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ANCESTRAL LINEAGES IN MUTATION SELECTION EQUILIBRIA WITH

MOVING OPTIMUM

RAPHAËL FORIEN, JIMMY GARNIER, AND FLORIAN PATOUT

Abstract. We investigate the evolutionary dynamics of a population structured in phenotype,
subjected to trait dependent selection with a linearly moving optimum and an asexual mode of
reproduction. Our model consists of a non-local and non-linear parabolic PDE. Our main goal
is to measure the history of traits when the population stays around an equilibrium. We define
an ancestral process based on the idea of neutral fractions. It allows us to derive quantitative
information upon the evolution of diversity in the population along time. First, we study the
long-time asymptotics of the ancestral process. We show that the very few fittest individuals
drive adaptation. We then tackle the adaptive dynamics regime, where the effect of mutations is
asymptotically small. In this limit, we provide an interpretation for the minimizer of some related
optimization problem, an Hamilton Jacobi equation, as the typical ancestral lineage. We check the
theoretical results against individual based simulations.

1. Introduction

We are interested in studying phenotypic lineages inside a population that stays at a mutation
selection equilibrium, while also keeping pace with an environmental change. First, we detail the
ecological model. The population is structured by a one–dimensional phenotypic trait, denoted by
x ∈ R. The density of individuals with trait x is denoted f(t, x) at any time t > 0. We assume
that the density function is solution to the following integro-differential equation:
(1.1) ∂tf(t, x) +

(
µ(x− ct) + (β − µ0)

∫
R
f(t, x′)dx′

)
f(t, x) = βB(f(t, ·))(x) for t > 0, x ∈ R,

f(0, x) = f0(x), x ∈ R.

The operator B describes the apparition of new individuals via reproduction (birth) events occurring
at rate β. It takes the following shape:

(1.2) B(g)(x) =
1

σ

∫
R
K

(
x− x′
σ

)
g(x′) dx′ ,

with σ > 0. K is a symmetric normalized probability density kernel, that encodes the shape of the
deviation (for instance due to mutations) between the trait of an offspring and that of its parent,
while σ2 measures the variance of mutations. This operator can describe asexual reproduction.

The population is subject to trait dependent selection through an intrinsic mortality rate µ(x),
that admits a minimal value at an optimal trait. The function µ is decomposed as follows:

µ(x) = µ0 +m(x),

where µ0 is a common mortality rate shared by all phenotypes, and m(x) is an increment of
mortality which models the load of an non-optimal phenotype. Environmental changes are modeled
through a linear drift of the optimal trait at speed c. Mal-adaptation of a given individual with
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trait x is thus defined as the difference between its phenotypic value x and the optimal value for
the trait at time t. It will be denoted by z ∈ R:

z := x− ct.
Finally, the non-linear term

(
(β − µ0)

∫
R f(t, x′)dx′

)
f(t, x) accounts for density dependence in the

population. We provide precise mathematical assumptions later, in Assumption 1.1.
We expect that under the assumption β > µ0, the population at the optimal trait will not go

extinct in the absence of environmental changes. In our model, the interplay between selection,
through mortality of fitter individuals close to a (moving) optimum, and traits diversification,
through mutation, should balance out. We expect this balance to create a mutation–selection
equilibrium of the phenotypical distribution. In that scenario, the dominant phenotypic trait of the
population always lags behind the moving optimum, since adaptation is not instantaneous, creating
a lag, as pictured in Figure 1.

Phenotypic space z := x− ct
Moving selection optimum

z∗

Lag

Stationary profile : F

c

Figure 1. Shape of the equilibrium profile F solution of (1.1) in the moving frame
at speed c (green plain line). In dashed red, a representation of an admissible
selection function µ. The shape of equilibrium is not assumed a priori, this is
obtained with a numerical resolution of (1.1). There phenotypic lag is defined by
the position of the dominant trait in the population, z∗, and the optimal trait
relatively to selection.

In this paper, we investigate the evolution of phenotypic lineages, i.e. the trajectories of the trait
of an individual’s ancestors across generations. We are not interested in the transient dynamics
of (1.1), and any bias induced by the initial distribution f(0, z). In other words, we want to
characterize the dynamics inside an equilibrium of (1.1), and link it with ancestral lineages. Our
method consists in looking at the dynamics of descendants issued from a small group of individuals.
Let us assume that the individuals are labeled and that they transmit their label to their offspring
even if the offspring differs in trait. Somehow, those label can be seen as neutral genes that are
promoted or demoted because they are close to a gene under selection, creating a phenomenon of
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genetic hitchhiking, or genetic draft, see Barton (2000). Mathematically, this approach has been
introduced in the context of reaction diffusion equations by Hallatschek and Nelson (2008, 2010),
and in Garnier et al. (2012); Roques et al. (2012) to understand the inside dynamic of the traveling
wave solution. They were able, thanks to this methodology, to establish a robust dichotomy between
two different possible behaviors for the inside dynamic of the front, by defining pulled or pushed
fronts, a generalization of a concept of Stokes (1976). The distinction is important, since pushed
fronts preserve the neutral diversity, as opposed to the pulled ones, where the neutral diversity is
lost.

In the referential moving at the same speed as the front, the profile of a traveling wave is constant.
In our case, its shape is no longer a front but rather a pulse, see Figure 1, and there are no previous
works studying its inside dynamics. We assume that the equilibrium is made of several components,
υk, that we will call neutral fractions. By studying the evolution of these components, we will gain
an understanding of the evolution of diversity inside the equilibrium. Namely, the fractions verify,
at t = 0:

f0(x) =
∑
k>1

υk0 (x), with υk0 > 0 for all k > 1.

We make the seminal assumption that every fraction only differs by their label, while mutation and
selection act the same way they do on the entire population f . The density of each fraction verifies
an equation of the form:
(1.3) ∂tυ

k(t, x) +
(
µ(x− ct) + (β − µ0)

∫
R
f(t, x′) dx′

)
υk(t, x) = βB(υk(t, ·))(x) , for t > 0, x ∈ R

υk(0, x) = υk0 (x), x ∈ R.

Note that by linearity, the sum over k of the fraction densities υk verifies (1.1). Our results are
twofold.

• First we establish the time asymptotics of the neutral fraction υk. We will therefore know,
in the long time, which trait(s) contribute to the neutral diversity inside the equilibrium.
• Next, we will establish a partial differential equation upon the density of ancestors that

reach a given trait z at a time t (the lineages). In the regime where the variance σ is small,
we will find an explicit solution of the limit problem. This formula cöıncides with heuristics
based upon adaptive dynamics methods and Hamilton-Jacobi theory for the typical lineage
among the population, which provides an innovative link between two popular approaches
to theoretical evolutionary theory.

A companion paper in the field of probability theory deals with the issues raised here, Henry et al.
(2020). They focus on the branching measure-valued population process underlying equation (1.1).
It is well known that, in the large population limit, this individual-based process converges to the
integro-differential equation, Fournier et al. (2004); Champagnat et al. (2006, 2007). Similarly to
our current paper, they capture the dynamics of lineages. Interestingly, as a first step of their
analysis, they consider the same linear equation as in (1.3). First, they deal with the case where
the integral operator B is replaced by a Laplace (diffusive) operator, which we tackle in Section 3.2,
and then proceed to follow the same methodology with a model with a probability kernel. This
work is loosely based upon an article of Marguet (2019), where the author studies the dynamics of
trait of a “typical” individual in branching processes.

A number of studies have investigated the change of phenotype in response to environmental
changes, such as in climate change or drug resistance, see Parmesan (2006); Hoffmann and Sgro
(2011); Collot et al. (2018). Mathematically, a very large number of models describe the adaptation
of population in a steady environment, for instance, Diekmann et al. (2005); Alfaro and Carles
(2014); Champagnat et al. (2006); Gil et al. (2019). In the case of a linearly varying environment,
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there exists reaction diffusion models where a favorable region moves at a certain speed, Berestycki
et al. (2009); Berestycki and Fang (2018), but it does not describe an adaptation phenomenon
contrary to Alfaro et al. (2017), which considers a population structured in trait and space. In
a still ongoing work, Bouin et al. (2020) obtain analytical features measuring the dynamics of
adaptation for an integro-differential model in the same vein than (1.1). Their methodology is based
upon quantitative genetics models, see Diekmann et al. (2005); Perthame and Barles (2008); Lorz
et al. (2011), but also encapsulates the case where the operator B describes sexual reproduction
via the infinitesimal operator, see Calvez et al. (2019); Patout (2020) for an adaptive dynamics
description (without environmental change) of this operator. The case of a periodically fluctuating
environment has also been studied, see Lorenzi et al. (2015); Figueroa Iglesias and Mirrahimi (2018,
2019); Carrère and Nadin (2020). Recently, Roques et al. (2020) proposed a methodology to deal
with general changing environments (linear, oscillating or stochastic for instance) in the case of
quadratic selection and a diffusion operator.

Adaptation also has profound consequences on the neutral genetic diversity and genealogies.
In particular, in rapidly adapting populations, selective sweeps have a strong effect on genealo-
gies Smith and Haigh (1974); Kaplan et al. (1989); Barton (1998); Barton and Etheridge (2004);
Billiard et al. (2015). Some theoretical studies based on fitness stochastic model have investigated
these effects on population expanding their range. They found that the genealogies of individu-
als at the front are not described by the classical Kingman coalescent but by a special type of
multiple-merger coalescent, the Bolthausen-Sznitzman coalescent Brunet et al. (2007); Neher and
Hallatschek (2013); Berestycki et al. (2013); Desai et al. (2013), although see also Etheridge and
Penington (2020) where a Kingman coalescent is obtained when including a strong Allee effect
in the range expansion. Moreover, in the context of soft sweeps which corresponds to selective
sweeps that originate from multiple genomic backgrounds, Brunet et al. (2007); Neher and Hal-
latschek (2013); Desai et al. (2013) have shown that most of individuals trace back to one of two
or more ancestral parents on which the selected mutation arose. In the context of adaptation to
changing environment we could ask what are the traits of the ancestors of the individuals with
the most common trait? However, little is known about the effect of adaptation due to changing
environment on the neutral genetic diversity and the corresponding genealogies. In this paper, we
aim to tackle this question using new mathematical tools.

