literature review 

Existing EMSs for hybrid electric vehicles (HEVs) can be categorized into rule-based strategies and 

optimization-based strategies. A rule-based strategy distributes the power demands based on the 

characteristic of energy sources [5]-[7] or a series of deterministic or fuzzy rules [8]-[10], where the major 

advantage lies in the real-time suitability. However, the EMS performance optimality cannot be fully 

guaranteed by the expertise knowledge or engineering experiences. In contrast, for achieving the global 

optimal performances, various EMSs based on dynamic programming (DP) [11], Pontryagin's minimum 

principle (PMP) [12], [13] and Genetic algorithm (GA) [14] are developed. However, these strategies are 

only served as the offline benchmarks rather than being implemented for real-time applications due to the 

requirement on the full trip knowledge and the associated huge computation burdens.  

In this case, EMSs relying on real-time optimizations have attracted substantial research interests, like 

Equivalent Consumption Minimization Strategy (ECMS) [15], Extremum Seeking Method [16] and 

Model Predictive Control (MPC) [17]-[19]. For instance, benefiting from the sequential quadratic 

programming (SQP) technique, the optimal power splitting decisions from the presented ECMS are 



obtained by taking into account the dynamic behaviors of three power sources [15]. It has been verified 

experimentally that the proposed EMS can improve fuel economy by at least 2.16% compared to a 

benchmark rule-based EMS. As a compromise between the instantaneous optimization (e.g. ECMS) and 

the global optimization (e.g. DP) [20], MPC can generate control sequences by taking into account the 

upcoming state trajectories within the finite time horizon. Specifically, owing to the usage of short-term 

(e.g. 1 to 10s) predictive speed traces, the MPC strategy has achieved 7% fuel consumption conservation 

against a simple ECMS strategy [21]. Therefore, considering its strong ability in handling future 

uncertainties [22], this paper employs the MPC framework for developing the predictive EMS (PEMS).  

To enhance the MPC control performance, a reliable speed forecasting method should be devised. 

Actually, plenty of attempts were made on this topic, where the Markov Chain (MC) based stochastic 

models [23]-[25] and the neural network (NN) based machine learning approaches [26]-[28] become two 

representative techniques. For example, a multi-step MC model is employed for speed forecasting over 

each rolling optimization horizon [23]. Besides, a deep NN velocity predictor established in [26] can 

reduce the average prediction error by 22.39% compared to a back propagation NN predictor (BPNN). 

Although various speed-forecasting approaches have been successfully developed, there still exhibits 

plenty room for improvement regarding the prediction accuracy. Actually, drivers’ intentions would 

change accordingly with the vehicles’ operation states [29]. For example, aggressive driving behaviors 

with large acceleration would be detected in the vehicles’ start-up phases, while mild driving behaviors 

tend to appear during the vehicles’ cruising phases. Apparently, various driving intentions would lead to 

the significantly different future velocity distributions. Hence, if a single-mode predictive model were 

used to cope with multiple types of input driving states, the overall reliability of velocity prediction would 

be compromised [30], which is a common drawback for conventional speed forecasting approaches. 

Therefore, a multi-mode velocity predictor for adapting to various driving conditions deserves further 

investigations.  

Additionally, for guiding the future battery energy usage of PHEVs, the state-of-charge (SoC) reference 

generation methodologies should be properly devised. Given the trip length (or duration), authors in [23], 

[31] use linear SoC reference model to plan battery energy depletion. Moreover, based on the traffic 



information from global positioning systems (GPS) and intelligent transportation systems (ITS), SoC 

reference traces can be extracted by global optima searching algorithms [20], [32]. For example, in a 

hierarchical EMS [20], DP is performed on the traffic flow speed for obtaining the optimal SoC 

trajectories. Afterwards, the reference SoC values are inserted into the MPC tracking controller. In this 

case, the proposed EMS can achieve nearly 95% fuel optimality as DP basis. Besides, data-driven 

approaches also show the effectiveness in generating SoC reference [33], [34]. For example, in [34], 

multiple DP-optimized SoC trajectories under various speed profiles are served as the training sample for 

a neuro-fuzzy model. The well-trained model is then employed for online SoC reference generation given 

the knowledge of trip length and average trip speed. Correspondingly, 4% fuel consumption saving can 

be realized by the presented EMS against a PMP benchmark. However, regarding previous SoC reference 

generation methods, the exceeding requirements on trip knowledge or the huge computation burdens 

greatly threaten their real-time practicality. Consequently, a time-efficient battery energy planning 

method with less dependency on real-time traffic information should be further studied. 

1.2. Motivations and contributions 

To sum up, several limitations can be found in previous researches: 1) to improve the MPC control 

performance, the accuracy and robustness of existing speed forecasting methods should be further 

enhanced. 2) When planning the battery energy usage, the dependency on the previewed traffic 

information needs to be reduced for enhancing the real-time suitability. 3) A multi-objective strategy 

considering both the fuel economy and the FCS’s lifetime prolongation deserves further studies.  

To bridge these research gaps, this paper presents an online power allocation strategy for a fuel cell 

electric vehicle designed for urban postal-delivery, containing following major contributions: 

• An improved velocity predictor based on multi-step Markov Chain and fuzzy C-means clustering 

technique is presented, which contains multiple predictive sub-models for dealing with different 

input driving states. The prediction robustness is enhanced by a fusion strategy, which aggregates 

the forecasted speed profiles from all sub-models with the real-time quantified fuzzy membership 

degrees. 



• With velocity prediction results and partially previewed traffic information, a computation-friendly 

SoC reference generator is proposed for regulating battery energy depletion rates against different 

driving conditions. 

• A multi-criteria optimization-based EMS considering simultaneously the hydrogen utilization 

efficiency and the FCS durability is presented, where, at each sampling time instant, the desirable 

control policy is derived through repeatedly minimizing the MPC performance index. 

• The results of EMS performance evaluation demonstrate (1) the increased velocity prediction 

precision over conventional predictors; (2) the improvement on fuel cell working efficiency and 

durability of the proposed EMS against benchmark strategies; (3) the proposed EMS is robust to 

certain level of trip duration estimation errors, indicating the practicality for real applications. 

1.3. Outline 

The sequel of this paper is arranged as follows. The powertrain modeling of the light-duty mail-delivery 

FCPHEV is given in section II. Section III presents the development of the velocity predictor, the adaptive 

SoC reference generator and the MPC-based EMS. In section IV, the comparative EMS performance 

evaluation is carried out. Section V briefs the major conclusions. 

Section II. System modeling 

2.1. Light-duty Vehicle Powertrain Model 

The HEVs’ powertrain design (e.g. the degree of hybridization, the components sizing etc.) and the 

development of corresponding EMSs affect each other, which thus deserves substantial attentions when 

devising the control strategies for HEVs, especially for the FC-based ones [35]. In this study, the EMS is 

designed for a light-duty mail-delivery vehicle, which is the prototype that has been built in the 

“Mobypost” project [36], where the essential vehicular parameters are presented in table 1. Additional 

details concerning the vehicle powertrain design can be found in [37]. 

