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Serbian Academy of Sciences and Arts

In the paper, by virtue of convolution theorem for the Laplace transforms,

Bernstein’s theorem for completely monotonic functions, some properties of

a function involving exponential function, and other analytic techniques, the

author finds necessary and sufficient conditions for two functions defined by

two derivatives of a function involving trigamma function to be completely

monotonic or monotonic. These results generalize corresponding known ones.

1. INTRODUCTION

In the literature [1, Section 6.4], the function Γ(z) =
∫∞
0
tz−1e−tdt for ℜ(z) >

0 and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are called Euler’s gamma

function and digamma function respectively. Further, the functions ψ′(z), ψ′′(z),
ψ′′′(z), and ψ(4)(z) are known as the trigamma, tetragamma, pentagamma, and
hexagamma functions respectively. As a whole, all the derivatives ψ(k)(z) for k ≥ 0
are known as polygamma functions.
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Recall from Chapter XIII in [4], Chapter 1 in [20], and Chapter IV in [21]
that, if a function f(x) on an interval I has derivatives of all orders on I and
satisfies (−1)nf (n)(x) ≥ 0 for x ∈ I and n ∈ {0} ∪ N, where N denotes the set of
all positive integers, then we call f(x) a completely monotonic function on I.

In [13, Section 4] and [15, Theorem 4], the author turned out that,

1. if and only if α ≥ 2, the function

(1) Hα(x) = ψ′(x) + xψ′′(x) + α
[
xψ′(x)− 1

]2
is completely monotonic on (0,∞);

2. if and only if α ≤ 1, the function −Hα(x) is completely monotonic on (0,∞);

3. the double inequality

(2) −2 <
ψ′(x) + xψ′′(x)

[xψ′(x)− 1]2
< −1

is valid on (0,∞) and sharp in the sense that the lower and upper bounds −2
and −1 cannot be replaced by any bigger and smaller ones respectively.

For β ∈ R, let

(3) Hβ(x) =
ψ′(x) + xψ′′(x)

[xψ′(x)− 1]β

on (0,∞). In [13, Theorem 1.1], the author generalized the double inequality (2)
by finding the following necessary and sufficient conditions:

1. if and only if β ≥ 2, the function Hβ(x) is decreasing on (0,∞), with the
limits

lim
x→0+

Hβ(x) =

{
−1, β = 2

0, β > 2
and lim

x→∞
Hβ(x) =

{
−2, β = 2

−∞, β > 2;

2. if β ≤ 1, the function Hβ(x) is increasing on (0,∞), with the limits

Hβ(x) →

{
−∞, x→ 0+

0, x→ ∞.

Let Φ(x) = xψ′(x)− 1 on (0,∞). It is easy to see that

(4) Φ(k)(x) = kψ(k)(x) + xψ(k+1)(x), k ∈ N.

The functions Hα(x) and Hβ(x) in (1) and (3) and the double inequality (2) can
be reformulated in terms of Φ(x) and its first derivative as

Hα(x) = Φ′(x) + αΦ2(x), Hβ(x) =
Φ′(x)

Φβ(x)
, −2 <

Φ′(x)

Φ2(x)
< −1.
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For k ∈ {0} ∪ N and λk, µk ∈ R, let

(5) Jk,λk
(x) = Φ(2k+1)(x) + λk

[
Φ(k)(x)

]2
and

(6) Jk,µk
(x) =

Φ(2k+1)(x)[
(−1)kΦ(k)(x)

]µk

on (0,∞). It is clear that J0,λ0
(x) = Hλ0

(x) and J0,µ0
(x) = Hµ0

(x). These
functions are analogues of some functions surveyed in the expository article [16].

In this paper, we mainly find necessary and sufficient conditions on λk and
µk such that

1. the functions ±Jk,λk
(x) for k ∈ N are completely monotonic on (0,∞);

2. the function Jk,µk
(x) for k ∈ N is monotonic on (0,∞).

These results generalize corresponding ones in [13, 15] mentioned above.

In the last section of this paper, we pose several guesses related to our main
results in this paper.

