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Abstract

In this work, we propose a new approach to detect anomalous graphs in a stream
of directed and labeled heterogeneous graphs. The stream consists of a sequence
of edges derived from different graphs. Each of these evolving graphs represent
the evolution of a specific activity in the monitored system whose events are
acquired in real-time. Our approach is based on graph clustering and uses a
simple graph embedding based on substructures and graph edit distance. Our
graph representation is flexible and allows to update the graph vectors as soon
as a new edge arrives. This allows the detection of anomalies in real-time which
is an important requirement for sensitive applications such as cyber-security.
Our implementation results prove the effectiveness of our approach in terms of
accuracy of detection and time processing.

Keywords: Graph anomaly detection, Graph stream, Graph embedding,
Graph edit distance

1. Introduction

Anomaly detection is a fundamental problem encountered in many real-
world applications mainly related to surveillance and monitoring such as cyber-
security, health, and finance. Generally, it consists of detecting data which are
significantly different from benign or normal data. In this context, graphs are in-
creasingly involved mainly because events in monitored systems are represented
by graphs to capture dependencies among event flows and trace-back the root
causes of anomalies in order to understand them [1]. In this case, the challenge
of anomaly detection involves identifying those graphs which are different from
the graphs representing normal events observed by the system. We recall that
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a graph G = (V,E) is a data modeling tool consisting of a set V of vertices
and a set E of edges that connect vertices. Vertices represent objects and edges
represent relationships between them. Detecting anomalies in graph data has
been subject to several investigations [2, 3]. Proposed solutions are tightly re-
lated to the underlying applications, to the kind of graphs these applications
deal with and how anomalies are defined within them. Broadly speaking, graph
based anomaly detection approaches can be categorized into two main classes:
those designed for static graphs and those designed for dynamic graphs. With
anomaly detection in static graphs, the whole structure of the graph is known
and the problem consists in spotting anomalous graph parts [4, 5], i.e., vertices
[6, 7], subgraphs [8, 9], etc.

The aim behind the use of dynamic graphs is to have snapshots of evolving
systems or objects which is a natural representation for several applications
especially communication networks and social streams. Most works concern
temporal anomalous pattern detection in time-evolving graphs, i.e., a sequence
or stream of static graphs [10, 11]. The problem in this case consists to compare
consecutive graphs in the stream [12, 13, 14]. However, streams of static graphs
are not adapted for massive data and real-time applications [15]. In fact, the
comparison of two consecutive graphs generally requires that the graphs are
loaded in main memory. In addition, for several applications such as real-time
surveillance, the complete structure of the graphs is unknown and acquired in
real-time. Moreover, a surveillance application may involve the simultaneous
monitoring of several and different activities of the system. This means that
the anomaly detection algorithm must deal with several graphs that evolve
independently, but simultaneously according to the activity they represent in the
system. So, we deal with interlaced graph sequences as depicted in Figure 1. In

Figure 1: Dynamic graphs evolving through time.

this case, anomalies are detected on a stream of edges where the stream consists
of individual graph edges instead of entire graph objects [15]. Consecutive
edges in the stream may not belong to the same graph. This issue raises several
challenges [16]:
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• Graph heterogeneity: The graphs are heterogeneous because they repre-
sent different activities in the system. Anomaly detection must concern
all the evolving graphs.

• Real-time anomaly detection: The system requires real-time anomaly de-
tection. Each edge arriving in the stream modifies an activity graph. The
resulting graph must be checked for anomaly.

• Memory efficiency: The stream of edges is continuous and represents vo-
luminous data that cannot be stored in its entirety in main memory. This
requires a reduced representation of the evolving graphs that can be in-
crementally maintained with the arriving edges.

In this paper, we deal with these issues using a simple vector representation
of the graphs. The proposed representation is flexible and enables graphs to be
incrementally maintained with the arrival of new edges, without having to save
all the edges in the main memory. Moreover, anomalies are detected in real-time
following the arrival of new edges. The main contributions of this work are:

• We propose a new approach for detecting abnormal directed and labeled
heterogeneous graphs over streaming edges using graph edit distance.

• We propose a simple graph embedding approach for training and classify-
ing abnormal graphs. The representation is flexible and allows to update
the graphs efficiently as soon as a new edge arrives.

• We propose a real-time application for detecting abnormal events in cyber-
security data.

We evaluate and compare our approach with StreamSpot [16] algorithm.
Our approach outperforms the existing one in terms of processing, memory
consumption and detection.

The remainder of this paper is organized into five sections. Section 2 presents
the issue of anomaly detection in a stream of edges in more details and review
related work on this domain. Section 3 provides a description of the proposed
approach and analyses its complexity. Section 4 presents the results obtained
through experimentation. Section 5 concludes the paper.

