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Abstract

An infinite sequence over a finite alphabet of symbols Σ is called normal iff the limiting
frequency of every finite string w ∈ Σ∗ exists and equals |Σ|−|w|.

A celebrated theorem by Agafonov states that a sequence α is normal iff every finite-
state selector (i.e., a DFA accepting or rejecting prefixes of α) selects a normal sequence
from α.

Let µ : Σ∗ −→ [0, 1] be a probability map, (for every n ≥ 0,
∑

w∈Σn µ(w) = 1). Say
that an infinite sequence α is is µ-distributed if, for every w ∈ Σ∗, the limiting frequency
of w in α exists and equals µ(w). Thus, α is normal if it is µ-distributed for the probability
map µ(w) = |Σ|−|w|.

Unlike normality, µ-distributedness is not preserved by finite-state selectors for all
probability maps µ. This raises the question of how to characterize the probability maps
µ for which µ-distributedness is preserved across finite-state selection, or equivalently, by
selection by programs using constant space.

We prove the following result: For any finite or countably infinite alphabet Σ, ev-
ery finite-state selector over Σ selects a µ-distributed sequence from every µ-distributed
sequence α iff µ is induced by a Bernoulli distribution on Σ, that is, for every word
a1 · · · an ∈ Σ∗, µ(a1 · · ·an) =

∏n

i=1 µ(ai).
The primary – and remarkable – consequence of our main result is a complete char-

acterization of the set of probability maps, on finite and infinite alphabets, for which
Agafonov-type results hold. The main positive takeaway is that (the appropriate gen-
eralization of) Agafonov’s Theorem holds for Bernoulli distributions (rather than just
equidistributions) on both finite and countably infinite alphabets.

As a further consequence, we obtain a result in the area of symbolic dynamical systems:
the shift-invariant measures ν on Σω such that any finite-state selector preserves the
property of genericity for ν, are exactly the positive Bernoulli measures.
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1 Introduction

Let α = x1x2 · · · be an infinite sequence over a finite alphabet Σ. A string w ∈ Σ∗ is said
to occur in α with limiting frequency f if, for each ǫ > 0, limN→∞

#w(x1···xN )
N = f , where

#w(x1 · · · xN ) is the number of times that w occurs as a contiguous subsequence in x1 · · · xN .
α is said to be normal if every finite string of length n over Σ occurs with limiting frequency
|Σ|−n in α [12]. By standard results, the fractional part the base-b expansion of almost all real
numbers is a normal sequence for b ≥ 2, so for base 10, almost all real numbers have the digit
“0” occurring 1-in-10 times in all sufficiently long finite prefixes of their digit expansion, have
“11” occurring 1-in-100 times, “110” occurring 1-in-1000 times, and so on. Concrete examples
of normal sequences include Champernowne’s sequence 1234567891011 · · · [20], the Copeland-
Erdös sequence 235711131719 · · · consisting of concatenating the prime numbers [24], and for
any polynomial f with positive integer coefficients the sequence f(1)f(2)f(3) · · · [25].

A finite-state selector is a DFA that selects those symbols xm from α such that x1 · · · xm−1

is accepted by the DFA. The sequence of selected symbols may thus be finite or infinite.
Agafonov’s Theorem states that a sequence α is normal iff any DFA that selects an infinite
sequence from α, selects a normal sequence. Colloquially, Agafonov’s Theorem can be stated
as: “any constant-space algorithm must preserve normality”.

The purpose of this paper is twofold: (I) we study whether analogues of Agafonov’s The-
orem holds if the distribution of finite strings is different from equidistribution, i.e. whether
distributions where finite strings s are allowed to occur with frequency distinct from Σ|−|w|;
and (II) we study extensions of Agafonov’s Theorem to infinite alphabets (which in the tradi-
tional setup in Agafonov’s Theorem is meaningless as there is no equidistributed probability
distribution on a countably infinite set).

As an example, consider the (non-normal) sequence α = 010101 · · · . Clearly, every finite
bit string occurs in α with some well-defined frequency (the simplest way to see this is that
for each n > 0, there are exactly two distinct substrings of length n in α – one starting with 0
and one starting with 1), and the frequencies thus induce a probability distribution on {0, 1}n

for each n. In particular 0 and 1 each occur with limiting frequency 1/2, but any DFA that
selects symbols at even positions will select the sequence 111 · · · , and thus the probability
distribution on {0, 1} is not preserved, showing that Agafonov’s Theorem in general fails to
hold.

In addition to being intrinsically interesting, our study of Agafonov’s Theorem is moti-
vated by the fact that constant-space algorithms are usually employed in reactive programming
languages used for signal processing (see Section 1.2.2 below), both for transduction and selec-
tion, and Agafonov’s Theorem is a strong guarantee that such algorithms will always preserve
one notion of randomness for infinite strings, namely that a random length-n subsequence
is exactly |Σ|−n – as the above example shows, selection from sequences where 0 and 1 are
known to occur with probability 1/2 is not enough – stronger guarantees such as normality
must hold. Conversely, normality is a very strong requirement; in some infinite sequences,
certain element may occur with much higher frequency than others, and one tantalizing way
of generating new sequences having the same distribution of finite subsequences could be to
simply let a DFA select elements from the original sequence, which in general is only possible
if (the appropriate analogue) of Agafonov’s Theorem holds.

The motivation for studying infinite alphabets is that the study of normality is closely tied
to the study of symbolic dynamics and (information-theoretic) coding theory [10, 9, 35, 36],
and that both areas have witnessed recent advances using infinite alphabets [13, 29, 11, 61,
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38], in particular the techniques of Madritsch and Mance [38] have allowed construction of
Champernowne-like sequences for various distributions over infinite alphabets.

1.1 Contribution

The formal statement of the main theorem can be found in Theorem 4 below. In plain
language, we prove that:

Let Σ be a non-empty finite or countably infinite alphabet, and let µ : Σ∗ −→ [0, 1] be
a probability map (i.e., for all n ≥ 0, 1 =

∑

w∈Σn µ(w)) such that there exists at least one
α ∈ Σω that is µ-distributed. Then, the following are equivalent:

1. µ is induced by a positive Bernoulli probability distribution p on Σ, i.e. for every
a1, . . . , an ∈ Σ, µ(a1 · · · an) =

∏n
i=1 p(a), and for every a ∈ Σ, p(a) > 0.

2. For every DFA A over Σ and every µ-distributed sequence α ∈ Σω, if A selects an infinite
sequence from α, then the selected sequence is µ-distributed.

The above result completely characterizes the probability maps preserved by selection by
DFAs, both for finite and infinite alphabets, and Agafonov’s Theorem follows immediately as
a corollary. We briefly review the roadmap and techniques used for the proof of the main
result in Section 1.3.

As the study of distributions associated to limiting frequencies of finite strings in (right-
)infinite strings is cryptomorphic to the study of shift-invariant probability measures on the
shift space (Σω, s) equipped with the σ-algebra induced by the basis of cylinder sets on Σ, we
obtain as a corollary a result in the field of symbolic dynamical systems, namely a complete
characterization of the shift-invariant probability measures ν for which any finite-state selector
preserves genericity for ν, see Section 6.

1.2 Related work

1.2.1 Agafonov’s Theorem and its generalizations

Agafonov’s Theorem [46] was one of the end results of multiple efforts grappling with the two
notions of (i) kollektiv (roughly, α ∈ {0, 1}ω is a kollektiv wrt. a set S of selection strategies
if the limiting frequency of 1 is unchanged after applying any strategy in S to α1), and
(ii) admissible sequence and its relation to the notion of normal sequence [22, 53, 54, 48,
47]. Agafonov’s Theorem itself had a virtually unknown precursor in a beautiful result by
Postnikova [52] that showed, with the terminology of the present paper, that α ∈ {0, 1}ω is
normal iff the distribution of 1s is preserved by selection strategies depending only on a finite
number of preceding bits.

Both Postnikova [52] and Agafonov [45] considered selection functions on sequences in
{0, 1}ω where the limiting distribution of 1 was 0 < p < 1 (i.e., considered a Bernoulli
distribution on {0, 1}), but considering Bernoulli distributions instead of the special case of

1The exact definition of kollektiv differs subtly across different authors, compare e.g. [67], [21], and [52].
The original notion of kollektiv introduced by von Mises [67] had no constraints on the set S , but this turned
out to be essentially fruitless [63, 53, 32, 23].
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equidistributions seems to have disappeared almost completely from all later work2. For
equidistribution, the earliest extension to arbitrary alphabets seems to be by Broglio and
Liardet [15], and a number of authors have since re-proved Agafonov’s Theorem in the special
case of equidistribution using a variety of methods; for example, using predictors defined
from finite automata (for Σ = {0, 1}) [44], using compressibility arguments [6, 5, 58], and a
combination of automata-theoretic and probabilistic methods similar to Agafonov’s original
reasoning [16].

Agafonov’s Theorem itself has been generalized to treat selectors that are not necessarily
(induced by prefix selection by) finite automata [2, 5, 66, 17], and some generalizations consider
selectors based on relaxed finiteness criteria of the syntactic monoid of a language selecting
prefixes of infinite sequences [31, 68]; conversely, results by Merkle and Reimann show that
adding just slight computational power to the selection strategies beyond finite automata
– e.g. using a Pushdown automaton with unary stack alphabet instead of a DFA3 renders
Agafonov’s Theorem invalid [40]. Similarly, selection by finite automata has been extended,
and analogues for Agafonov’s Theorem been proved, in other settings than selection from
elements of the set Σω, e.g. for shifts of finite type [16]. All of these results only consider
normality rather than more general classes of distributions on finite strings.

Conversely, construction of normal sequences (as opposed to selecting normal sequences
from other normal ones) has been investigated thoroughly for more than a hundred years [60,
20, 42, 65, 39, 51], including explicit construction of real numbers with normal expansion for
any integer base b ≥ 2 [34, 55, 3], and real numbers with normal expansion in non-integer bases
[64, 37]. Among this work, the result of most use to the present paper is the construction by
Madritsch and Mance of generic sequences for any shift-invariant probability measure µ [38]
– these are essentially sequences that are µ-distributed using the terminology of the present
paper (see Definition 4).

In very recent work, Carton [16] proves that, for any Markov measure µ on Σω induced by
a pair (P, π) of a stochastic |Σ|×|Σ| matrix and a stationary distribution π for P , any sequence
selected from a µ-distributed sequence by a finite-state selector from a particular subset of
µ-compatible selectors, will be µ-distributed. Roughly, a finite-state selector is compatible, if
it can only read consecutive symbols of Σ with non-zero transition probability in P and every
state has only incoming transitions of at most one symbol from Σ. In contrast, we consider
the full set of finite-state selectors. Moreover, Carton’s results are restricted to the case of
finite alphabets.

1.2.2 Streams and selection from infinite sequences

Infinite streams are typically used to model situtations where data elements arrive, no upper
bound on the length of the stream is known a priori, and the focus is not on resource use
as a function of the length of the stream; for example, infinite streams have been studied
extensively in event-level differential privacy [26, 33], and in semantics of lazy programming
languages such as Haskell [50].

