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Abstract

Background : Optical Coherence Tomography (OCT) is an emerging medical imaging technol-
ogy. It is well suited to various medical applications requiring tissue imaging with micrometer
resolution and millimeter penetration depth such as in ophthalmology and dermatology. Despite
its numerous advantages, OCT has a long acquisition time for high-resolution images or vol-
umes. This paper deals with the development of a Compressed Sensing (CS) paradigm for faster
3-dimensional OCT image acquisition.
Methods : The proposed framework includes three main steps: 1) defining a random-like and
parameterizable and continuous scanning trajectories that must be compatible with a smooth me-
chanical scan, 2) rasterizing the scanning trajectory to make it achievable by a physical system
(i.e., galvanometer mirrors), and 3) incorporating a high sparsifying data technique so-called 3D
shearlet transform into the compressed sensing scheme. Actually, shearlet transform is mathe-
matically optimal for multidimensional data decomposition and has been proven more efficient
than classical ones such as those obtained by wavelet or curvelet transforms. Actually, shearlet
system provides a very efficient tool for encoding anisotropic features (such as edges in images)
in multivariate problem classes.
Results : Numerical simulations and ex vivo experiments were carried out. The obtained results
showed the ability of the proposed method to recover OCT images and volumes with high fi-
delity for different subsampling rates and scanning schemes, demonstrating the relevance of the
proposed approach.

1. Introduction
1.1. Overview and motivations

Optical Coherence Tomography is a powerful biomedical imaging technology that uses low coherent light to cap-
ture micrometer-scale resolution data fromwithin optical scatteringmedia (e.g., biological tissue). Actually, OCT data,
sometimes called optical biopsy, can image a tissue at or near the resolution of the well-known histopathology proce-
dure without the need for excisional biopsy. Consequently, the physician can take unlimited biopsies and reduce the
need for physical biopsy that are more invasive and imply a delay in the interpretation, namely based on histopatho-
logical examination. An OCT imaging device allows acquiring cross-sections in a non-destructive and contact-less
manner. Its operating principle is based on the use of low-coherence interferometry employing near infrared light Fu-
jimoto, Pitris, Boppart and Brezinski [2000]. Initially, the OCT technology was developed for the ophthalmology
and optometry fields where it can be used to obtain detailed images from within the retina, because of the translucent
nature, the minimal scattering, the good light-tissue interaction, and the high-light penetration characteristics of the
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Compressed Sensing in OCT

retina. Recently, it has also begun to be used in interventional cardiology to help diagnose coronary artery disease as
well as in dermatology Zysk, Nguyen, Oldenburg, Marks and Boppart [2007].

There are two main families of OCT imaging techniques: Fourier-Domain (FD) OCT and Time-Domain (TD)-
OCT. The FD-OCT method is associated with high-speed scanning mechanism and better resolution as compared
to the TD-OCT. In fact, the scan speed of TD-OCT systems depends on the mechanical cycle time of the moving
reference mirror driver, whereas in FD-OCT, the reference mirror is fixed, which assists in sampling multiple points
from the tissue structures, simultaneously Wang, Xia, Tian and Zhou [2015]. As results, FD-OCT can provide higher
resolution, and frame-rate compared to the TD-OCT Chen, Cense, Pierce, Nassif, Park, Yun, White, Bouma, Tearney
and de Boer [2005]. However, despite the superiority of FD-OCT systems over TD-OCT ones, it nevertheless has
limitations for effective use in several medical applications. Effectively, FD-OCT offers a high frequency acquisition
of 1D (optical cores) and 2D (cross-sections), however the required time for 3D data (OCT volume), their processing,
transfer, and storage remains highly problematic. For instance, acquiring a volume of 10×10×3.5mm3 using a standard
FD-OCT system such as the Telesto II fromThorlabs®requires more than 1minute and 10Go of RAM (RandomAccess
Memory) for preview limiting real-time diagnosis or tissue monitoring. Additionally, in FD-OCT, to discretize and
digitize the spectral interferograms at high-resolution and frame-rate, it is necessary to use high-performance array
detectors such as CCD (Charge-Coupled Device) sensors Choma, Sarunic, Yang and Izatt [2003]. The use of these
kind of sensors increases significantly the cost of an FD-OCT system and then limits their deployment in hospitals,
particularly in developing countries.

To overcome certain limitations of using OCT imaging modality, namely when the use of C-scan acquisition is
required, we explore the potential of developing of Compressed Sensing (CS) scheme in aim to:

• increase the frame-rate of OCT volume acquisition, namely for applications in assisted surgical guidance and
intervention

• reduce the amount of data required and subsequent processing for high-resolution image reconstruction Liu and
Kang [2010];

• make possible to use smaller and less expensive array detectors, while guaranteeing spatial and axial resolutions
that are faithful to those obtained by the expensive sensors usually used;

• reduce artifacts in OCT volumes mainly due to the low acquisition frame-time and possible physiological move-
ments of the patient when it comes to in vivo examination.