2. Problem statement and related work

Let us consider a stream of directed and labeled edges belonging to differ-
ent graphs. The stream is continuous and feeds a set of evolving graphs. The
graphs evolve only by growing, with new edges connecting existing vertices or
new ones. So, we deal with labeled and directed multigraphs. Two edges having
the same endpoints, the same direction and the same label can be distinguished
by their timestamps, i.e., the time at which they appear in the stream. Such
multiple edges represent, for example, successive authentication attempts origi-
nating from the same host. Each of these graphs can be represented by 4-tuple
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G = (V,E,ΣV ,ΣE) where V is the set of vertices, E is the set of edges, ΣV

is the set of vertex labels, and ΣE is the set of edge labels. Each edge in the
stream is represented by a 6-tuple:
<source vertex, ls, destination vertex, ld, le, ID graph >

where ls, ld, and le represent the labels of the source vertex, the destination
vertex, and the edge respectively. Edges that share the same ID graph belong
to the same graph. Furthermore, the edges coming from different graphs can be
interwoven and thus several graphs may evolve simultaneously. The aim of this
work is to detect abnormal graphs at any moment t. This problem is defined as
follows:

Given: a continuous stream of directed labeled edges belonging to different
graphs.

Find: the evolving graphs that deviate from the expected patterns.
An expected pattern is a benign or normal graph known to the system and

acquired during a training phase. An abnormal graph is defined as being a graph
which is significantly different from such benign prototype. As such, detecting
anomalies could be seen as a comparison/classification issue: as the graphs
evolve with the arrival of new edges, they are classified as normal or abnormal
according to their similarity to some graph prototypes which represent normal
behavior in the system. The main underlying question is therefore: how to
calculate similarity between graphs?100

Comparing two graphs is a complex problem with exponential time solutions
in the general case [17]. To obtain approaches for polynomial comparison, the
most common methods can be categorized into two classes according to whether
the comparison is undertaken in the graph space or in the vector space [18].
In the graph space, the main approach is to decompose the two graphs to be
compared into simpler substructures and to compare the obtained substructures
[19]. There are several methods for calculating similarity between graphs using
their substructures, but the most common are based on Graph Edit Distance
(GED). GED defines the similarity between graphs by the minimum costing
sequence of edit operations that convert one graph into the other [20]. An edit
operation is either an insertion, a suppression or a re-labeling of a vertex or an
edge in the graph. A cost function associates a cost to each edit operation to
measure the strength of each edit operation.

Among the decompositions used with GED, we can cite without being ex-
haustive: the decomposition into stars [21], trees [22], paths [23] or hybrid
decompositions [24]. The fastest approximations of GED are of polynomial
complexity [25]. However, GED must be recalculated upon the arrival of each
new edge, which is costly to be considered in the context of a graph stream. It is
interesting to see that in spite of the popularity of GED as a graph comparison
tool in general, very few GED-based solutions are used for graph streams.

Comparing graphs in vector space aims to use the similarity measures and
distances available in this space such as the Euclidean distance, the Jaccard
distance, and cosine similarity. Several techniques and approaches have been
proposed to transform graphs into vectors. This is called ”Graph Embedding”.
Graph Embedding is a technique that transforms graphs into vectors in such
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way that similar graphs are transformed into close vectors in the vector space
[26]. These methods transform the whole graph into a vector (not to be con-
fused with methods of graph embedding which transform the graph objects, i.e.,
vertices, substructures, ..., etc., into vectors). Graph embedding methods based
on graph spectral theory are not suitable for our problem because they are de-
signed for plain graphs and do not take into account edge and vertex labels.
Sub-pattern based graph embedding techniques such as graph kernels [27, 28]
cannot be directly applicable to stream of graphs as they require knowing all
substructures of all the graphs to be classified. This cannot be done in a stream-
ing scenario since graphs grow over time [16]. A Graph embedding using GED
is also proposed [29]. It represents a graph G by a vector EG = (d1, ..., dM )
containing the GED between the graph G and M prototype graphs selected
during the training phase. However, this method is not effective for a streaming
scenario as the computational time required to update GED incrementally (i.e.,
upon the arrival of each new edge) is at least of quadratic complexity O(n2)
where n represents the number of edges in the graph [30, 31]. Therefore, the
required time to update the vector of graph G at the arrival of a new edge is at
least O(M ∗ n2).

Consequently, the main issue for anomaly detection in a graph stream is
defining a graph similarity measure that can be computed incrementally while
maintaining a low-memory costing representation of the graphs.