2. LEMMAS

The following lemmas are necessary in this paper.

Lemma 1 ([13, Lemma 2.3]). Let

h(t) =


et(et − 1− t)

(et − 1)2
, t ̸= 0

1

2
, t = 0

on (−∞,∞). Then the following conclusions are valid:

1. the function h(t) is increasing from (−∞,∞) onto (0, 1), convex on (−∞, 0),
concave on (0,∞), and logarithmically concave on (−∞,∞);

2. the function h(2t)
h2(t) is increasing from (−∞, 0) onto (0, 2) and decreasing from

(0,∞) onto (1, 2);

3. the double inequality

(7) 1 <
h(2t)

h2(t)
< 2

is valid on (0,∞) and sharp in the sense that the lower bound 1 and the
upper bound 2 cannot be replaced by any larger scalar and any smaller scalar
respectively;
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4. for any fixed t > 0, the function h(st)h((1− s)t) is increasing in s ∈
(
0, 12

)
.

Lemma 2. For k ≥ 0, the function (−1)kΦ(k)(x) is completely monotonic on
(0,∞), with the limits

(8) (−1)kxk+1Φ(k)(x) →


k!, x→ 0+;

k!

2
, x→ ∞.

Proof. In the proof of [15, Theorem 4], the author established that

Φ(x) =

∫ ∞

0

h(t)e−xtdt.

This means

(9) (−1)kΦ(k)(x) =

∫ ∞

0

h(t)tke−xtdt

which is completely monotonic on (0,∞).

For ℜ(z) > 0 and k ≥ 1, we have

ψ(k−1)(z + 1) = ψ(k−1)(z) + (−1)k−1 (k − 1)!

zk
.

See [1, p. 260, 6.4.6]. Considering (4), we have

xk+1Φ(k)(x) = xk+1

(
k

[
ψ(k)(x+ 1)− (−1)k

k!

xk+1

]
+ x

[
ψ(k+1)(x+ 1)− (−1)k+1 (k + 1)!

xk+2

])
→ (−1)kk!

as x→ 0+. The first limit in (8) follows.

In [1, p. 260, 6.4.11], it was given that, for | arg z| < π, as z → ∞,

ψ(n)(z) ∼ (−1)n−1

[
(n− 1)!

zn
+

n!

2zn+1
+

∞∑
k=1

B2k
(2k + n− 1)!

(2k)!z2k+n

]
,

where B2k for k ≥ 1 stands for the Bernoulli numbers which are generated [5] by

z

ez − 1
= 1− z

2
+

∞∑
k=1

B2k
z2k

(2k)!
, |z| < 2π.

Considering (4), we have

xk+1Φ(k)(x) ∼ xk+1

(
k

[
(−1)k−1

[
(k − 1)!

xk
+

k!

2xk+1
+ · · ·

]]
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+ x

[
(−1)k

[
k!

xk+1
+

(k + 1)!

2xk+2
+ · · ·

]])
→ (−1)k

k!

2

as x → ∞. The second limit in (8) is thus proved. The proof of Lemma 2 is
complete.

Lemma 3 (Convolution theorem for the Laplace transforms [21, pp. 91–92]). Let
fk(t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in
(0,∞). If there exist some constants Mk > 0 and ck ≥ 0 such that |fk(t)| ≤Mke

ckt

for k = 1, 2, then∫ ∞

0

[ ∫ t

0

f1(u)f2(t− u)du

]
e−stdt =

∫ ∞

0

f1(u)e
−sudu

∫ ∞

0

f2(v)e
−svdv.

Lemma 4 ([8, Theorem 6.1]). If f(x) is differentiable and logarithmically con-
cave on (−∞,∞), then the product f(x)f(x0 − x) for any fixed number x0 ∈ R is
increasing in x ∈

(
−∞, x0

2

)
and decreasing in x ∈

(
x0

2 ,∞
)
.

Lemma 5 (Bernstein’s theorem [21, p. 161, Theorem 12b]). A function f(x) is
completely monotonic on (0,∞) if and only if

(10) f(x) =

∫ ∞

0

e−xtdσ(t), x ∈ (0,∞),

where σ(s) is non-decreasing and the integral in (10) converges for x ∈ (0,∞).