Compressed Sensing was developed simultaneously by Donoho and Candès, Romberg and Tao Donoho [2006]; Can-
dès, Romberg and Tao [2006] who introduced randomized acquisition schemes and provided the strong mathematical
underpinnings of CS theory. It consists of a paradigm which illustrates the possibility to acquire at sub-Nyquist rate
and compress signals (measurements) all at the same time under sparsity assumptions, at the expense of potentially
more involved computations for the recovery Foucart and Rauhut [2013]. Sparsity, which is the opposite of density,
is an essential feature shared by many wavelet-type decompositions, that is leveraged in CS theory Davenport and
Duarte [2012]. Most medical imaging systems, such as magnetic resonance imaging (MRI), computed-tomography
(CT), OCT, ... are known to admit a high-level of sparsity in other decomposition bases such as wavelets, curvelets,
shearlets, etc. This especially because that medical images are generally composed of large homogeneous areas with a
low dynamic range in terms of contrast compared to conventional images Fei, Wei and Zongxi [2017]. In addition, it
is admitted to consider that the different medical imaging modalities (e.g., OCT) share the common feature of acquir-
ing, totally or at least partially, the signals through spectral measurements of highly sparse signals. However, in many
practical settings, natural sparsity is sometimes insufficient for accurate signal recovery and other tools have to be put
to work in order to achieve better reconstruction in inverse problems of the CS type.

One of the necessary conditions for the feasibility of compressed acquisition is the ability to decompose efficiency
the signal/image in a sparsifying functions bases such as wavelet, curvelet, shearlet transforms, etc. The latter have
recently been introduced as a new decomposition that is superior, in many respects, to wavelet multiple scale decom-
position Mallat [1989]. Shearlet system Labate, Lim, Kutyniok and Weiss [2005] provides an efficient compactly
supported decomposition which extends the wavelet decomposition and was proved to outperform the wavelet decom-
position in many applications such as sparsifying method. A notable feature of shearlet is that it can encode curvilinear
singularities and others anisotropic features in a much better fashion than wavelet functions can do. As a result, shear-
let provides a more precise separation of the morphologically distinct features of points and curves. Whereas wavelet
HAYDAR et al.: Preprint submitted to Informatics in Medicine Unlocked Page 2 of 18
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systems are obtained using dyadic scaling and translations of a single function Ψ, shearlet systems can be generated
using a single operator including parabolic scaling, shearing, and translation operators Kutyniok and Labate [2012].
From the point-of-view of CS, shearlet systems provide a high-sparsity representation of the signal, which is practically
often optimal, a considerable advantage over other techniques such as Fourier and wavelet transforms.
1.2. Contributions

Most of the existing CS methods requires the use of incoherent pseudo-random or random subsampling of k-sparse
data Candes, Romberg and Tao [2006]; Candes [2008]. These subsampling schemes (also called masks or sensing ma-
trices) are often of little relevance since they cannot be implemented on physical acquisition systems Bigot, Boyer and
Weiss [2016]. In OCT context, the acquisition is processed through xy scanning scheme performed by a twodegrees-
of-freedom (dof) galvanometer mirror device and random sampling which leads to the fact that is inconsistent with the
physical constraints that preclude the use of non-smooth trajectories. Consequently, in case of a physical implementa-
tion, acquiring few measurements in a random sampling method can result in a longer computation time in comparison
to the acquisition of all data in raster mode.

In this paper, we investigate novel scanning schemes using continuous trajectories (e.g., spiral, rosette, and Lis-
sajous), that consider the limitations imposed by the OCT mirrors in terms of scanning speed, scan area, and kinemat-
ics. We also develop a rasterization strategy which ensures that pixel coordinates are optimally chosen to follow the
predefined trajectory (i.e., xy positions) on the sample to be scanned.

Our implementation bridges our new scanning schemeswith the existing digital shearlet transform toolbox provided
by Kutyniok, Lim and Reisenhofer [2014]. Our scanning schemes are based on spiral, rosette or Lissajous shaped
trajectories that offer rapid and efficient coverage of the k-space. The proposed rasterization algorithm is embedded
into our package and is designed to permit handy tuning of the subsampling rate, the scan area, and the variable density
sampling along the trajectory. Finally, the developed methodology is shown to outperform current state of the art in
the two following scenarios: 1) using a simulation based numerical validation framework in both 2D cross-sectional
OCT image and 3D OCT volumes cases, and 2) using an experimental set-up equipped with a Fourier-Domain OCT
device.

The rest of this paper is organized as follows. In Section 2, we present the compressed sensing framework, the
sparsity representation as well as the shearlet transform. Also, the acquisition schemes, the proposed subsampling con-
tinuous trajectories, and the rasterization algorithm, both the sparsity and the incoherence are detailed in this section.
Section 3 deals with the numerical validation when Section 4 discusses the experimental validations of the proposed
methods and materials. Finally, a discussion on the obtained results with regard to the state-of-the-art is also provided.

2. Materials and Methods
2.1. Compressed sensing

Compressed sensingwas discovered in the breakthrough papers by E. Candés, J. Romberg, T. Tao andD.DonohoDonoho
[2006]; Candès et al. [2006] that created via a mathematical tour de force, a new paradigm for joint signal acquisition
and compression and explored its tight relationships with modern optimization and randommatrix theory. It has subse-
quently triggered an extensive research effort exploiting sparse representation of signals and images via fast orthogonal
and even non-orthogonal decomposition such as wavelet transforms. CS initially attracted the signal processing com-
munity’s attention after Candès and Donoho were able to show how to use random sampling in order to break the
Nyquist barrier that had set the what used to be thought of as the sampling frequency limit to any data acquisition
procedure. Then, the theory developed into richly ramified research field Foucart and Rauhut [2013] with a versatile
set of mathematical and algorithmic tools for efficient sampling of inherently sparse objects.

In mathematical terms, the problem can be stated as follows. Let x be an object (a vector, a matrix or a tensor) in
a Euclidean space E which admits a k-sparse representation in a dictionary Γ, i.e.,

x =
q
∑

j=1
cjΓj (1)

where c ∈ ℝq is a k-sparse vector, which means that a vector with no more than k nonzero components. The observa-
tions are simply given by linear measurements of the form

yi = ⟨mi, x⟩

HAYDAR et al.: Preprint submitted to Informatics in Medicine Unlocked Page 3 of 18



Compressed Sensing in OCT

where ⟨mi, ⋅⟩ is a functional on the E for i = 1,… , n, and we obtain a linear system
y = Ac (2)

where A ∈ ℝn×q and the rows of A are given by
Ai,∶ = mtiΓ ; i = 1,… , n.