Fig. 1(a) schematically depicts the vehicle’s powertrain structure. The onboard PEMFC system is 

connected to the DC bus by a DC-DC converter, whereas the rechargeable battery pack is straightly 

plugged into the DC bus. During the vehicles’ operation, the battery pack is dedicated to supplying the 

peaking power during the acceleration phases and to absorb a portion of negative power during the 



regenerative braking phases. In contrast, the FCS aims at working steadily to charge the battery pack for 

extending the vehicles’ driving mileage. 

Given the vehicle’s mass mv and speed v , by analyzing the vehicle’s dynamics in motion (Fig. 1(b)), the 

power request from wheel side Ppro  is denoted by (1) [38]. Subsequently, the output power from FCS 

( PFC ) and battery pack ( PBAT ) jointly satisfy the DC bus power request ( Pd ), as denoted in (2). 

2( ) 1
( ) ( ) ( cos( ) sin( ) ( ) )

2

dv t
P t v t m c m g m g A c v t

dt
α α ρ= ⋅ + + +pro v r v v air f d    (1) 

( ) ( ) ( )
(t)pro

d FC DC / DC BAT

mec DC / AC EM

P
P t P t P tη

η η η
= = ⋅ +

⋅ ⋅
     (2) 

where cr represents the coefficient of rolling resistance, ρair the ambient air density, A f  the vehicles’ 

front surface area, cd  the aerodynamic coefficient. In addition, ηmec and ηEM  denote the efficiency of 

mechanical transmission and electrical machine, respectively, while ηDC / AC  and ηDC / DC respectively 

denote the efficiency of DC/AC and DC/DC converters. Please note the gravitational acceleration g is 

taken as 9.81 m/s2 and road slope α  is assumed as zero in this study. 

TABLE 1. Vehicular parameters regarding the powertrain model 

Component Description Value Data Source 

Mobypost 

Structural Parameters 

Weight 579 kg 

Mobypost Vehicle 

Prototype [37] 

Frontal surface area  2.48 �P 

Density of air  1.26 M^/�Q 

Drag coefficient  0.7 

Rolling Resistance coefficient 0.015 

Mechanical transmission efficiency 0.92 Assumption 

PEMFC System 

Peak power 1200 W Quasistatic Fuel 

Cell Model [38]+ 

Database in [39] 
Peak Efficiency 43% 

Li-Ion Battery  Nominal Energy capacity 5.5 kWh 
Mobypost Vehicle 

Prototype [37] 

Traction Electrical Machine 

Permissible max. Power 30 kW Database in Open-

Source Software 

ADVISOR [40] 

Permissible max. Torque 125 Nm 

Permissible max. Speed 9000 rpm 

Uni. DC/DC converter  Constant Efficiency 0.90 
Assumption 

Bio. DC/AC inverter  Constant Efficiency 0.95 

 

 



 

Fig. 1. Light-duty FCHEV modeling. (a) Vehicle’s powertrain architecture; (b) Vehicle’s dynamics in motion; (c) Onboard PEMFC system 

efficiency as a function of �	
; (d) Battery model: equivalent circuit of R-int model; (e) Characteristics of the studied battery cell: the resistance 

and the OCV as a function of SoC; (f) EM working efficiency given by the 2-D look-up table (map). 

2.2. Fuel Cell Model 

To mitigate the vehicle’s range anxiety during the postal delivery, the PEMFC system is designed to work 

steadily for charging the power battery pack. Additionally, given the H2 chemical energy density ( ρ
2H , 

in MJ/kg), the mass of H2 (
2Hm ) consumed during the tasks can be computed by [9]: 

0

(t)
FC

H2

FC H2

t P
m dt

η ρ
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⋅∫          (3) 
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where ηFC  represents the system efficiency of PEMFC. In this work, a quasistatic fuel cell model is 

employed, where the polarization curve of a single fuel cell is given under specific operation conditions 

(e.g. humidity, temperature etc.) [38]. Furthermore, within the PEMFC system, given the gross power 

produced by the fuel cell stack ( PStack ), the power consumed by all auxiliary components ( PAUX ) and the 

theoretical power supplied by H2 ( PChemical ), ηFC  can be defined as [41]: 

P P P

P P
η

−
= =Stack AUX FC

FC

Chemical Chemical

        (4) 

where PFC  reflects the effective portion of fuel cell system power that can be delivered to the external 

(net power) [41]. The studied PEMFC system efficiency as a function of PFC is specified in Fig. 1(c). 

Note the peak efficiency (ηmax ) corresponds to the most efficient operating point of the PEMFC system, 

marked as P
maxη

. Besides, let [ , ]
lower upper

P Pη η represents the high efficiency area of the PEMFC system, 

where 
lower

Pη and 
upper

Pη are respectively set to 1/3 and 2/3 of its peak power (1.2 kW) [9]. 

2.3. Battery Model 

The R-int model is employed to represent the power battery pack, whose equivalent circuit is displayed 

in Fig. 1(d). Moreover, given the battery current ( IBAT ), the internal resistance ( RBAT ), the open-circuit 

voltage (OCV, marked asVOC ), the nominal capacity ( QBAT ) and the battery efficiency (ηBAT ), the 

voltage on DC bus (VDC ) is calculated by (5). 

(t)(t) IdSoC

dt Q

η ⋅
= − BAT BAT

BAT

        (5a) 

2
V (SoC) V (SoC) 4 (SoC) (t)

(t)
2 (SoC)

R P
I

R

− −
= OC OC BAT BAT

BAT

BAT

    (5b) 

( ) ( )V V SoC I R SoC= − ⋅
DC OC BAT BAT

       (5c) 

where SoC is a percentage indicator (0 to 1) of the residual battery capacity. Furthermore, as indicated in 

Fig. 1(e), the numerical values of battery parameters (e.g. the OCV and the resistance) vary according to 



battery SoC. Note the feature of the studied battery cell (6Ah Lithium-ion battery module) is extracted 

from ADVISOR [40]. To ensure the normal operation of battery pack, it is expected to maintain SoC 

within the range [0.3, 0.9] [24]. 

2.4. Electrical Machine Model 

Thanks to the abundant Electrical Machine (EM) models from ADVISOR, an AC asynchronous motor is 

picked in this work, whose output power peaks at 30 kilowatt. Besides, the physical limitations of the EM 

speed (ωmotor ) and torque (Tmotor ) are [0, 9000] rpm and [-125, 125] N·m, respectively. Moreover, the 

EM efficiency ( ηmotor ) is determined by its working state specified by ωmotor  and Tmotor . Such 

relationship can be denoted as ( , )q Tη ω=motor motor motor , which is typically given in the form of discrete 

2-D look-up table. Hence, once the speed and torque requests are specified, ηmotor  is derived through the 

look-up table extracted from ADVISOR (Fig. 1(f)). 

Section III. Development of predictive energy management strategy  

The system-level block diagram of the presented hierarchical PEMS is depicted in Fig. 2. In supervisory 

level, the upcoming speed profile (*∗) is generated by the velocity predictor. Subsequently, with the 

estimated trip duration (1�0�3), the SoC reference (_`:0�7) is generated for planning the battery energy 

usage. Combined with the velocity prediction results and SoC reference, the MPC controller generates 

the control policies ( 8/3� ) by minimizing the multi-objective cost function within each rolling 

optimization horizon, where the sampling period ∆T is set to 1s.  

 

Fig. 2. Schematic diagram of the proposed PEMS. 