Classy [32], which addresses the problem of detecting malwares in a stream
of call graphs, i.e., directed graphs representing calls between programs, uses an
approximation of GED based on Simulated Annealing. However, it is designed
for sequences of graphs and does not deal with incremental arrival of edges.
Other methods extend concept used to detect anomalies in non-structured data
streams such as sketching [33]. Spotlight [34] is a randomized sketching based-
approach for detecting anomalies in a stream of time evolving directed labeled
bipartite graphs. A graph sketch contains the total edge weights of K specific
directed subgraphs chosen independently and uniformly at random. The dis-
tance between graphs is defined as the squared Euclidean distance between their
sketches. In Spotlight, anomalous graphs are defined as graphs concerned with
a sudden disappearance or appearance of a dense subgraph. The strong point of
this approach is that it represents each graph with a limited size sketch, where
each dimension represents the sum of edges weights of one region (subgraph) in
the graph. Anomalous graphs can be detected by spotting sketches which are far
away from normal ones in sketch space. To allow the update of the sketchs in-
crementally at the arrival of the new edges, Spotlight uses hash functions which
ensure that each vertex remains mapped to the same subgraph all over the time.
Spotlight is designed for plain bipartite graphs and detects only one specific type
of anomalies (sudden (dis)appearance of a dense subgraph). In [15], the authors
introduce the first anomaly detection approach dealing with a stream of edges.
They consider a stream of non labeled non directed edges and detect anomalous
edges in the stream using a Count-Min sketch [35]. StreamSpot [16] is designed
for online detection of abnormal graphs in a stream of directed and labeled
edges derived from different graphs. Similarly to the construction of vector
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representations of text documents by shingling them into k-grams, StreamSpot
decomposes a graph into a set of k-shingles using tree-based k-grams [22]. A
graph is represented by its vector of frequencies of k-shingles. As the number of
k-shingles is infinite, StreamSpot relies on SimHash [36] which preserves the co-
sine similarity to map the high dimensional vectors of shingles into fixed dimen-
sional vectors. StreamSpot is fast, memory efficient and succeeds in maintaining
incrementally the graph representations. However, it has two main weaknesses:
1) to maintain the graph representation incrementally, it retains in memory a
limited number of edges. When this memory is filled, Sreamspot deletes old
edges to store the new incoming ones. As a result, a part of each graph is lost
and graphs may not be classified correctly. 2) The cosine similarity used for
graph comparison is not accurate. In fact, it depends only on the number of
common substructures between the two graphs to be compared, and it makes no
comparison between the sub-structures. Therefore, it looses accuracy when the
sub-structures are too large. To solve this problem, StreamSpot divides shingles
into smaller substructures called chunks. However, the choice of the size C of a
chunck impacts significantly the accuracy of the similarity measure. Indeed, a
small C makes most pairs of graphs appear similar, while a large C makes them
less similar. The drawback of this solution is therefore the re-calibration of C
upon the arrival of a new type of benign graph. SedanSpot [37] is a randomized
approach for detecting anomalous edges in a stream of edges deriving from one
graph. Anomalous edges are those which connect two sparsely connected parts
of the graph. SedanSpot is a real time approach for detecting anomalous edges
using sub-linear memory. However, it’s designed to detect anomalous edges in a
stream of edges of one graph and cannot be applied to a stream of heterogeneous
graphs.

3. Label Oriented Graph Embedding for Anomaly Detection

In this section, we present LEADS, a Label oriented graph Embedding for
Anomaly Detection in a Stream of directed labeled edges belonging to heteroge-200

neous graphs. LEADS takes advantage of the labeling of edges and vertices and
the direction of edges in the stream to construct a simple vector representation
of the incoming heterogeneous graphs. LEADS is based on a directed label rep-
resentation of a graph called a label structure and uses a GED based distance
to compare these representations. The proposed graph embedding is based on
these concepts.

3.1. Label Structures

The proposed embedding relies on a label representation of the vertices of
the graph called Label Structures and defined as follows:

Definition 1 (Label Structure). Given a multigraph G = (V,E,ΣV ,ΣE), a
label structure LS in G for a vertex v is a 3-tuple (ℓv, L

−, L+) where ℓv is the
label of v, L− (resp. L+) is an vector of size |ΣE | where L−(i) (resp. L+(i)) is
the number of edges incoming to (resp. outgoing from) v and labeled with i.
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So, each graph can be represented by a set of LSs: an LS by vertex. Label struc-
tures are similar in spirit to stars [29]. Figure 2 illustrates this representation
on an example.

Figure 2: Example of label structures.

To compare two LSs, we rely on the number of edit operations required
to transform one LS into the other. We consider three main kinds of edit
operations having the same cost (equal to 1): editℓ refers to the modification,
addition or suppression of the vertex label of a label structure. edit− refers to the
modification, addition or suppression of incoming labels in the label structure,
and edit+ refers to the modification, addition or suppression of outgoing labels
in the label structure. The distance is defined as follows:

Definition 2. Let LS1 = (ℓ1, L
−
1 , L

+
1 ) and LS2 = (ℓ2, L

−
2 , L

+
2 ) be two label

structures, the distance between them is :

d(LS1, LS2) = editℓ(LS1, LS2) + edit
−(LS1, LS2) + edit

+(LS1, LS2) (1)

with

editℓ(LS1, LS2) =

{

0 if ℓ1 = ℓ2
1 else

(2)

edit
−(LS1, LS2) = max(

ΣE
∑

i=1

L
−

1 (i),

ΣE
∑

i=1

L
−

2 (i))−
ΣE
∑

i=1

min(L−

1 (i), L
−

2 (i))

edit
+(LS1, LS2) = max(

ΣE
∑

i=1

L
+

1 (i),

ΣE
∑

i=1

L
+

2 (i))−
ΣE
∑

i=1

min(L+

1 (i), L
+

2 (i))

Theorem 1. Under a unit cost, the distance given by Definition 2 is the exact
graph edit distance between label structures.