In a CS type of problem, our goal is to recover the sparse vector c of components with as few observations (i.e.,
measures) as possible and therefore n will be thought as small compared to q. The main challenge is then to construct
an observation matrix A, which allow recovering x with n as small as possible for given values of k and m.

The CS problem can be solved unambiguously if there is no sparser solution to the linear system (2) than c. Thereby,
recovery is obtained by simply finding the sparsest solution to (2). If for any c in ℝq we denote by ‖c‖0 the l0-normof c, i.e. the cardinal of the set of indices of nonzero components of c, the CS problem is equivalent to

min
c∈ℝq

‖c‖0 s.t. Ac = y. (3)

Let us denote by Δ0(y), the solution of problem (3) and Δ0(y) is called a decoder 1. Thus, the CS problem may be
viewed as a combinatorial optimization problem. Moreover, the following lemma is well known.
Lemma 1. (see for instance Cohen, Dahmen and DeVore [2009]) If A is any n × p matrix and 2k ≤ n, then the
following properties are equivalent:

• The decoder Δ0 satisfies Δ0(Ac) = c, for all c ∈ Σk,

• For any set of indices T with #T = 2k, the matrix AT has rank 2k where AT stands for the submatrix of A
composed of the columns indexed by T only.

The l1 relaxation is given by
min
c∈ℝp

‖c‖1 s.t. Ac = y. (4)
In the following, we will denote by Δ1(y) the solution of the l1-relaxation (4). From the computational viewpoint,

this relaxation is of great interest since it can be solved in polynomial time. Indeed, (4) is equivalent to the linear
program

min
c∈ℝq

q
∑

i=1
zi s.t. − z ≤ c ≤ z, and Ac = y.

The main subsequent problem induced by this choice of relaxation is to obtain easy-to-verify sufficient conditions
onA for the relaxation to be exact, i.e. to produce the sparsest solution to the underdetermined system (2). An algebraic
condition was given by Candès, Romberg and Tao Candès et al. [2006], called Restricted Isometry Property (RIP). We
say that a matrix A satisfies the RIPk,� if, for every index subset S with cardinality |S| ≤ k, and every c ∈ ℝq

(1 − �)‖cS‖2 ≤ ‖AScS‖2 ≤ (1 + �)‖cS‖2. (5)
The smallest value of � in the previous inequalities is denoted by �k. Up to now, this condition could only be provedto hold with great probability in the case where A is a sub Gaussian random matrix. Several algorithmic approaches

have also been recently proposed in order to guaranty exactness of the l1 relaxation such as in Juditsky and Nemirovski
[2011] and d’Aspremont and El Ghaoui [2011]. A different approach to the study of decoder Δ1 is based on the notionof incoherence. The coherence �(A) of the observation matrixA is the largest absolute value among all scalar products

1In the general case where c is not the unique sparsest solution of (3) using this approach for recovery is of course possibly not relevant.
Moreover, in such a case, this problem has several solutions with equal l0-"norm" and one may rather define Δ0(y) as an arbitrary element of the
solution set.

HAYDAR et al.: Preprint submitted to Informatics in Medicine Unlocked Page 4 of 18



Compressed Sensing in OCT

of different columns of A, i.e.

�(A) = max
j≠j′

|⟨Aj , Aj′⟩|
‖Aj‖2 ‖Aj′‖2

. (6)

The matrix A is said to be incoherent when its coherence �(A) is on the order of 1∕ log(q). Several results have
been obtained that guarantee exact recovery under the low coherence assumption.

In the noisy setting, the observation is given by
yi = ⟨mi, x⟩ + �i (7)

and the problem can be addressed by solving

min
c∈ℝq

1
2
‖y − Ac‖22 + �‖c‖1 (8)

for specific values of � ∈ ℝ+. Exact recovery cannot hold in this setting, but using incoherence, exact recovery of thesupport of c was proved in Candès, Plan et al. [2009] in the case where the variance of the noise is known beforehand,
and in Chrétien and Darses [2014] in the case of unknown variance. The main result from Chrétien and Darses [2014]
is
Theorem 2.1. Set � > 0 and q ≥ e8∕� . Let X satisfy the Generic Condition from Chrétien and Darses [2014]. Let
Assumption 2.1, 2.2, 2.3 and 2.4 from Chrétien and Darses [2014] hold with

n ≥ �
(

C◦ log q + 1
)

. (9)
Then the probability that the estimator �̂ defined by (8) with � satisfying 2

�2 = Cvar

‖

‖

‖

y −X�̂‖‖
‖

2

2
n

log q, (10)
where a relevant range for Cvar is given by

Cvar ∈
[

(1 − r)2

20(1 + r)Cspar
n
q
‖X‖

2;
(1 − r)2

2(1 + r)Cspar
n
q
‖X‖

2
]

, (11)

exactly recovers the support and sign pattern of � is greater than 1 − 228∕q� .
Another approach for fast reconstruction makes use of the Iterative Hard Thresholding algorithm Blumensath and

Davies [2009]. This algorithm is defined by the iterations
c(l+1) = Tk

(

c(l) + At(y − Ac(l))
) (12)

where Tk is the threshold operator which sets all components to zero except for the k largest among them.
Furthermore, the main result from Blumensath and Davies [2009] is the following theorem.