3.1. Improved Markov Chain Velocity Predictor  

To guarantee the MPC control performance, a reliable speed-forecasting methodology should be 

developed. Under realistic driving conditions, drivers’ intentions would vary from vehicles’ operation 

stages, leading to different distributions of future velocity. Therefore, if a single-mode prediction model 

were used to characterize the future velocity distributions under multiple vehicle operation stages, the 

overall prediction performance would be compromised. To address this issue, a velocity predictor based 

on fuzzy C-means clustering and multi-step Markov Chain (FCM-MC) is proposed. Specifically, the 

FCM is used to capture the feature of recent driving states and the final prediction results are obtained by 

synthesizing the forecasted speed profiles from all MC sub-models with the quantified fuzzy membership 

degrees. The detailed design process will be presented subsequently. 

3.1.1. Fuzzy classification and Markov predictive model estimation 

As shown in Fig. 3, the proposed speed forecasting method includes two working phases. This subsection 

presents the principal of offline working phase. 

• Driving data pre-processing by fuzzy C-means clustering technique 

To establish multiple predictive sub-models, the original driving database should be classified into several 

groups based on the feature of driving samples. In this study, the driving profiles for building the MC 

prediction models are extracted from the GPS-collected database on the mail delivery routes, which 

contains the speed and acceleration sequences, namely GR=, … , R?H and Gv=, … , v?H. Afterwards, the 

original driving database is partitioned into numerous S�- dimensional driving vectors, where the k-th 

sample can be expressed as 
mk k H 1[ ,..., ]v v + − and

mk k H 1[ ,..., ]a a + − . Furthermore, three parameters are 

selected to characterize each driving sample, namely the average speed  R�_�O� , the speed standard 

deviation R�_���  and the average acceleration v�_�O�. To eliminate the negative impacts on classification 

results by different data scales, the k-th feature vector T� = xVy_VWX, Vy_YZ[, Ay_VWXz is composed of the 

corresponding normalized terms, where Vy_VWX = O{_|}�O|}�~|� ∈ G0,1H, Vy_YZ[ = O{_���O���~|� ∈ G0,1H, Ay_VWX = �{_|}���|}�~���|}�~|���|}�~�� ∈
G0,1H . Besides, the superscripts “max” and “min” specify the extremum of corresponding physical 

quantities. Therefore, each driving sample is denoted by a three-dimensional feature vector T.  



 

Fig. 3. Working Flow of the speed forecasting method using Markov Chain and Fuzzy C-means clustering. 

As there is no uniform definition on the pattern of driving state x, the classification process should be 

unsupervised. To perform the unsupervised classification, the FCM technique is introduced. Given the 

number of clusters 9�  and a finite dataset � = �T=, … , TC� , the FCM returns a list of cluster centers : =
��=, … , �?�� and a fuzzy partition matrix  8 ∈ ,C×?@ , where its  4�, �6 -th element E�F ∈ G0,1H 4� =
1,2, … , �, � = 1,2, … , 9�6  indicates the membership degree of the data point T� in the j-th cluster. The 

sum of membership value in all clusters equals to one, namely ∑ E�F?@F�= = 1. The FCM working process 

is summarized in table 2 [42]. 
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TABLE 2. Working process of the FCM method. 

Step Content 

1 Randomly initialize all cluster membership values E�F , � ∈ �1, … , ��, � ∈ �1, … , 9��. 

2 

Calculate the centroid by �F = ∑  �,¡~∙%���¢£∑  �,¡~��¢£ , where the parameter � 4� > 16 is fuzzy partition matrix exponent, which is 

used to control the degree of fuzzy cluster overlap. A larger m means a higher degree of fuzziness in neighboring 

clusters. 

3 

Update E�F  by 2

1

1

1

ij

m
N i jc

k
i k

x c

x c

µ
−

=

=
 −
 
 −
 

∑

, where the operator ‖∙‖ means the Euclidean Distance from the data point xi  

to centroid c
j

. 

4 Calculate the value of
2

Nc

1 j=1
=

n
m
ij i ji

J x cm µ= −∑ ∑ . 

5 
Repeat step 2 to 4 until Jm decreases by smaller than the predefined limit or other termination conditions are satisfied 

(e.g. maximum iteration number reached etc.). 

To obtain the deterministic classification results, the largest membership degree E�_��%, where E�_��% =
maxGE�=, … , E�?@H, labels the feature vector T� to one of 9� clusters. Based on the labels, corresponding 

acceleration transition database (where the k-th sample is marked as[ ,..., ]a a
m m pk+H -1 k+H -1+H ) is divided 

into 9�  sub-databases, where Hp is prediction horizon. The acceleration samples within each sub-database 

are then used to estimate the multi-step transition probability matrices (TPM) of the corresponding MC 

predictive sub-model. 

• Multi-step TPM Estimation 

MC is used to characterize the future probability distribution of acceleration. Based on the interval 

encoding method [43], the continuous acceleration domain is separated into a finite set of disjoint 

intervals, (F, � ∈ �1, … , ©�. Each interval is associated with a MC state, vF ∈ (F, which is the midpoint of 

interval (F. Besides, let a countable set �v=, … , v��, which contains all possible acceleration states, denotes 

the MC state-space. In this case, the future acceleration distribution in multi-step ahead is described by a 

TPM group 1ª = «1=, … , 1�#¬, where each TPM is an s-by-s matrix. Within the ­-®ℎ TPM in 1ª , the 

element located in the �-®ℎ row and �-®ℎ column (marked as G1�H�F) represents the probability of a MC 

state transition incident, which begins at v�  and terminates at  vF  in ­ -steps ahead. Hence, G1�H�F is 

calculated based on the maximum likelihood estimation approach. 

{ } p
[ ] Pr ( ) a ( ) a , {1,..., H }, {1,..., s}.T a k +l a k N N l i, j= = = ≈ ∈ ∈l l

l ij j i ij i
  (6) 



N
l

ij  and N
l

i represent the MC state transition times, where the superscript ­ indicates the transition time 

step. The subscripts specify the starting and ending index of the state transition incidents, where �� means 

the transition is from state � to state �, while � means the transition is originating from state �. Note the 

TPM group 1ª is estimated based on the samples within one of 9�  sub-databases. Similarly, with all sub-

databases, 9� TPM groups <1ª_=, … , 1ª_?@A can be established based on (6). 

3.1.2. Real-time fuzzy membership degree quantification and multi-step velocity prediction  

Once the cluster centers <�=, … , �?@A and Nc TPM groups <1ª_=, … , 1ª_?@A are established, they can be 

used for multi-step speed forecasting. Three working steps of velocity prediction are given as follows: 

• At ® = M, sample the k-th driving states, namely [ ( H 1), ..., ( )]v k + - v k
m

and [ ( H 1), ..., ( )]a k + - a k
m

, and 

calculate the corresponding normalized feature vector, namely T4M6 = GVVWX4M6, VYZ[4M6, AVWX4M6H. 
Afterwards, quantify the membership degree of T4M6 in 9� clusters, where the quantification result 

is expressed by xE=4M6, … , E?@4M6z.  
• Encode the acceleration v4M6 into the MC state v�. Then, the l-step ahead acceleration is computed 

by the mathematical expectation, according to the interval midpoints: vb∗ 4M � ­6 = ∑ x1�bz�F ∙�F�=
vF , �° v4M6 ∈ (�,  where  1�b ∈ 1ª_b , ± = 1, … , 9� , ­ = 1, … , S3 . Afterwards, the velocity prediction 

result from the q-th MC sub-model is expressed by: Rb∗4M � ­6 = R4M6 � ∑ vb∗ 4M � J60��0�= ∙ ∆1. 
• By synthesizing the quantified membership degree with the velocity prediction results from all MC 

sub-models, the final speed forecasting result is: R∗4M � ­6 = ∑ Eb4M6 ∙ Rb∗4M � ­6?@b�= , ­ = 1, … , S3. 