2One possible reason for this is that only the short version (without proofs or explanation of techniques)
of Agafonov’s result [46] appeared in English as [1]; in contrast, the original longer paper in Russian [45] was
published in a more obscure journal, and was never translated.

3In fact, one of the strategies considered by Merkle and Riemann, which consists in computing the language
{ww

R | w ∈ Σ∗} where w
R is the reverse of w, can be computed by an arguably less expressive model of

computation, namely aDFA(2) – two-way automata with two heads [28].
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Selection of (substreams of) elements from infinite streams has been investigated from a
practical perspective since the 1960s [62], and is typically performed by specialized stream
processing languages, e.g. LUSTRE [18] and ESTEREL [8], typically for use in reactive
programming (e.g., for signal processing or circuit design). As they are designed for real-time
processing, these languages typically allow only very constrained operations – any program in
both LUSTRE and Esterel can be compiled to a finite state transducer automaton (and
deterministic program selecting a subsequence from its input is hence a finite-state selector as
in Agafonov’s Theorem).

In typical algorithmic treatments of stream processing, one typically studies unordered,
finite sequences of elements from a very large, or infinite, set [41]. The problems considered
typically have strong constraints, e.g. that only a single pass over the stream is allowed and
that each element can only be observed once, and often involve a sketch–a data structure
that stores information about the elements seen in the stream and allows to answer predefined
queries. A classic example is estimating the frequency moments of the distribution of elements
in the stream using sketches with low memory in both alphabet size and stream length [4,
30, 14]. Our work can be seen as a variation of streaming where the alphabet size may be
infinite, the stream itself is infinite, and the distribution of element is not limited to the set
of elements, but also has requirements on the finite subsequences of elements in the stream;
in this setting, our main result is that any constant-space sketch sampling an infinite stream
in real-time preserves the distribution of finite subsequences iff the distribution is induced by
a Bernoulli distribution on the set of elements.

1.3 Overview of techniques and the proof of the main theorem

The main result has two directions: (I) proving that if µ-distributedness is preserved by
selection by any DFA, then µ is necessarily induced by a Bernoulli distribution, and (II) any
µ induced by a Bernoulli distribution is preserved across selection by any DFA.

For (I), we prove the more general result that if µ is not induced by a Bernoulli distribution
on Σ, selection by a particular Postnikova strategy (roughly, a Postnikova strategy selects
an element of the sequence if and only if it follows a fixed finite word) will select a non-
µ-distributed infinite sequence from a – bespoke – µ-distributed sequence. The Postnikova
strategy contains prefixes on the form u ·w ∈ Σ∗ for a fixed w chosen such that w · a ∈ Σ|w|+1

is a minimal witness string such that µ(w · a) 6= µ(w) · µ(a). Using basic constructions, we
can then prove that the Postnikova strategy can be implemented by a DFA that simulates a
sliding fixed-width window.

For (II), most of the modern methods of proving Agafonov’s Theorem (e.g., [6, 5, 58])
are not immediately adaptable because they use methods that are particular to equidistribu-
tions on finite alphabets (e.g., lossless finite-state compressors [6] or automatic Kolmogorov
complexity [58]) – and we consider both Bernoulli distributions and infinite alphabets. In-
stead, we work along the general lines of Agafonov’s original proof [46] that more heavily uses
probabilistic reasoning.

The key insights in Agafonov’s original proof was (i) that any strongly connected finite
automaton (containing at least one accepting state) applied to a normal sequence must select
(always, not just with probability 1) more than a constant fraction of elements from any suffi-
ciently long finite substring of its input, and (ii) that selecting more than a constant fraction
of sufficiently long substrings entails that each element of Σ must be selected with approxi-
mately equal probability, by the Law of Large Numbers. In Agafonov’s original approach (for
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Σ = {0, 1}), an appeal to the Strong Law of Large Numbers was used in conjunction with the
product measure on the product topology on {0, 1}ω , thus required reasoning about cylinder
sets centered on sets A of finite strings; and to avoid “double-counting” the probabilities, these
sets had to be prefix-free. We avoid this difficulty by using concentration bounds to tally the
occurrences of elements a ∈ Σ in block decompositions of finite prefixes of α.

The proof that any DFA selects a µ-distributed infinite sequence from a µ-distributed
infinite sequence then follows by observing that (i) any run of a DFA on an infinite sequence
eventually reaches a strongly connected component C of the DFA that is recurrent (i.e., the
run can never exit C), and (ii) that any such component induces an irreducible Markov chain,
whence we can apply the Ergodic Theorem for Markov Chains to conclude that accepting
states are reached infinitely often and with appropriate frequency.

The extension to infinite alphabets is surprisingly straightforward in most proofs: essen-
tially, instead of using combinatorial estimates for finite sets, we have to ensure that series
taken over infinite alphabets converge properly, but almost all instances involve series that (i)
have non-negative elements, and (ii) are bounded above, whence the usual reasoning about
absolutely convergent series can be employed. Similarly, the classic results for finite automata
that we use need to be re-stated and re-proved in the case of infinite alphabets, but this in
general turns out to be doable without too much leg-work (e.g. Lemma 18). One caveat is that
several important ancillary results have standard proofs that use combinatorial arguments on
finite sets, and we thus need to provide alternative proofs using different methods.

2 Preliminaries

Definition 1. We assume a non-empty, possibly (countably) infinite, alphabet Σ and denote
by λ the empty string; the sets of finite and right-infinite sequences of elements of Σ are
denoted by Σ∗ and Σω, respectively. Elements of Σ∗ are ranged over by v,w, . . ., and elements
of Σω by α, β, . . .. If α = a1a2 · · · ∈ Σω and N is a positive integer, we denote by α|≤N the
finite string a1a2 · · · aN .

Given v ∈ Σ∗ and u ∈ Σ∗ ∪ Σω, we write v · w the element of Σ∗ ∪ Σω obtained by
concatenation. For words v ∈ Σ∗ and w ∈ Σ∗ ∪ Σω, v is said to be a prefix of w, written
v � w, if there exists u ∈ Σ∗ ∪ Σω such that w = u · v. If v � w and v 6= w, v is said to be a
proper prefix of w, written v ≺ w. For any v ∈ Σ∗, the cylinder set of w, denoted [w], is the
subset of Σω defined by [w] = {α ∈ Σω : α = w · β, β ∈ Σω}, that is the set of right-infinite
sequences that have v as prefix.

Definition 2. Let Σ be a non-empty, possibly (countably) infinite, alphabet. A probability
map (over Σ) is a map µ : Σ+ −→ [0, 1] such that, for all positive integers n, the series
∑

a1···an∈Σn µ(a1 · · · an) is convergent with limit 1. Note that convergence implies absolute
convergence here.

A probability map µ is said to be:

• induced by a Bernoulli distribution p : Σ −→ [0, 1] if, for all positive integers n, and all
a1, . . . , an ∈ Σ, µ(a1 · · · an) =

∏n
i=1 µ(ai) =

∏n
i=1 p(ai).

• invariant if, for all w ∈ Σ∗ the series
∑

a∈Σ µ(w · a) and
∑

a∈Σ µ(a · w) are convergent
with limit µ(w).

• (when Σ is finite) equidistributed if, for any w ∈ Σn, µ(w) = |Σ|−n.
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Observe that an equidistributed µ is also Bernoulli. For alphabets |Σ| > 1, any map
p : Σ −→ [0, 1] such that the series

∑

a∈Σ p(a) converges to 1 induces a probability map µp

by setting µp(a1 · · · an) ,
∏n

j=1 p(aj). For finite alphabets Σ, this map is equidistributed iff
p(a) = |Σ|−1 for every a ∈ Σ.

The expression “induced by a Bernoulli distribution” is justified by the fact that Bernoulli
probability maps correspond directly to the measure of cylinders in Bernoulli shifts [59]4.

Proposition 1. A probability map µ induced by a Bernoulli distribution is invariant.

Proof. For any w ∈ Σ∗,
∑

a∈Σ µ(aw) =
∑

a∈Σ µ(a)µ(w) =
∑

a∈Σ µ(w)µ(a) =
∑

a∈Σ µ(wa).
And

∑

a∈Σ µ(w)µ(a) = µ(w)
∑

a∈Σ µ(a) = µ(w).

We shall need probability maps to act as “measures” on (possibly infinite) sets of finite
strings:

Definition 3. Let Σ be a non-empty alphabet, let W ⊆ Σ∗, and let µ be a probability map
over Σ. If W = ∅, we define µ(W ) = 0. If

∑

w∈W µp(w) converges, we define µp(W ) =
∑

w∈W µp(w).

Observe that as µp(w) ≥ 0 for all w ∈ Σ∗, if
∑

w∈W µp(w) converges, it is absolutely
convergent (hence, we do not need to specify an ordering of W ).

We are interested in the probability maps whose values can be realized as the limiting
frequencies of finite words in right-infinite sequences over Σ.

Definition 4. Let v = v1 · · · vN and w = w1 · · ·wn be finite words over Σ. We denote by
#w(v) the number of occurrences of w in v, that is, the quantity

|{j 6 N + 1− n : vjvj+1 · · · vj+n−1 = w1w2 · · ·wn}|

Let µ be a probability map over Σ, and be α is a right-infinite sequence over Σ. If the
limit

lim
N→∞

#w(α|≤N
)

N

exists and is equal to some real number f , we say that w occurs in α with limiting frequency
f . If every w ∈ Σ+ occurs in α with limiting frequency µ(w), we say that α is µ-distributed.

Proposition 2. Let µ be a probability map over Σ. If there exists a µ-distributed sequence,
then µ is invariant.

Proof. Let µ be a probability map over Σ and α = a1a2 . . . a µ-distributed sequence. We
consider w = w1w2 . . . wk ∈ Σk and note that for all N > 0:

∣

∣

∣

∣

∣

∑

a∈Σ

#wa(α|≤N )−#w(α|≤N )

∣

∣

∣

∣

∣

6 1.

Indeed, every occurence of w as aiai+1 . . . ai+k such that i > 1 is also an occurence of b ·w for
a (unique) b ∈ Σ, so the expressions #w(α|≤N ) and

∑

a∈Σ #aw(α|≤N ) are equal if and only if
a1a2 . . . ak 6= w and their difference is equal to 1 otherwise.

4In the literature on normal numbers, the word Bernoulli is sometimes used slightly differently, for exam-
ple Schnorr and Stimm [56] use the term “Bernoulli sequence” for sequences that are equidistributed in our
terminology.
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Thus
∣

∣

∣

∣

∑

a∈Σ #wa(α|≤N )

N
−

#w(α|≤N )

N

∣

∣

∣

∣

6
1

N
.

We therefore obtain that:
∣

∣

∣

∣

∑

a∈Σ #wa(α|≤N )

N
− µ(w)

∣

∣

∣

∣

6

∣

∣

∣

∣

∑

a∈Σ #wa(α|≤N )

N
−

#w(α|≤N )

N

∣

∣

∣

∣

+

∣

∣

∣

∣

#w(α|≤N )

N
− µ(w)

∣

∣

∣

∣

.