Lemma 6 ([6, Lemma 2.6] and [14, Lemma 2.5]). For k,m ∈ N, the function

(11) Uk,m(x) =
1

(x+ 1)m
xk+m + (x+ 2)k+m

xk + (x+ 2)k

is decreasing on [0,∞), with Uk,m(0) = 2m and limx→∞ Uk,m(x) = 1. Equivalently,
the function

Vk,m(x) =
(1− x)k+m + (1 + x)k+m

(1− x)k + (1 + x)k

is increasing in x ∈ [0, 1], with Vk,m(0) = 1 and Vk,m(1) = 2m.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR
COMPLETE MONOTONICITY

In this section, we find necessary and sufficient conditions on λk such that
the functions ±Jk,λk

(x) defined in (5) are completely monotonic on (0,∞).

Theorem 1. For k ∈ {0} ∪ N and λk ∈ R,
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1. if and only if λk ≥ (2k+2)!
k!(k+1)! , the function Jk,λk

(x) is completely monotonic on

(0,∞);

2. if and only if λk ≤ 1
2

(2k+2)!
k!(k+1)! , the function −Jk,λk

(x) is completely monotonic

on (0,∞).

First proof. If Jk,λk
(x) is completely monotonic on (0,∞), then its first derivative

J′k,λk
(x) = Φ(2k+2)(x) + 2λkΦ

(k)(x)Φ(k+1)(x) ≤ 0

on (0,∞). Hence, we have

λk ≥ −1

2

Φ(2k+2)(x)

Φ(k)(x)Φ(k+1)(x)

= −1

2

(2k + 2)ψ(2k+2)(x) + xψ(2k+3)(x)

[kψ(k)(x) + xψ(k+1)(x)][(k + 1)ψ(k+1)(x) + xψ(k+2)(x)]

= −1

2

x2k+3
[
(2k + 2)ψ(2k+2)(x) + xψ(2k+3)(x)

]
xk+1[kψ(k)(x) + xψ(k+1)(x)]xk+2[(k + 1)ψ(k+1)(x) + xψ(k+2)(x)]

→ −1

2

(−1)2k+2 (2k+2)!
2

(−1)k k!
2 (−1)k+1 (k+1)!

2

=
(2k + 2)!

k!(k + 1)!

as x → ∞, where we used the second limit in (8). Consequently, the necessary

condition for Jk,λk
(x) to be completely monotonic on (0,∞) is λk ≥ (2k+2)!

k!(k+1)! .

Similarly, if −Jk,λk
(x) is completely monotonic on (0,∞), then J′k,λk

(x) ≥ 0,
that is,

λk ≤ −1

2

x2k+3
[
(2k + 2)ψ(2k+2)(x) + xψ(2k+3)(x)

]
xk+1[kψ(k)(x) + xψ(k+1)(x)]xk+2[(k + 1)ψ(k+1)(x) + xψ(k+2)(x)]

→ −1

2

(−1)2k+2(2k + 2)!

(−1)kk!(−1)k+1(k + 1)!

=
1

2

(2k + 2)!

k!(k + 1)!

as x → 0+, where we used the first limit in (8). Consequently, the necessary

condition for −Jk,λk
(x) to be completely monotonic on (0,∞) is λk ≤ 1

2
(2k+2)!
k!(k+1)! .

By virtue of the integral representation (9), we arrive at

Jk,λk
(x)(x) = λk

[∫ ∞

0

tkh(t)e−xtdt

]2
−
∫ ∞

0

t2k+1h(t)e−xtdt.
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By Lemma 3, we obtain
(12)

Jk,λk
(x) = λk

∫ ∞

0

[∫ t

0

uk(t− u)kh(u)h(t− u)du

]
e−xtdt−

∫ ∞

0

t2k+1h(t)e−xtdt

=

∫ ∞

0

[
λk

∫ t

0

uk(t− u)kh(u)h(t− u)du− t2k+1h(t)

]
e−xtdt.