Finally, the polynomial fitting algorithm is employed to smooth the forecasted speed profiles. 

It should be mentioned that, by using the weighted velocity prediction results from all MC sub-models, 

it is beneficial to reduce the negative impacts on prediction reliability caused by the identification 

uncertainty of the input driving states. 

3.2. Adaptive Battery SoC Reference Generator 

The plug-in technology allows the energy stored in the onboard battery pack to be depleted during the 

mail-delivery tasks. For scheduling the battery energy usage, the SoC reference is indispensable within 



each rolling optimization horizon. By tracking the given SoC reference, the EMS controller can 

manipulate the battery output power with respect to the rapid-changing external power demands. 

Considering the changeable traffic conditions during mail delivery tasks, the vehicle would operate under 

different modes, meaning different types of power demand could be detected. In fact, two typical driving 

conditions could be found within vehicles’ actual speed profiles, namely the flowing (Fig. 4(a)) and 

congested driving conditions (Fig. 4(b)), respectively. 

³́ µ� � = ¶µ· � ¸ ¶µ·¹º»¼½¾¿³º� ¸ �
 

Fig. 4. (a) Flowing and (b) congested driving conditions of Mobypost vehicle. (c) Working principle of the SoC reference generator. 

Under flowing driving conditions, the vehicles’ speed changes mildly and the average is relatively high, 

indicating the higher average power demand. In contrast, frequent vehicle stops can be found under 

congested driving conditions, where the vehicles’ speed changes sharply and the average is relatively low. 

Therefore, lower average power demand could be detected in this case. To regulate the SoC depleting 

rate towards different driving conditions, an adaptive SoC reference generator is proposed, whose 

working principle is illustrated in Fig. 4(c).  

Since the mail-delivery tasks are conducted on the relatively fixed routes, it is assumed that the trip 

duration can be estimated before departure. At ® = M, given the current SoC, the final target SoC and the 

velocity prediction results
* * *

V [ ( 1), ..., ( H )]v k + v k +=
pk

, the forecasted SoC reference after Hp steps can 

be calculated by:  



* '
( H ) ( ) HSoC k SoC k=+ − ⋅

p pref socr        (7a) 

'
( ) SoC

( ) ( ) ( ) ( )
SoC k

k k k k
T k

ρ ρ
−

= ⋅ = ⋅
−
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trip

r r     (7b) 

*

*

(k)
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1
( )

k

v k

v k

ρ =
+ std

mean

ρ
         (7c) 

where J�/�4M6 = À/
4�6�À/
Á��|�Â� �#��  is the average SoC depleting rate against the remaining trip duration, 

which is taken as the reference depletion rate at ® = M. In addition, J�/�L  is the adjusted SoC depletion rate 

and � is the adjusting factor, where the positive constant M]  defines the upper limit of  �.  A small 

M] would reduce the overall SoC depletion rate, making the battery energy not fully utilized, while an 

overlarge M] would deplete the battery energy too fast, leading to the extended charge-sustaining (CS) 

driving phases. Therefore, a proper M] should be used to seek a balance between the battery utilization 

rate and the overall EMS performance.  

Furthermore, R���C∗ 4M6 and R���∗ 4M6 respectively denote the average and standard deviation of the 

forecasted speed *�∗. It should be mentioned that a larger R���C∗  and a smaller R���∗  imply the flowing 

driving conditions, leading to a larger �. On the contrary, a smaller R���C∗  and a larger R���∗  indicate the 

congested driving conditions, thus resulting in a smaller �. Hence, the actual SoC depletion rate J�/�L  can 

be regulated by �. When � > 1, the actual SoC depletion rate J�/�L  is higher than the reference rate J�/�. 

When  � < 1, the actual SoC depletion rate  J�/�L  is lower than  J�/� . Specially, � = 0  when and only 

when R���C∗ = 0.  

Besides, to prevent battery over-charge or over-discharge , SoCÇXÈ∗  is restricted within the allowable 

boundaries, namely SoCÇXÈ∗ ∈ G_`:��C, _`:��%H, where _`:��C and _`:��% are respectively set as 0.3 

and 0.9. Please note that G_`:��C, _É:��%H only defines the range of SoC reference value. If the actual 

SoC escapes from this range, the EMS emergency mode would be activated to force SoC back to [0.3, 

0.9] as soon as possible. 



3.3. Model Predictive Controller 

MPC takes advantages of the estimated system future behaviors for decision-making, which is especially 

suitable for controlling the complex systems with multiple variables and constraints (e.g. the HEVs’ 

powertrain systems). The proposed MPC is thoroughly introduced in subsection 3.3. 

3.3.1. Control-oriented model 

Considering the limited resources of the onboard electronic control units, a linear-quadratic MPC model 

(with ∆1 = 1©) is adopted. Specifically, given the state vector l ∈ ,P×= , the manipulated variable s ∈
,=×= , the output vector Ê ∈ ,P×=, the reference r ∈ ,P×= and the disturbance p ∈ ,=×= of the studied 

system, the control-oriented model can be defined by (8). 

T

T

T

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) [SoC( ), ( 1)]
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(8)

 

Moreover, the DC power balance relationship can be denoted as the following discrete form: 

( ) ( ) ( )P k P k P kη= ⋅ +
FC DC/ DC BATd

       (9) 

Furthermore, the battery SoC dynamics is modeled by a first-order differential equation: 

( 1) ( ) ( )
(k) Q

T
SoC k + SoC k P k

V

η∆ ⋅
= − ⋅

⋅
BAT

BAT

DC BAT

      (10) 

By collecting (8)-(10), the studied system matrices are given as: 

[ ]

1
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3.3.2. Formulation of multi-criteria objective function and constraints  



Fuel efficiency and FCS lifetime expansion are two major optimization objectives. Meanwhile, the MPC 

controller should be able to track the battery SoC reference. Besides, the identical lengths for both MPC 

control and preview horizon are adopted in this work. Consequently, within the k-th rolling optimization 

horizon, the desirable control sequence 
* * *

1
U (k) [ (k),..., (k)]u u=

p
H

is derived through minimizing (12) with 

regard to (13). 

p

1

P ( ) P SoC( H ) SoCP ( 1)
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       (13) 

where �	
~|� = 1200 Ë , ∆�	
~|� = 40 Ë/© , _`:��% = 0.9, _`:��C = 0.3. Three constant penalty 

coefficients 1 2 3, ,ω ω ω are adjusted manually with the assistance of the global optimal EMS performance 

extracted by DP. As a result, 1 2 3, ,ω ω ω are respectively set to 1, 30 and 80000 in this study. In addition, 

the functions of 1 2 3C ,C ,C  are given as follows:  

• 1C  enforces FC operating towards the preset reference point, where the selection of �	
 �Á will be 

introduced in section 4.2.1. 