Since both expressions on the right converge to 0, the left-hand side converges to zero, showing

that µ(w) = limn→∞

∑
a∈Σ #wa(α|≤n)

n =
∑

a∈Σ limn→∞
#wa(α|≤n)

n =
∑

a∈Σ µ(wa).
Similarly, for all N > 0:

∣

∣

∣

∣

∣

∑

a∈Σ

#wa(α|≤N )−#w(α|≤N )

∣

∣

∣

∣

∣

6 1,

by a similar argument as the one used above, noting that the number of occurrences is different
if and only if aN−k+1aN−k+2 . . . aN = w. We then conclude that µ(w) =

∑

a∈Σ µ(aw) in the
same way.

Observe that an infinite sequence α is normal in the usual sense iff it is µ-distributed
for (the unique) equidistributed probability map µ over Σ. Also observe that it is not all
probability maps µ for which there exists a µ-distributed sequence.

Example 1. An example of a probability map that is not Bernoulli, but such that there is
at least one µ-distributed right-infinite sequence, is the map µ over Σ = {0, 1} defined by
µ(w) = 1/2 if w does not contain any of the strings 00 or 11 (note that for each positive
integer n, there are exactly two such strings of length n, namely 0101010 · · · and 101010 · · · ),
and b(α) = 0 otherwise. Observe that the right-infinite sequence 010101 · · · is µ-distributed.

In contrast to all previous work on Agafonov’s Theorem, we allow countably infinite alpha-
bets Σ. Alphabets of larger cardinality do not in general have probability measures realizable
by considering limiting frequencies of elements of Σω – simply because most elements of Σ
cannot occur at all in a single element of Σω.

One reason why previous generalizations of Agafonov’s Theorem have not considered infi-
nite alphabets is that there can be no equidistribution on a countably infinite set. However,
there are Bernoulli measures µ on countably infinite alphabets Σ and µ-distributed infinite
sequences over Σ.

Example 2. An example of a countably infinite alphabet with a Bernoulli measure is Σ =
N and p(n) = 6/(πn)2 (note that we have

∑

n∈Σ p(n) = 1). In general, any convergent
series

∑∞
n=1 an where every an is non-negative induces a Bernoullii distribution on N by

setting p(n) = an/(limn→∞
∑∞

n=1 an). Each such Bernoulli distribution p induces an invariant
probability map µp, and by a result of Madritsch and Mance [38], there exists a µp-distributed
sequence.

Remark 1. As we consider possibly infinite alphabets, we often have to consider infinite series
instead of finite sums in the proofs. In most cases, these series will have elements that are
known to be non-negative, and the sum of all partial sums will be bounded above, whence the
series will be absolutely convergent and the order of summation can thus be changed freely. A
trivial example of use is to consider some B ⊆ Σ and note that

∑

a∈B p(a) = 1−
∑

a∈Σ\B p(a)
(as

∑

a∈B p(a) ≤ 1,
∑

a∈Σ\B p(a) ≤ 1, and p(a) ≥ 0 the two series are absolutely convergent,
and

∑

a∈B p(a) +
∑

a∈Σ\B =
∑

a∈Σ p(a) = 1).
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2.1 Strategies, selectors and DFAs

2.2 Strategies

Definition 5. Let Σ be an alphabet. A strategy S over Σ is a subset S ⊆ Σ∗.
Given a strategy S and α ∈ Σω, we define the sequence selected by S, denoted S[α], as

follows. Let i1, i2, . . . , ik, . . . be the (increasing) sequence of indices j such that α|<j ∈ S and
S[α]j = αij . When w ∈ Σ∗ is a finite word, we define S[w] mutatis mutandis.

A strategy S is a Postnikova strategy if there is w ∈ Σ∗ such that S = Σ∗w.

Thus, S[α] is simply the subsequence of α that are “picked out” by applying S to prefixes
of α. Note also that if w ∈ S, then in any word on the form w · b · v, S must pick b. Thus,
S cannot be made to, for instance, only pick out a single symbol from Σ – it must select “the
next symbol” after any w ∈ S. This precludes, for example, constant-memory strategies from
selecting only 0s from a normal binary sequence.

Our primary object of study is the case where S is a regular language, described next.

2.3 Finite-State Selectors and selection by DFAs

As we treat both finite and (countably) infinite alphabets, we must consider automata over
possibly infinite alphabets. Every automaton has a finite number of states as usual, but as the
alphabet is infinite and a deterministic automaton has transitions on all symbols from every
state, the underlying graph of the automaton will be infinitely branching. To keep notations
simple, we refer to deterministic automata with a finite number of states as “DFA”s as usual,
even if the underlying alphabet is infinite.

Definition 6. A finite-state selector over Σ is a DFA A = (Q, δ, qs, QF ), where Q is the set
of states, qs is the unique start state, QF is the set of accepting states, and δ : Q× Σ −→ Q
is the transition relation.

A DFA is strongly connected if its underlying directed graph (states are nodes, transitions
are edges) is strongly connected.

Denote by L(A) the language accepted by the automaton. If α = a1a2 · · · is a finite or
right-infinite sequence over Σ, the subsequence selected by A is the (possibly empty) sequence
of letters an such that the prefix a1 · · · an−1 ∈ L(A), that is, the automaton when started on
the finite word a1 · · · an−1 in state qs ends in an accepting state after having read the entire
word. The run of S on input α is the sequence of states visited when S is applied to α from the
starting state. For (q, w) = (q, w1 · · ·wn) ∈ Q×Σ∗, we use the notation δ∗(q, w) to denote the
state δ(· · · δ(δ(q, w1), w2) . . . wn), that is, the state reached by starting from q and following
the (unique) path induced by w.

Observe that a DFA may select an empty, finite or infinite sequence when run on a right-
infinite word.

Definition 7. Let A be a DFA. A strongly connected component C in (the underlying directed
graph of) S is said to be recurrent if, for every state p in C and every a ∈ Σ,δ(p, a) is a state
in C (i.e., once a run of S on some infinite word reaches a state in C, the run cannot leave C).

Definition 8. Let A = (Q,Σ, δ, q0, F ) be a connected DFA. For all q ∈ Q, we denote by Aq

the automaton (Q,Σ, δ, q, F ), i.e. where the state q is chosen as the initial state.
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Definition 9. Let A = (Q,Σ, δ, q0, F ) be a connected DFA, and let q ∈ Q. Let α be a
right-infinite sequence over Σ. We denote by Aq[x] the subsequence ᾱ of α picked out by Aq,
that is, wi ∈ w̄ if and only if Aq(w<i) reaches an accepting state.

We shall use the following fundamental result in automata theory5:

Lemma 3 (Lemma 2.6 of [56]). For every DFA A = (Q, δ, qs, QF ) over (the possibly infinite)
alphabet Σ, there is a strongly connected recurrent component C of (the underlying directed
graph of S), and a word w ∈ Σ∗ such that, for every q ∈ Q, δ∗(q, w) ∈ C.

Corollary 3.1. Let µ be a probability map induced by a positive Bernoulli distribution on Σ,
let A be a DFA over Σ, and let α ∈ Σω be µ-distributed. Then, the run of S on α eventually
reaches a strongly connected recurrent component of A.

Proof. Let C be the strongly connected component and w the word obtained from Lemma 3.
As α is p-distributed, w appears in α, so write α = vwα′, and let q be the state of A reached
after |v| transitions in the run of S on α. Then, after a at most a further |w| transitions, the
run reaches a state in C.

Corollary 3.1 ensures that we can assume wlog. that the finite-state selectors we treat
are strongly connected. Note that the corollary does not imply that the strongly connected
recurrent component contains an accepting state (indeed, the automata may have an empty
set of accepting states). Thus, some automata do not always select infinite sequences, and
additional assumptions are needed if this is desirable (this is discussed in Remark 2 below).
However, this is not an issue for our main result which states that the output of a selector
applied to a normal sequence is again normal as long as it is infinite.

3 Main result

Theorem 4. Let Σ be a non-empty (finite or infinite) alphabet and µ be a probability map
such that there exists at least one α ∈ Σω that is µ-distributed. Then, the following statements
are equivalent:

1. µ is induced by a positive Bernoulli distribution p on Σ, i.e. for every a1 · · · an ∈ Σ,
µ(a1 · · · an) =

∏n
i=1 p(a), and p(a) > 0 for all a ∈ Σ;

2. (Postnikova property) for every finite word w ∈ Σ∗ and µ-distributed sequence α ∈ Σω, if
the sequence selected from α by the Postnikova strategy Sw = {u ∈ Σ∗ | ∃v s.t. u = vw}
is infinite, then it is µ-distributed;

3. (Agafonov property) For every DFA A over Σ and every µ-distributed sequence α ∈ Σω,
if the sequence selected from α by A is infinite, then it is µ-distributed.

Proof. For the implication 1 ⇒ 3, Corollary 3.1 yields that any run of a finite-state selector
on a µ-distributed sequence eventually reaches a strongly connected recurrent component; the
restriction of any DFA to the state set of one of its recurrent component is also a DFA, and
the result now follows by Lemma 14. The implication 3 ⇒ 2 is clear from the definitions since
the considered strategies are computed by finite automata (Lemma 7). Lastly, Lemma 5 and
Lemma 6 prove that 2 ⇒ 1.

5The result in [56] is stated for finite alphabets, but the proof method carries through for infinite alphabets
as well. We provide a proof in Appendix A.
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Remark 2. Theorem 4 addresses the case where a DFA or Postnikova strategy selects an
infinite sequence from a µ-distributed sequence. If one wants to restrict attention to automata
that always select an infinite subsequence from any µ-distributed sequence, extra conditions
sometimes occur in the literature, e.g. that every cycle in the (underlying graph of the) DFA
contains an accepting state [6] ensuring that an infinite subsequence is selected from any (not
just µ-distributed sequence). Another condition that ensures that an infinite subsequence is
selected from any µ-distributed sequence is to consider only DFAs such that every strongly
connected recurrent component contains at least one accepting state. In this case, Corollary
3.1 ensures that any run on the automaton on a µ-distributed sequence will reach a strongly
recurrent component, and Lemma 10 below then ensures that the DFA accepts an infinite
subsequence from α.

4 Non-preservation of µ-distributedness for non-Bernoulli mea-

sures

We first prove that if µ is a probability map such that any DFA selects a µ-distributed right-
infinite sequence from any µ-distributed right-infinite sequence, then µ must be Bernoulli.
This is an immediate consequence of a stronger property proved in Lemma 5 below.

The idea of the proof is that if µ is not Bernoulli, there is a word a1 · · · ak such that
µ(a1 · · · ak−1) =

∏k−1
j=1 aj , but µ(a1 · · · ak−1ak) 6= µ(a1 · · · ak−1)·µ(ak). One can then construct

a finite-state selector that acts like a “sliding window” of size k−1, that is, remembers the last
k − 1 letters scanned and accepts if these are a1 · · · ak. This selector will select every letter
following a1 · · · ak−1; after a prefix of length N of a right-infinite sequence has been scanned,
approximately N · µ(a1 · · · ak−1) have been selected, and approximately N · µ(a1 · · · ak−1ak)
of these will be the symbol ak. But then the limiting frequency of ak in the sequence selected
will be µ(a1 · · · ak−1ak)/µ(a1 · · · ak−1) 6= µ(ak), and the result follows.