We will use a seminal spectral result of Coville and Hamel (2019), where the authors tackle the
existence of a spectral pair (λ, F ) solution of

(1.4) λF (z)− c∂zF (z) + µ(z)F (z) = βB(F )(z) ,

This provides an equilibrium profile, since F (z − ct) is a stationary solution of (1.1) in the moving
frame, and the eigenvalue is given by a simple formula:

(1.5) λ = (β − µ0)

∫
R
F (z′)dz′.

This eigenvalue plays an important role in our analysis. On the one hand, thanks to (1.5), it delivers
information about the size of population at equilibrium in the presence of a changing environment.
Moreover, one should note that a formal integration of (1.4) yields

(1.6) λ =

∫
R

(β − µ(z))
F (z)∫

R F (z′)dz′
dz := β − µ̄,

where the mean mortality rate µ caused by selection is defined by

µ =

∫
R
µ(z)

F (z)∫
R F (z′)dz′

dz.
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As a consequence of (1.6), λ can also be interpreted as a measure of the mean “fitness” of the
population, or its mean intrinsic rate of increase, where β − µ(z) is the contribution to population
growth rate of an individual with maladaptation z.

An extended analysis of (λ, F ) is provided in Bouin et al. (2020), in a specific regime of adaptive
dynamics. In particular, they obtain analytical formula for the critical speed of environmental
change above which extinction is predicted, that is the case λ < 0.

The results of Coville and Hamel (2019) hold for general (bounded) potential functions µ but
compactly supported kernels K. However, in the case of a confining potential, for instance qua-
dratic, the result can be extended to more general kernels. As a matter of fact, recently, Cloez
and Gabriel (2019) have extended the same existence result to this case, via a semigroup method
inspired by irreducible aperiodic Markov chains. They further show exponential convergence for
the semigroup, an important result in our study. We therefore make the following assumptions, to
stay in the scope of those previous studies:

Assumptions 1.1.

. β > µ0, so that the eigenvalue defined by (1.5) is positive.

. m is a convex function, such that m(x) = m(|x|), and

lim
|x|→+∞

m(x) = +∞.(1.7)

Without loss of generality we suppose that it admits a (global) minimum at x = 0, such that
m(0) = 0.

. K is a standardized, positive, symmetric and thin-tailed probability kernel:∫
R
K(y)dy =

∫
R
y2K(y)dy = 1, ∃η > 0 s.t.

∫
R
K(y)eη|y|dy < +∞.

. From now on, we assume, until the end of this article, that the solution of (1.1) has reached
its equilibrium, which is

f(t, z) = F (z) for all times t > 0,(1.8)

and F is a non negative function in C1
b (R).

Therefore, we investigate properties of the equilibrium F defined by (1.4) whose existence was
investigated in the earlier works we mentioned: Cloez and Gabriel (2019); Coville and Hamel (2019).

We can now state our first result. Using the neutral fractions defined in (1.3), we are able to
prove the existence of the following ancestral process inside the equilibrium F .

Theorem 1.2 (Ancestral process).

(1) There exists a Feller semigroup, (Ms, s > 0), defined on the set of real continuous bounded
functions, Cb(R), such that, for all (t, z) ∈ R+ × R, and all k ∈ N:

υk(t, z) = F (z)Mt−s

(
υk(s, ·)
F

)
(z), ∀ 0 6 s 6 t.(1.9)

The ancestral Markov process (Ys, s > 0), associated to the semigroup (Ms, s > 0), is thus
the moment dual of υk/F , in the sense of stochastic processes, see (1.11).

(2) The generator of the ancestral process, A, is given by:

Aψ :=
β

F

[
K ∗ (Fψ)− (K ∗ F )ψ

]
+ c∂zψ.(1.10)

for all ψ ∈ C1
b (R+ × R).
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Remark 1.3.

. Note that the initial time of the ancestral process Ys (“s = 0”), can be any t ∈ R. This means
that the trajectory of ancestors is independent of the time at which we sample individuals
in the population.

. By definition of Ys, it also verifies for all (t, z) ∈ R+ × R, for all k ∈ N:

υk(t, z)

F (z)
= Ez

[
υk(s, Yt−s)

F (Yt−s)

]
, 0 6 s 6 t.(1.11)

In this seminal relation lies the reason we refer to Ys as an ancestral process. On the left
of the equality is measured the probability that an individual drawn from those of trait z at
time t is of type k. This is equal, on average, to draw an individual of type k in the past, at
the time t−s, but with a trait biased by the process Y . It measures the relative contributions
of ancestors living at time s among the individuals with trait z at time t. Therefore Y is
the representation of the phenotypic history of each type inside the population.

. A straightforward consequence of our point (2) is that w, the fundamental solution associated
to A, solves the following linear PDE:

(1.12)

 ∂sw(s, y, z) = β

∫
R
K(h)

F (z + σh)

F (z)

(
w(s, y, z + σh)− w(s, y, z)

)
dh+ c∂zw(s, y, z),

w(0, y, z) = δ(z − y).

This can be interpreted as a PDE describing the dynamics in the lineages of the trait y of
ancestors whose descendants eventually reach a trait z in the population.

. From (1.12), we can read explicitly that the ancestral process Ys is a jump process, which

realizes a jump of size σh at the rate K(h)F (z+σh)
F (z) , coupled with a linear drift at speed c.

Remarkably, the ancestral process Ys does not depend on k, since the fractions are neutral. A
major motivation behind the new formulation (1.9) is to be able to replace the discrete neutral
fractions label k in (1.3) by a continuum of neutral alleles to fully apprehend the dynamics of
trait. This is achieved if all the initial data are Dirac masses, indexed by y ∈ R, and can be made
rigorous in the framework of measure-valued equations. The underlying assumption is that each
initial fraction in (1.3) corresponds to a single trait in the population, different for each fraction.
In the following heuristic remark, we detail, via the fundamental solution w, this link between the
ancestral process of Theorem 1.2 and Dirac initialized neutral fractions.

Remark 1.4. Let L be the following linear operator:

(1.13) L(ψ) = β
(
K ∗ ψ − ψ

)
+ c∂zψ −

(
µ− µ

)
ψ.

By construction, L is the differential operator that acts on the fractions in (1.3). Those are equiv-
alently defined as the solution of the following Cauchy problem:

(1.14)

{
∂tυ

k(t, z) = L(υk(t, ·))(z) for t > 0, z ∈ R
υk(0, z) = υk0 (z), z ∈ R.

Next, define for any y ∈ R, υy as:

υy(t− s, z) = F (z)w(s, y, z) for any 0 6 s 6 t, and z ∈ R,(1.15)

where w is the fundamental solution associated to A, the generator of the ancestral process, see
(1.12). Then, one can show, via a simple computation detailed in Section 2, that υy solves the

6



following Cauchy problem:

(1.16)

{
∂sυ

y(s, z) = L(υy)(s, ·)(z),
υy(0, z) = δ(z − y)F (y).

This problem must be compared with (1.14). As a consequence, one can interpret υy as a neutral
fraction (both solve the same evolution equation involving the operator L), with an initial data that
samples a single trait in the population. In that sense, υy corresponds to the phenotypic dynasty of
the trait y in the population. This leads to one of the main message of this article: the ancestral
process defined in Theorem 1.2 admits a correspondence with an understanding of the equilibrium
in terms of sharp neutral fractions.

As a result of Theorem 1.2, we establish the long time behaviour of the lineages.

Proposition 1.5. (Long time asymptotics)
When s → ∞, the ancestral process Ys converges in law towards a random variable Y∞, which
admits the following density:

Fϕ∫
F (y′)ϕ(y′)dy′

,

where ϕ is the non-negative stationary solution of the dual problem:

L∗(ϕ) = β
(
K ∗ ϕ− ϕ

)
− c∂zϕ−

(
µ− µ

)
ϕ = 0.(1.17)

Proposition 1.5 hinges on Proposition 3.1, which is an adaptation of previous results adapted to
the case of our model. As a matter of fact, time asymptotic result were sufficient, in those previous
studies that used neutral fractions in the field of reaction diffusion equations, to gather pertinent
information. In Garnier et al. (2012), it is precisely a dichotomy in the large time behavior of
fractions that proves to be the adequate criteria to discriminate between pulled and pushed fonts.
In our case, not every trait z present in the equilibrium contributes to the distribution of ancestors
the same way. Their contribution is given by the distribution of Y∞. We have the more quantitative
following result.

Corollary 1.6. The distribution of Y∞ is symmetric: for any ψ ∈ Cb(R),

E [ψ(−Y∞)] = E [ψ(Y∞)] ,

in particular,

E [Y∞] = 0.(1.18)

Moreover, the law of Y∞ is absolutely continuous with respect to the Lebesgue measure and its
density admits a local extremum at 0.

Corollary 1.6 shows that, if we look far enough in the past, the ancestor of any individual in
the population should have on average the trait 0 (in the moving frame), corresponding to the
optimal trait with respect to selection. In particular, the common ancestors of individuals with
the dominant trait have, on average, the optimal trait. This shows a striking non trivial dynamics
inside the equilibrium. As seen on Figure 1, the density of individuals at the optimal trait 0 is very
low in the equilibrium, because of the lag in adaptation. Therefore, we learn from the analysis an
interesting feature of adaptation of our model: the persistence of the equilibrium is critically linked
with the existence of mutants with the optimal trait, in order to be able to follow the linear drift
of the environment.