Theorem 2.2. Let c♯ denotes the best k-term approximation of c. By assuming that A satisfies the RIP property with
�3k < 1∕

√

32, then, for all l, we have

‖c(l+1) − c‖2 ≤ 2−l‖c♯‖2 + �̃ (13)
where

�̃ = ‖c − c♯‖2 +
1
√

k
‖c − c♯‖1 + ‖�‖2. (14)

The Iterative Hard Thresholding algorithm can also be studied from the point of view of incoherence. A breakthrough
result of Maleki Maleki [2009] is the following Theorem.

2note that this eqnarray is implicit since � depends on �, but on the other hand, good algorithms for tuning � exist as shown in Chrétien and
Darses [2014]
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(a) Lena (b) wavelet coefficients (c) curvelet coefficients (d) shearlet coefficients
Figure 1: Sparsity comparison between wavelet, curvelet, and shearlet supports using Lena photography as benchmark.
Note that, the histogram obtained by plotting the computed coefficients, sorted by their decreasing absolute values. One
can reminder that the more the decomposition offer a large number of null-coefficients (or close to zero), the more the
method allows a higher sparsity.

Theorem 2.3. Suppose that k ≤ 1∕(3.1�(A)) and |cj∕cj+1| < 3li−43lj , i = 1,… , k. Then, the Iterative Hard Thresh-
olding algoritm finds the support of c in at most

∑k
i=1 li + k iterations.

Finally, choosing between different estimators is always a matter of finding the good balance between several
technological constraints. In the rest of this paper, we will use the Iterative Hard Thresholding method for estimating
the sparse vector c. The reason for this choice is that Iterative Hard Thresholding is lighter and faster than solving the
LASSO problem (8).
2.2. Sparse representations

Sparsity is essential to the CS approach to reconstructionwith few samples. In order to ensure the sparsity condition,
it is necessary to represent the image in a suitable basis such as wavelet, curvelet or shearlet systems. In this work, we
opted for the use of the shearlet transform, denoted by �, for the sparse representation of the OCT images, because
shearlet transformwas observed to achieve the best sparsity among these three options. To demonstrate this, we applied
successive decompositions of the "Lena" photography having the resolution of 512×512 pixels, using wavelet, curvelet,
shearlet transforms, respectively. As can be highlighted in Fig. 1, the shearlet method outperforms both the wavelet
and the curvelets ones as summarized in the following:

• wavelet transform: ≈ 15×104 null-coefficients;
• curvelet transform: ≈ 5×105 null-coefficients;
• shearlet transform: ≈ 2×106 null-coefficients.
In a recent work, we also demonstrated experimentally that shearlet decomposition outperforms both the wavelet

and the curvelet Duflot, Krupa, Tamadazte and Andreff [2016].
2.3. Shearlet system

Shearlet theory provides an efficient mathematical tool for sparse image representation including geometry and
multiscale analysis. It is considered as an extension of the wavelet transform, achieved by increasing their directional
sensitivity in order to be more adapted for anisotropic image objects (e.g., edges and key points). Indeed the shearlet
coefficients can be obtained by applying three successive anisotropic operations: dilation DE and DẼ, shearing DSsand translation (shift) Gg on a finite number of generating functions  ,  ̃ ∈ L2(ℝ2). The anisotropic operators are
defined using the following matrices.

The anisotropic dilation and shearing matrices are defined by:
• dilation: E = diag(2,√2) and Ẽ = diag(√2, 2)

• shearing : Ss =
(

1 s
0 1

)

, s ∈ ℤ
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(a) decomposition of the frequency domain
into cones

(b) frequency tiling of the cone-adapted generated by shear-
let system

Figure 2: Illustration of the fundamental working of a cone-adapted continuous shearlet system. The latter is able efficiently
cover whole ℝ2 and giving equal treatment of all directions.

• translation: Ggℎ(p) = ℎ(p − g), (p, g) ∈ (ℝ2)2 , where g is xy translation vector, ℎ is a function defined in
L2(ℝ2), and p represents the image-point coordinates.

Note that, the operator Ss is used instead of the rotation parameter, namely used in a curvelet transform Candes and
Donoho [2000], which can be considered as a significant advantage for discretization, as the integer lattice is invariant
under the shear operator for any s ∈ ℤ. In other words, similarly to wavelet support, it unified the treatment of the
continuous and digital shearlet theory, which leads to a fast implementation of the shearlet system. These operators
are used in the following definition of a discrete shearlet system Kittipoom, Kutyniok and Lim [2012].

Note that for a 2-dimensional scaling function � ∈ L2(ℝ2), and generating shearlet  ,  ̃ ∈ L2(ℝ2), a so-called
cone-adapted shearlet system can be defined in order to cover the whole frequency plane S. and G. [2014]. Therefore,
it is important to choose the generating shearlet functions  and  ̃ such that they are supported in different frequency
cones as depicted in Fig. 2.

In the following, we will describe the mathematical background of the cone-adapted shearlet system that inspired
our work. Note that in contrast to the standard discrete transform, it has a direction bias which allows separating the
low-frequency region with a square centered around the origin Kutyniok and Labate [2012] as can be seen in Fig. 2.