Lemma 5. Let µ : Σ∗ −→ [0, 1] be a probability map. If µ is not induced by a Bernoulli
distribution on Σ, there exists a finite word w ∈ Σ∗ such that if α ∈ Σω is µ-distributed, then
the Postnikova strategy Sw = {u ∈ Σ∗ | ∃v s.t. u = vw} selects from α an infinite sequence
β ∈ Σω that is not µ-distributed.

Proof. If no element of Σω is µ-distributed, the lemma is vacuously true. Hence, assume
that there is at least one α ∈ Σω that is µ-distributed. If |Σ| = 1, then there is exactly one
probability map on Σ∗, namely the one that assigns probability 1 to the unique element of Σk

for every k ≥ 0, and this probability map is clearly Bernoulli, and the lemma is thus vacuously
true. Hence, in the remainder of the proof, assume that |Σ| ≥ 2.

Assume that µ is not induced by a Bernoulli distribution on Σ. Then there are k and
a word a1 · · ·k−1 ak ∈ Σk such that µ(a1 · · · ak−1ak) 6=

∏k
j=1 µ(aj). Observe that k = 1 is

impossible (as µ(a1) =
∏1

j=1 µ(a1)), and thus we must have k ≥ 2. Assume wlog. that k is

minimal among such k, and hence that µ(a1 · · · ak−1) =
∏k−1

j=1 µ(aj), and note that this implies
µ(a1 · · · ak−1ak) 6= µ(a1 · · · ak−1) · µ(ak).

Assume for contradiction that µ(a1 · · · ak−1) = 0. Then µ(ai) = 0 for at least one ai
and thus µ(a1 · · · ak−1ak) = 0, because the fact that there is at least one µ-distributed right-
infinite sequence entails that µ(a1 · · · ak−1ak) > 0 implies µ(ai) ≥ µ(a1 · · · ak−1ak) > 0. But
this is a contradiction as we would then have µ(a1 · · · ak−1ak) = 0 =

∏k
j=1 µ(aj). Thus,

µ(a1 · · · ak−1) > 0.
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As µ(a1 · · · ak−1ak) 6= µ(a1 · · · ak−1) · µ(ak), µ(a1 · · · ak−1) > 0, and µ(a1 · · · ak−1ak) ≤
µ(a1 · · · ak−1) (because µ is invariant by Proposition 2), there is a real number γ with 0 < γ < 1
such that:

∣

∣

∣

∣

µ(a1 · · · ak−1ak)

µ(a1 · · · ak−1)
− µ(ak)

∣

∣

∣

∣

> γ

We now consider the Postnikova strategy Sw with w = a1 · · · ak−1, i.e. the strategy that
selects exactly the symbols following the occurrences of a1 · · · ak−1 in α.

Let α ∈ Σω be µ-distributed. Then, for every ǫ > 0, there is an Nǫ > 0 such that for all
n > Nǫ we have:

∣

∣

∣

∣

#a1···ak−1
(α|≤n)

n
− µ(a1 · · · ak−1)

∣

∣

∣

∣

6 ǫ

Hence
nµ(a1 · · · ak−1)− nǫ ≤ #a1···ak−1

(α|≤n) ≤ nµ(a1 · · · ak−1) + nǫ (1)

and
nµ(a1 · · · ak−1ak)− nǫ ≤ #a1···ak−1ak(α|≤n) ≤ nµ(a1 · · · ak−1ak) + nǫ (2)

As µ(a1 · · · ak−1) > 0 and Sw selects the symbol after each occurrence of a1 · · · ak−1, Sw selects
an infinite sequence β from α. Let β(n) ∈ Σ∗ be the finite sequence selected by Sw from α|≤n.
Observe that we have |β(n)| = #a1···ak−1

(α|≤n), and #ak(β
(n)) = #a1···ak−1ak(α|≤n). The

fraction of occurrences #ak(β
(n))/|β(n)| of ak in β(n) thus satisfies:

#ak(β
(n))

|β(n)|
=

#a1···ak−1ak(α|≤n)

#a1···ak−1
(α|≤n)

=
#a1···ak−1ak(α|≤n)

n
·

n

#a1···ak−1
(α|≤n)

and hence, by (1) and (2), for all n > N :

µ(a1 · · · ak−1ak)− ǫ

µ(a1 · · · ak−1) + ǫ
≤

#ak(wA,n)

|wA,n|
≤

µ(a1 · · · ak−1ak) + ǫ

µ(a1 · · · ak−1)− ǫ
(3)

Consider an arbitrary δ with 0 < δ < γ/2. By (3), for all sufficiently small ǫ, we have
∣

∣

∣

∣

∣

µ(a1 · · · ak−1ak)

µ(a1 · · · ak−1)
−

#ak(β
(n))

|β(n)|

∣

∣

∣

∣

∣

< δ

and thus for all n > Nǫ:

γ <

∣

∣

∣

∣

µ(a1 · · · ak−1ak)

µ(a1 · · · ak−1)
− µ(ak)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

µ(a1 · · · ak−1ak)

µ(a1 · · · ak−1)
−

#ak(β
(n))

|β(n)|

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

#ak(β
(n))

|β(n)|
− µ(ak)

∣

∣

∣

∣

∣

< δ +

∣

∣

∣

∣

∣

#ak(β
(n))

|β(n)|
− µ(ak)

∣

∣

∣

∣

∣

<
γ

2
+

∣

∣

∣

∣

∣

#ak(β
(n))

|β(n)|
− µ(ak)

∣

∣

∣

∣

∣

whence:
∣

∣

∣

∣

∣

#ak(β
(n))

|β(n)|
− µ(ak)

∣

∣

∣

∣

∣

>
γ

2

and as the sequence (β(n))n∈N consists of prefixes of the sequence Sw[α] selected by Sw from
α, and is eventually increasing, the frequency of occurrences of ak differs infinitely often from
µ(ak) by at least γ/2, Sw[α] cannot be µ-distributed.
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Lemma 5 shows that if a probability map is not induced by a Bernoulli distribution on
Σ, some Postnikova strategy will select a non-µ-distributed sequence from any µ-distributed
sequence. In case µ is induced by a Bernoulli distribution, but not a positive Bernoulli
distribution, we can show the weaker result that there will be a Postnikova strategy that
selects a non-µ-distributed sequence form some µ-distributed sequences (and this is sufficient
for our main Theorem).

Lemma 6. Let µ : Σ∗ −→ [0, 1] be a probability map induced by a Bernoulli distribution on Σ
that is not positive. Then there exists a finite word w ∈ Σ∗ and µ-distributed α ∈ Σω such that
the Postnikova strategy Sw = {u ∈ Σ∗ | ∃v s.t. u = vw} selects from α an infinite sequence
β ∈ Σω that is not µ-distributed.

Proof. As µ is not positive, pick b ∈ Σ such that µ(b) = 0, and let Γ ⊆ Σ be a maximal
subset such that the restriction of µ to Γ is a positive Bernoulli distribution (observe that
Γ is non-empty because µ is a probability map and 1 =

∑

a∈Σ µ(a) thus implies µ(a) > 0
for some a ∈ Σ). By [38] there exists a µ-distributed infinite sequence β ∈ Γω; notice that
β can be assumed w.l.o.g. to not contain any occurrences of b. Let α ∈ Σω be obtained by
inserting the string bb at positions 2, 4, 8, 16, . . .. Then, α is µ-distributed because (i) every
v ∈ Γ∗ occurs with the same limiting frequency as in β6, and every v ∈ Σ∗ that contains an
element of Σ\Γ occurs in α with limiting frequency 0. Set w = b; then the Postnikova strategy
Sw = {u ∈ Σ∗|∃vs.t.u = vw} selects from α a sequence β = Sw[α] such that, for every n > 0,
#b(β|≤n) ≥ n/2 − 1. Thus, the limiting frequency of b in β is not 0, and hence is not µ(b),
proving that β is not µ-distributed.

Lemma 7. Let w ∈ Σ∗. The Postnikova strategy {u ∈ Σ∗ | ∃v s.t. u = vw} is computable by
a strongly connected DFA over Σ.

Proof. Note that the alphabet can possibly be infinite in the following proof.
We write m the length of the word w, and write w1, w2, . . . , wm the bits of w. We design a

finite state selector Mw with exactly 2m states which will select a bit of the input if and only
if it is preceded by the word w. Let Mw = (2m, δ, qs, QF ) be defined as follows:

• 2m = {(b1, b2, . . . , bm) : bi ∈ {0, 1}} is the set of binary sequences of length m; those will
represent a sequence of bits where bj = 1 if and only if the previous j bits of the input
coincide with the first j bits of the input;

• qs the initial state is chosen to be the sequence (0, 0, . . . , 0) ∈ 2m;

• QF the set of accepting state is equal to the set of sequences {(b1, b2, . . . , bm) ∈ 2m :
bm = 1};

• δ the transition function is defined as δ(b1, b2, . . . , bm; a) = (c1, c2, . . . , cm) where cj = 1
if and only if bj−1 = 1 and a = wj for j 6= 1, and c1 = 1 if and only a = w1.

The fact that this automaton computes the Postnikova strategy is clear from the definition.
We now show it is strongly connected by showing that any state (b1, b2, . . . , bm) is reachable
from an arbitrary state. For this, we consider a word ub1,b2,...,bm = u1, . . . , um defined by
ui = wi if and only if bi = 1 (and thus ui 6= wi whenever bi = 0. We then claim that the
automaton, starting from any state c ∈ 2m, reaches the state (b1, b2, . . . , bm) when given the
word ub1,b2,...,bm as input.

6The key observation here is that since the ’bb’s are inserted at exponentially increasing positions, the
frequency of occurrence of all other strings is decreased by a very small (and quickly decaying) factor.
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5 Finite-state selectors preserve µ-distributedness for Bernoulli

measures

The sequence of auxiliary results of this section follows the general lines of Agafonov’s original
proof in Russian for the case Σ = {0, 1} [46], but with multiple proofs needing more careful
analysis and adapted techniques.

5.1 Ancillary definitions and results

Definition 10. Let Σ be an alphabet, α = x1x2 · · · xn · · · ∈ Σω, and let n be a positive integer.
The n-block decomposition of α is the sequence (α(n,r))r≥1 where α(n,r) = x(r−1)n+1 · · · xrn ∈
Σn.

Thus, α(n,1) is the string of the first n symbols of α, α(n,2) is the string of the next n
symbols, and so forth.

Definition 11. Let µ be a probability map over Σ and α = x1x2 · · · xn · · · ∈ Σω. We say
that α is µ-block-distributed if, for each n > 1 and every w ∈ Σn, the n-block decomposition
(α(n,r))r>1 of α satisfies:

lim
k→∞

|i ≤ k : α(n,k) = w|

k
= µ(w)

For finite alphabets and the special case of p being an equidistribution on Σ, it is straight-
forward to prove that the properties of being µp-distributed and µp-block-distributed are
equivalent [43, 19, 49]. For the present paper, we only use that µp-distributedness implies
µp-block-distributedness, which follows by standard counting arguments on sufficiently large
finite prefixes α|≤N [43].