By logarithmic concavity of h(t) in Lemma 1 and by Lemma 4, we acquire

λk

∫ t

0

uk(t− u)kh(u)h(t− u)du− t2k+1h(t)

≤ λk

∫ t

0

uk(t− u)kh

(
t

2

)
h

(
t− t

2

)
du− t2k+1h(t)

= λk
(k!)2

(2k + 1)!
t2k+1

[
h

(
t

2

)]2
− t2k+1h(t)

=

[
h

(
t

2

)]2(
λk

(k!)2

(2k + 1)!
− h(t)[

h
(
t
2

)]2
)
t2k+1

and

λk

∫ t

0

uk(t− u)kh(u)h(t− u)du− t2k+1h(t)

≥ λk

∫ t

0

uk(t− u)kh(0)h(t)du− t2k+1h(t)

= λk
(k!)2

(2k + 1)!
t2k+1h(0)h(t)− t2k+1h(t)

=

[
λk
2

(k!)2

(2k + 1)!
− 1

]
t2k+1h(t),

where we used the computation

(13)

∫ t

0

uk(t− u)kdu = t2k+1

∫ 1

0

sk(1− s)kds

= B(k + 1, k + 1)t2k+1

=
(k!)2

(2k + 1)!
t2k+1.

By the double inequality (7) in Lemma 1, when λk ≤ (2k+1)!
(k!)2 , we deduce

λk

∫ t

0

uk(t− u)kh(u)h(t− u)du− t2k+1h(t) < 0, t ∈ (0,∞);
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when λk ≥ 2 (2k+1)!
(k!)2 , we have

λk

∫ t

0

uk(t− u)kh(u)h(t− u)du− t2k+1h(t) > 0, t ∈ (0,∞).

Consequently, when λk ≥ 2 (2k+1)!
(k!)2 = (2k+2)!

k!(k+1)! , the function Jk,λk
(x)(x) is completely

monotonic on (0,∞); when λk ≤ (2k+1)!
(k!)2 = 1

2
(2k+2)!
k!(k+1)! , the function −Jk,λk

(x)(x) is

completely monotonic on (0,∞). The proof of Theorem 1 is complete.

Second proof. The integral representation (12) can be alternatively reformulated as

Jk,λk
(x) =

∫ ∞

0

[
λk

∫ t

0
uk(t− u)kh(u)h(t− u)du

t2k+1h(t)
− 1

]
t2k+1h(t)e−xtdt

=

∫ ∞

0

[
λk

∫ 1

0
vk(1− v)kh(vt)h((1− v)t)dv

h(t)
− 1

]
t2k+1h(t)e−xtdt.

By the last conclusion in Lemma 1, the sharp lower bound in (7), and the equa-
tion (13) in sequence, we obtain the sharp inequalities∫ 1

0
vk(1− v)kh(vt)h((1− v)t)dv

h(t)
>
h(0)h(t)

∫ 1

0
vk(1− v)kdv

h(t)
=

1

2

(k!)2

(2k + 1)!

and ∫ 1

0
vk(1− v)kh(vt)h((1− v)t)dv

h(t)
<

[
h
(
1
2 t
)]2 ∫ 1

0
vk(1− v)kdv

h(t)
<

(k!)2

(2k + 1)!

for t ∈ (0,∞). Due to the sharpness of these inequalities, making use of Lemma 5
immediately leads to necessary and sufficient conditions on λk in Theorem 1. The
proof of Theorem 1 is complete.

4. NECESSARY AND SUFFICIENT CONDITIONS FOR
MONOTONICITY

In this section, we find necessary and sufficient conditions on µk such that
the function Jk,µk

(x) defined in (6) is monotonic on (0,∞).