By considering the scaling function �, the generating functions  ,  ̃) and the sampling constants b = (b1, b2) ∈
ℝ+ ×ℝ+, the shearlet system is defined as

�(�,  ,  ̃, b) = Φ(�, b1) ∪ Ψ( ,b) ∪ Ψ̃( ̃ ,b), (15)
where

Φ(�, b1) = {Gb1g�, g ∈ ℤ2} (16)
Ψ( ,b) = { j,s,g ∶ j ≥ 0, |s| ≤ ⌈2

j
2
⌉, g ∈ ℤ2} (17)

Ψ̃( ̃ ,b) = { ̃j,s,g ∶ j ≥ 0, |s| ≤ ⌈2
j
2
⌉, g ∈ ℤ2} (18)

and
 j,s,g = Dj

EDSsGBg (19)
 ̃j,s,g = Dj

Ẽ
DSts

GB̃g ̃ (20)

with B = diag(b1, b2), B̃ = diag(b2, b1) and ⌈⋅⌉ denoting the ceiling function. Also, |s| ≤ ⌈2
j
2
⌉ is an important

condition which allows varying the orientation of the shearlet support up to �
4 .It can be observed that the low frequency region is associated toΦ(�, b1), when both the horizontal and the verticalcones correspond to Ψ( ,b) with Ψ̃( ̃ ,b) (Fig. 2).

Furthermore, the straightforward generalization of 2D shearlet is the 3D decomposition framework defined below.
First, let us consider the 3-dimensional scaling function � ∈ L2(ℝ3), generating shearlet  ,  ̃,  ̂ ∈ L2(ℝ3), and the
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sampling constants b = (b1, b2, b2) ∈ ℝ+ × ℝ+ × ℝ+ for which a so-called pyramid-adapted discrete shearlet system
is defined as

�(�,  ,  ̃,  ̂ ,b) = Φ(�, b1) ∪ Ψ( ,b) ∪ Ψ̃( ̃ ,b) ∪ Ψ̂( ̂ ,b)

where the sets
Φ(�, b1) = {Gb1g�, g ∈ ℤ3} (21)

Ψ( ,b) = { j,s,g ∶ j ≥ 0, |s1|, |s2| ≤ 2
j
2 , g ∈ ℤ3} (22)

Ψ̃( ̃ ,b) = { ̃j,s,g ∶ j ≥ 0, |s1|, |s2| ≤ 2
j
2 , g ∈ ℤ3} (23)

Ψ̂( ̂ , b) = { ̂j,s,g ∶ j ≥ 0, |s1|, |s2| ≤ 2
j
2 , g ∈ ℤ3} (24)

and
 j,s,g = D

j
EDSsGBg  ̃j,s,g = D

j
Ẽ
DS̃sGB̃g ̃  ̂j,s,g = D

j
Ê
DŜs

GB̃g ̂ (25)

with B = diag(b1, b2, b2), B̃ = diag(b2, b1, b2), so the scaling matrices are obtained as follows

E = diag(2,
√

2,
√

2), Ẽ = diag(
√

2, 2,
√

2), Ê = diag(
√

2,
√

2, 2), (26)
and shearing matrices

Ss =
⎛

⎜

⎜

⎝

1 s1 s2
0 1 0
0 0 1

⎞

⎟

⎟

⎠

, S̃s =
⎛

⎜

⎜

⎝

1 0 0
s1 1 s2
0 0 1

⎞

⎟

⎟

⎠

, Ŝs =
⎛

⎜

⎜

⎝

1 0 0
0 1 0
s1 s2 1

⎞

⎟

⎟

⎠

, s1, s2 ∈ ℤ (27)

As results, the shearlet transform allows decomposing an OCT image (respectively, a volume) in a sparse basis as
coefficients.
2.4. Scanning trajectories

As mentioned in the introduction, usually, the literature related to the compressed sensing methods in imaging,
almost all have one characteristic in common: the use of pseudo-random or random subsampling scheme to select the
k-sparse data that will reconstructed Rauhut [2010]; Candes and Plan [2011]. This methodology is suitable for image
sensors with an electronic data acquisition process such as CCD/CMOS cameras. Unfortunately, when it concerns
imaging systems equippedwith amechanical device (scanningmirrors, magnetic coils, etc.), random scanningmethods
may be irrelevant owing to acquisition constraints.

To overcome this limitation, the notion of continuous trajectories with variable density samplers is discussed in this
section. Continuous and smooth trajectories-based samplers are crucial to extend CS results to a physical implemen-
tation, especially for 3D OCT data acquisition and processing. The proposed trajectories are based on spiral, rosette
and Lissajous scanning schemes which meet certain criteria such as:

• the design scheme should be reconstruction-guidance-based not observation-based;
• the trajectory must be continuous and easily achievable by the scanning system, i.e., considering the kinematics

aspects;
• the scanning trajectory must be tunable in terms of sampling rate, length, sampling step, executing time, etc.
In other words, this results in creating proper 2D and 3D subsampling masks (i.e., sensing matrices) M for 2D or

3D OCT images, respectively.
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Figure 3: Illustration of the designed subsampling masks (black dots represent positions of the acquired measurements
(20%)).

2.5. Parametrizable scanning curves
As mentioned above, in this work, we designed three different continuous scanning trajectories (spiral, rosette, and

Lissajous) (Fig. 3) deemed relevant to ensure an effective CS system while respecting the criteria cited.
There are different ways to implement the chosen scanning continuous curves. Easy tuning of the sampling pa-

rameters (sampling rate, step time, length, etc.), can be achieved using the following expressions:
• Spiral:

{

x(�) = �
d cos(�)

y(�) = �
d sin(�)

(28)

with d ∈ ℕ allows tuning the distance between two successive spires.
• Rosette:

{

x(�) = kmax sin(
2�fz
z+2 �) cos(�)

y(�) = kmax cos(
2�fz
z+2 �) sin(�)

(29)

where � is the curvilinear abscissa, kmax is the curvature, z is the number of rosette’s petals,
• Lissajous:

{

x(�) = a1 sin(
2�f (z−1)

z �)
y(�) = a2 sin(2�f�)

(30)

where the parameters a1 and a2 represent the covered surface size, f determines the base frequency of Lissajous
curve.