We now prove that finite-state selectors can be composed appropriately; this will later be
a key ingredient in reducing the problem of selecting finite strings w ∈ Σ∗ with frequency
µp(w) to the problem of selecting single symbols a ∈ Σ with frequency p(a).

Proposition 8 (Finite-State selectors are compositional). Let A and B be DFAs over the
same alphabet. Then there is a DFA C such that, for each sequence w, C[w] = B[A[w]]. If
A and B are both strongly connected and A contains at least one accepting state, C can be
chosen to be strongly connected.

Proof. Let A = (QA,Σ, δA, qA0 , F
A) and B = (QB ,Σ, δB , qB0 , F

B). Define QC = QA × QB ,
and set qC0 = (qA0 , q

B
0 ) and FC = FA×FB. For each qB ∈ QB, define the set DqB = {(q, qB) :

q ∈ QA} ⊆ QC . Observe that QC =
⋃

qB∈QB DqB and that for qB , rB ∈ QB with qB 6= rB, we

have DqB ∩DrB = ∅, and thus {DqB : qB ∈ QB} is a partitioning of QC . Hence, the transition
relation, δC , of C may be defined by defining it separately on each subset DqB :

δC((q, qB), a) =

{

(r, qB) if q /∈ FA and δA(q, a) = r
(r, rB) if q ∈ FA and δA(q, a) = r and δB(qB , a) = rB

Thus, when C processes its input, it freezes the current state qB of B (the freezing is repre-
sented by staying within DqB ) and simulates A until an accepting state of A is reached (i.e.
just before A would select the next symbol); on the next transition, C unfreezes the current
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state of B and moves to the next state rB of B and then freezes it and continues with a
simulation of A.

Observe that a symbol is picked out by C iff the state is an element of FC = FA × FB

iff the symbol is the next symbol read after simulation of A reaches an accepting state of A
when the current frozen state of B is an accepting state of B.

By construction, C is strongly connected if both A and B are: for any pair of states
(qA1 , q

B
1 ), (q

A
2 , a

2
B) ∈ QC , strong connectivity of B implies that there is a directed path from

qB1 to qB2 in B. Let qB1 , q
B
1,2, q

B
1,3, . . . , q

B
1,k be the states along this path. Strong connectivity of

A and the assumption that there is some qF1 ∈ FA imply that there is a directed path from
(qA1 , q

B
1 ) to qF1 , q

B
1 ) in C, and by definition of δC , there is a transition in C from (qF1 , q

B
1 ) to

(qB1 , q
B
1,2). A straightforward induction on k now completes the proof.

The following shows that to prove that the property of being µp-distributed is preserved
under finite-state selection, it suffices to prove that the limiting frequency of each a ∈ Σ exists
and equals p(a).

Lemma 9. Let µp be a probability map induced by a Bernoulli distribution p on Σ, and let
α ∈ Σω be µp-distributed. The following are equivalent:

• For all strongly connected DFAs A, if A[α] is infinite, then A[α] is µp-distributed.

• For all strongly connected DFAs A and all a ∈ Σ, if A[α] is infinite, then the limiting
frequency of a in A[α] exists and equals p(a).

Proof. If, for all A such that A[α] is infinite, A[α] is µp-distributed, then in particular the
limiting frequency of a in A[α] exists and is equal to p(a) for all A.

Conversely, suppose that, for all strongly connected DFAs A and all a ∈ Σ, if A[α] is
infinite, then the limiting frequency of a in A[α] exists and equals p(a). Let A be such a DFA.
If A has no accepting states, there is nothing to prove, so assume that A has at least one
accepting state.

We will prove by induction on k ≥ 0 that the limiting frequency of every v1 · · · vkvk+1 ∈
Σk+1 exists and equals µp(v1 · · · vkvk+1).

• k = 0: This is the supposition.

• k ≥ 1. Suppose that the result has been proved for k − 1. Let v1 · · · vk ∈ Σk; by
the induction hypothesis, the limiting frequency of v1 · · · vk in A[w] is µp(v1 · · · vk). We
claim that there is a strongly connected DFA B that, from any sequence, selects the
symbol after each occurrence of v1 · · · vk. To see that such a DFA exists, let there be
a state for each element of Σk and think of the state is the current length-k string in
a “sliding window” that moves over w one symbol at the time; when the window is
moved one step, the DFA transits to the state representing the new length-k string in
the window, i.e. for any a ∈ Σ, from the state representing the word w1 · · ·wk, there
are transitions to w2 · · ·wka; it thus every state is reachable from every other state in
at most k transitions. The unique final state of B is the state representing v1 · · · vk; the
start state of B can be chosen to be any state representing a string w1 · · ·wk such that
there are exactly k transitions to the final state; for example, let a ∈ Σ \ {v1}. Then
from the state representing ak, the final state cannot cannot be reached in k−1 or fewer
steps, but every state is reachable in k steps.
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By Proposition 8, there is a strongly connected DFA C such that C[w] = B[A[w]] for
all w ∈ Σ∗.

For any a ∈ Σ and any sufficiently large positive integer N , we have:

#a(C[α|≤N ])

|C[α|≤N ]|
=

#a(B[A[α|≤N ]])

|B[A[α|≤N ]]|
=

#v1···vka(A[α|≤N ])

#v1···vk(A[α|≤N ])

By the induction hypothesis, for every ǫ > 0, we have, for all sufficiently large N , that
∣

∣

∣

#a(C[α|≤N ])
|C[α|≤N ]| − p(a)

∣

∣

∣
< ǫ, and hence:

∣

∣

∣

∣

#v1···vka(A[α|≤N ])

#v1···vk(A[α|≤N ])
− p(a)

∣

∣

∣

∣

< ǫ (4)

But for all sufficiently large N , the induction hypothesis also furnishes that:
∣

∣

∣

∣

#v1···vk(A[α|≤N ])

|A[α|≤N ]|
− µp(v1 · · · vk)

∣

∣

∣

∣

< ǫ (5)

But as:
#v1···vka(A[α|≤N ])

|A[α|≤N ]|
=

#v1···vka(A[α|≤N ])

#v1···vk(A[α|≤N ])
·
#v1···vk(A[α|≤N ])

|A[α|≤N ]|

Equation (4) and Equation (5) thus yield:
∣

∣

∣

∣

#v1···vka(A[α|≤N ])

|A[α|≤N ]|
− µp(v1 · · · vka)

∣

∣

∣

∣

=

∣

∣

∣

∣

#v1···vka(A[α|≤N ])

#v1···vk(A[α|≤N ])
·
#v1···vk(A[α|≤N ])

|A[α|≤N ]|
− µp(v1 · · · vk)p(a)

∣

∣

∣

∣

< ǫ2 + ǫ

(

#v1···vka(A[α|≤N ])

#v1···vk(A[α|≤N ])
+

#v1···vk(A[α|≤N ])

|A[α|≤N ]|

)

≤ ǫ2 + 2ǫ

Hence, for all a ∈ Σ, the limiting frequency of v1 · · · vka in A[α|≤N ] exists and equals
µp(v1 · · · vka), as desired.

5.2 Preservation of Bernoulli µp-distributedness under finite-state selection

By Lemma 9 we may restrict our attention to proving that the frequency of single symbols
from Σ are preserved under selection by DFAs. The strategy will be to consider an arbitrary
strongly connected DFA A, split the set of finite words Σ∗ into multiple classes that depend on
the selection behaviour of A, and use a combination of concentration bounds and basic Markov
chain theory applied to these classes to obtain upper and lower bounds on the frequency with
which A selects each symbol from A.
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Definition 12. Let A = (Q,Σ, δ, q0, F ) be a strongly connected DFA. For all p ∈ [0, 1],
b ∈ [0, 1], n ∈ N and ǫ > 0, we define sets Dp

n(b, ǫ), En(b, q) and Gn(b, ǫ, q) as follows:

Dp
n(b, ǫ, q) =

{

w ∈ Σn : |Aq[w]| > bn and sup
a∈Σ

∣

∣

∣

∣

#a(Aq[w])

|Aq[w]|
− p(a)

∣

∣

∣

∣

< ǫ

}

(6)

Dp
n(b, ǫ) =

⋂

q∈Q

Dp
n(b, ǫ, q) (7)

En(b, q) = {w ∈ Σn : |Aq[w]| ≤ bn} (8)

En(b) =
⋃

q∈Q

En(b, q) (9)

Gn(b, ǫ, q) =

{

w ∈ Σn : |Aq[w]| > bn and sup
a∈Σ

∣

∣

∣

∣

#a(Aq[w])

|Aq[w]|
− p(a)

∣

∣

∣

∣

≥ ǫ

}

(10)

Gn(b, ǫ) =
⋃

q∈Q

Gn(b, ǫ, q) (11)

Observe that, for all b, n, ǫ,

Σn = En(b) ∪Dp
n(b, ǫ) ∪Gn(b, ǫ)

(and also note that En(b) and Gn(b, ǫ) are not necessarily disjoint).

Lemma 10. Let p be a positive Bernoulli distribution on Σ, and let S = (Q,Σ, δ, qs, QF ) be a
strongly connected finite automaton with QF 6= ∅, and let n a positive integer. Then there exists
a real number c > 0 such that for all real numbers ǫ > 0 we have limn→∞ µp (En (c− ǫ)) = 0.

Proof. S induces a stochastic |Q| × |Q| matrix P by setting

Pij =
∑

a∈Σ

p(a) · 1δ(i,a)=j .

Observe that if Σ is infinite, the fact that (i) p(a) · 1δ(i,a)=j ≥ 0, (ii) p(a) · 1δ(i,a)=j ≤ p(a), and
(iii)

∑

a∈Σ p(a) = 1 entails that the series
∑

a∈Σ p(a) · 1δ(i,a)=j is absolutely convergent.
Note also that Pij = 0 iff there are no transitions from i to j in Q on a symbol a ∈ Σ

with p(a) > 0. As S is strongly connected, there exists a path from state i to state j for each
i, j ∈ Q. Let v be the word along this path; as p(a) > 0 for all a ∈ Σ, we have µp(v) > 0,
whence for each i, j there is an integer nij such that P

nij

ij > 0, that is, P (and its associated
Markov chain) is irreducible. As all states of a finite Markov chain with irreducible transition
matrix are positive recurrent, standard results (see, e.g., [57, Thm. 54]) yield that there is a
unique positive stationary distribution π : Q −→ [0, 1] (s.t., for all i ∈ Q, we have π(i) > 0
and π(i) =

∑

j∈Q π(j)Pij). Furthermore, the expected return time Mi to state i satisfies
Mi = 1/π(i).