• As reported in [4], restricting FC power transients P∆ FC  is favorable to extending the lifetime of fuel 

cell systems. Hence, 2C  enables a punishment on the large FC power spikes to decelerate the FCS 

performance degradations owing to frequent load changes. 

• 3C is adopted to narrow the discrepancy between the actual and reference SoC, where _`:0�7 is 

provided by the SoC reference generator, namely _`:0�7 = _`:0�7∗ ÏM � S3Ð. By setting :Q  as a 

terminal cost term, there will be additional room for MPC controller to suppress the FC power spikes 

owing to speed mis-predictions. 



Considering the battery operation safety, (13a) defines the permissible SoC variation range, where _`: =
0.25, _`: = 0.95 [18]. If SoC emergency event (_`: >  0.9 `J _`: <  0.3) occurs, .=, .P are set to 

zero and thus the cost term :Q  could force SoC back to the normal operation range [0.3, 0.9] [18]. 

Moreover, due to the physical limitations, (13b)-(13d) specify the operation boundaries for both energy 

sources, where  �	
 = 0 Ë, �	
 = 1.2 MË, ∆�	
 = ¸ ∆�	
 = 40 Ë/©, �&�' = ¸10 MË, �&�' =
30 MË . Constraint (13e) specifies the k-th measurable disturbance sequence 

*

kW  as

* *

P
[P ( 1), ..., P ( H )]k k+ +

dd
. It should be mentioned that, given the k-th velocity prediction result

*

kV , 
*

dP  

could be calculated according to (1) and (2). Furthermore, given the penalty matrices Q and R , the cost 

function (12) can be rewritten as (14). 

1

T T'J ( ) ( ) ( ) ( 1) ( 1) ( 1)

( ) ( ) ( )

k +i k +i k +i k +i k +i k +i

with k +i k +i k +i

=  ∆ ∆ + − − − 

∆ = −
∑ pH

i=k y Q y u R u

y y r
  (14) 

In this case, by minimizing (14) subject to constraints (13), the k-th control action can be obtained, where 

such a quadratic programming problem is solved by the quadprog function embedded in the Matlab 

Optimization Toolbox. 

Section IV. Results and Discussions 

The control performance validation of the presented PEMS is carried out in the sequel of section IV. 

4.1. Velocity prediction performance evaluation  

Firstly, the performance of FCM-MC predictor is evaluated, where the root-mean-square-error (RMSE) 

is used as the criterion for prediction precision. The RMSE in the k-th prediction horizon is computed by 

(15a), while the average RMSE along the given cycle is given by (15b): 

Ò,Ó_Ô4M6 = Õ =�# ∑ ÏR∗4M � ±6 ¸ R4M � ±6ÐPb��#b�= 4v6
,Ó_Ôeeeeeeee = =?@Ö@�� ∑ ,Ó_Ô4M6��?@Ö@����= 4×6    (15) 

where 9�Ø��� denotes the cycle duration. 



4.1.1. Driving database preprocessing 

As depicted in Fig. 5(a), the speed profiles of 12 mail-delivery tasks collected on the fixed routes (data 

sampled at 1Hz) are regarded as the original driving database for building the velocity predictor. The 

mileage of a single delivery task is around 25 km, which is equivalent to 4 to 4.5 hours’ trip duration and 

the peak speed is below 60 km/h [37]. Moreover, two typical driving scenarios (flowing and congested) 

of the Mobypost vehicle on speed profile No.1 are given in the bottom subfigures to display the feature 

of mail-delivery mission profiles.  

 

Fig. 5(a). Actual speed profiles collected by GPS on the mail-delivery routes. 

Before TPM estimation, this database should be divided into 9� sub-databases according to the feature 

of driving samples. Taken HÚ = 5 as an example, the FCM is performed on all HÚ – dimensional driving 

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 5000 10000 15000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 5000 10000 15000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
el

o
c
it

y
 (

k
m

/h
)

0 5000 10000 15000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

ci
ty

 (
k

m
/h

)

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

0

10

20

30

40

50

60

V
e
lo

c
it

y
 (

k
m

/h
)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

No.9

No.10

No.11

No.12

200 300 400 500 600 700 800 900 1000

Time (s)

0

10

20

30

40

50

60

1400 1500 1600 1700 1800 1900 2000

Time (s)

0

10

20

30

40

50

60

Local View of speed profile of No.1:

[200s, 1050s]

Local View of speed profile of No.1:

[1400s, 2000s]



samples (speed vector) extracted from the original database. The deterministic clustering results are 

derived by the largest element within the quantified membership degree vector, as depicted in Fig. 5(b)-

(d). As can be seen, by labeling the original driving samples with the feature vector GVVWX, VYZ[, AVWXH, the 

driving database are categorized into 9�  groups, where the speed samples in each group are associated 

with similar changing tendencies (e.g. upwards, downwards, cruising etc.). In addition, using a larger 9� 

makes the samples within each cluster distributed closer to each other, meaning the stronger correlation. 

However, the sample discrepancies among different sub-groups are insignificant if an overlarge 9�  is 

used (e.g. samples in cluster 7 and 8 of Fig. 5(d)), implying the risk of over-classification. 

 

Fig. 5(b)-(d). FCM clustering results (Driving sample length: Hm = 5) with different NÜ: (b) NÜ = 3, (c) NÜ = 5 and (d) NÜ = 10. 

Furthermore, the length of driving samples HÚ would also affect the quality of classification. For example, 

if HÚ is set too small, it is hard to comprehensively describe the recent driving intentions through the 

insufficient information. In contrast, an overlarge HÚ may contain the redundant information that is 



irrelevant to the recent driving changes, increasing the risk of mis-classifications. 

Therefore, NÜ and HÚ should be carefully tuned before online applications.  

4.1.2. Influence on prediction accuracy by Ýj and �� 

The settings on NÜ and HÚ would affect the quality of driving sample clustering, thus further influencing 

the velocity prediction performance. To find the proper settings on NÜ and HÚ, the MC predictor with 

different 4NÜ, HÚ6 candidates is tested on the combined testing cycle (including all speed profiles in Fig. 

5(a)). Fig. 5(e) presents the average RMSE results (Hp = 5). As can be seen, the highest prediction 

accuracy is achieved when NÜ = 4 and HÚ = 5. Moreover, Fig. 5(f) presents an example of classification 

results using such parameter setting. For better graph readability, each class of speed samples in moving 

horizons is marked with a specific color and the samples in different moving horizons are separated with 

offset. As can be seen, speed samples are correctly classified into four states, indicating the vehicles’ 

related operation stages. Hence, it can be confirmed that when NÜ  =  4  and  HÚ  =  5 , the original 

database can be properly separated into multiple sub-databases through the proposed data 

structure GVVWX, VYZ[, AVWXH. Note such parameter setting is adopted for the FCM-MC predictor. 

 

            

Fig. 5(e). Average RMSE (Hp = 5) on the testing cycle under different 4NÜ, HÚ6 settings. (f). Example of classification results 

when NÜ = 4 and HÚ = 5. 
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4.1.3. Comparison with benchmark predictors 

A comparative study is conducted to evaluate the performance of FCM-MC predictor. Specifically, two 

benchmark predictors are introduced, including a conventional multi-step Markov Chain predictor 

(MSMC) and a back-propagation neural network predictor (BPNN). 