Proof. Let s1 = (ℓ1, L
−
1 , L

+
1 ) and s2 = (ℓ2, L

−
2 , L

+
2 ) be label structures. To

prove that d(s1, s2) is the exact graph edit distance between the two label struc-
tures, we have to prove that it gives the cost of an optimal sequence of edit
operations that matches s1 to s2. By construction, a label structure contains
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only one vertex. So, editℓ(s1, s2) is the optimal cost for matching the vertices
of the label structures. For the incoming edges (resp. the outgoing edges),
edit−(s1, s2) (resp. edit+(s1, s2) computes the minimum number of edge rela-
belling/edge suppression/edge addition to have similar label structures which
is the difference between the largest degree and the number of common edges
between s1 and s2. This cost cannot be reduced. It is optimal.

3.2. Graph Embedding

Our graph embedding method relies on label structures. We first choose a set
of label structures that correspond to the benign activities of the system, i,e., to
normal graphs. We use these label structures, that correspond to the expected
behaviour of the system, as prototypes. This means that the label structures
of the arriving graphs in the stream will be compared to these prototypes using
distance d. Finally, we use the results of these comparisons as entries in a vector
representation of the incoming graphs. In the following, we will first show how
these prototypes are selected. Then, we describe how we use them to construct
our graph embedding.

3.2.1. Selecting the Prototype Label Structures

The prototype label structures must correspond to the expected behaviour
of the system. So, they must be taken from benign graphs that do not contain
anomalies. The number M of prototype label structures to be selected is de-
termined by experiments (see Section 4). Assume we have S different types of
graphs (these types of graphs may represent for example the different activities
that are monitored in the system or the various sources of the graphs). We
use a set of benign graphs from each type (i.e., class) of graphs and we decom-
pose them into label structures. Then, we use the Spanning Prototype Selection
Class-wise strategy (SPS-C) [29] to select our prototypes. SPS-C selects M

S pro-
totype label structures from each class C. Let P be the set of prototype label
structures. With SPS-C, P is computed iteratively by selecting a new prototype
p at each iteration. We denote by Pi the content of P at iteration i. P1 contains
the median label structure of the class. Each additional prototype p selected by
SPS-C is the furthest label structure from the already selected ones as follows:

Pi =

{

Median(C) if i = 1
Pi−1 ∪ {p} if 1 < i < M

K

(3)

with p = argmax
LS∈C\Pi−1

min
p∈Pi−1

d(LS, p)

The most important advantage of this strategy is that it tries to cover the whole
set of benign label structures in the training set as uniformly as possible [29].
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3.2.2. Constructing a vector representation of graphs
Let P = {p1, ..., pM} be the set of selected prototype label structures. We

maintain in the memory for each graph G a matrix MG, where each element
d(i, j) represents the distance between the i-th label structure of the graph G
and the j-th prototype label structure.

MG =







d(1, 1) . . . d(1,M)
...

. . .
...

d(N, 1) . . . d(N,M)






(4)

We represent a graph G by a vector EG containing M coordinates, where the
j-th coordinate is the sum of the weighted similarities between all the label
structures of G and the j-th prototype label structure.

EG = (e1, ..., eM ) where ej =

N
∑

i=1

sim(i, j)wi (5)

In this Formula, sim(i, j) represents the similarity between the label structure
LSi of G and the j−th prototype label structure. The similarity between two
label structures LS1 and LS2 is computed with the edit distance d between the
two label structures (see Definition 2) which is normalised with the size of the
label structures as follows:

sim(LS1, LS2) = 1−
d(LS1, LS2)

1 + max(|LS1|, |LS2|)
(6)

|LSi| is the total number of edge labels in the label structure, i.e., the degree of

the corresponding vertex computed as |LSi| =
∑ΣE

t=1 L
−
i (t) + L+

i (t).
wi is the weight of the label structure LSi computed as the total number

of edge labels in the label structure LSi divided by 2 times the total number

of edges in the graph G, i.e., wi =
|LSi|
2|G| . The product sim(i, j)wi is called the

impact of LSi on EG in regards to the j-th prototype label structure.
We compute the distance between two graphs G1 and G2 with the Euclidean

distance (L2 norm) between their characteristic vectors EG1 and EG2 :

de(G1, G2) = L2norm(EG1 , EG2) (7)