Let (Xn)n≥0 = (X0,X1,X2, . . .) be the Markov chain with transition matrix P and some
initial distribution λ on the states. Consider, for each i ∈ Q, the stochastic variable Vi, where

Vi(n) =

n−1
∑

k=0

1Xk=i,

that is, Vi(n) is the number of times state i is visited in the first n elements of the Markov
chain. As P is irreducible, the Ergodic Theorem for Markov chains (see, e.g., [57, Thm. 75])
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yields that, independently of λ, we have for arbitrary ǫ > 0:

lim
n→∞

Pr

(∣

∣

∣

∣

Vi(n)

n
− π(i)

∣

∣

∣

∣

≥ ǫ

)

= lim
n→∞

Pr

(∣

∣

∣

∣

Vi(n)

n
−

1

Mi

∣

∣

∣

∣

≥ ǫ

)

= 0 (12)

Let n be a positive integer, let w = w1 · · ·wn ∈ Σn, and let qSj
(w) = qw0 q

w
1 · · · qwn be the

sequence of states visited in the run of Sj on w (i.e., qw0 = j). The probability of observing
a state sequence q0 · · · qn in the Markov chain is (when the initial distribution λ has λ(q0) =
λ(j) = 1):

Pr(q0 · · · qn) =
n−1
∏

i=0

∑

a∈Σ

p(a)1δ(qi,a)=qi+1
=

∑

a1,...,an∈Σ

p(a1)1δ(q0,a1)=q1 · · · p(an)1δ(qn−1,an)=qn

where we have used the fact that the Cauchy product of two absolutely convergent series is
convergent.

As for all integers i with 0 ≤ i ≤ n we have δ(qwi−1, wi) = qwi , we obtain:

∑

a1,...,an∈Σ

p(a1)1δ(q0,a1)=q1 · · · p(an)1δ(qn−1,an)=qn = µp({a1 · · · an : qSj
(a1 · · · an) = q0 · · · qn})

and hence
Pr(q0 · · · qn) = µp({w : qSj

(w) = q0 · · · qn}) (13)

Thus, as S is deterministic and every w1 · · ·wn ∈ Σn occurs along exactly one path of states
in S, we have:

Pr

(∣

∣

∣

∣

Vi(n)

n
− π(i)

∣

∣

∣

∣

≥ ǫ

)

=
∑

q0q1···qn∈Qn

Pr(q0 · · · qn)1|Vi(n)/n−π(i)|≥ǫ

=
∑

q0q1···qn∈Qn

µp({w1 · · ·wn : qSj
(w1 · · ·wn) = q0 · · · qn})

= µp

(

w :

∣

∣

∣

∣

Vi(n)

n
− π(i)

∣

∣

∣

∣

≥ ǫ

)

(14)

Hence, by Equation (12) and Equation (14), we have

lim
n→∞

µp

(

w :

∣

∣

∣

∣

Vi(n)

n
− π(i)

∣

∣

∣

∣

≥ ǫ

)

= 0 (15)

If qSj
(w) = q0 · · · qn and qk ∈ QF for some k with 0 ≤ k ≤ n − 1, then Sj selects wk+1. Set

c = minqi∈QF
π(i) (c is well-defined as QF 6= ∅), and let i ∈ QF be such that π(i) = c. Then,

for all j ∈ Q:

µp(En(c− ǫ, j) = µp ({w ∈ Σn : |Sj[w]| ≤ (c− ǫ)n}) ≤ µp ({w ∈ Σn : Vi(n) ≤ (c− ǫ)n})

= µp

({

w ∈ Σn :
Vi(n)

n
− c ≤ −ǫ

})

= µp

({

w ∈ Σn :

∣

∣

∣

∣

Vi(n)

n
− c

∣

∣

∣

∣

≥ ǫ

})

And hence, by Equation (15), we have limn→∞ µp(En(c−ǫ, j)) = 0, and as j ∈ Q was arbitrary,
we obtain
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lim
n→∞

µp(En(c− ǫ)) = lim
n→∞

µp(∪j∈Qµp(En(c− ǫ, j)) ≤ lim
n→∞

∑

j∈Q

µp(En(c− ǫ), j)

=
∑

j∈Q

lim
n→∞

µp(En(c− ǫ), j) = 0

as desired.

Lemma 11. Let S be a strategy, a ∈ Σ, b, ǫ be real numbers with 0 < b ≤ 1 and ǫ > 0, and
p : Σ −→ [0, 1] a positive Bernoulli distribution. Define, for all positive integers n:

Hn(b, ǫ) =

{

w ∈ Σn : |S(w)| > bn ∧

∣

∣

∣

∣

p(a)−
#a(S(w))

|S(w)|

∣

∣

∣

∣

≥ ǫ

}

=
⋃

bn<ℓ≤n

{

w ∈ Σn : S(w) ∈ Σℓ ∧

∣

∣

∣

∣

p(a)−
#a(S(w))

ℓ

∣

∣

∣

∣

≥ ǫ

}

Then:
lim
n→∞

µp(Hn(b, ǫ)) = 0

Proof. Define

Fn(b, ǫ) =
⋃

bn<ℓ≤n

{

y ∈ Σℓ :

∣

∣

∣

∣

p(a)−
#a(y)

ℓ

∣

∣

∣

∣

≥ ǫ

}

Observe that Hn(b, ǫ) = {w ∈ Σn : S(w) ∈ Fn(b, ǫ)}. Thus, µp(Hn(b, ǫ)) ≤ µpFn(b, ǫ) for all
n, and it thus suffices to prove that limn→∞ µp(Fn(b, ǫ)) = 0.

Consider the stochastic variable Xa that is 1 when a is picked from Σ with probability
p(a), and 0 otherwise. Then, the mean of Xa is p(a) and the variance of Xa is p(a)(1− p(a)).
Now consider performing ℓ ≥ 1 independent Bernoulli trials drawn according to Xa. Define
q : {0, 1}+ −→ [0, 1] inductively byq(1) = p(a), q(0) = 1 − p(a), and q(1c) = p(a)q(c) and
q(0c) = (1 − p(a))q(c) for c ∈ Σ+, and observe that q induces a probability distribution q̄ on
Σℓ by setting q̄(w) = q(w). Now, for any v ∈ Σℓ, q̄(v) is the probability of obtaining v by
performing ℓ repeated Bernoulli trials as above.

Define the stochastic variable Xℓ
a = Xa +Xa + · · · +Xa (ℓ times). Then, Xℓ counts the

number of occurrences of a by performing the ℓ repeated Bernoulli trials.
By the Chernoff bound, Xℓ

a satisfies:

Pr

(∣

∣

∣

∣

p(a)−
Xℓ

a

ℓ

∣

∣

∣

∣

≥ ǫ

)

≤ 2e
− ℓǫ2

3p(a) (16)

Define the map g : Σ −→ {0, 1} by g(a) = 1 and g(b) = 0 for all b ∈ Σ \ {a}.
Clearly, g extends homomorphically to a map g̃ : Σℓ −→ {0, 1}ℓ by setting g̃(c1c2 · · · cℓ) =
g(c1)g(c2) · · · g(cℓ).
Claim: For any u ∈ {0, 1}ℓ,

q̄(u) = µp({y ∈ Σℓ : g̃(y) = u}) (17)

Proof of claim: By induction on ℓ.

20



• If ℓ = 1, then if u = 0, we have {y ∈ Σℓ : g̃(y) = u} = Σ \ {a} and thus:

q̄(u) = q̄(0) = q(0) = 1− p(a) =
∑

b∈Σ\{a}

p(b) = µp(Σ \ {a})

Similarly, if u = 1, we have {y ∈ Σℓ : g̃(y) = u} = {a}, and thus q̄(u) = q̄(1) = q(1) =
p(a) = µp({a}), as desired.

• If ℓ > 1, write u = b1 · · · bℓ−1bℓ; by the induction hypothesis:

q̄(b1 · · · bℓ−1) = µp({y ∈ Σℓ : g̃(y′) = b1 · · · bℓ−1}) =
∑

y′∈Σℓ−1

g̃(y′)=b1···bℓ−1

µp(y
′)

If bℓ = 0, then:

q̄(b1 · · · bℓ−1bℓ) = q̄(b1 · · · bℓ−1)q(0) = q̄(b1 · · · bℓ−1)(1− p(a)) =
∑

y′∈Σℓ−1

g̃(y′)=b1···bℓ−1

µp(y
′)(1− p(a)

=
∑

y′∈Σℓ−1

g̃(y′)=b1···bℓ−1



µp(y
′)

∑

c∈Σ\{a}

p(c)



 =
∑

y′∈Σℓ−1

g̃(y′)=b1···bℓ−1

∑

c∈Σ\{a}

µp(y
′)p(c)

(†)
=

∑

y′∈Σℓ−1

g̃(y′)=b1···bℓ−1

c∈Σ\{a}

µp(y
′c) =

∑

y∈Σℓ

g̃(y)=b1···bℓ−1bℓ

µp(y)

= µp({y ∈ Σℓ : g̃(y) = b1 · · · bℓ−1bℓ})

where (†) follows as both series on the left- and right-hand sides of the equality are
absolutely convergent. The proof for the case bℓ = 1 is symmetric, mutatis mutandis.

(End of proof of claim.)
Observe that, for any y ∈ Σℓ, we have:

|p(a)−#1(g̃(y))/ℓ| ≥ ǫ iff |p(a)−#a(y)/ℓ| ≥ ǫ (18)

Hence, by Equation (17), for any event U ⊆ {0, 1}ℓ, we have:

Pr(U) =
∑

u∈U

q̄(u) =
∑

u∈U

µp({y ∈ Σℓ : g̃(y) = u}))

= µp

({

y ∈ Σℓ : g̃(y) ∈ U
})

(19)

The event |p(a)−Xℓ
a/ℓ| ≥ ǫ is shorthand for the set

{

u ∈ {0, 1}ℓ :

∣

∣

∣

∣

∣

p(a)−

∑ℓ
j=1 uj

ℓ

∣

∣

∣

∣

∣

≥ ǫ

}

=

{

u ∈ {0, 1}ℓ :

∣

∣

∣

∣

p(a)−
#1(u)

ℓ

∣

∣

∣

∣

≥ ǫ

}
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We thus obtain:

Pr

(∣

∣

∣

∣

p(a)−
Xℓ

a

ℓ

∣

∣

∣

∣

≥ ǫ

)

= Pr

({

u ∈ {0, 1}ℓ :

∣

∣

∣

∣

p(a)−
#1(u)

ℓ

∣

∣

∣

∣

≥ ǫ

})

= µp

({

y ∈ Σℓ :

∣

∣

∣

∣

p(a)−
#1(g̃(y))

ℓ

∣

∣

∣

∣

≥ ǫ

})

by (Equation (19))

= µp

({

y ∈ Σℓ :

∣

∣

∣

∣

p(a)−
#a(y)

ℓ

∣

∣

∣

∣

≥ ǫ

})

by (Equation (18))

(20)

Observe that:

µp (Rn(b, ǫ)) = µp





⋃

bn<ℓ≤n

{

y ∈ Σℓ ∩Rn(b, ǫ) :

∣

∣

∣

∣

p(a)−
#a(y)

ℓ

∣

∣

∣

∣

≥ ǫ

}





=
∑

bn<ℓ≤n

µp

({

y ∈ Σℓ ∩Rn(b, ǫ) :

∣

∣

∣

∣

p(a)−
#a(y)

ℓ

∣

∣

∣

∣

≥ ǫ

})

≤
∑

bn<ℓ≤n

µp

({

y ∈ Σℓ :

∣

∣

∣

∣

p(a)−
#a(y)

ℓ

∣

∣

∣

∣

≥ ǫ

})

=
∑

bn<ℓ≤n

Pr

(∣

∣

∣

∣

p(a)−
Xℓ

a

ℓ

∣

∣

∣

∣

≥ ǫ

)

by Equation (20)

≤
∑

bn<ℓ≤n

2e
− ℓǫ2

3p(a) by Equation (16)

≤ (1− b)n2e
− bnǫ2

3p(a)

And thus limn→∞ µp(Fn(b, ǫ)) = 0, as desired.