• Benchmark predictor description 

Compared to the FCM-MC predictor, the TPM group of MSMC predictor is estimated based on the 

original driving database without preprocessing by the FCM technique. Please note the number of MC 

state is set to 50. Additionally, based on the NN parameter setting suggestions [21], a three-layer BPNN 

predictor is adopted as the benchmark. Specifically, 85% of original driving data is used as the BPNN 

training sample while the left 15% is used for performance validation. 

• Prediction performance comparison 

Another speed profile for mail delivery (marked as CYCLE_I) is used as the testing cycle, as depicted in 

Fig. 6(a). Specifically, Fig. 6(b)-(d) display the detail prediction results of three methods (Hp = 5), where 

the prediction results of MSMC approach tend to diverge dramatically from the actual speed profile, 

leading to the worst performance among all predictors. This is because the MSMC predictor characterizes 

the future velocity distributions only based on the current driving state, making it hard to describe the 

blended and changeable driving behaviors. In contrast, when using more historical driving data for 

prediction, the BPNN predictor characterizes the future velocity distributions in a more convincing 

manner, leading to the quality enhancement of prediction.  

Additionally, as depicted in Fig. 6(d1) and (d2), the FCM-MC predictor outperforms the benchmark 

predictors in terms of the overall prediction accuracy. Besides, it exhibits a quicker re-convergence rate 

after the speed inflection points, as highlighted in the dashed rectangle regions within each subfigure. The 

reason for such performance improvement is: (1) based on the identification results of recent driving 

states, proper predictive sub-models are adopted for online speed forecasting; (2) by aggregating the 

forecasted speed profiles from all sub-models with the quantified fuzzy membership degrees, the 

proposed method has a certain level of robustness towards the mis-identification of input driving states.  



Similarly, the comparative studies are also conducted under other four testing cycles, namely CYCLE_II 

to CYCLE_V. Table 3 summarizes the average RMSE of all predictors, where the FCM-MC predictor 

results in the highest prediction accuracy among three approaches under five testing cycles. Specifically, 

compared to the MSMC approach, the average prediction accuracy improvement by the FCM-MC 

predictor are respectively 9.31% (Hp = 5) and 14.57% (Hp = 10). Besides, compared with the BPNN 

predictor, the FCM-MC can reduce the average prediction error by 10.24% (Hp = 5) and 9.87% (Hp = 

10), respectively. Therefore, it can be confirmed that the FCM-MC predictor can improve the quality of 

speed prediction compared to benchmark approaches.  

 
Fig. 6. Speed forecasting performance evaluation on CYCLE_I (Hp = 5): (a) global view of prediction results, (b) performance of conventional 

multi-step Markov predictor (MSMC), (c) performance of back propagation neural network (BPNN) predictor and (d) performance of fuzzy C-

means based Markov predictor (FCM-MC). 
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TABLE 3. Average RMSE (m/s) of three predictors under five testing cycles. 

Items CYCLE_I CYCLE_II CYCLE_III CYCLE_IV CYCLE_V 

Hp 5s 10s 5s 10s 5s 10s 5s 10s 5s 10s 

MSMC 0.5100 0.8289 0.5750 0.9224 0.6193 0.9896 0.5710 0.9240 0.5518 0.8876 

BPNN 0.5263 0.8072 0.5860 0.8920 0.6192 0.9481 0.5801 0.8940 0.5533 0.8232 

FCM-MC 0.4569 0.6937 0.5272 0.7985 0.5685 0.8558 0.5236 0.7972 0.4976 0.7472 

4.2. Evaluation on predictive energy management strategy 

Combined with the FCM-MC predictor and the adaptive SoC reference generator, the MPC-based PEMS 

is compared against the benchmark EMSs in this subsection. 

4.2.1 Selection of fuel cell reference working point 

To improve the overall FCS working efficiency, the fuel cell reference working point �	
 �Á should be 

carefully pre-determined. To cover the vehicles’ daily driving conditions, the speed profiles of 12 mail 

delivery tasks are used for �	
 �Á  extraction. As a powerful technique in search for the global optima, DP 

is used to extract the FCS working points, where the global optimization problem is formulated as follows: 

min∆áâã∈ âã ∑ ∆��
Ï∆�	
4M6Ð?�=��ä ∙ ∆1       (16a) 

©. ®.
åææ
çæ
æè 0.3 ≤ _`:4M6 ≤ 0.90 ≤ �	
4M6 ≤ 1200 Ë¸40 Ë/© ≤ ∆�	
4M6 ≤ 40 Ë/©¸10 MË ≤ �&�'4M6 ≤ 30MË_`:ä = 0.45, �	
ê = 0 Ë _`:? = 0.3

                                                                                       
416×6416�6416ì6416í6416°6416^6

 

where 9 is the duration of each mail delivery task. The FC power changing rate ∆�	
  is picked as the 

manipulated variable and E	
  represents the discretized domain of ∆�	
  with grid resolution of 1 W/s. 

Additionally, the SoC, FC power, FC power transients and battery power are restricted within their 

permissible boundaries by (16b)-(16e). Constraint (16f) defines the initial states of battery SoC and FC 

power. (16g) denotes the terminal SoC constraint. To emphasize the function of FCS as a range 

extender, _`:ä is set as 0.45 to simulate the situations when the battery is not fully charged. Please note 

that the FC reference working points under other _`:ä settings can be extracted in the same way.  

As shown in Fig. 7, 81.22% DP-optimized FC working points are distributed within the high efficiency 

region. Consequently, the median value is selected as the reference FC power for online application, 

namely �	
 �Á = 550 Ë. 



 
Fig. 7. The �	
  distribution under 12 mail-delivery tasks. 

4.2.2 Analysis of different impact factors 

To explore the potential impacts on EMS performance brought by several parameters (e.g. 

M] and S3 etc.), a postal delivery mission profile as shown in Fig. 8(a) is used as the testing cycle.  

• Battery SoC regulation performance with different �î 

As stated before, the positive constant M] defines the upper boundary of the adjusting factor �, which 

could bring significant impacts on the SoC regulation performance. Therefore, a proper M] should be 

predetermined. With S3 = 5 and different M] candidates, the proposed MPC-based EMS is verified on 

the testing cycle and the corresponding battery SoC profiles are depicted in Fig. 8(b). Among 

M] candidates (1 to 6), a larger M] would accelerate the overall battery energy depletion rate, making the 

terminal battery SoC closer to the threshold (0.3). However, using an overlarge M] (e. g.  M] = 5,6) would 

lead to the occurrence of SoC urgency event (SoC < 0.3) before the end of the trip, resulting in the 

prolonged CS driving phase. To tradeoff between the battery energy utilization rate and the battery 

operation safety, M] is set to four. 

High Efficiency Region



 

Fig. 8. EMS performance comparison against various impact factors. (a) The speed (blue) and power demand profiles (red) of the used testing 

cycle. (b) SoC trajectories with different  M] (S3 = 5). (c) SoC trajectories with different  S3 (M] = 4). (d) FC power profiles with the proposed 

adaptive SoC reference. (e) FC power profile with linear SoC reference. 