We next focus on the regime of adaptive dynamics. It considers that mutations have small effects,
and that time is accelerated to be able to look at the cumulative effect of those mutations. It this
case, this corresponds to σ → 0, with a rescaled time of order t/σ. We show that in this regime our
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ancestral process Ys takes an “explicit” form. Before stating our result, we define the Hamiltonian
corresponding to the kernel of mutations K:

H(p) :=

∫
R
K(y) exp(yp)dy − 1.(1.19)

We also introduce the following rescaling limit of F , that holds locally uniformly, and is the result
of Lorz et al. (2011):

U := lim
σ→0

(−σ logF ).(1.20)

U is a C1(R) function, solution of an Hamilton Jacobi equation, see section 4.1 for further details.

Proposition 1.7 (adaptive dynamics regime).
We suppose that the speed of the moving optimum is scaled as follows:

c′ =
c

σ
.

We define Mσ
s :=Ms/σ. Then, for all times s ∈ R+, z ∈ R and ψ ∈ Cb(R),

Mσ
sψ(z) −−−→

σ→0
ψ(Γz(s)), locally uniformly in time,(1.21)

and, for any ε > 0 and T > 0,

lim
σ→0

P
(

sup
s∈[0,T ]

|Ys − Γz(s)| > ε
∣∣∣Y0 = z

)
= 0,(1.22)

where Γz is the solution of the following ODE:

(1.23)

{
Γ̇z(s) = c′ − β∂pH(∂zU(Γ(s))), s > 0
Γz(0) = z.

H is the Hamiltonian of (1.19) and U the limit function such that the limit (1.20) holds.

The ancestral process in this limit regime is completely deterministic, which is to be expected
since the source of randomness is the kernel K whose variance vanishes.

Remark 1.8. We can propose a different interpretation of Proposition 1.7, in terms of partial
differential equations. Alternatively, it means that the fundamental solution wσ, introduced in
(1.12), converges in the sense of distributions, when σ → 0, up to the acceleration of time, towards
w0 the solution of this transport equation:

(1.24)

{
∂sw0(s, y, z) = −

(
c′ − β∂zH(∂zU(z))

)
∂zw0(s, y, z),

w0(0, y, z) = δ(z − y).

The integral flow of the transport equation (1.24), which arises from the study of neutral fraction
is exactly given by the ODE (1.23). Strikingly, it coincides precisely with an heuristic formula for
the ’typical lineage’ inside an equilibrium described by an Hamilton-Jacobi equation. We refer to
the details around equations (4.11) and (4.14) in Section 4.1, where we explain how this formula
has its origin in the field of the Weak-KAM theory, independently of neutral fractions. Therefore,
we justify this interpretation, as σ → 0, since Γ is indeed the typical lineage in the sense of (1.22).

The regime σ → 0 has been widely studied following its introduction in the context of evolution
by Diekmann et al. (2005). It is connected to large deviations theory, see Champagnat et al. (2019).
It typically manages to describe how a population concentrates around one or many traits, see for
instance Barles et al. (2009); Lorz et al. (2011), in the regime of rare mutations. The method
usually implies that time is accelerated, as in Proposition 1.7, to be able to look at the effects of
the (rare) mutations on the population. In fact, this kind of asymptotics has already been studied
for (1.1) in the aforementioned literature, and the existence and convergence towards U in (1.20) is
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a direct consequence. The Proposition 1.7 is a new bond with the adaptive dynamics literature. It
establishes that the Hamilton-Jacobi structure delivers very rich information upon the way solutions
concentrate, keeping even a trace of ancestral lineages. To the best of our knowledge, it was not
shown before this article.

A detailed analysis of this specific regime, and what relevant ecological information can be
deduced from it, is carried out in the ongoing work of Bouin et al. (2020). The rest of this article
is organized as follows

. First, we provide the proof of Theorem 1.2, and we illustrate the link between fractions and
the ancestral lineages on numerical simulations of equations (1.3) and (1.16).

. Next, we detail the proof of Proposition 1.5. We also provide numerous numerical simu-
lations and we compare the theoretical long-time asymptotics with the simulations. Sec-
tion 3.2 is devoted to the simpler diffusive approximation, in which explicit computations
are possible. Corollary 1.6 is then proved in Section 3.1.

. We finally tackle in Section 4 the specific adaptive dynamics regime, where we prove Propo-
sition 1.7 and we further discuss its implications. It includes a detailed discussion on the
adaptive dynamics methodology for our model, inspired by Bouin et al. (2020). We fi-
nally compare the theoretical results with individual based simulations keeping track of the
lineages.
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2. Link between lineages and fractions: proof of Theorem 1.2

The existence of the Feller semigroup holds true because the generator A defined, for all ψ ∈
C1
b (R+ × R), by

Aψ :=
β

F

[
K ∗ (Fψ)− (K ∗ F )ψ

]
+ c∂zψ,

verifies all the hypotheses of the Hille-Yosida Theorem.

a) First, A is defined upon the set C1
b (R), a dense part of Cb(R).

b) Next, the operator A verifies the maximum principle. This is clear from the expression of
A, and is maybe even clearer on the following equivalent expression of A which highlights
the structure of a jump process coupled with transport:

(2.1) Aψ(z) = β

∫
R
K(h)

F (z + σh)

F (z)

(
ψ(z + σh)− ψ(z)

)
dh+ c ∂zψ(z), z ∈ R.

c) Finally, one needs to check that there exists θ ∈ R such that for any g in a dense subset of
Cb(R), the equation

θψ −Aψ = g(2.2)

admits a solution ψ ∈ C1
b (R). To check this, the simplest way is to notice that the generator

A can be rewritten as follows, for all ψ ∈ C1
b (R) :

Aψ =
L(Fψ)

F
,(2.3)
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where L is defined in (1.13) as the differential operator acting upon fraction υk for every k.
This is a consequence of the following computation, starting by:

1

F
L(Fψ) =

β

F

(
K ∗ (Fψ)− Fψ

)
+

1

F
c ∂z(Fψ)− 1

F

(
µ− µ̄

)
ψF.(2.4)

In addition, F is a stationary profile, i.e.

L(F ) = 0.

Thus, by multiplying each side of this equality by ψ, one obtains:

ψ

F
c ∂z(F )− 1

F

(
µ− µ̄

)
ψF − 1

F
βψF = −ψ

F
βK ∗ F.(2.5)

Plugging (2.5) into (2.4),

1

F
L(Fψ) =

β

F

(
K ∗ (Fψ)− ψK ∗ F

)
+ c ∂zψ = Aψ,

and therefore the identity (2.3) is justified. We deduce that the existence of solution of (2.2)
is a direct consequence of the similar statement for L, and a justification of this standard
result can be found in Bansaye et al. (2019).

Therefore, thanks to points a), b) and c), the Hille-Yosida Theorem (Ethier and Kurtz, 2009, Chap-
ter 4, Theorem 2.2), guarantees that there exists a strongly continuous semigroup (Ms, s > 0) such
that for every ψ ∈ Cb(R) and s > 0:

d

ds
Msψ =MsAψ, and M0ψ = ψ.

To conclude the proof, we now check that M, the semi group associated to A is associated to the
ancestral process defined by (1.9). To that end, for all (t, z) ∈ R+ × R, 0 6 s 6 t and k ∈ N, we
compute:

d

ds
Mt−s

(
υk(s, ·)
F

)
(z) = −Mt−s

[
A
(
υk(s, ·)
F

)]
(z) +Mt−s

[
∂sυ

k(s, ·)
F

]
(z).(2.6)

We use the relationship (2.3) between A and L for the first term. For the second, we recall that :

∂sυ
k = L(υk).

Plugging this into (2.6),

d

ds
Mt−s

(
υk(s, ·)
F

)
(z) = −Mt−s

[
L
(
υk(s, ·)

)
F

]
(z) +Mt−s

[L(υk(s, ·))
F

]
(z),

= 0.

Since M0 = Id, by evaluating in s = t we have shown that for all k ∈ N and (t, z) ∈ R+ × R,

υk(t, z)

F (z)
=Mt−s

(
υk(s, ·)
F

)
(z), 0 6 s 6 t.(2.7)

The identity (1.9) is established. As a matter of fact, we can also straightforwardly define the
Markov process (Ys, s > 0) associated to (Ms, s > 0), see for instance (Ethier and Kurtz, 2009,
Chapter 4, Theorem 2.7). As a direct consequence of (1.9), the dual relationship of (1.11) is
verified. �
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3. Long time asymptotics of lineages

We now turn towards the study of the long time asympotics of the ancestral process Ys. Note
that, as it can be seen on the duality relationship (1.11), the time of ancestors and of the population
is reversed : the regime s→ +∞ corresponds to studying the most ancient ancestor, “backwards”
in terms of the time t of the equilibrium.

3.1. Long time asymptotics of fractions.
Our statement Proposition 1.5 is based upon a similar result concerning the neutral fractions,
Proposition 3.1:

Proposition 3.1 (Cloez and Gabriel (2019)).
For any k, let υk0 (z) ∈ C1

b (R) be the initial data. Then, the neutral fraction υk that solves the
Cauchy problem (1.3) converges, when s→∞ towards a proportion of the total population F . This
proportion only depends on the initial data υk0 (z), as follows:

υk(s, ·) L1

−−−→
s→∞

p[υk0 ]F, with p[υk0 ] :=

∫
R
υk0 (z)ϕ(z)dz∫

R
F (z′)ϕ(z′)dz′

,(3.1)

where ϕ is defined as the non-negative solution of the following dual stationary problem:

0 = β
(
K ∗ ϕ− ϕ

)
− c ∂zϕ−

(
µ− µ

)
ϕ.