Corollary 11.1. Let b, ǫ be real numbers with 0 < b ≤ 1 and ǫ > 0. Then,

lim
n→∞

µp(Gn(b, ǫ)) = 0

Proof. By Lemma 11 with S the strategy defined by the automaton Aq, we obtain that
limn→∞ µp(Gn(b, ǫ, q)) = 0 and as Gn(b, ǫ) =

⋃

q∈QGn(b, ǫ, q), we have:

µp(Gn(b, ǫ)) ≤
∑

q∈Q

µp(Gn(b, ǫ, q))

As Q is finite, we hence obtain limn→∞ µp(Gn(b, ǫ)) = 0.

Lemma 12. There is a real number b with 0 < b ≤ 1 such that for all ǫ > 0:

lim
n→∞

µp(D
p
n(b, ǫ)) = 1.
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Proof. Observe that, for all b with 0 < b ≤ 1:

Σn \Dp
n(b, ǫ)) = {w ∈ Σn : ∃q ∈ Q.|Aq[w]| ≤ bn}

∪

{

w ∈ Σn : ∃q ∈ Q.|Aq[w]| > bn ∧ sup
a∈Σ

∣

∣

∣

∣

#a(Aq[w])

|Aq[w]|
− p(a)

∣

∣

∣

∣

≥ ǫ

}

=





⋃

q∈Q

En(b, q)



 ∪





⋃

q∈Q

Gn(b, ǫ, q)





and thus:

µp(Σ
n \Dp

n(b, ǫ)) ≤ µp





⋃

q∈Q

En(b, q)



+ µp





⋃

q∈Q

Gn(b, ǫ, q)





= µp(Gn(b, ǫ)) + µp(En(b))

By Lemma 10, choose a real number c > 0 such that limn→∞ µp(En(c − ǫ)) = 0, and set
b = c− ǫ.

By Corollary 11.1, we obtain that limn→∞Gn(b, ǫ) = 0, and thus limn→∞ µp(Σ
n\Dp

n(b, ǫ)) =
0. The result now follows by µp(D

p
n(b, ǫ))) = 1− µp(Σ

n \Dp
n(b, ǫ)).

Lemma 13. Let p : Σ −→ [0, 1] be a probability distribution, let α ∈ Σω be µp-block-distributed,
and A a strongly connected DFA over Σ. Then, for all a ∈ Σ, the limiting frequency of a in
the sequence β = A[α] exists and equals p(a).

Proof. For each n, r, let β(n,r) be the sequence of symbols picked out from block α(n,r) when
A is applied to α; note that each β(n,r) has length between 0 and n.

For each positive integer m, define:

Lm =

m
∑

i=1

|β(n,i)|

And for each a ∈ Σ, define ρma by:

ρma =

∑m
i=1#a(β(n,i))

Lm

To prove the lemma, it suffices to show that, for any real number ǫ > 0 and all sufficiently
large m, we have |ρma − p(a)| < ǫ.

Define:
Im =

{

i 6 m : α(n,i) 6∈ Dp
n

(

b,
ǫ

2

)}

And define:
ℓm =

∑

i∈Im

|β(n,i)|

Now, define θma by:

θma =

∑

i∈{1,...,m}\Im
#a(β(n,i))

∑

i∈{1,...,m}\Im
|y(n,i)|

=

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm − ℓm
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That is, θma is the frequency of occurrences of a when the blocks β(n,i)] picked out from blocks
α(i,r) ∈ Dp

n(b,
ǫ
2) with i ≤ m are all concatenated. Observe that, by definition of Dp

n, we have
|θma − p(a)| < ǫ

2 .
We have:

ρma − θma =

∑m
i=1#a(β(n,i))

Lm
−

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm − ℓm

=

(

∑

i∈Im
#a(β(n,i))

Lm
+

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm

)

−

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm − ℓm

(†)
=

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm
−

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm − ℓm
+

∑

i∈Im
#a(β(n,i))

Lm

≤

∑

i∈Im
#a(β(n,i))

Lm
≤

∑

i∈Im
|β(n,i)|

Lm
=

ℓm
Lm

(21)

where the penultimate inequalities in the last line above follows because Lm ≥ Lm − ℓm im-

plies
∑

i∈{1,...,m}\I #a(β(n,i))

L −
∑

i∈{1,...,m}\I #a(β[n,i])

L−ℓ ≤ 0, and the final inequality follows because
∑

i∈Im
#a(β(n,i)) ≤

∑

i∈I |β(n,i)| = ℓm.
By basic algebra, we have:
∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm
−

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm − ℓm
=

−ℓm
∑

i∈{1,...,m}\I #a(β(n,i))

Lm(Lm − ℓm)

and as
∑

i∈{1,...,m}\Im

#a(β(n,i)) ≤
∑

i∈{1,...,m}\Im

|β(n,i)| = Lm − ℓm

we conclude that:
−ℓm

∑

i∈{1,...,m}\Im
#a(β(n,i))

Lm(Lm − ℓm)
≥ −

ℓm
Lm

and thus by (†) above that:

ρma − θma +

∑

i∈Im
#a(β(n,i))

Lm
≥ −

ℓm
Lm

whence −ℓm/Lm ≤ ρa − θa, which combined with (Equation (21)) yields |ρa − θa| ≤ ℓm/Lm.
By Lemma 12 pick a b such that such that for all ǫ > 0, we have limn→∞ µp(D

p
n(b, ǫ)) = 1.

Choose δ > 0 with δ < bǫ
8 , and pick n ∈ N such that µp(D

p
n(b, ǫ)) > 1− δ. Now, pick γ < bǫ

8 .
Because α is µp-block-distributed, there exists M ∈ N such that for all k ≥ M and all B ⊆ Σn,
the prefix α|≤kn satisfies:

∣

∣

∣

∣

|{i ≤ k : α(n,i) ∈ B}|

k
− µp(B)

∣

∣

∣

∣

< γ

In the particular case B = Dp
n(b, ǫ/2), we thus have:

∣

∣

∣

∣

∣

|{i ≤ k : α(n,i) ∈ Dp
n

(

b, ǫ
2

)

}|

k
− µp

(

Dp
n

(

b,
ǫ

2

))

∣

∣

∣

∣

∣

< γ
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and thus

1− δ −
|{i ≤ k : α(n,i) ∈ Dp

n(b,
ǫ
2 )}|

k
≤ µp

(

Dp
n

(

b,
ǫ

2

))

−
|{i ≤ k : α(n,i) ∈ Dp

n(b,
ǫ
2 )}|

k
< γ

whence we conclude:
∣

∣

∣

{

i ≤ k : α(n,i) ∈ Dp
n

(

b,
ǫ

2

)}∣

∣

∣ > k(1 − δ − γ) (22)

By definition of Dp
n(b,

ǫ
2)), every α(n,i) ∈ Dp

n(b,
ǫ
2)) satisfies |A[α(n,i)]| > bn, and we thus

have:

Lm =
m
∑

i=1

|y(n,i)| =
m
∑

i=1

|A[α(n,i)]| ≥
∣

∣

∣

{

i ≤ m : α(n,i) ∈ Dp
n

(

b,
ǫ

2

)}∣

∣

∣
bn > m(1− δ − γ)bn (23)

Furthermore, by the definition of Im and (Equation (22)):

|Im| =
∣

∣

∣

{

i 6 m : α(n,i) 6∈ Dp
n

(

b,
ǫ

2

)}∣

∣

∣ = m−
∣

∣

∣

{

i ≤ m : α(n,i) ∈ Dp
n

(

b,
ǫ

2

)}∣

∣

∣

< m−m(1− δ − γ) = m(δ + γ)

But then,
ℓm =

∑

i∈Im

|y(i,n)| ≤ |Im|n < mn(δ + γ) (24)

and thus by Equation (23) and Equation (24):

ℓm
Lm

<
mn(δ + γ)

m(1− δ − γ)bn
=

δ + γ

b(1− δ − γ)
<

bǫ
8 + bǫ

8

b
(

1− bǫ
8 − bǫ

8

) <
ǫ
8

1− 1
4

<
ǫ

2

where we have used that bǫ < 1 in the penultimate inequality.
We now finally have

|ρa − p(a)| ≤ |ρma − θma |+ |θa − p(a)| <
ℓm
Lm

+
ǫ

2
<

ǫ

2
+

ǫ

2
= ǫ

concluding the proof.

Lemma 14. Let Σ be an alphabet, p a positive Bernoulli distribution on Σ, let α ∈ Σω be
µp-distributed, and let A be a strongly connected DFA over Σ. Then, A[α] is µp-distributed.

Proof. By Lemma 9 it suffices to show for every a ∈ Σ and every strongly connected A that
the limiting frequency of a in A[α] exists and equals p(a). As α is µp-distributed, it is µp-block
distributed, and the result then immediately follows by Lemma 13.

6 An application in symbolic dynamics: characterizing mea-

sures where genericity is preserved by DFAs

We now show an application of the main result to the area of symbolic dynamical systems. The
following section recalls basic facts about symbolic dynamical systems, including establishing
the correspondence between probability maps on Σ∗ and probability measures on full shifts.
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6.1 Shift spaces and genericity

We briefly introduce basic notions; full accounts can be found in standard textbooks, e.g. [35].

Definition 13. Let Σ be a non-empty alphabet. The (one-sided) shift s : Σω −→ Σω is the
map defined by s(a1a2a3 · · · ) = a2a3 · · · . A shift space is a pair (X, s) where X ⊆ Σω is a
closed (in the product topology on Σω when Σ is endowed with the discrete topology) subset
such that s(X) = X7, and s is the restriction of the shift to X.

As usual, we consider the σ-algebra C on Σω having the set of cylinders {[w] : w ∈ Σ∗} as
basis. All measures µ in the remainder of the paper are understood to be measures on (Σω, C).

The standard example of probability measures on shift spaces is the set of Bernoulli mea-
sures [59]:

Definition 14. A probability measure on the shift space (Σω, s) is a probability measure on
Σω with the σ-algebra generated by the cylinder sets {[v] : v ∈ Σ∗} A probability measure µ̄
on the full shift is a Bernoulli measure if there is a probability distribution p : Σ −→ [0, 1]
such that the measure of each cylinder satisfies µ̄([a1 · · · an]) =

∏n
i=1 p(ai). In this case, we

say that µ̄ is induced by p.