2.6. Rasterization
To be able to successfully apply the designed sensing matrices (i.e., designed masks) and to match the coordinates

of the selected measurements to the corresponding ones in the physical OCT device, we implemented a rasterization
technique. The latter allows converting continues geometric curves of the vector format of pixels, points, lines, ... into
an image and vice-versa. Among the existing rasterization algorithms, one can cite ”Digital Differential Analyzer”
(DDA). To meet perfectly the requirements of the proposed methods, we revisited DDA method in order to:

• meet the drawing speed (on-line rasterization) of complex scanning curves;
• convert the drawn trajectory defined in the image (in pixels) to the physical scanning curve (in metric) to be

achieved into the sample by the galvanometer mirrors.
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Figure 4: Illustration of the rasterization algorithm operating in case of a spiral-like scanning trajectory.

Figure 5: Comparison of the notion of incoherence between different subsampling methods. The numerical values are
obtained for sensing matrices of 105×105 pixels.

Recall that the designed sensing matrices M is actually a binary matrix:

M(i, j) =
{

1, acquire an A-scan at coordinates (i, j)
0, do nothing (31)

At the same time, this mask has to be generated from a continuous trajectory. Therefore, it is important to project
parametric curve in the discrete basis of mask matrix. Also, the xy coordinates of M are used in the rasterization
algorithm tomap the pixels positions (in the image frame) to themetric locations (in theOCT frame) (Fig. 4). Moreover,
with the proposed rasterization algorithm it is possible to control the global sampling rate, i.e. the percentage of the
measures that will be acquired:

p∗ = 100 ×

∑ℎ
i=1

∑w
j=1M(i, j)

Area of the trajectory (32)

2.7. Coherence evaluation
As discussed in Section 2, the notion of incoherence �(A) (6) of the observation matrix A of the proposed

continuous trajectories sampling (i.e., spiral, rosette, and Lissajous) was studied and compared to that of the traditional
random sampling matrix. As can be seen in Fig. 5, the numerical values �(A) are very close, with a slight difference
for the spiral scanning trajectory, this shows that the proposed sensing schemes enjoy sufficiently small coherence and
can therefore be considered as relevant for compressed sensing-based recovery.

3. Results and Discussion
3.1. Numerical validation using realistic biological data

The proposed methods and materials were firstly validated numerically (in simulation) using ground-truth data.
The first validation tests consist of using 2D OCT images of 512×512 pixels, while the second uses OCT volumes of
281×281×199 pixels directly acquired by the Telesto II system.
3.1.1. Evaluation criteria

In order to quantitatively assess the results obtained with different scenarios and OCT images, we implemented
two criteria: 1) the peak signal noise ratio (PSNR), and 2) the structural similarity index (SSIM), which are generally
HAYDAR et al.: Preprint submitted to Informatics in Medicine Unlocked Page 10 of 18
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Figure 6: OCT volumes (here only a 2D slices are depicted) used to access the performances of the proposed algorithm:
a) Shepp-Logan phantom, b) x − y OCT slice of a part of grape, and c) x − z OCT slice of the retina of a fish eye.

used by the compressed sensing and more widely the image processing communities Miao, Huo and Wilson [2008].
The PSNR score, given in db, is expressed by

PSNR = 10 log10
( d2

EQM

)

(33)
where d is the maximal pixel value in the initial OCT image and the EQM is obtained by

EQM = 1
ℎw

ℎ
∑

i=1

w
∑

j=1

(

I(i, j) − R(i, j)
)2 (34)

with I representing an initial full-scanned 2D OCT slice (selected from the OCT volume), R is the reconstructed one.
Furthermore, the SSIM score is based on the computation of three values, namely, the brightness l, the contrast c

and the structural aspect s. It is given by
SSIM = s(R, I)l(R, I)f (R, I) (35)

where,

s
(

R, I
)

=
2�R,I + f3
�R�I + f3

, l
(

R, I
)

=
2�R�I + f1
�2R + �

2
I + f1

, and f
(

R, I
)

=
2�R�I + f2
�2R + �

2
I + f2

(36)

with �R, �I, �R, �I, and �R,I are the local means, standard deviations, and cross-covariance for images R, I. The
variables f1, f2 and f3 are small numbers used to stabilize the division with weak denominator.
3.1.2. Numerical validation: 2D images

The numerical validation was performed following several scenarios. First of all, as inputs in the proposed algo-
rithm we used three OCT volumes (only 2D slice images are depicted for a better visualization) shown in Fig. 6. Note
that the first image (Fig. 6(a)) is the "Shepp-Logan" phantom, which is generally used in the literature dealing with
medical image processing and CS. In addition, two OCT images of biological samples (i.e., part of grape and retina of
a fish eye) were also used in this validation.

First, for each image test, we applied the proposed CS method using various subsampling rate ranging from 10%
to 70% with a step of 10% defined using the constructed masks based the developed continuous trajectories introduced
in Section 2.4. The obtained results are presented and discussed in the following.
Shepp-Logan phantom (30% of measurements)

The first numerical validation consisted of the reconstruction of the Shepp-Logan phantom image using 30% of
measurements. The latter were obtained using the continuous subsampling trajectories. In Fig. 7, are compared the
original (ground-truth) image (Fig. 7(a)) and the reconstructed one (Fig. 7(b)). As can be noticed, the recovered image
(using the spiral subsampling method) is faithful to the ground-truth one. This is confirmed by the zoom-in thumbnail

HAYDAR et al.: Preprint submitted to Informatics in Medicine Unlocked Page 11 of 18



Compressed Sensing in OCT

Figure 7: [Sheep-Logan phantom] Comparison between (a) the original image and (b) the reconstructed one using 30%
of measurements.

image. The second remark is that in the reconstructed image, the edges appear smoother than to those of the original
image. Finally, the obtained results are very similar using the other two subsampling methods.