• Comparison between adaptive SoC reference and linear SoC reference 

To compare the SoC regulation performance between the adaptive SoC reference (7) and the existing 

linear SoC reference [23], the MPC-based EMS (with M] = 4 and different S3 (3s, 5s and 10s)) is 

performed on the testing cycle, where the related SoC profiles are shown in Fig. 8(c). Specifically, 

increasing Hp makes the final SoC closer to the target value (0.3), indicating a deeper battery discharge. 

Moreover, the linear SoC reference leads to a constant energy depletion rate along the entire cycle. In 

contrast, the adaptive SoC reference model can regulate the actual SoC depleting rates regarding 

changeable driving conditions. For example, a lower SoC depleting rate appears under the congested 

driving conditions (e.g. phase A), while a higher SoC depleting rate occurs during the flowing driving 

conditions (e.g. phase B). Consequently, the adaptive SoC reference generator enables a flexible battery 
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(c)
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energy usage towards various power requirements, thus improving the rationality in energy allocation 

against the linear SoC reference. 

• Fuel cell power performance comparison with different SoC references 

Fig. 8(d) and (e) depict the FCS power profiles tracking the adaptive SoC reference and the linear SoC 

reference, respectively. When tracking the adaptive SoC reference, increasing S3 would decrease the 

average of FC power, which is beneficial to reduce the H2 consumption. However, the FCS would work 

more actively in this case, leading to larger power transients. In contrast, as shown in Fig. 8(e), extremely 

large FC power spikes as well as frequent start-stop cycles occur when tracking the linear SoC reference, 

which would greatly shorten the lifetime of FCS. Additionally, as highlighted in the dashed regions in 

Fig. 8(c) and (d), when Hp =10 and SoC < 0.3, the SoC emergency mode is activated, where the FCS is 

working towards its maximum power point (1.2kW) to help SoC back to the safe operation range [0.3, 

0.9]. 

• Determination of prediction horizon 

Table 4 summarizes the EMS performance discrepancies with different S3, where m
2H  is the amount of 

H2 that is actually consumed. To acquire the convincing comparison results on fuel economy, the final 

SoC (_`:�C� ) deviation from 0.3 is transformed into the equivalent H2 consumption (��
�bc
) [9]. 

Specifically, enlarging S3 could increase ��
�bc but lead to a deeper battery discharge. Meanwhile, the 

average FC power transients (d∆�7�deeeeeeee) and the computation time per step (1���) would also be increased 

through a larger Hp. Therefore, Hp = 5 is a reasonable choice to tradeoff among the fuel economy, the FC 

power transients and the computation efficiency. 

TABLE 4. MPC-based EMS performance under testing cycle with different Hp. 

Prediction Horizon (s) 
H2

m  (g) 
2

equ

Hm  (g) ñoòqóô d∆mõ�deeeeeeee (W/s) ö�kn (ms) 

3 99.4 87.2 0.3473 0.6 15.38  

5 92.5 87.9 0.3178 1.0 16.73 

10 90.2 89.0 0.3048 1.8 22.04 

4.2.3. Comparison with benchmark energy management strategies 

To further verify the performance of the proposed EMS, two benchmark EMSs are introduced for 

comparison. As the upper benchmark, DP extracts the optimal fuel cell power profiles based on the fully 



previewed trip information, as formulated by (16). In contrast, the MPC controller with the linear SoC 

reference is regarded as the lower benchmark, marked as “L-MPC”. Besides, the proposed EMS with the 

adaptive SoC reference (7) is marked as “A-MPC”. For both MPC-based strategies, S3 = 5 and M] = 4. 

• EMS performance comparison with benchmark strategies 

Five GPS-collected speed profiles for mail-delivery are employed for validating the EMSs, where the 

related comparison results under two mission profiles are detailed in Fig. 8(f)-(k).  

 
Fig. 8. EMS performance comparison with benchmark strategies. (f) Speed (red) and power demand (blue) profiles of testing cycle I. (g) SoC 

profiles of different EMSs on testing cycle I. (h) Fuel cell power profiles of different EMSs on testing cycle I. (i) Speed (red) and power demand 

(blue) profiles of testing cycle II. (j) SoC profiles of different EMSs on testing cycle II. (k) Fuel cell power profiles of different EMSs on testing 

cycle II. 

As shown in Fig. 8(g) and (j), under both testing cycles, A-MPC can effectively regulate the SoC 

depleting rate against the changeable driving conditions, where its SoC profiles are close to the DP-based 
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(k)

(f)

(g)
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ones. Besides, given the linear SoC reference, the L-MPC tends to maintain the constant SoC depleting 

rate along the driving cycle. However, due to the maximum FC power limits, the SoC profiles of L-MPC 

deviate from the linear reference in some peaking power regions (marked with the grey shadow). 

Moreover, as depicted in Fig. 8(h) and (k), benefiting from the fully previewed trip information, DP 

manipulates the FCS with the fewest power transients. In contrast, L-MPC regulates the FCS power in an 

aggressive manner, where much larger power spikes and many start-stop cycles are observed. In contrast, 

A-MPC is able to smooth the FC power profiles, showing the great potential in extending the FCS’s 

lifetime. 

Furthermore, Fig. 8(l) and (m) depicts the corresponding FC working point distributions. Specifically, 

97.54% (testing cycle I) and 90.66% (testing cycle II) of FC working points for DP are located in the high 

efficiency region, while this ratio for L-MPC under both testing cycles are respectively 7.51% and 9.12%. 

In contrast, A-MPC can improve this ratio to 86.39% (testing cycle I) and 85.56% (testing cycle II). This 

indicates the proposed EMS can greatly enhance the FCS working efficiency compared to L-MPC 

strategy.  

 

Fig. 8(l) and (m). FCS working points probability distributions under two testing cycles. 

Table 5 summarizes the EMS performances under five testing cycles, where J��h� denotes the ratio of 

FCS working within the high efficiency region. Specifically, at least 70.46% FCS working points of A-

MPC are distributed within the high efficiency area, where the enhanced working efficiency leads to 3.79% 

to 5.35% reduction of equivalent H2 consumption (��
�bc
) compared to the L-MPC benchmark. Besides, 

A-MPC can also decrease the average FC power transients (d∆�7�deeeeeeee) by 40.4% to 54.7% compared to L-
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MPC, thus enhancing the FCS’s durability. Furthermore, A-MPC performs close to DP benchmark under 

five testing cycles, where the largest performance gap on ��
�bc
 and d∆�7�deeeeeeee are respectively 0.84% (testing 

cycle II) and 9.18% (testing cycle V). In addition, the online calculation time per step (1���) for A-MPC 

ranges from 16.53 ms to 16.77 ms, which is sufficiently smaller than the sampling time interval (1s), 

making it suitable for real-time applications. 

TABLE 5. EMS performance evaluation results under five testing cycles. 