The proof of this result hinges entirely on the recent results of (Cloez and Gabriel, 2019, Theorem
2.1), and we believe it can be deduced as well from the general semigroup analysis of growth
fragmentation equations presented in Mischler and Scher (2016).

We can observe that every fraction contributes to the equilibrium asymptotically. This means
that the soliton generated by the Cauchy problem (1.1) is pushed in the sense of Garnier et al.
(2012). This was expected because the heterogeneity of µ(z) produces on the leading and rear
edges of the pulse two unfavourable zones where the mortality is high. We know from Garnier
and Lewis (2016), that any mechanisms that constrain the propagation tend to produce pushed
travelling wave solutions.

Proof of Proposition 1.5.

Consider a function ψ ∈ C1
b (R), and define ψ̃ = Fψ, also a function of C1

b (R). Next we consider a

neutral fraction υ, in the sense of (1.3), initiated with ψ̃. This means that{
∂tυ(t, z) = L(υ(t, ·))(z) for t > 0, z ∈ R
υ(0, z) = ψ̃(z), z ∈ R.

One applies the semigroup property (1.11) and takes s = t. This yields the following dual relation-
ship:

υ(t, z)

F (z)
= Ez

[
ψ̃(Yt)

F (Yt)

]
= Ez [ψ(Yt)] .(3.2)

Moreover, with Proposition 3.1, the left hand side converges, when t→∞ towards p[ψ̃]:

p[ψ̃] =

∫
R
ψ̃(z)ϕ(z)dz∫

R
F (z′)ϕ(z′)dz′

=

∫
R
F (z)ψ(z)ϕ(z)dz∫
R
F (z′)ϕ(z′)dz′

,

11



where ϕ verifies L∗(ϕ) = 0. Note that, by definition of Y∞, we have that

p[ψ̃] = Ez [ψ(Y∞)] .

Therefore, with (3.2), we have shown that for any ψ ∈ C1
b (R),

Ez[ψ(Yt)] −−−→
t→∞

Ez [ψ(Y∞)] .

�
For the sake of consistency, one may observe that the density found for the fractions in Proposi-

tion 3.1 is consistent with the heuristics of Dirac initiated fractions, made in Remark 1.4. Consider
formally υk0 (z) = δ(z − y)F (z) and apply to it the asymptotic result of the fractions stated in
Proposition 3.1. One recovers the formula for the density of Proposition 1.5.

Proof of Corollary 1.6.
To show Corollary 1.6, we adapt the arguments of the diffusive approximation. We find out that
there exists again an explicit link between the solution of the dual problem and the original one.
Notice that ϕ(z) := F (−z) satisfies

L∗(ϕ) = 0,

with L defined back in (1.17). The reason is that µ is an even function. Therefore, the function
Fϕ is even, and Y∞ admits an even density. Corollary 1.6 immediately follows. �

3.2. An illuminating example, the diffusive approximation.
To illustrate the scope of Proposition 1.5, we take an example where explicit computations are
possible, the diffusive approximation. The method we will use in that context will be enlightening
to tackle the Corollary 1.6 in Section 3.1. It is well known that if the mutational variance σ2 is
small, the convolution operator B defined in (1.2) can be approximated by:

B(F )(z) ≈ βF (z) + β
σ2

2
∂2
zF (z).

For clarity, we adopt in this section the same notations as previously. Therefore, in the present
section only, the operator L, defined in (1.13), becomes:

(3.3) L(v) = β
σ2

2
∂2
zv + c∂zv −

(
µ− µ

)
v

This corresponds to the evolution of fractions inside an equilibrium F , the stationary profile, that
verifies L(F ) = 0. We sum up the results for this approximation in the following proposition.

Proposition 3.2 (The case of the diffusive approximation).
The ancestral process (Ys, s > 0) associated to the model of the diffusive approximation (3.3) admits
the following generator:

Aψ = β
σ2

2
∂2
zψ +

(
β
σ2

2

∂zF

F
+ c

)
∂zψ.(3.4)

When s→∞, the limit process Y∞ admits a density given by(
F (y)ecy/(βσ

2)
)2∫

R

(
F (y′)ecy

′/(βσ2)
)2
dy′

.

In addition Y∞ admits a local maximum at z = 0 for σ small enough.
12



Classically, a similar result to Proposition 3.1 can be established in the case of the diffusive
approximation, and Proposition 3.2 hinges on that to get the similar results of Theorem 1.2 on the
existence of the ancestral process. As a matter of fact, this shows that mathematically, our results
can be extended to all operators L such that asymptotic results have been established, and we refer
to Section 5 for further discussion.

Applying our ancestral result of Theorem 1.2, we deduce that the generator A of the ancestral
process verifies

Aψ =
1

F
L(Fψ) = β

σ2

2

(
1

F
∂2
z (Fψ)− 1

F
ψ∂2

zF

)
+ c∂zψ.

After simplification, using L(F ) = 0, one finds that the expression for A becomes

Aψ = β
σ2

2
∂2
zψ +

(
β
σ2

2

∂zF

F
+ c

)
∂zψ,

as in (3.4). We thus see that, in this diffusive approximation, the ancestral process (Ys, s > 0)
solves a stochastic differential equation of the form

dYs =

(
β
σ2

2

∂zF (Ys)

F (Ys)
+ c

)
ds+

√
βσ2dBs,(3.5)

where (Bs, s > 0) is standard Brownian motion.
Similarly to its definition in (1.17), let ϕ be the solution of the dual problem:

L∗(ϕ) = β
σ2

2
∂2
zϕ− c∂zϕ−

(
µ− µ

)
ϕ = 0.

It turns out that, there exists an explicit link between F and ϕ. Computations show that

ϕ(z) = F (z)e2cz/(βσ2).

By applying the formula of Proposition 1.5, it means that the asymptotic distribution of ancestors
Y∞ admits an ‘explicit’ density: (

F (y)ecy/(βσ
2)
)2∫

R

(
F (y′)ecy

′/(βσ2)
)2
dy′

.

The function defined for each z as F̃ (z) := Fecz/(βσ
2) is even, since µ is an even function by

hypothesis and F̃ is the (unique) solution of:

(3.6) β
σ2

2
∂2
z F̃ −

(
µ− µ+

c2

2βσ2

)
F̃ = 0.

Therefore y 7→
(
F (y)ecy/(βσ

2)
)2

is also even, and as a consequence Y∞ is symmetric. As a result,

F̃ admits a (local) extrema at z = 0. To obtain more information we must investigate the sign

of ∂2
z F̃ (0). Going back to (3.6), we first notice that µ0 − µ̄ < 0. Therefore, if σ is sufficiently

small, we find that ∂2
z F̃ (0) > 0, and therefore Y∞ admits a local maximum at 0, as claimed in

Proposition 3.2.
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The quadratic selection. We can even consider a simpler model, where m(z) = z2/2, instead of
a general convex selection function. In that case, it is well known that explicit Gaussian solutions
of the stationary equation exist. More precisely, the solution of

(3.7) λF (z)− c∂zF (z) +
z2

2
F (z) = βF (z) +

βσ2

2
∂2
zF (z), for z ∈ R,

is given by

(3.8) F (z) =
λ√

2πσ
√
β

exp

(
− 1

2σ
√
β

(
z +

c

σ
√
β

)2
)
, λ = β − c2

2βσ2
− σ
√
β

2
.

Up to a constant, F is a Gaussian distribution centered around an optimum proportional to c, that
lags behind the optimal trait, and a variance proportional to σ (instead of σ2). In the eigenvalue
λ, we recognize the lag load : c2/2βσ2, that is the weight to keep pace with the environment, and
the mutation load : σ

√
β/2. In addition, we see that the speed of change c must be small enough

for the population to persist (λ > 0 if c 6 σβ
√

2
√

1− σ/(2√β)). In particular, c must be of order
σ, just as in the adaptive dynamics regime of Proposition 1.7.

Moreover, we show that Y∞, the asymptotic (as s→∞) ancestral distribution of Ys, is a Gaussian
distribution centered at z = 0 and with variance σ

√
β/2, since its density is given by:

(Fϕ)(z) =
1√
πσ
√
β

exp

(
− z2

σ
√
β

)
.

The variance of the ancestral distribution is σ
√
β/2. Noticeably, it is reduced compared to the

variance of the trait distribution at equilibrium. This variance is also equal to the mutation load.
In fact, in this setting, the process (Ys, s > 0) is an Ornstein-Uhlenbeck process, as can be seen

by substituting (3.8) in (3.5). We can thus also derive an explicit formula for the trajectories along
time of the mean and the variance of the ancestral distribution Ys. We have:

Ez(Ys) = ze−σ
√
βs and Varz(Ys) =

σ
√
β

2

(
1− e−2σ

√
βs
)
.(3.9)

We can observe that the variance does not depend on the reference point z and eventually
converges as s→∞ to σ

√
β/2, the mutation load. Moreover, we see that the mean of the ancestral

distribution converges to 0 exponentially fast, at a rate σ
√
β. Building on this, we can conjecture

that, if the selection function is no longer quadratic, as in (3.3), the convergence rate of the
mean Ez(Ys) is given, this time around by σ2β/Var(F ) where Var(F ) is the variance of the trait
distribution of the population at equilibrium.

3.3. Transient and asymptotic dynamics of the ancestral process: numerical insights.
We first present some detailed numerical pictures of our results. In Figure 2, we show the asymptotic
density of the ancestral lineage Y∞. Thanks to Proposition 3.1, one knows that it also represents
the proportion p[y] of ancestors of phenotype y in the population, asymptotically as s → ∞. As
expected by our results, it is an even function with a maximum at the phenotype 0. It is striking
to notice that despite the very low density F around 0, most ancestors have a trait close to this
optimal trait.