The qualitative study of the obtained results are discussed in Section 3.2 using the similarity scores, i.e., the PNSR
and the SSIM.
Grape (20% of measurements)

Similarly, the CS method was validated using OCT images of a part of a grape. In this test, the subsampling rate
is of 20%. The reconstructed images are depicted in Fig. 8: from left to right, using the spiral, the rosette, and the
Lissajous trajectories subsampling methods, respectively. Again, one can highlighted the recovered OCT images are
very similar to ground-truth ones. Note that, even the recovered images still similar from one subsampling method
to another, Lissajous-based sensing matrix appears more interesting because it covers the entire OCT field-of-vision
compared to both the spiral and rosette methods.
3.1.3. Numerical validation: volumes

The proposedmethods were also validated using directly the OCT volume instead of individual 2D slices (B-Scans)
as input of the proposed algorithm. One can compare the reconstructed OCT volume with the ground-trust one as can
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Figure 8: [Grape] Reconstruction of OCT image using 20% of measurement and different subsampling techniques.

be seen in Fig. 9. It can be concluded that the recovered volume (using 30% of measurements) is very similar to the
original one.
3.2. Quantitative analysis

To assess the performances of the proposed compressed sensing algorithm, we conducted numerous validation tests
using both the different types of masks (i.e., spiral, rosette, and Lissajous) and various subsampling rates: 10%, 20%,
30%, 50%, and 70%. For each test, we computed the values of both the PSNR and SSIM (introduced at the beginning
of this Section). Then, Table 1 summarizes the obtained numerical values of each test using both the retina of a fish
eye and "Shepp-Logan" phantom images as inputs on the CS algorithm. Note that, generally, if the PSNR values are
typical between 30 db and 50 dB (for 8-bits encoded images), then reconstructed image is considered faithful to the
original one. Also, when the PSNR is equal or greater to 40 db, as consequence the quality of the reconstruction is
qualified as similar to the original image.

As can be underlined the obtained PSNR values vary from approximately 40db for 10% of data to 45 db for 70%
of data. The first remark is that even for only 10% of samples, the quality of the reconstructed image/volume is very
interesting. This is confirmed by the second similarity score (i.e., SSIM) with numerical values varying from 0.97 to
0.99 for 10% to 70% of samples, respectively. The SIMM values are also interesting even only 10% of measurements
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(a) Original OCT volume (b) Reconstructed OCT volume
Figure 9: Visual comparison between the original and the reconstructed OCT volumes.

Table 1
Quality evaluation of the validation tests on both the retina of a fish eye and the Shepp-Logan phantom images
using different subsampling rates and scanning trajectories.

subsampling rate (%) continuous trajectory type
image type

retina of a fish eye Shepp-Logan phantom image
PSNR (db) SIMM PSNR (db) SSIM

10%
rosette
spiral
Lissajous

38.944
39.059
37.825

0.834
0.833
0.859

40.771
41.440
40.908

0.973
0.974
0.973

20%
rosette
spiral
Lissajous

39.902
39.961
38.911

0.849
0.847
0.882

41.730
42.171
41.790

0.976
0.978
0.977

30%
rosette
spiral
Lissajous

41.048
41.129
40.103

0.868
0.870
0.910

42.472
42.827
42.420

0.980
0.982
0.981

50%
rosette
spiral
Lissajous

43.361
43.767
42.006

0.898
0.903
0.945

44.043
44.891
44.004

0.987
0.989
0.988

70%
rosette
spiral
Lissajous

45.921
45.893
44.202

0.917
0.917
0.969

45.278
45.436
45.073

0.991
0.991
0.991

are used during the recovery task. Remember that, generally, SSIM numerical values are in the range of [-1, 1], where
value 1 (respectively, -1) is reachable when the similarity, between the compared images, is "perfect".

Furthermore, the rosette and spiral sampling patterns only acquire �
4 region of k-space due to their circular k-

space support, as compared to Lissajous method. This factor is considered in the computation of the subsampling rate
for each trajectory. The same performances assessment was achieved using the OCT image acquired on the fish eye.
The PSNR and SSIM numerical values are reported in Table II in which one can highlighted that the results are very
similar to those obtained for the ”Sheep-Logan” phantom image. Again, the spiral-scanning trajectory gives better
results comparing to rosette and Lissajous.

4. Experimental Validation
4.1. Experimental setup

The proposed materials and methods were validated in both simulation and experimentally. To carry out the
experimental implementation of the CS algorithm, we designed a robotic setup which acts as a positioning platform
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Figure 10: a) the global view of the OCT device (b-c) depicts the both the B-scan and C-scan acquisition modes,
respectively.

combined with an OCT device, the Telesto II from Thorlabs® (Fig. 10(a)). The latter consists of a FD-OCT system
which offer three types of acquisition modes: A-scan (1D optical core), B-scan (2D cross-sectional image) and C-scan
(n×m×k) volume). In fact, the Telesto II system is based on the principle of low-coherence interferometry because the
velocity of light is extremely high. The low-coherence i.e., high-bandwidth light beam is directed to the target tissue
and the scattered back-reflected light is combined with a second beam (reference beam), which was split off from the
original light beam. The resulting interference patterns are used to reconstruct the A-scan. The latter represents the
axial resolution in the tissue, of about 1-15 µm Drexler and Fujimoto [2008]. In addition, the light beam is able to
move along the tissue in xy directions. This results in a compilation of A-scans with each of them having a different
incidence point. From these series of A-scans, a two-dimensional cross-sectional image of the target tissue can be
reconstructed which known as a B-scan. Moreover, a C-scan acquisition consists of the concatenation of parallel
B-scans as summarized in Fig. 10(b-c).
4.2. Validation using a physical system