As two similar graphs contain necessarily similar label structures, anomalous
graphs will be far away from the prototype label structures. Unlike the cosine
similarity used by StreamSpot [16] which considers only the number of common
substructures between two graphs, LEADS compares implicitly the substruc-
tures of the two graphs by comparing them to the same prototypes. This allows
to separate the anomalous graphs from the benign ones in the Euclidean space
since all prototypes are benign and cover all the set of benign training label
structures uniformly. Therefore the anomalous vectors will be far away from
the benign ones.
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We can also see that the distance between two graphs is proportional to the
sum of the distances between their label structures. In fact:

de(G1, G2) =

(

M
∑

i=1

(

EG1(i)− EG2(i)

)2
) 1

2

de(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

sim(LSG1
j , pi)w(LSG1

j )−
N
∑

j=1

sim(LSG2
j , pi)w(LSG2

j )

)2
) 1

2

de(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

(

sim(LSG1
j , pi)w(LSG1

j )

− sim(LSG2
j , pi)w(LSG2

j )
)

)2
) 1

2

d(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

(

w(LSG1
j )(1−

d(LSG1
j , pi)

1 + max(|LSG1
j |, |pi|)

)

−w(LSG2
j )(1−

d(LSG2
j , pi)

1 + max(|LSG2
j |, |pi|)

)
)

)2
) 1

2

de(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

(

w(LSG1
j )− w(LSG2

j )−
w(LSG1

j )d(LSG1
j , pi)

1 + max(|LSG1
j |, |pi|)

+
w(LSG2

j )d(LSG2
j , pi)

1 + max(|LSG2
j |, |pi|)

)

)2
) 1

2

de(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

( |LSG1
j |

2|G1|
−

|LSG2
j |

2|G2|
−

|LSG1
j |

2|G1|
d(LSG1

j , pi)

1 + max(|LSG1
j |, |pi|)

+
|LSG2

j |
2|G2|

(LSG2
j , pi)

1 +max(|LSG2
j |, |pi|)

)

)2
) 1

2

as
∑N

j=1 |LS
G
j | = 2|G|, we have:

de(G1, G2) =

(

M
∑

i=1

( N
∑

j=1

( |LSG2
j |d(LSG2

j , pi)

2|G2|(1 + max(|LSG2
j |, |pi|))

−
|LSG1

j |d(LSG1
j , pi)

2|G1|(1 + max(|LSG1
j |, |pi|))

)

)2
) 1

2
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Using Cauchy-Schwartz inequality, this gives:

de(G1, G2) ≤
(

M
∑

i=1

( N
∑

j=1

|LSG2
j |

2|G2|

N
∑

j=1

d(LSG2
j , pi)

1 + max(|LSG2
j |, |pi|)

−
N
∑

j=1

|LSG1
j |

2|G1|

N
∑

j=1

d(LSG1
j , pi)

1 + max(|LSG1
j |, |pi|)

)2
) 1

2

So,

de(G1, G2) ≤
(

M
∑

i=1

( N
∑

j=1

d(LSG2
j , pi)

1 + max(|LSG2
j |, |pi|)

−
N
∑

j=1

d(LSG1
j , pi)

1 + max(|LSG1
j |, |pi|)

)

)2
) 1

2

As max(|LSG
j |, |pi|) ≥ 0, we have:

de(G1, G2) ≤

√

√

√

√

M
∑

i=1

( N
∑

j=1

(

d(LSG2
j , pi)− d(LSG1

j , pi)
)

)2

As GED is a metric, d satisfies the triangle inequality, i.e., d(x, z) ≤ d(x, y) +
d(y, z). Thus:

de(G1, G2) ≤

√

√

√

√

M
∑

i=1

( N
∑

j=1

d(LSG2
j , LS

G1
j

)2

So, de(G1, G2) ≤
√
M

(

∑N

j=1
d(LSG2

j , LS
G1
j

)

That is, the upper bound of the Euclidean distance of a pair of graphs G1

and G2 is proportional to the sum of the differences between the edit distance
of their label structures. Given d is a metric, the more similar are the label
structures, the smaller will be their edit distance, and consequently, the smaller
will be the Euclidean distance between G1 and G2 in the vector space.

3.3. Anomaly detection in the graph Stream

To detect anomalous graphs, we use clustering. The clusters are constructed
on benign graphs in a training phase during which we deal only with benign
graphs. Clustering is achieved on the vector representations of the graphs.
Then, the incoming graphs are compared to the clusters to spot anomalous ones.
We describe in the following the clustering process and the anomaly detection
one.

Cluster construction:. We use a set of benign graphs that represent the normal
behaviour of the system. We construct for each of these graphs a vector repre-
sentation as described in Section 3.2.2. Then, we use the k-Medoid algorithm
to organize them into k clusters. k is chosen in such way that it maximizes
the silhouette coefficient [38] in order to well separate the clusters from each
other. Then, an anomaly threshold is assigned to each cluster using Cantelli’s
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inequality [39]. These thresholds are set to 3 times the standard deviation (std)
of the distances that are greater than the mean distance between the cluster’s
graphs and the Medoid [16]. Finally, we compute the center of each cluster,
which is the average of the characteristic vectors of the graphs in the cluster.