Theorem 2. For k ∈ {0} ∪ N and µk ∈ R,

1. if and only if µk ≥ 2, the function Jk,µk
(x) is decreasing on (0,∞), with the

limits

(14) lim
x→0+

Jk,µk
(x) =

−1

2

(2k + 2)!

k!(k + 1)!
, µk = 2

0, µk > 2
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and

(15) lim
x→∞

Jk,µk
(x) =

− (2k + 2)!

k!(k + 1)!
, µk = 2

−∞, µk > 2;

2. if µk ≤ 1, the function Jk,µk
(x) is increasing on (0,∞), with the limits

(16) Jk,µk
(x) →

{
−∞, x→ 0+

0, x→ ∞;

3. the double inequality

(17) − (2k + 2)!

k!(k + 1)!
<

Φ(2k+1)(x)[
Φ(k)(x)

]2 < −1

2

(2k + 2)!

k!(k + 1)!

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any larger and smaller numbers respectively.

Proof. If the function Jk,µk
(x) is decreasing on (0,∞), then its first derivative

J ′
k,µk

(x) =
Φ(2k+2)(x)

[
(−1)kΦ(k)(x)

]
− µk(−1)kΦ(k+1)(x)Φ(2k+1)(x)[

(−1)kΦ(k)(x)
]µk+1 ≤ 0,

that is,

µk ≥ Φ(k)(x)Φ(2k+2)(x)

Φ(k+1)(x)Φ(2k+1)(x)

=

[
(−1)kxk+1Φ(k)(x)

][
(−1)2k+2x2k+3Φ(2k+2)(x)

]
[(−1)k+1xk+2Φ(k+1)(x)][(−1)2k+1x2k+2Φ(2k+1)(x)]

→ k!(2k + 2)!

(k + 1)!(2k + 1)!

= 2

as x → 0+ or x → ∞, where we used the limits in (8). Hence, the necessary
condition for Jk,µk

(x) to be decreasing on (0,∞) is µk ≥ 2.

By the integral representation (9), the function Jk,µk
(x) can be rewritten as

Jk,µk
(x) = −

∫∞
0
t2k+1h(t)e−xtdt[∫∞

0
tkh(t)e−xtdt

]µk
.

Since

dJk,µk
(x)

dx
=

[ ∫∞
0
t2k+2h(t)e−xtdt

∫∞
0
tkh(t)e−xtdt

−µk

∫∞
0
t2k+1h(t)e−xtdt

∫∞
0
tk+1h(t)e−xtdt

]
[∫∞

0
tkh(t)e−xtdt

]µk+1 ,
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in order to prove that the function Jk,µk
(x) is decreasing on (0,∞), it is sufficient

to show the inequality

(18) µk

∫ ∞

0

t2k+1h(t)e−xtdt

∫ ∞

0

tk+1h(t)e−xtdt

≥
∫ ∞

0

t2k+2h(t)e−xtdt

∫ ∞

0

tkh(t)e−xtdt.

By Lemma 3, the inequality (18) can be reformulated as

(19) µk

∫ ∞

0

[∫ t

0

u2k+1(t− u)k+1h(u)h(t− u)du

]
e−xtdt

≥
∫ ∞

0

[∫ t

0

u2k+2(t− u)kh(u)h(t− u)du

]
e−xtdt.

Let

Pk(t) =

∫ t

0

u2k+1(t− u)k+1h(u)h(t− u)du

and

Qk(t) =

∫ t

0

u2k+2(t− u)kh(u)h(t− u)du.

Then the inequality (19) can be rewritten as

(20)

∫ ∞

0

Qk(t)

[
Pk(t)

Qk(t)
− 1

µk

]
e−xtdt ≥ 0.

Changing the variable u = (1+v)t
2 results in

(21)

Pk(t)

Qk(t)
=

∫ 1

0

[
(1− v)k + (1 + v)k

](
1− v2

)k+1
h
(
1+v
2 t
)
h
(
1−v
2 t
)
dv∫ 1

0
[(1− v)k+2 + (1 + v)k+2](1− v2)kh

(
1+v
2 t
)
h
(
1−v
2 t
)
dv

→
∫ 1

0

[
(1− v)k + (1 + v)k

](
1− v2

)k+1
dv∫ 1

0
[(1− v)k+2 + (1 + v)k+2](1− v2)kdv

=
23k+3B(2k + 2, k + 2)

