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PACS numbers:

The breakup of an interface into a cascade of droplets and their subsequent coalescence is a generic problem of
central importance to a large number of industrial settings. Examples of these applications include the atomisation
of propellants in engines, the formation of droplets in injectors, mixers, separators, and the generation of droplets in
multiphase flow regime transitions [2, 3, 12]. In all of these situations, it is important to predict the evolving droplet
size distribution that results from a competition between breakup and coalescence, which are influenced by a range
of multi-scale physics; this includes the interaction of turbulence with interfaces, capillarity, viscosity, and gravity.
Therefore, it is unsurprising that the breakup of liquid jets during injection (i.e. atomisation) has received great
scientific interest [4, 8, 10, 11, 13].

To the best of our knowledge, the transient dynamics of turbulent liquid/liquid systems have not been reported in
the literature. Temporal instabilities and the resulting spatio-temporal interfacial structures are predicted by solving
the full three-dimensional two-phase Navier-Stokes system in the context of a hybrid front-tracking/level-set method
[14–16]. We consider a cylindrical nozzle with diameter D = 4 mm injecting water with density ρ

w
and dynamic

viscosity µ
w

. This water jet enters progressively into the computational domain of size 20D× 4D× 4D, initially filled
with a stagnant viscous silicone-oil of density ρso and viscosity µso . The surface tension is taken to be that of oil
and water (e.g. σ = 35.1 mN/s) [7]. The Reynolds number is defined as Re = ρwUjetD/µw and fixed to the value of
Re = 6530. The domain has been divided into 48 × 6 × 6 subdomains where each subdomain contains a Cartesian
structured grid of 643 cells, accounting for a global structured mesh grid of 3072×384×384. This mesh is sufficiently
large to resolve the relevant turbulent length-scales and interfacial singularities (e.g. pinch-off and coalescence).

We use a new solver for massively parallel simulations of fully three-dimensional multiphase flows [15], able to run on
a variety of computer architectures, wholly written in Fortran 2008 and adopting an algebraic domain decomposition
strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of the Level
Contour Reconstruction Method (LCRM) which is an adaptation of our high fidelity hybrid front tracking/level set
method, able to handle highly deforming interfaces with complex topology changes [1, 5, 6]. This code uses parallel
GMRES and multigrid iterative solvers suited to solve the linear systems arising from the implicit solution of the fluid
velocities and pressure. More details on the numerical techniques can be found in Shin et al. [15, 16].

The spatio-temporal evolution of the interfacial dynamics is shown in Fig. 1. At early injection times, large
capillary pressure is generated near the leading edge, due to local interfacial curvature, leading to a radially driven
flow. This capillary-induced flow together with the viscous resistance from the stagnant phase yields the formation
of a leading-top mushroom-like structure (see Fig. 1a). This structure covers an internal interfacial toroidal sheet
whose thickness reduces over time to generate the formation of holes, which expand radially to form ligaments, and
eventually entrapped droplets. As time evolves, the free surface behind the leading structure adopts the shape of
a ‘cylinder’ which undergoes a Kelvin-Helmholtz instability (KH) to give the formation of initial corrugations or
capillary waves on the free-surface. The KH instabilities on the free surface are triggered by the parallel motion of
fluids at different velocities and are amplified by the pulsatile injection.

The interfacial dynamics of the jet can be explained by coupling the vorticity ω = 5 × u with the interfacial
location. During the early stages and close to the injection point, the streamwise vorticity field ωx is characterised by
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Rico and the Jets 

 We present 3D Direct Numerical Simulations of  turbulent liquid jets isolating several physical mechanisms observed in microdroplet formation. The flow of  the jet into the stagnant phase leads to the formation of  a mushroom-
like shape at the jet leading edge, which exhibits roll-up driven by the density and viscosity contrast between the two phases. As the jet accelerates further, Kelvin-Helmholtz instabilities are observed driven by the velocity contrast. 
Visualisation under the mushroom-like structure shows the formation of  droplets because of  interface rupture. Interestingly, we also observe the formation of  hairpin vortices in our DNS despite the absence of  coaxial flow 
shearing the interface.
	

3D Direct Numerical 
Simulations of turbulent 

liquid jets (Re=6530) leading 
to spray formation. 
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FIG. 1: Spatio-temporal evolution of the interface in the injection of a water jet into a stagnant viscous silicone-oil at t =
(7.25, 12.05, 28.97) corresponding to (a), (b) and (c), respectively, when Re = 6530. (d) Illustration of the coherent vortical
structures through the Q-criterion close to the free-surface (coloured in yellow) at t = 28.97. The vortical structures have been
coloured by the value of the vorticity in the streamwise direction. In the vorticity representation, blue and red colour represent
vortical structures with counter-clockwise and clockwise rotation, respectively. All variables are dimensionless quantities.
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values which are two orders of magnitude smaller than the azimuthal vorticity ωθ. As the flow evolves downstream,
ωx becomes comparable in magnitude with ωθ, leading to the deformation of axisymmetric KH vortex rings in the
streamwise direction adopting a new hairpin shape. These hairpin vortices trigger the formation of interfacial lobes
which are stretched downstream (from outer hairpin vortices) and upstream (from inner hairpin vortices) to eventually
obtain a hairpin shape (see Fig. 1b,c). We have used the Q-criterion to visualise the three-dimensional nature of the
vortical structure (shown in Fig. 1d) [9]. The topological shape of the vortex resembles the instantaneous hairpin-like
vortical structures reported in experiments and numerical simulations of [17, 18]. Outer hairpin vortices are observed
clearly, whereas the inner hairpin vortices are localised underneath the interface. Additionally, a vortex-cap covers
the leading mushroom structure.
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O. K, Three-dimensional dynamics of falling films in the presence of insoluble surfactants, Submitted to J. Fluid Mech.
(arXiv:2005.12669 )

[2] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69(3), 865–930 (1997)
[3] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys., 71, 036601 (2008)
[4] O. Desjardins and H. Pitsch Detailed numerical investigation of turbulent atomization of liquid jets, Atomiz. Sprays,

20(4), 311-336 (2010)
[5] Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D. and Matar, O. K, Dynamics of

retracting surfactant-laden ligaments at intermediate Oh number, Submitted to Phys. Rev. Fluids (arXiv:2001.11029)
[6] Constante-Amores, C. R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D. and Matar, O. K Dynamics of a

surfactant-laden bubble bursting through an interface, Submitted to J. Fluid Mech. (arXiv:2005.04472 )
[7] R. Ibarra, O. K. Matar and C. N Markides, Flow structures in low-inclination stratified oil-water pipe-flows using laser-

based diagnostic techniques, 18th International Conference on Multiphase Production Technology, 387, 353–396 (2017)
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