Anomaly Detection (Algorithm 1): . the arrival of a new edge e = (i, li, j, lj , le, G)
impacts two label structures LSi and LSj and vector EG of the graph G. For
both LSs, we have two possible cases:

1. The label structure appears for the first time (lines 2 and 17): In this
case, we compute its distances to all the prototype label structures, then
we add the impact of the new label structure to vector EG (lines 2-8 and
17-23).

2. The label structure already exists. In this case, we update vector EG by
subtracting the old impact of the label structure and then adding its new
impact(lines 9-15 and 24-30).

To compute the new impacts of label structures LSi and LSj following the ar-
rival of an edge directed from vertex i to vertex j and labeled le, we need to
update their distances to the M prototypes. This operation can be done incre-
mentally using the the old distances stored in Matrix MG. The new distance
d′(i,m) (resp. d′(j,m)) between LSi (resp. LSj) and the mth prototype label
structure is given by :
For LSi which has a new outgoing edge labeled le

d
′(i,m) =























d(i,m) + 1 if (|L+

i |+ 1 > |L+
m|) and

(L+

i (le) + 1 > L+
m(le))

d(i,m)− 1 if (|L+

i |+ 1 ≤ |L+
m|) and

(L+

i (le) + 1 ≤ L+
m(le))

d(i,m) Else

For LSj which has a new incoming edge labeled le:

d
′(j,m) =























d(j,m) + 1 if (|L−

j |+ 1 > |L−

m|) and
(L−

j (le) + 1 > L−

m(le))

d(j,m)− 1 if (|L−

j |+ 1 ≤ |L−

m|) and
(L−

j (le) + 1 ≤ L−

m(le))

d(j,m) Else

where |L−i | (resp. |L
+
i |) is the number of incoming labels, i.e., in-degree (resp.

the number of outgoing labels, i.e., out-degree) of the label structure LSi.
After updating the characteristic vector EG, we need to reclassify the graph

G (reexamine the graph G, since its characteristic vector has changed). To do
this, we compute the Euclidean distance between EG and all the k centers of
benign graph clusters to find the closest cluster to G (line 32). This operation
takes O(kM). Then, we reclassify the graph G as follows: Let Cn be the nearest
cluster to EG, if the distance between EG and Cn is greater than the threshold300

assigned to Cn then the graph is anomalous (line 33-34). Else G is a benign
graph since it can be assigned to the cluster Cn (line 35-36).”
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3.4. Space and Time Complexity

• Space complexity: For each graph G: the space occupied by its label
structures is O (|V |(2|ΣE |)), the space occupied by its distance matrix MG

is O (|V |M), and its characteristic vector EG occupies O (M) memory
units. This leads to a total space complexity of O (|V |(M + 2|ΣE |)) per
graph.

• Computational complexity: at the arrival of a new edge, updating the
affected label structures is constant time, updating the distance between
label structures takes O (M), updating EG takes O (M) and finally the
classification of the graph takes O (Mk) where k is the number of clusters
and M is the number of prototypes. Therefore, the total time complexity
is O (Mk) per edge.

4. Experimental results

In this section, we present the experiments we performed to evaluate our
approach. All the experiments are performed on Intel i7 8700K (3.7 GHz)
with 32 GB RAM using C++. We first describe the datasets. We present the
performance metrics used for experiments. Then, we provide empirical study
on LEADS and comparisons with StreamSpot [16].

4.1. Datasets

We used a cyber-security related dataset 4 [16] where anomalies are cyber-
attacks. The datasets comprise 7 types of flow-graphs derived from 2 malicious
and 5 normal activities. The characteristics of the 7 types of graphs are pre-
sented in Table 1. The malicious activities consist of the drive-by download
attack triggered by visiting a malicious web address and a Java attack. The nor-
mal or benign activities involve ordinary internet browsing activity, like watch-
ing YouTube, downloading files, browsing news, checking Gmail, and playing a
video game. The graphs of benign activities were compiled into 4 sub-datasets:

• ALL: comprises all activities

• GFC: comprises checking Gmail, playing video games and browsing news
activities.

• YDC: comprises watching YouTube, Downloading and browsing news
activities.

• YDG: comprises watching YouTube, Downloading and checking Gmail
activities.