23k+3B(2k + 3, k + 1)

=
1

2

as t→ 0+ or t→ ∞, where we used the fact in Lemma 1 that the function h(t) is
increasing from (0,∞) onto

(
1
2 , 1
)
and used the formula

(22)

∫ 1

0

[
(1 + x)µ−1(1− x)ν−1 + (1 + x)ν−1(1− x)µ−1

]
dx = 2µ+ν−1B(µ, ν)

= 2µ+ν−1Γ(µ)Γ(ν)

Γ(µ+ ν)
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for ℜ(µ),ℜ(ν) > 0 in [2, p. 321, 3.214].

Let

Sk(t) =

∫ 1

0

[
(1− v)k + (1 + v)k

](
1− v2

)k+1
h

(
1 + v

2
t

)
h

(
1− v

2
t

)
dv

− 1

2

∫ 1

0

[
(1− v)k+2 + (1 + v)k+2

](
1− v2

)k
h

(
1 + v

2
t

)
h

(
1− v

2
t

)
dv

=

∫ 1

0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
h

(
1 + v

2
t

)
h

(
1− v

2
t

)
dv,

where

Tk(v) = 1− v2 − 1

2

(1− v)k+2 + (1 + v)k+2

(1− v)k + (1 + v)k

with Tk(0) =
1
2 and Tk(1) = −2. By Lemma 6 for m = 2, we see that the function

Tk(v) is decreasing on [0, 1] and has only one zero v0 ∈ (0, 1). As a result, by the
fourth conclusion in Lemma 1, we obtain

Sk(t) =

∫ v0

0

+

∫ 1

v0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
h

(
1 + v

2
t

)
h

(
1− v

2
t

)
dv

> h

(
1 + v0

2
t

)
h

(
1− v0

2
t

)∫ v0

0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
dv

+ h

(
1 + v0

2
t

)
h

(
1− v0

2
t

)∫ 1

v0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
dv

= h

(
1 + v0

2
t

)
h

(
1− v0

2
t

)∫ 1

0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
dv

= 0,

where we used the formula (22) to obtain∫ 1

0

Tk(v)
[
(1− v)k + (1 + v)k

](
1− v2

)k
dv

=

∫ 1

0

[
(1 + v)k+1(1− v)2k+1 + (1 + v)2k+1(1− v)k+1

]
dv

− 1

2

∫ 1

0

[
(1 + v)k(1− v)2k+2 + (1 + v)2k+2(1− v)k

]
dv

= 23k+3B(k + 2, 2k + 2)− 23k+2B(k + 1, 2k + 3)

= 0.

Consequently, considering the limit in (21), we conclude an inequality Pk(t)
Qk(t)

> 1
2

for t > 0, which is sharp in the sense that the lower bound 1
2 cannot be replaced

by any larger number. This sharp inequality shows that the inequality (20) is valid
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for all µk ≥ 2. Accordingly, the condition µk ≥ 2 is sufficient for Jk,µk
(x) to be

decreasing on (0,∞).

It is easy to verify that[
(1− v)k + (1 + v)k

](
1− v2

)k+1 −
[
(1− v)k+2 + (1 + v)k+2

](
1− v2

)k
= −2v

(
1− v2

)k[
(1 + v)k − (1− v)k + v

(
(1− v)k + (1 + v)k

)]
< 0

for v ∈ (0, 1). Combining this negativity with the positivity of h(t) on (0,∞), we

deduce an inequality 0 < Pk(t)
Qk(t)

< 1 on (0,∞). This means that, when µk ≤ 1, the

function Jk,µk
(x) is increasing on (0,∞).

The limits in (14), (15), and (16) follow from applying the limits in (8).

The double inequality (17) and its sharpness follow from monotonicity of
Jk,µk

(x) and the limits (14) and (15) for µk = 2. The proof of Theorem 2 is
complete.

Corollary 1. For k ∈ {0} ∪ N and µk ∈ R, the function

(−1)k
[
µkΦ

(k+1)(x)Φ(2k+1)(x)− Φ(2k+2)(x)Φ(k)(x)
]

is completely monotonic on (0,∞) if and only if µk ≥ 2, while its opposite is
completely monotonic on (0,∞) if µk ≤ 1.