 Testing cycle I  Testing cycle II  Testing cycle III  

 DP L-MPC A-MPC DP L-MPC A-MPC DP L-MPC A-MPC jÝ�(g) 96.9 102.1 99.3 95.1 98.8 99.6 73.8 78.5 80.6 jÝ�q÷s (g) 96.9 101.7 97.7 95.1 100.1 95.9 73.8 78.5 74.3 ñoòqóô 0.3000 0.3016 0.3063 0.3000 0.2953 0.3142 0.3000 0.2999 0.3243 d∆mõ�deeeeeeee (W/s) 0.96 2.25 1.02 0.97 2.24 1.04 0.85 1.61 0.87 røùúø 97.54% 7.51% 86.39% 90.66% 9.12% 85.56% 95.39% 11.69% 70.46% ö�kn (ms) --- 16.97 16.63 --- 16.67 16.58 --- 16.75 16.62 

 Testing cycle IV Testing cycle IV 

 DP L-MPC A-MPC DP L-MPC A-MPC jÝ�(g) 100.8 105.5 109.5 98.6 102.8 102.7 jÝ�q÷s (g) 100.8 105.9 101.5 98.6 103.0 99.1 ñoòqóô 0.3000 0.2983 0.3308 0.3000 0.2993 0.3139 d∆mõ�deeeeeeee (W/s) 0.98 1.71 1.02 0.98 2.33 1.07 røùúø 79.75% 6.65% 78.87% 89.09% 11.13% 83.33% ö�kn (ms) --- 16.69 16.77 --- 16.75 16.53 

• Sensitivity analysis under trip duration estimation errors 

In this work, the scheduling of battery energy usage is achieved based on the assumption that the trip 

duration 1�0�3 on the mail-delivery routes can be estimated before departure. However, considering the 

complex traffic conditions in reality (e.g. stochastic distributions of the traffic lights etc.), the actual trip 

duration would deviate from the estimated ones to some extent. To explore the potential impacts on the 

EMS performance brought by trip duration estimation errors, a sensitivity analysis is presented, where 

different levels of estimation errors (-30% to 30% of the actual trip duration) are given to the adaptive 

SoC reference model (7). Please note that the negative errors mean 1�0�3 in (7) is smaller than the actual 

trip duration, while positive errors denote the opposite. Based on trip duration errors, the proposed EMS 

is evaluated under testing cycle I and II, where the numerical evaluation results are summarized in table 

6.  

TABLE 6. EMS performance under -30% to 30% trip duration errors. 



Testing cycle I Testing cycle II 

Error jÝ� 

(g) 

jÝ� q÷s
 

(g) 

ñoòqóô |∆ü¹�|eeeeeeee 

(W/s) 

røùúø Error jÝ� 

(g) 

jÝ� q÷s
 

(g) 

ñoòqóô |∆ü¹�|eeeeeeee 

(W/s) 

røùúø 

-30% 99.4 99.0 0.3015 1.35 53.69% -30% 96.4 97.5 0.2958 1.34 54.50% 

-20% 98.9 98.5 0.3013 1.48 63.05% -20% 95.9 97.0 0.2960 1.57 62.96% 

-10% 98.4 98.2 0.3010 1.32 77.93% -10% 95.3 96.7 0.2947 1.24 73.92% 

0% 99.3 97.7 0.3063 1.02 86.39% 0% 99.6 95.9 0.3142 1.04 85.55% 

10% 99.8 97.6 0.3086 0.98 86.90% 10% 99.9 95.9 0.3129 0.97 86.49% 

20% 100.6 97.6 0.3102 0.98 86.60% 20% 100.0 95.8 0.3164 0.98 86.22% 

30% 101.1 97.6 0.3143 0.98 86.50% 30% 100.6 95.8 0.3185 0.98 87.86% 

Specifically, the trip duration errors would bring different impacts on following performance metrics: 

� Fuel economy  

If positive errors are applied when planning battery energy usage, the actual SoC depleting rate would be 

reduced by the enlarged 1�0�3, leading to the larger _`:�C�  under both testing cycles. In this case, larger 

portion of power demand would be supplied by the FCS, thus increasing the amount of actual H2 

consumption ( ��
 ). Besides, J��h�  remains almost the same under positive errors, indicating the 

relatively stable FCS working efficiency. Therefore, compared to the zero-error working conditions, the 

discrepancies on the equivalent H2 consumption (��
�bc
) are not significant.  

In contrast, negative trip duration estimation errors would accelerate the SoC depletion, making the 

energy stored in the battery pack fully depleted before the end of the trip, resulting in the smaller _`:�C�. 

However, the prolonged CS driving phases would greatly reduce the average FCS working efficiency and 

thus increase the amount of equivalent H2 consumption. Overall, in face of ± 30% trip duration 

estimation errors, the proposed EMS (A-MPC) can still save over 2.65% (testing cycle I) and 1.32% 

(testing cycle II) equivalent H2 consumption compared to the L-MPC strategy.  

� FCS durability  

When positive trip duration estimation errors appear, the average FC power transients d�7�eeeed slightly 

decrease compared to the zero-error conditions. This is because the enlarged 1�0�3 would shorten or 

eliminate the CS driving phases, making FCS working more stably, thus reducing the average power 

transients. In contrast, the extended CS driving phases caused by the negative errors require FCS working 

more actively to cope with the occurrence of SoC urgency events, thus increasing the FCS power 

transients. As a result, compared to the L-MPC strategy, over 34.22% (testing cycle I) and 29.91% (testing 



cycle II) decrement on the average FCS power transients can be achieved by the A-MPC strategy even 

with ± 30% trip duration estimation errors. 

As a conclusion, the sensitivity analysis results indicate that the proposed EMS has certain level of 

robustness against the trip duration estimation errors, thus further demonstrating its practicality. 

Section V. Conclusion 

In this work, an energy management strategy is developed for light-duty plug-in hybrid electric vehicles 

powered by battery and fuel cell. Specifically, a fuzzy C-means enhanced multi-step Markov velocity 

forecasting method is proposed. Subsequently, an adaptive SoC reference generation method is devised 

for planning the battery energy usage. Combined with the speed forecasting results and the SoC reference, 

the model predictive controller can make proper energy distribution decisions by minimizing the multi-

criteria performance index per sampling time step. The major contributions of this work are summarized 

as: 

• The fuzzy C-means clustering technique is adopted to preprocess the original driving database, 

leading to the generation of multiple Markov predictive sub-models, where each sub-model 

characterizes the future velocity distribution of specific type of input driving states. At the online 

application stage, to reduce the negative impacts caused by the uncertainty of driving state 

identification, the final prediction results are obtained by synthesizing the forecasted speed profiles 

from all sub-models with the real-time quantified fuzzy membership degrees. Moreover, validation 

results have demonstrated the improved prediction accuracy and robustness of the proposed predictor 

against benchmark predictors. 

• Benefiting from the velocity prediction results and the estimated trip duration, the adaptive SoC 

reference generator can regulate the actual SoC depleting rate against different driving conditions, 

which exhibits a more reasonable battery energy distribution performance compared to the existing 

linear SoC reference.  

• Compared with the lower benchmark strategy, the presented EMS can effectively bring down the 

vehicle’s operation costs through saving H2 consumption (by at least 3.79%) and limiting the FC 

power spikes (by at least 40.4%), implying the improved fuel economy and a better FCS durability. 



Additionally, the proposed strategy performs close to the upper benchmark (DP), where the largest 

gaps against the global optimality are respectively 0.84% (fuel economy) and 9.18% (fuel cell power 

transients). Moreover, it is verified that the proposed strategy is robust to certain level of trip duration 

estimation errors, which is favorable to the real applications. 
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