4https://github.com/cmuxstream/cmuxstream-data/blob/master/evolving/streamspot-
raw.gz
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Data: Stream of labeled directed edges, clusters of benign graphs of the training phase, set
of prototype label structures P

Result: Detection of anomalous graphs
1 while a new edge e =< i, ls, j, ld, le, G > arrives do

// Update the vector EG ;
2 if LSi doesn’t exists then // a new LS appears

3 L+
i
(le)← 1;

4 ℓi ← ls;
5 for m← 1 M do
6 compute d(LSi, pm);

7 EG(m)←
EG(m)∗2(|G|−1)+sim(LSi,pm)

2∗|G| ;

8 end

9 else // the label structure LSi already exists

10 for m← 1 M do
11 EG(m)← EG(m) ∗ 2(|G| − 1) − sim(LSi, pm)) ∗ |LSi|;
12 update MG(i,m); // i.e., d(LSi, pm)

13 EG(m)←
EG(m)+(sim(LSi,pm))∗(|LSi|+1)

2∗(|G|+1)
;

14 end

15 L+
i
(le)← L+

i
(le) + 1; // Update LSi

16 end
17 if LSj doesn’t exists then // a new label structure appears

18 L−
j
(le)← 1;

19 ℓj ← ld;
20 for m← 1 M do
21 compute d(LSj, pm);

22 EG(m)←
EG(m)∗2(|G|−1)+sim(LSj ,pm)

2∗|G|
;

23 end

24 else // the label structure LSj already exists

25 for m← 1 M do
26 EG(m)← EG(m) ∗ 2(|G| − 1)− (sim(LSj , pm)) ∗ |LSj|;
27 update MG(j,m); // i.e., d(LSj, pm)

28 EG(m)←
EG(m)+(sim(LSj ,pm))∗(|LSj |+1)

2∗(|G|+1)
;

29 end

30 L−
j
(le)← L−

j
(le) + 1; // update LSj

31 end
// Classification of the graph G

32 compute the smallest distance between the graph G and the centers of the k clusters ;
33 if distance > threshold of the nearest cluster then
34 the graph G is anomalous ;
35 else
36 the graph G is normal ;
37 end

38 end

Algorithm 1: Pseudo-code of the anomaly detection in the streaming
scenario

4.2. Performance metrics

We use the following performance metrics to evaluate our approach, consid-
ering Malicious as the positive class: False Positive rate (FPR), False Negative
rate (FNR), F1 score (F1), Balanced accuracy (BACC), Average Precision
(AP ), Area Under Curve (AUC). In all experiments, the performance metrics
are computed on the instantaneous anomaly detection every 10,000 edges.
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Activity #Graphs Avg |V | Avg |E|
YouTube 100 8291.79 113228
Download 100 6827.3 37382

Browsing news 100 8637.34 112957
Drive-by download (Attack) 100 8890.8 28423

Checking mail 100 8831.46 310813
Playing video games 100 8990.09 294903

Java (Attack) 100 6881.37 27844

Table 1: Characteristics of the dataset’s graphs

4.3. Empirical Study of LEADS

4.3.1. Experiment Settings

This first set of experiments aims to calibrate the number of prototype label
structures M . For this, we studied the behavior of our approach, by setting a
range of values for the parameter M = {25, 50, 100}. For each value of M we
carried-out an experiment on the ALL sub-dataset using τ = 75% of benign
graphs selected randomly for the training. The remaining 25% of benign graphs
(i.e., 125 benign graphs) with all attack graphs (200 attack graphs) constitute
the set of test graphs which was divided in groups of P = 50 graphs.

4.3.2. Results

Figure 3 shows the performance of LEADS on different values of M . We
notice that the three curves are almost similar with periodic dips in each one.
Each dip corresponds to the arrival of a new group of graphs. These drops
of performance are justified by the fact that at the beginning of each period
only a small portion of the global structures of the new graphs is known. The
performance recovers as graphs start to grow to achieve rates > 95% for all
metrics at the end of each period.

Table 2 gives the values of each performance metric at the end of the stream
as well as the number of processed edges per second for each value ofM . We can
see that we obtain identical results regarding the anomaly detection efficiency
for the 3 values of M with a slightly better performance for M = 100. However,
the run-times are not the same. It is obvious that the smallerM is, the greater is
the number of edges processed per second. We deduce from Figure 3 and Table
2 that the best value of M for this benchmark is 25, because the detection
for M = 25 is 3 times faster than the detection using 100 prototypes, and the
differences in performance are not noticeable (0.003 in AUC) between the three
values of M . Therefore, in all experiments that follow we set the value of M to
25.