Proof. This follows from the proof of Theorem 2.

5. SEVERAL REMARKS AND GUESSES

Finally, we list several guesses related to main results in this paper in the
form of remarks.

Remark 1. Corollary 1 in this paper generalizes [13, Corollary 3.1].

Remark 2. For k,m ∈ N, we guess that the function Uk,m(x) defined in (11) should
be completely monotonic on (0,∞).

Remark 3. For k ≥ m ≥ 0, let

Jk,m(x) =
Φ(2k+2)(x)

Φ(k−m)(x)Φ(k+m+1)(x)

on (0,∞). Motivated by the proof of necessary conditions in Theorem 1, we guess
that the function Jk,m(x) for k ≥ m ≥ 0 should be decreasing on (0,∞). Conse-
quently, the inequality

−2(2k + 2)!

k!(k + 1)!
< Jk,0(x) < − (2k + 2)!

k!(k + 1)!

for k ≥ 0 should be valid on (0,∞) and sharp in the sense that the lower and upper
bounds cannot be replaced by any larger and smaller numbers respectively.
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Remark 4. For k ≥ 0, we guess that the function of (−1)kxkΦ(k)(x) should be
completely monotonic on (0,∞), but the function (−1)kxk+1Φ(k)(x) should not be
completely monotonic on (0,∞). In other words, the completely monotonic degree
of (−1)kΦ(k)(x) with respect to x ∈ (0,∞) should be k ≥ 0. For the concept and
new results of completely monotonic degrees, please refer to the papers [3, 8, 17,
19, 20] and closely related references therein.

We also guess that the function (−1)kxk+1Φ(k)(x) for k ≥ 0 should be decreas-
ing on (0,∞). Consequently, considering the limits in (8), the double inequality

k!

2

1

xk+1
< (−1)kΦ(k)(x) < k!

1

xk+1

for k ≥ 0 should be valid on (0,∞) and sharp in the sense that the scalars k!
2 and

k! in the lower and upper bounds cannot be replaced by any bigger and smaller
ones respectively.

Remark 5. By virtue of the integral representation (9), integrating by parts yields

xk(−1)kΦ(k)(x) = −xk−1

∫ ∞

0

tkh(t)
de−xt

dt
dt

= −xk−1

([
tkh(t)e−xt

]∣∣∣t→∞

t→0+
−
∫ ∞

0

[
tkh(t)

]′
e−xtdt

)
= xk−1

∫ ∞

0

[
tkh(t)

]′
e−xtdt.

By induction, consecutively integrating by parts results in

xk(−1)kΦ(k)(x) = x

∫ ∞

0

[
tkh(t)

](k−1)
e−xtdt

= −
∫ ∞

0

[
tkh(t)

](k−1) de−xt

dt
dt

= −
[([

tkh(t)
](k−1)

e−xt
)∣∣∣t→∞

t→0+
−
∫ ∞

0

[
tkh(t)

](k)
e−xtdt

]
=

∫ ∞

0

[
tkh(t)

](k)
e−xtdt

and

xk+1(−1)kΦ(k)(x) =
k!

2
+

∫ ∞

0

[
tkh(t)

](k+1)
e−xtdt.

Utilizing the last two integral representations, considering the necessary and suffi-
cient condition expressed in (10), and basing on those guesses in Remark 4 above,

we guess that, for given k ∈ N, all the derivatives
[
tkh(t)

](ℓ)
for 0 ≤ ℓ ≤ k should

be positive on (0,∞), but
[
tkh(t)

](k+1)
should change sign on (0,∞).

Remark 6. We guess that the sufficient condition µk ≤ 1 in Theorem 2 should be
µk ≤ µ(k) with 1 < µ(k) < 2.

Remark 7. This paper is a revised version of the electronic preprint [6] and the
third one in a series of articles including [7, 9, 10, 11, 12, 13, 14, 15, 18].
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