Definition 15. Let (X, s) be a shift space. A probability measure µ̄ on X is said to be shift
invariant if µ̄(S−1(A)) = µ̄(A) for all A ⊆ X. A finite word w ∈ Σk is said to be admissible
for µ if µ̄([w]) > 0.

A right-infinite sequence α ∈ Σω is said to be generic for µ̄ if, for all words w admissible
for µ̄, we have:

lim
n→∞

#w(α|≤n)

n
= µ̄([w])

That is, w occurs in α with limiting frequency µ̄([w]).

The study of probability measures on the full shift is cryptomorphic to the study of invari-
ant probability maps; this folklore result is contained in the following two propositions (proofs
can be found in Appendix A).

Proposition 15. Every invariant probability map µ : Σ∗ −→ [0, 1] induces a shift-invariant
probability measure µ̄ : Σω −→ [0, 1] by setting µ̄([w]) = µ(w). Conversely, every probability
measure ν : Σω −→ [0, 1] induces a probability map ν : Σ∗ −→ [0, 1] by defining ν(w) = ν([w]);
if ν is shift-invariant, then ν is invariant. Furthermore, µ = µ̄, and ν = ν̄.

Proposition 16. Let µ : Σ∗ −→ [0, 1] be a probability map. The following are equivalent:

1. There exists a µ-distributed α ∈ Σω.

2. µ is invariant.

3. There exists a shift-invariant probability measure ν on Σω such that µ̄ = ν.

Conversely, let ν be a probability measure on Σ. The following are equivalent:

1. There exists α ∈ Σω that is generic for ν.

7For one-sided shifts, some authors require only s(X) ⊆ X; we shall not do so here.
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2. ν is shift-invariant.

3. There exists an invariant probability map µ : Σ∗ −→ [0, 1] such that ν = µ.

It follows that the shift-invariant probability measures ν on the full shift such that gener-
icity is preserved by finite-state selection, are exactly the Bernoulli measures:

Theorem 17. Let Σ be a non-empty alphabet, and let ν be a shift-invariant measure on the
full shift (Σω, s) such that there exists at least one α ∈ Σω generic for ν. Then, every finite-
state selector preserves genericity iff ν is a Bernoulli measure such that all words in Σ∗ are
admissible.

Proof. Observe that for a Bernoulli measure µ̄ on the full shift on Σ, all words are admissible
iff µ̄(a) > 0 for all a ∈ Σ. The Theorem now follows from Theorem 4 and Proposition 16.

7 Future work

The most obvious extension of our main results is to attempt to relax the requirement that
selection is done by a DFA by using methods similar to Kamae and Weiss [31], and Kamae and
Wang [68] where reasoning using a combination of density arguments and relaxed finiteness
conditions on the syntactic monoid of the strategy (using our terminology) have been used for
normal sequences over binary alphabets. We conjecture that some of these techniques can be
adapted to positive Bernoulli distributions on arbitrary finite alphabets.

A different possible thrust is to consider generalizations of Agafonov’s Theorem on domains
different from infinite sequence over alphabets. However, some results in the – sparse –
literature on selection from normal sequence-like objects in other contexts are negative; for
example normality is not preserved by arithmetic progressions (so, probably not by finite-state
selectors in any reasonable sense) for continued fraction expansions [27]. On the other hand,
very recent work by Bergelson et al. has succesfully adapted the classical techniques of Kamae
and Weiss [31] to show that certain Følner sequences preserve (the appropriate analogue of)
normality in cancellative amenable semigroups [7].
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A Auxiliary proofs and definitions

A.1 Automata and selectors

The following is a proof of the extension of Lemma 2.6 of [56]. The proof follows the original
in most details.

Definition 16. Let G = (V,E) be a directed multigraph, and denote by ∼⊆ V × V the
equivalence relation such that v ∼ w iff v and w are in the same strongly connected component
of G. For every v ∈ V , denote by [v]∼ the equivalence class containing v. Define the partial
order < on V/∼ by V < W iff there are v ∈ V and w ∈ W such that there is a directed path
from v to w.

If G has a finite number of nodes, < is clearly well-founded. As < is clearly also transitive,
every W ∈ V/∼ satisfies W > V for some <-minimal V ∈ V/∼.

Also observe that every <-minimal V is a recurrent strongly connected component, because
(i) it is strongly connected by definition, and <-minimality implies that no directed path from
any node in V can reach a node in a strongly connected component distinct from V.

Lemma 18. Let S = (Q, δ, qs, QF ) be a finite automaton over a (possibly infinite) alphabet Σ.
Then there is a word w ∈ Σ∗ such that, for all states q ∈ Q, δ∗(q, w) is a state in a <-minimal
element of Q/∼.

Proof. Write Q = {q1, . . . , qm}. We prove by induction on i ≤ m that there is a word wi ∈ Σ∗

such that for all j ≤ i, δ∗(sj , wi) is a state in a <-minimal element of Q/∼.

i = 1: Let V be a <-minimal element of Q/∼ such that [q1]∼ > V. Choose q ∈ Q such that
[q]∼ = V. Then there is a directed path from s1 to q. Let w1 be the word along that
path, and observe that δ∗(q1, w1) = q.

i > 1: Let V be a <-minimal element of Q/∼ such that δ∗(qi+1, wi) ∈ V, and let q ∈ V,
whence there is a directed path from δ∗(qi+1, wi) to q. Let w′ ∈ Σ∗ be the word along
that path, whence δ∗(δ∗(qi+1, wi), w

′) = q. Define wi+1 = wi · w
′, and observe that

δ∗(qi+1, wi+1) = q.

For j ≤ i, we claim that δ∗(qj , wi+1) is a state in a <-minimal element of Q/∼. For,
by the Induction Hypothesis, δ(qj , wi) is in a <-minimal element Vj of Q/∼, and as
<-minimal element are recurrent strongly connected components, no directed path from
δ(qj , wi) can end in a state outside Vj .

Proof of Lemma 3. Any <-minimal element of Q/∼ is recurrent. By Lemma 18, there is a
word w such that from any state q ∈ Q, δ∗(q, w) is a state in a recurrent strongly connected
component of the automaton. As p(a) > 0 for all a ∈ Σ, µp(w) > 0, and as α is p-distributed,
w thus occurs (infinitely often) in α. After the first occurrence of w, the run of A on α has
entered a strongly recurrent connected component.
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A.2 Symbolic dynamical systems

Proof of Proposition 15. The two identities µ = µ̄, and ν = ν̄ follow directly from the defini-
tions. If µ is invariant, then for every cylinder [w], we have µ̄([w]) = µ(w) =

∑

a∈Σ µ(w · a) =
∑

a∈Σ µ̄([w · a]); from this, and the observation that 1 = µ(ǫ) = µ̄([ǫ]) = µ̄(Σω), that µ̄ is a
probability measure on Σ with the sigma algebra generated by the cylinder sets. In addition,
as µ is invariant, we have for any cylinder [w]′ that:

µ̄(S−1([w])) = µ̄

(

⋃

a∈Σ

[a · w]

)

=
∑

a∈Σ

µ̄([a · w]) =
∑

a∈Σ

µ(a · w) = µ(w) = µ̄([w])

whence µ̄ is shift-invariant.
Conversely, if ν is a shift-invariant probability measure on Σω, we have for any w that:

ν(w) = ν([w]) = ν

(

⋃

a∈Σ

[w · a]

)

=
∑

a∈Σ

ν([w · a]) =
∑

a∈Σ

ν(w · a)

and

ν(w) = ν([w]) = ν(S−1([w])) = ν

(

⋃

a∈Σ

[a · w]

)

=
∑

a∈Σ

ν([a · w]) =
∑

a∈Σ

ν(a · w)

showing that ν is invariant.

Proof of Proposition 16. For the first part, we prove 1 ⇒ 2 ⇒ 3 ⇒ 1.
If there is a µ-distributed α ∈ Σω, then for any w ∈ Σ∗ and any ǫ > 0, for all sufficiently

large n we have supb∈Σ∪{λ} |#b·w(α|≤n)/n−µ(w)| < ǫ. Observe that every occurrence of a word
on the form a ·w in α contains an occurrence of w, and hence #w(α|≤n) ≥

∑

a∈Σ#a·w(α|≤n).
Conversely, for every occurrence of w starting at some position i ≥ 2 in α, there is exactly
one a ∈ Σ such that the word a · w occurs at position i − 1, whence #w(α|≤n) ≤ 1 +
∑

a∈Σ #a·w(α|≤n), and hence:

∣

∣

∣

∣

∣

µ(w) −
∑

a∈Σ

µ(a · w)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

µ(w)−
#w(α|≤n)

n
+

#w(α|≤n)

n
−
∑

a∈Σ

µ(a · w)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

µ(w)−
#w(α|≤n)

n

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

#w(α|≤n)

n
−
∑

a∈Σ

µ(a · w)

∣

∣

∣

∣

∣

< ǫ+
1

n
+

∣

∣

∣

∣

∣

∑

a∈Σ #a·w(α|≤n)

n
−
∑

a∈Σ

µ(a · w)

∣

∣

∣

∣

∣

≤ ǫ+
1

n
+
∑

a∈Σ

∣

∣

∣

∣

#a·w(α|≤n)

n
− µ(a · w)

∣

∣

∣

∣

< ǫ+
1

n
+ |Σ|ǫ

and as ǫ was arbitrary, we thus have µ(w) =
∑

a∈Σ µ(a ·w). The case for µ(w) =
∑

a∈Σ µ(w ·a)
is symmetric, mutatis mutandis, and hence µ is invariant. If µ is invariant, then by Proposition
15, µ̄ is a shift-invariant probability measure on Σω. If ν is a shift-invariant probability measure
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on Σω such that µ̄ = ν, then by [38, Main Thm. 2.1], there exists α ∈ Σω generic for µ̄, and

thus for any admissible w ∈ Σ∗ limn→∞
#w(α|≤n)

n = ν(w) = µ̄([w]) = µ(w). Observe that any
inadmissible word w = a1 · · · an has

∏n
i=1 µ(ai) = µ(w) = 0, whence µ(ai) = 0 for some i, and

hence limn→∞
#w(α|≤n)

n ≤ limn→∞
#ai

()

α|≤n
n = 0. Hence, α is µ-distributed.

For the second part, we prove 1 ⇒ 3 ⇒ 2 ⇒ 1. Assume that α is generic for ν. By
construction, ν is a probability map such that α is ν-distributed, and by the first part of
the proposition, ν is invariant, as desired. If ν is an invariant probability map, then as any
measurable A can be written as a disjount union of cylinder sets, and as we for any cylinder
[w] have S−1([w]) = ∪a∈Σ[a · w], we obtain

ν(S−1([w])) = ν(∪a∈Σ[a · w]) =
∑

a∈Σ

ν(a · w) = ν(w) = ν([w])

showing that ν is shift-invariant. Finally, if ν is shift-invariant, it follows from [38, Main Thm.
2.1], there exists α ∈ Σω generic for ν, as desired.
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