As we explain in Remark 1.4, an interpretation of the ancestral process is to assume a continuous
number of neutral fractions υy, indexed by a parameter y ∈ R, and to start with the initial data
δ(z− y)F (y). Numerically, we simulate the problem (1.16), for a large number of initial phenotype
y ∈ R, corresponding to a sharp discretisation of the trait space. Figure 3 represents the cumulative
(over y) densities of the fraction υy we use for our simulation. We observe that, as expected, the
sum over all fractions υy is equal to F , the total population.

14



z* 0

Phenotypic trait in the moving frame

Figure 2. In solid blue: density of Y∞, and in dashed black: the equilibrium F .

Figure 3. Initial cumulative densities of the fractions υy, s = 0.

Thanks the simulations of all those fractions, we can track the evolution of lineages at all times
in the population, and not only settle for the asymptotics of Proposition 1.5 and Figure 2. Figure 4
shows the evolution of the distribution of the ancestral lineage at different times s. The evolution
depicted by Figure 4 is explained as follows. Initially (s = 0), the fraction consists of a Dirac mass
at z∗. This means that we sample individuals in the population with the trait z∗. Then, as s→∞
we go back in time and Figure 4 pictures the distribution of the ancestors with trait z at different
fixed times. As s increases to infinity, we see that the distribution gradually shifts towards the
right, until eventually it reaches the stationary state. The thick line we observe is therefore another
representation of the asymptotic density of ancestors displayed in Figure 2.

To better grasp the evolution of lineages ending at trait z along time, we look at the mean trait
of the ancestors Ez(Ys) and the variance of the ancestors’ trait Varz(Ys) as a function of s. We
can guess from Figure 4 and the diffusive approximation, that the variance grows until it reaches
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Figure 4. Snapshots of the density of Ys for different times s, with initial sample
at the trait z∗. Lighter colors refer to smaller times.

0

0

z∗

← Time s

S
ta

ti
st
ic
s
o
f
th

e
a
n
c
e
st
ra

l
tr
a
je
c
to

ry
υ
z
∗
(s
,z
)

Mean
Median

Figure 5. Evolution of the mean and median of υz
∗
(s, z) along time. The grey

area corresponds to the region between the 5% and the 95% quantile of the distri-
bution. Time s increases towards the left, to insist that it is “backwards”, and to
be consistent with individual based simulations and the adaptive dynamics regime
of further sections, see Figure 7.

its stationary value, while the mean converges to 0. This is confirmed by the Figure 5. We also
displayed along the 5% and the 95% quantile of the distribution, to get a grasp of the width of the
ancestral process.

4. Adaptive dynamics regime

We finally tackle in this section the adaptive dynamics regime. In a first part, largely inspired by
the ongoing work of Bouin et al. (2020), we explain how to obtain quantitative results measuring
the impact of environmental change on the fitness of individuals or the shape of the distribution,
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for instance. Their idea is to introduce a small scaling parameter:

ε :=

√
σ2
β

α
, with α := ∂2

zm(0) > 0.(4.1)

and then be able to characterize the limit ε → 0. They monitor a weak selection regime, in the
sense that either the variance σ2 is small, or the selection is weak compared to birth:

α

β
� 1.

In both cases the parameter ε is small. We recall that α is a way to measure the strength of
selection around the global optimum of µ at the trait 0, see Assumption 1.1.

We will explain how in the regime of σ � 1, we can get intuitive results about lineages. Then,
we will prove the Proposition 1.7 and show how it covers those previous heuristics. We will finally
provide numerical simulations of individual based models keeping track of the lineages to illustrate
our previous results.

4.1. Hamilton Jacobi limit for (1.1) and heuristics about lineages.
We will briefly explain how, when σ → 0, the equilibrium F concentrates around a mean trait
value, z∗, with a standing variance. Recall that F is a solution of the integro-differential equation
(1.4), which we rewrite here:

λF (z)− c∂zF (z) + µ(z)F (z) =
β

σ

∫
R
K

(
z − z′
σ

)
F (z′) dz′.(4.2)

Here, to keep things simple, we will not introduce the parameter ε as in Bouin et al. (2020).
We keep our biological parameters introduced in (1.1) and study a less general regime, the small
variance limit, that is σ → 0. When that happens, one expects concentration around a specific
trait, guided by selection, see Barles et al. (2009); Lorz et al. (2011) for instance. This motivates
the following logarithmic transform:

F (z) = exp

(
−U(z)

σ

)
.(4.3)

Plugging (4.3) into (4.2), yields the following equality :

λ+
c

σ
∂zU(z) + µ(z) =

β

σ

∫
R
K

(
z − z′
σ

)
exp

(
U(z)− U(z′)

σ

)
dz′.(4.4)

To obtain a finite limit when σ → 0, it seems clear that the speed of environmental change must
be scaled as σ, this is why we make the following assumption, as in Proposition 1.7:

c := σc′.(4.5)

We finally make the single approximation of this computation, for the integral term of (4.4):

∀z′ ∈ R, exp

(
U(z)− U(z′)

σ

)
≈ exp

(
−z − z

′

σ
∂zU(z)

)
.

Therefore by an affine change of variable, (4.4) is expressed as:

λ+ c′∂zU(z) + µ(z) = β

∫
R
K(y) exp

(
y∂zU(z)

)
dy.

Note that assumptions made in Assumption 1.1, on the exponential decay of K, make possible to
define the Hamiltonian H as in (1.19) for all p ∈ R:

H(p) :=

∫
R
K(y) exp(yp)dy − 1.
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Finally, we have established the following Hamilton-Jacobi equation, for σ = 0:

λ+ c′∂zU(z) + µ(z) = β + βH(∂zU(z)).(4.6)

Note that the convergence when σ → 0 of Uσ solution of (4.4) towards U0 solution of the Hamilton
Jacobi equation (4.6), in the sense of viscosity solutions, is established in Barles et al. (2009); Lorz
et al. (2011).

Introduce the Lagrangian function L corresponding to K, the Legendre transform of H:

L(v) := max
p∈R

(
pv −H(p)

)
.(4.7)

The asymptotic σ → 0 yields explicit formulas, expected to be true when σ is small. For instance,
Bouin et al. (2020) show how to get a first order (in ε defined in (4.1)) approximation for the growth
rate λ :

λ ≈ β − µ0 − βL
(
c′

β

)
+O(ε).(4.8)

Thanks to this formula, they can compute a threshold on c so that the population does not go
extinct, corresponding to the limit case λ < 0. See (4.20) and what follows for a full justification.
Moreover, by taking z = z∗ in (4.6), we obtain an equation that dictates the position of the
dominant trait z∗:

m(z∗) = βL

(
c′

β

)
,(4.9)

Beyond those formulas, we are interested, in our case, in the dual representation of U , the solution
of (4.6), see Barles and Roquejoffre (2006) for a justification of this formula, that stems from the
Weak-KAM theory:

U(z) = inf
γ s.t. γ(0)=z

∫ 0

−∞

[
L

(
γ̇(s) + c′

β

)
− β + µ(γ(s)) + λ

]
ds.(4.10)

The infimum is taken over all functions γ ∈ C1(R−) that reach the phenotype z at time 0, when
going backward in time. This constitutes a reformulation of the spectral problem (4.6) into an
equivalent variational problem. Along a phenotypic path γ, an optimal trajectory must minimize
the cost. This cost comes from the combined weight of mutations through L (at speed γ̇ + c′) and
selection through µ. The birth rate β plays an opposite role of selection, while λ is the term that
balances the expression, just as in (4.6).

In terms of ancestral lineages, an interpretation of the formula is to consider the minimizing
trajectory of (4.10) as the typical phenotype of ancestors inside the equilibrium that eventually give
the phenotype z at a given end time, here 0.

Let Γ be such a minimizing trajectory. The knowledge of the function Γ for any end point
z is somehow richer than the one of the profile U since it accounts, backwards in time, for the
full dynamics of the equilibrium from time −∞ to 0. Given the supposed existence of Γ, or of a
trajectory that is arbitrarily close to optimum, we can make the following formal analysis, starting
by evaluating the energy of (4.10) along Γ:

U(z) =

∫ 0

−∞

[
L

(
Γ̇(s) + c′

β

)
− β + µ(Γ(s)) + λ

]
ds.(4.11)

One should expect Γ̇(s) to converge to 0 when s → −∞. Otherwise, the mortality µ(Γ) would
become arbitrarily large and so the trajectory would not be a minimizer since U0(z) could take the
value +∞. Formally, this implies that if Γ converges when s→ −∞, then necessarily it is towards
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the value 0, in order to minimize the selection function µ. With this formal argument we expect
that :

Γ(s) −−−−→
s→−∞

0.

This limit has to be put in parallel with Corollary 1.6. We discover here once again that asymptot-
ically in time the ancestors are expected to come, in majority, from the optimal trait 0. Assuming
this limit holds true, it prescribes the value of λ such that the integrand in (4.11) vanishes, since
otherwise U would be infinite:

L

(
c′

β

)
− β + µ(0) + λ = 0.(4.12)

Since µ(0) = µ0, and c = c′σ was the rescaling of the original speed of adaptation to the variance

of mutations, the formula coincides with (4.8). The term L
(
c
σβ

)
measures the constraint of having

to keep pace with the environment evolving at speed c, while µ0 − β is the fitness cost for the
optimally fitted asymptotic individuals of the lineage.