The experimental validation scenario is performed as follows: instead of using prerecorded images or volumes with
further off-line subsampling them (using sensing matrices) to create the sparse data, we directly (on-line) controlled
the galvanometer mirrors of the OCT probe to acquire sequentially only a limited number of measurements (A-Scans)
following a predefined continuous trajectory. The xy coordinates (pixels at 1 in the sensing matrix) of rasterized
trajectory are used as the inputs control of the galvanometer mirrors. As claimed previously, it is possible to tune the
scanning trajectories parameters in aim to manage the acquisition rate (expressed as a percentage of the entire volume).

The first experiment was conducted by acquiring 30% of samples on the fish eye. The latter was placed under
the OCT probe. Therefore, instead of acquiring the entire data, we controlled the galvanometer mirrors of the OCT
device to acquire only 30% of measurements under a continuous trajectory (here a spiral). To do this, we used a spiral-
scanning trajectory. Actually, each position p = (x, y) of the rasterized trajectory is considered as the control input of
the galvanometer mirrors. In Fig. 11 is depicted simultaneously, the ground-truth OCT volume (acquiring using 100%
of data), the 30% acquired data, and the reconstructed OCT volume. One can remark that the reconstructed volume is
faithful to the ground-truth one.

In the second experimental test, we changed the retina sample by a part of a grape (less translucent sample compared
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(a) ground-truth 3D volume (b) acquired 3D measurements (30%)

(c) reconstructed 3D volume
Figure 11: Experimental validation using a fish eye as biological sample (30% of measurements).

to the retina). The obtained results are shown in Fig. 12. Again, the reconstructed OCT volume (Fig. 12(c)) is of good
accuracy compared to the ground-truth one (Fig. 12(a)).
4.3. Discussion

The obtained results are satisfactory according to the metric evaluation criteria. It has been shown that it is possible
to design non-random sampling matrices that are compatible with the physical implementation as widely studied in
the related literature Donoho [2006]; Candès et al. [2006]; Rauhut [2010]. The studied sensing matrix offer similar
features in terms of sparsity and incoherence comparing to the well-established random or pseudo-random methods.

In addition, bi-dimensional shearlet Duflot et al. [2016] and wavelet Chitchian, Fiddy and Fried [2008] decompo-
sition were studied the sparsity tool in CS paradigms applied to improve 2D OCT acquisition. However, to the best of
our knowledge, it was the first time that tri-dimensional shearlet decomposition was implemented in a physical OCT
system. Additionally, continuous trajectories combined with rasterization technique were already reported in the liter-
ature, however, they were designed to operate off-line using recorded image data Chauffert, Ciuciu, Kahn and Weiss
[2014].

Furthermore, the developed CS algorithm is not specific to optical coherence tomography modality but can also
be used in different 3D imaging methods such as MRI or CT-scan. As a consequence, we evaluated the CS algorithm
with 3D sensing matrices more compatible with the acquisition scheme of this type of imaging devices (i.e., MRI and
CT).

Although the proposed methods and materials are intended to improve the acquisition frame-rate of an OCT imag-
ing system, there are still improvements/optimizations to be considered. For instance, some parts of the CS algorithm
consume much computation time, in particular those relating to the Fourier transform and its inverse. These parts can
be implemented directly on a GPU Blanchard and Tanner [2013] to save up to 10 times more computing time.

5. Conclusion
In this paper, in order to overcome the limitations of an FD-OCT acquisition system, we proposed a new compressed

sensing paradigm. The developedmethodology consisted of fourmain parts: 1) design of different continuous scanning
trajectories (off-line), 2) rasterize the subsampling trajectories to meet the physical conditions (off-line), 3) transform
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(a) ground-truth 3D volume (b) acquired 3D measurements (30%)

(c) reconstructed 3D volume
Figure 12: Experimental validation using a part of grape as biological sample (30% of measurements).

the OCT measurements in the shearlet supports for sparsifying, and 4) recover the entire OCT data using only few
k-sparse data (on-line).

The proposed compressed sensing algorithm was successfully validated numerically and experimentally. First,
this algorithm was evaluated: 1) quantitatively using various subsampling rate (from 10% to 70%) obtained thanks to
the designed continuous scanning trajectories (e.g., spiral, rosette, and Lissajous), and 2) qualitatively using similarity
scores such as PSNR and SSIM computed for each scenario (OCT image, subsampling rate, scanning trajectory type,
etc.).

As claimed, the CS algorithm was also implemented directly on a commercial FD-OCT system. This means that,
the galvanometer mirrors that equip the OCT system were controlled directly (using the xy coordinates of the scanning
trajectories as inputs on the control loop) to acquire a limited number of A-scans. This data was then used to recover
the whole OCT volume.

The obtained results in both simulation and experiments showed promising performance in terms of quality of the
reconstructed OCT images and volumes. This fact is also confirmed by comparing the obtained reconstruction with
the ground-truth data.

Future work will consist of the optimization of the CS code to improve its execution time. Actually, several parts
of the algorithms were scripted without optimization in a MatLab framework. The ideal would be to implement the
current scripts in C++ or in GPU (Graphic Processing Unit) for the direct and inverse shearlet transform.
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