4.4. Comparative Study

In this set of experiments, we present the results of the comparison of LEADS
with StreamSpot [16].
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Figure 3: The effect of parameter M on the performance of LEADS

M BACC F1 score AP AUC #edges/sec

25 0.996 0.997 0.992 0.993 92431
50 0.996 0.997 0.993 0.995 50233
100 0.996 0.997 0.994 0.996 26038

Table 2: The performance and run-time with different values of M

4.4.1. Experiment Settings

We conducted our tests on the 4 sub-datasets ALL, GFC, YDC and YDG
using different rates of training graphs τ = 25%, 50%, 75%. The number of test
graphs and test edges used in each experiment are given in Table 3. For a fair
comparison, we run StreamSpot using the best combination of parameters [16]:
sketch size L = 1000, chunk-size C = 25, 100, 50 respectively for YDC, GFC
and ALL and C = 50 for the new sub-dataset YDG without any limit on the
size of the cache N = 100% of the size of the stream for all sub-datasets.

sub-dataset τ
#Test Graph

#Test edges(Millions)
#Benign graphs #Anomalous Graphs

ALL
75% 125 200 27.62
50% 250 200 49.95
25% 375 200 71.76

GFC
75% 75 200 16.91
50% 150 200 28.14
25% 225 200 39.5

YDC
75% 75 200 23.71
50% 150 200 42.15
25% 225 200 60.35

YDG
75% 75 200 17.3
50% 150 200 29.35
25% 225 200 40.71

Table 3: Test experiments characteristics

4.4.2. Results

Figures 4, 5, 6 and 7 show the performances of the two methods for the
3 training rates 25%, 50% and 75% on the 4 datasets: ALL, GFC, YDC and
YDG, respectively. We can see clearly that:

1. Figures 4, 5, 6 and 7: We notice a clear drop in performance (the peri-
odic dips) at the arrival of a new group of P graphs in all the curves. This
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is due to the fact that only a small portion of the new coming test graphs
are known at the beginning of each period. Therefore, at this stage the
new benign graphs are misclassified as malicious (FPR increase). Since
they are dissimilar to the benign training graphs which are of complete
size. Then, the performance recovers as soon as the new graphs start
growing (FPR decrease).

2. Figure 4 (dataset ALL): This figure shows that both approaches be-
have very well and almost perfectly at the end of each period in terms of
AP and AUC (AP > 95% and AUC > 95%) for the 3 training rates. Fur-
thermore, our approach clearly outperforms StreamSpot in term of BACC

for the 3 values of τ . We notice also that the impact of the parameter
τ on Streamspot is considerable. Indeed, the value of BACC changes
significantly by varying the training rate.400
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Performance of StreamSpot on the sub-dataset ALL
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Figure 4: Comparison of LEADS with StreamSpot on the sub-dataset ALL (P=50)

3. Figure 5 (dataset GFC): The results of the two approaches are very
satisfactory with slightly shorter detection delays in Streamspot. The
performance of both approaches remains very high even for a smaller rate
of training τ = 25%.

4. Figure 6 (dataset YDC): We notice that the performance of our ap-
proach are better than Streamspot’s performances with higher AP and
BACC and shorter anomaly detection delays. The superiority of LEADS
over StreamSpot is more visible for smaller rates of training especially
for the BACC metric. For τ = 25% we see that the performances of
both approaches drop, however our results remain very satisfactory with
rates > 90% in all metrics while the results of StreamSpot are under 90%
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Performance of LEADS on the sub-dataset GFC
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Performance of StreamSpot on the sub-dataset GFC
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Figure 5: Comparison of LEADS with StreamSpot on the sub-dataset GFC (P=50)

especially for the BACC metric.

5. Figure 7 (dataset YDG): The AP and AUC of the two approaches are
very high and satisfactory even for the smaller rate of training τ = 25%. In
addition, our approach clearly outperforms Streamspot in terms ofBACC.
The superiority of LEADS is very clear for the greater rates of training.

Table 4 presents the performance of the detection of both approaches (StreamSpot
(STRSP) [16] and our approach LEADS) at the end of the stream as well as
the number of processed edges per second. Our results are very satisfactory
with null false negative rates in all experiments and relatively small false pos-
itive rates. In addition, we see clearly that LEADS behaves almost perfectly
in terms of AP and AUC with values above 99% in all scenarios. Moreover,
LEADS outperforms StreamSpot in the majority of experiments expect for two
scenarios (GFC 75% and GFC 50%) where the two approaches are equivalent.
LEADS consistently outperforms StreamSpot for the BACC and F1 score met-
rics and especially for the small rates of training. Concerning the speed of
both approaches, we can see that our approach is up to 3 times faster than
StreamSpot for the ALL and the YDC instances and up to 6 times faster for
the GFC instances.

In summary, these results demonstrate the effectiveness of LEADS compared
to StreamSpot.
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Performance of LEADS on the sub-dataset YDC
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Performance of StreamSpot on the sub-dataset YDC
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Figure 6: Comparison of LEADS with StreamSpot on the sub-dataset YDC (P=50)

5. Conclusion

This paper presents a new approach for detecting anomalies in a stream
of heterogeneous graphs. We have introduced a new representation of graphs
by vectors. This representation is based on weighted sub-structures and graph
edit distance. It enables a rapid update of the vectors of graphs and consumes
a limited amount of memory space per graph. The results obtained show the
effectiveness of our approach, which achieves over 95% precision while processing
more than 90, 000 edges per second.
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