To conclude the remarks around the variational (4.10), one can, by means of consistency consis-
tency with the rest of this article, we can rewrite it, up to a slight abuse of notation as

U(z) = inf
γ s.t. γ(0)=z

∫ +∞

0

[
L

(−γ̇(s) + c′

β

)
− β + µ(γ(s)) + λ

]
ds.(4.13)

Then, as a byproduct of the Weak-KAM theory, on can show that the optimal trajectory Γ of the
variational problem (4.13) is the solution of an Ordinary Differential Equation, for instance Hairer
et al. (2006):

Γ̇(s) = c′ − β ∂pH
(
∂zU

(
Γ(s)

))
, s > 0(4.14)

Γ(0) = z.

This result comes from the Hamiltonian/Lagrangian structure of (4.10), and more precisely from
working on the characteristics of this Hamilton Jacobi equation. It is not simpler to solve (4.14),
since U itself depends on Γ, but it gives information on the whole behavior of Γ. It will prove to be
nonetheless a useful equation to simulate Γ, if one is externally handed the profile U , for instance
numerically.

Going back to the initial motivations stated at the beginning of this article, a key point of
our analysis is that this equation on Γ can be recovered from our ancestral process. In other
words, equations (1.23) and (4.14) coincide. In the next part, we will establish this link, proving
Proposition 1.7. Finally, to further assess our interpretation of Γ as a typical lineage, we will run
individual based stochastic simulations and compare them with both the neutral fractions and the
theoretical formula for Γ given by (1.23).

4.2. Proof of Proposition 1.7.
We will use a classical result, stated for instance in (Kallenberg, 2006, Theorem 17.25) to link
the convergence of the generator A and the convergence of the semi group M. We consider
ψ ∈ C2

b (R+×R), as it is a classical result that it constitutes a core for A, Cloez and Gabriel (2019);
Bansaye et al. (2019). Then, by defining Aσ the generator corresponding to the semigroup Ms/σ,
for any s > 0, we get,

Aσψ(z) =
β

σ

∫
R
K(h)

F (z + σh)

F (z)

(
ψ(z + σh)− ψ(z)

)
dh+

c

σ
∂zψ(z), z ∈ R.
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We introduce the function Uσ as in (4.3). Then the previous equation writes

Aσψ(z) =
β

σ

∫
R
K(h) exp

(
−Uσ(z + σh)− Uσ(z)

σ

)(
ψ(z + σh)− ψ(z)

)
dh+

c

σ
∂zψ(z).

By a Taylor expansion,

ψ(z + σh)− ψ(z) = σh∂zψ(z) +
σ2h2

2
∂2
zψ(z̃),

for some z 6 z̃ 6 z + σh. Therefore,

(4.15) Aσψ(z) = β

∫
R
K(h) exp

(
−Uσ(z + σh)− Uσ(z)

σ

)
h∂zψ(z)dh

+ σβ

∫
R
K(h) exp

(
−Uσ(z + σh)− Uσ(z)

σ

)
h2

2
∂2
zψ(z̃)dh+

c

σ
∂zψ(z).

Thanks to Barles et al. (2009) and Lorz et al. (2011), we know that Uσ converges locally uniformly
towards U , and that U solves the problem (4.6), in the sense of viscosity solutions. Moreover, they
show that the following Lipschitz uniform bound holds true:

‖ ∂zUσ‖∞ < η,(4.16)

with η defined in Assumption 1.1. Following the same steps, with viscosity technique, one can show
that the first term of (4.15) converges and the second vanishes. With the rescaling of the speed
c = c′σ, one finally gets

Aσψ(z) −−−→
σ→0

−β
∫
R
K(h) exp

(
h∂zU(z)

)
h∂zψ(z)dh+ c′∂zψ(z) := A0ψ(z).(4.17)

Therefore, thanks to this convergence of generators and (Kallenberg, 2006, Theorem 17.25), we
conclude thatMσ

s , the semigroup associated to Aσ converges to a semigroupM0
s associated to the

asymptotic operator A0. To get the precise convergence of Proposition 1.7, we need to be more
explicit about M0.

Let V be defined by:

V(z) = c′ − β∂pH(∂zU(z)), for all z ∈ R,

and let Γ be defined as the corresponding integral flow:

(4.18)

{
∂tΓ(t, s, z) = V(Γ(t, s, z)),
Γ(s, s, z) = z.

We recall the expression of the derivative of the Hamiltonian defined in (1.19):

∂pH(p) =

∫
R
yK(y) exp(yp)dy.

One can notice that this term appears in the definition of A0, in (4.17), within a transport structure.
More precisely, for any test function ψ, let θ(s, z) =M0

sψ(z). Given the expression of A0, θ then
solves by definition the following equation:{

∂sθ(s, z) = V(z)∂zθ(s, z), s > 0, z ∈ R,
θ(0, z) = ψ(z).

Classically, this advection equation with non constant velocity field admits an “explicit” solution,
based on the knowledge of the integral flow Γ in (4.18):

(4.19) θ(s, z) = ψ(Γ(s, 0, z)).
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Notice that the integral flow Γ, defined in (4.18), coincides by definition with the solution Γz of
the ODE (1.23) in Proposition 1.7: Γ(s, 0, z) = Γz(s). Since θ(s, z) =M0

sψ(z), the formula (4.19)
proves the part of Proposition 1.7 about the convergence of the semigroup.

Furthermore, we claim that the family of Markov processes (Ys, s > 0) indexed by the parameter
σ ∈ [0, 1] is tight for the Skorokhod topology. To prove this, note that

Ys = Y0 + Vs +Ms,

where

Vs = c′s+ β

∫ s

0

∫
R
K(h)

F (Yr + σh)

F (Yr)
h dhdr

and (Ms, s > 0) is a local martingale with predictable variation

〈M〉s = σβ

∫ s

0

∫
R
K(h)

F (Yr + σh)

F (Yr)
h2dhdr.

Using (4.16), we then see that

|Vs′ − Vs| 6
(
c′ + β

∫
R
K(h) exp(‖∂zUσ‖∞ |h|) |h|dh

)
|s′ − s|,

|〈M〉s′ − 〈M〉s| 6 σβ
∫
R
K(h) exp(‖∂zUσ‖∞ |h|)h2dh |s′ − s|.

Since ‖∂zUσ‖∞ < η where η is such that∫
R
K(h)eη|h|dh < +∞,

there exists a constant C > 0, independent of σ, such that∫
R
K(h) exp(‖∂zUσ‖∞ |h|) |h| ∧ |h|2dh 6 C.

This shows that (Ys, s > 0) satisfies the Aldous-Rebolledo criterion for tightness of stochastic
processes, see Aldous (1978) and Rebolledo (1980). Since, for each fixed s > 0, Ys converges
in distribution to the deterministic value Γz(s), this convergence holds also for finite-dimensional
marginals of (Ys, s > 0). Together with tightness, this yields the convergence in distribution of
(Ys, s > 0) in the Skorokhod topology to the deterministic process (Γz(s), s > 0). Given that the
limit is continuous, the convergence also holds in the uniform topology, moreover, since the limit
is deterministic, the convergence also holds in probability, hence (1.22). �

Long time behavior of the ancestral process for σ = 0.
Let us now look at the long time behavior of Y 0

s , the asymptotic ancestral process when σ = 0.
According to our result Y 0

s is deterministic, given by Γz, and therefore we must investigate the
limit of Γz when s → ∞. We will show independently, that as expected from Proposition 1.5, it
converges towards 0, the optimal trait.

To do so, we first look at the stationary state(s) of the ODE (1.23) solved by Γz. If 0 is a steady
state of this ODE, then necessarily, we should have

0 = −c′ + β∂pH(U ′(0)).

This means that U ′(0) is a critical point of the function p 7→ − c′

β p+H(p). From the convexity of

H and the definition of the Lagragian function L in (4.7), we deduce that U ′(0) should satisfy:

−βL
(
c′

β

)
= −c′U ′(0) + βH(U ′(0)).
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Plugging this into the problem (4.6) satisfied by U , we conclude that 0 is a steady state of (1.23)
implies

λ = β − µ0 − L
(
c′

β

)
.(4.20)

Conversely, let us assume that (4.20) holds true. We know, see (4.6) for instance, that (λ,U)
satisfies the following equation

(4.21) m(z) + λ− β + µ0 = βH(U ′(z))− c′U ′(z).
By evaluating this equation at z = 0, we get

λ = β − µ0 + βH(U ′(0))− c′U ′(0).(4.22)

Then, by using our assumption made in (4.20) on the expression of λ, we obtain that necessarily

−βL
(
c′

β

)
= −c′U ′(0) + βH(U ′(0)).

By definition of the Lagrangian function, see (4.7), this implies that

U ′(0) = arg max
p

(c′
β
p−H(p)

)
.

Therefore, we get by differentiating with respect to p that

0 = c′ − β∂pH(U ′(0)).

Finally, we can conclude that 0 is a steady state of (4.14) if and only if λ = β − µ0 − βL(c′/β).
Let us now show that this formula for λ is true, that is

λ = β − µ0 − L
(
c′

β

)
.(4.23)

We will use convex analysis arguments, see (4.12) and below for a heuristic about this formula.
First, the function p 7→ c′p−βH(p) admits a maximum value denoted βL(c′/β). Adding this value
on each side of the equation (4.21), we obtain

m(z) +

[
λ− β + µ0 + L

(
c′

β

)]
= βH(U ′(z))− c′U ′(z) + L

(
c′

β

)
.(4.24)

On the right hand side, the function p 7→ βH(p) − c′p + βL(c′/β) is convex, nonnegative and
reaches zero from the properties of the Hamiltonian H and the Lagrangian L. For the left hand
side of (4.24), this means that the term between brackets must vanish, which gives the desired

formula (4.23). Otherwise, the function z 7→ βH(U ′)(z) − c′U ′(z) + L
(
c′

β

)
takes only (strictly)

positive values. Therefore, U ′ only takes values in one of the two branches of the convex function

p 7→ βH(p)− c′p+L
(
c′

β

)
. On each of these branches, this function is invertible, and therefore, for

each z ∈ R̄, we can invert the relationship (4.24) to deduce the value taken U ′(z). By symmetry of
m, this shows that U ′ is an even function. In turn, this means that

lim
z→+∞

U ′(z) = lim
z→−∞

U ′(z).

This is in contradiction with the assumption U(±∞) = +∞, or equivalently, F (±∞) = 0, i.e. the
population density vanishes at infinity.

Coming back to our initial problem, we have proved that 0 was a stationary state of (1.23). By
convexity of H, p0 = U ′(0) is the only root of the function βH − c′Id. Moreover, it is established
in Lorz et al. (2011) that U , the solution of (4.6) is concave. Therefore U ′ is invertible, and
the equation p0 = U ′(z) has at most a single solution. We conclude that 0 is the unique steady
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steady state of the ODE (1.23). With the same monotony arguments, it is straightforward that, Γ
converges to the unique steady state of the ODE it solves, and therefore, Γ(s) −−−→

s→∞
0.

Approximation of the mean of the ancestral lineages.
Other information can be gathered from the Hamilton Jacobi equation (4.6), in the form of an
analytical approximation of Γ, the typical lineage. Let us first differentiate (4.6) with respect to z,
and then divide by ∂2

zU on each side. We obtain for all z ∈ R,

−c′ + β ∂pH
(
∂zU(z)

)
=

m′(z)

∂2
zU(z)

.(4.25)

Now, our idea is to link ∂2
zU(z) to the variance of the equilibrium F . First, from Bouin et al.

(2020), we have the following approximation at the leading order in σ for the variance:

Var(F ) =
σ

∂2
zU(z∗)

+ o(σ),(4.26)

where we recall that z∗ is the dominant trait in our population. This originates from a Tay-
lor expansion with Laplace’s method of the integrals defining the variance (see Wong (2001) for
instance):

Var(F ) =

∫
R

(z − z∗)2 exp

(
−U(z)

σ

)
dz∫

R
exp

(
−U(z)

σ

)
dz

.

In addition, we make the following rough approximation, valid if z is close to z∗: ∂2
zU(z) ≈ ∂2

zU(z∗).
Plugging this and (4.26) into (4.25), we find that

−c′ + β ∂pH
(
∂zU(z)

)
≈ m′(z)Var(F )

σ
for z close to z∗.

We eventually plug this into the ODE for Γz, (1.23), to find the following approximation

Γ̇z(s) = −Var(F )

σ
m′
(
Γz(s)

)
,(4.27)

Γz(0) = z.

In particular, if the selection function is quadratic, m(z) = z2/2, then the solution of this
ODE is

(4.28) Γz(s) = z exp

(
−Var(F )

σ
s

)
.

In fact, working on the Hamilton Jacobi equation, we can derive a completely explicit expression
for Γ, thanks to a formula for the variance:

Var(F ) =
c′σ

√
2β

√
L

(
c′

β

) .(4.29)

To get this equality, we first use (4.6) to compute the second derivative of U at z∗, and then plug
it into (4.26), to find, as in Bouin et al. (2020), that

Var(F ) = − c′σ

m′(z∗)
.(4.30)

Note that this remains true for any selection function m that satisfies our hypotheses. We also
have another equation that dictates the position of the dominant trait z∗, stated in (4.9). In the
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Figure 6. In continuous green is the solution F of (1.4), and in blue the histogram
of one simulation of the IBM, with about 20000 individuals, see Section 6 for more
numerical details. In dashed red, the corresponding selection function.

particular case of the quadratic selection, we can use it to compute z∗, and then thanks to (4.30),
we find (4.29).

By plugging (4.29) into (4.28), we find the following approximation for the mean trajectories of
the ancestral process, when the selection function is quadratic but the mutation kernel is general:

(4.31) Γz(s) = z exp

(
− c′ s√

2β
√
L (c′/β)

)
.

This formula is completely explicit, since it only depends on the mutation kernel through the
Lagrangian L. However it is an approximation only valid for the case of quadratic selection. This
approximation turns out to be quite robust in our simulations, see the discussion in the next section.

4.3. Numerical methods and simulations.
Thanks to Proposition 1.7 we have justified the interpretation of the Lagrangian structure intro-
duced in section 4.1. We have also established an equation on the typical lineage in this regime, Γ,
solution of (1.23). The aim of this section is first to look at the accuracy of our approximation in a
regime which might be far away from small variance. And secondly, we compare our deterministic
model and our approximation with a classical individual-based model Champagnat et al. (2006,
2007).

The population is described by a vector of individuals, each labeled by its trait. Each individual
has a birth and a death clock, that depends of its phenotypic trait. The size of population must
be large enough to be considered infinite, and even when at equilibrium, it continues to fluctuate
around its deterministic value. In Figure 6, we provide a comparison between the result of one
simulation of the Individual Based Model, and the corresponding deterministic equilibrium. We
observe a good fit between the equilibrium F obtained by a simulation of (1.1) and the distribution
of the IBM, pictured by an histogram. We further expect that simulations of the IBM prove to be a
good match for the lineages of individuals in the equilibrium, even in the regime of Proposition 1.7.
Therefore, we also keep track of the lineages inside the IBM, via a numerical procedure described
in Section 6.
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Figure 7. The y−axis represents the phenotype z in the moving frame (z = x−ct).
The grey background is the (stationary) distribution of individuals according to
F , as simulated by the Individual Based Model. Each line with a different color
represent the lineage of an individual along time, there are many individuals when
the population is sampled at s = 0, on the right hand side (sample among all
individuals that have the dominant trait, pictured in light green), and fewer after
coalescence and a large time s in the lineage (on the left hand side). The equilibrium
has about 20000 individuals, see section 6 for more details.

This leads to the main numerical result of this section, depicted in Figure 7. A simulated
profile F , gives in turn an approximated function U solution of (4.10). We are then able to solve
numerically (1.23), and we plot the theoretical lineage (in red) on Figure 7. We compare that to
the stochastic lineages that were obtained by one simulation of the IBM. Time of the simulation
increases to the right, but, of course, the time of the lineages is reversed. Therefore, the initial
condition of the process Ys is on the right of the figure, individuals were sampled at the dominant
trait. Going left, as the time corresponding to the ancestors increase, we observe a similar behavior
between the mean (in black) of the lineages, and the theoretical one in red. One observes more noise
in the simulated lineages after a certain time, when there are fewer individuals. This is consistent
with the foundation (coalescence) effect for our model we explained by crefcor explicit asymp,
since asymptotically in time the most likely ancestor has the optimal trait, with very few optimally
fitted individuals.

We selected z∗ as the starting point of the lineages, in order to sample initially as many lineages
as possible. From around 20, 000 individuals inside equilibrium, there were around 1,000 initial
lineages, and based on Figure 7, no more than a handful of different common ancestors going back
in time, which explains the eventual difference we observe between the Hamilton-Jacobi formula
and the simulation.
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Figure 8. The red line is the mean of the ancestral process Ys, obtained by simu-
lations of the PDE (1.16). The black lines are the 5% and the 95% quantile of the
distribution of Ys. Every other line with a different color represent the lineage of
an individual in a simulation of the Individual Based Model, as in Figure 7. About
20000 individuals, see section 6 for more details.

Another factor of discrepancy is that σ is not 0 in the simulations, contrary to the regime where
Proposition 1.7 is valid. However, even if σ is not really small, we have a good fit of the deterministic
model and its approximation to the stochastic model, we provide a variety of parameters in REF
FIG. Finally, our analysis cannot capture the coalescence events in the genealogical tree arising
in the individual based simulations, contrary to what is done in Henry et al. (2020). The reason
for this is that we only consider the deterministic large population limit of the process, and that
coalescence events vanish in this limit.

We provide a comparison between the numerical results of Section 3.3, i.e. a PDE approach
of the ancestral process Ys and the results of the IBM. This is pictured in Figure 8. Once again
we only show one realization of the lineages obtained by the IBM, superposed with the statistics
of simulations of (1.16), which were already shown in Figure 5, with the same parameters. We
observe a good fit between our PDE description of Ys, and the distribution of lineages of the
individual-based model along time.

To conclude, we provide a discussion around other sets of parameters in the Figure 10, with a
focus around the mean and the variance of the ancestral process Ys.

5. Discussion

We proposed a methodology to track genealogies inside a mathematical model of mutation and
selection. The ecological limitations of our study originate from the underlying choices of modeling
in the equation (1.1). In that regard, we believe that the assumptions made are fairly general, at
least from a mathematical point of view. The birth rate is assumed constant and independent of
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phenotype, contrary to the mortality rate (selection). From a modeling perspective, this means
that the trait appears through the Malthusian growth rate M , defined as the difference between the
birth and death rate: M(z) = β(z)− µ(z). Therefore up to a change of function µ, we can always
assume that the birth rate is constant and that selection acts only on mortality. We do not assume
an explicit shape for the selection function µ, contrary to, for instance, the celebrated Fisher’s
Geometric Model (FGM). This model assumes an explicit quadratic relationship between phenotype
and fitness. Recently it was used in a PDE setting not far from ours with local or non-local effect
of mutations, Martin and Roques (2016); Gil et al. (2019), to derive explicit formulas for the full
trajectory of mean fitness. We do not consider the so called ’diffusive approximation’, Kimura
(1964), which would consist in B(f) = f + ∆f in (1.2). Instead, this case can be encapsulated in
our analysis as we detail in Section 3.2. More generally, we study a non-local convolution operator,
which can encapsulate many kernels and different scenarios. This is even more noticeable in the
regime of adaptive dynamics, i.e. when σ → 0, as in Proposition 1.7 and Section 4. This is
traditionally the hypothesis made to justify the diffusive approximation. However, we observe that
there is still a (nonlocal) trace of the kernel in this regime, e.g. directly on the formula for the
typical lineage in this regime, (1.23). This is also clear on the formula for the eigenvalue λ in this
regime, see (4.23). This highlights a qualitative difference between our model and the diffusive
approximation, even in the small variance regime, see also the numerical results in the Figure 10.

Keeping in mind those modeling caveats, our methodology is relatively robust. Using the tools
that we deployed, we believe that it is possible to investigate the inside dynamics of a broad range
of equilibria. Our study has confirmed that this kind of analysis provides crucial information. In
our case, we learned that the source of genetic diversity in the equilibrium lies in the individuals
at the phenotype optimum. This means that persistence of the equilibrium depends on a scarce
number of individuals, because of the lag load. This phenomenon has been also observed for the
genealogies in model of continual adaptation in asexual populations (Nordborg, 1997; Hermisson
et al., 2002; Rouzine and Coffin, 2007; Neher and Hallatschek, 2013). We showed that our results
were compatible with the popular adaptive dynamics regime. In that case, we established an explicit
formula, valid when σ = 0. In particular, it showed that the structure of Hamilton Jacobi equations
was rich enough to deliver information upon the genealogies during adaptation. This opens a broad
range of different applications for our method, since this ’Hamilton-Jacobi approach’ has been used
widely for different adaptation models. As a matter of fact, before appearing in Diekmann et al.
(2005) in an evolutionary context, it was first introduced to study the propagation speed of reaction
diffusion equations, by Freidlin (1985); Evans and Souganidis (1989). It would be fascinating to
use the methodology of neutral fractions in that context, as in Garnier et al. (2012), to recover a
dichotomy on pulled and pushed fronts directly from the Hamilton-Jacobi equation in the regime of
vanishing viscosity. Going back to ecological contexts, it was recently proposed to model mutations
with a kernel K as in (1.2), but which does not satisfy the Assumption 1.1 of being exponentially
bounded. In particular Méléard and Mirrahimi (2015) found the (non-stationary) Hamilton-Jacobi
equation when σ = 0, in the case of the fractional Laplacian: B(f) = (−∆)α(f). This was later
expanded to a broad range of ’fat tailed’ kernels by Bouin et al. (2018); Mirrahimi (2020). However,
in that case, the ’dual’ Lagrangian point of view of the equation is no longer valid, and as a matter
of fact the Hamiltonian H, in (1.19), is no longer well defined. Our investigation of genealogies,
based on neutral fractions, can still take place, and it would lead an insight that is not accessible
from heuristics, even in the regime σ → 0. In addition, from a mathematical point of view, our
analysis encapsulates very general operators B. In fact, we mostly use the linearity of B and some
spectral results about the linearized operator L, that hold true quite broadly, see Mischler and
Scher (2016).

A missing feature in our model is spatial heterogeneity. Recently, a lot of work has focused on the
interaction of two populations living in two different habitats, see Mirrahimi and Gandon (2020);
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Hamel et al. (2020). Each patch has a different optimum and it is possible to travel from one patch to
the other at a given migration rate. A common observation in both works is that positive migration
rates shift the distribution towards the optimum of the other patch, influenced by migrants from
the other patch. In a certain regime of parameters, polymorphism in the population may appear.
Knowing the genealogies of each population and the patch of ancestors could better explain this
kind of phenomenon. Recently, Garnier and Lafontaine (2020) have extended the notion of neutral
fraction to metapopulation model, thus we believe that the neutral fractions toolbox can be used
to describe the genealogy of a metapopulation located in different areas. More generally, we would
like to look into models of adaptation with continuous space and trait variable, such as the ’cane
toad equation’, Bénichou et al. (2012); Bouin et al. (2017). The dynamics of the propagation front
appears to be driven by optimally fitted individuals, a phenomenon called ’spatial sorting’, but
few is known about the mechanisms of this effect, to the extent that recently, it was discovered
that with a non local competition term, the acceleration of the front is slowed down, Calvez et al.
(2018), contrary to what was first formally investigated in Bouin et al. (2012). Our methodology
to study inside dynamics could shed some light on this model.

Finally, a far reaching perspective is to expand our study of genealogies to sexual populations.
To that end, an appropriate operator in our context is given by the infinitesimal model. It consists
in, with the same notations of (1.2):

B(f)(x) :=
1

σ
√
π

∫∫
R2

exp

[
− 1

σ2

(
x− x1 + x2

2

)2
]
f(x1)

f(x2)∫
R f(x′2) dx′2

dx1dx2.(5.1)

This operator describes how an offspring with trait x appears in the population. It stems from
a first parent with trait x1, and a second parent x2, chosen uniformly in the population. Then,
the trait of the offspring is drawn from a Gaussian normal law centered around the mean of the
trait of the parents: (z1 + z2)/2, with variance σ2. It is known in the literature as a bridge
between Mendelian genetics and a statistical approach to inheritance, Turelli (2017). Recently it
was derived from a microscopic point of view in Barton et al. (2017), and asymptotically studied in
a regime of adaptive dynamics, Calvez et al. (2019); Patout (2020), which lays the groundwork for
a study with neutral fractions. Of course, for each individual in a population with a sexual mode
of reproduction, a genealogy consists in a tree of size 2N , where N is the number of generations.
This shows that, compared to this article, more elaborate tools must be introduced to determine
the typical phenotype of ancestors. Mathematically, the operator (5.1) is no longer linear, which
complicates the definition of neutral fractions as in (1.3). One must introduce a linear operator to
study fractions, and we propose:

BF (v)(x) :=
1

σ
√
π

∫∫
R2

exp

[
− 1

σ2

(
x− x1 + x2

2

)2
]
v(x1)

F (x2)∫
R F (x′2) dx′2

dx1dx2.(5.2)

This operator has all the necessary qualitative properties of L defined in (1.16), and we could
investigate lineages similarly to (1.3).

All the population models considered in the present paper can be derived as large population
limits of stochastic individual-based models. Hence it is natural to ask whether neutral fractions
can be investigated directly in the stochastic framework, in order to gain more insight into the
dynamics of small (or moderately large) populations. One could in particular hope to retrieve
some knowledge on the timescale of coalescence in the genealogy of a sample of individuals from
the population. For instance, looking at Figure 7, one may ask how far back in the past one has
to look in order to find a common ancestor of all the individuals occupying some spatial region
at present. Such questions are very hard to answer in the deterministic large population limit
framework, since in this regime the coalescence events become increasingly rare.
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However, using some of our results, we can provide heuristics about the mean time of coalescent
of two lineages, T2. First, our analytical approximations (3.9) and (4.31) on the dynamics of the
mean the ancestral lineage provides a good approximation on the characteristic time Tc before
which two lineages reach the optimal value 0. From our diffusive approximation we get

Tc ≈
1

σ
√
β

In the case of more general operators, based on the approximation formula (4.28) in the small
variance regime, we get

Tc ≈
1

Var(F )
,

where Var(F ) is the variance of the phenotypic distribution at equilibrium. Thus the time of
coalescence should be rescaled by Tc the delay before coalescence occurs. Then, once the ancestral
lineage are close to the optimal, the ancestral lineage have reached the stationnary distribution
of Y∞. Using the heuristic of Etheridge and Penington (2020) and Neher and Hallatschek (2013),
combined with our Proposition 1.5, one could expect that the rescaled time of coalescence T2 − Tc
should be approximately exponential, with parameter∫

R

1

NF (z)
(F (z)ϕ(z))2dz.

We can also compute this parameter using either our diffusive approximation or our Hamilton-
Jacobi approximation. These argument are all formal for now, and need to be further investigated.

On the other hand, studying neutral fractions in stochastic population models turns out to be
mathematically challenging and poses some serious analytical difficulties. An example of a recent
work in this direction is Billiard et al. (2015), who study neutral markers in the background of a
trait-substitution sequence in the adaptive dynamics regime.

More recently, Etheridge and Penington (2020) studied a spatial Moran process mimicking an
expanding population with a strong Allee effect (corresponding to a bistable reaction-diffusion
equation), and showed, using neutral markers, that the genealogy of a sample of individuals taken
at the front of the wave follows the classical Kingman coalescent with a scaling parameter given
in terms of the coefficients of the equation. This result is in stark contrast with what is known
about pulled waves (as in the stochastic Fisher-KPP equation) where the genealogy of a sample of
individuals at the front follows a Bolthausen-Sznitman coalescent Berestycki et al. (2013). In our
moving optimum setting, there are reasons to believe that the genealogy of a sample of individuals
at the front of the population follows a Kingman coalescent, as in Etheridge and Penington (2020).
The reason for this is that individuals all descend from ancestors whose trait was close to the
optimum, and if an individual gets too much ahead of the front, it will find itself at a disadvantage
compared to individuals closer to the optimum. Thus the inside dynamics in our model has a
“pushed” nature, and it is easy to check that the integrability conditions required in Etheridge and
Penington (2020) are satisfied in our case. Making this argument rigorous is of course an entirely
different matter, and will be the subject of future work.
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Champagnat, N., Ferrière, R., and Méléard, S. (2007). Individual-based probabilistic models of
adaptive evolution and various scaling approximations. In Seminar on Stochastic Analysis, Ran-
dom Fields and Applications V, pages 75–113. Springer.

Champagnat, N., Henry, B., et al. (2019). A probabilistic approach to dirac concentration in nonlo-
cal models of adaptation with several resources. The Annals of Applied Probability, 29(4):2175–
2216.

Cloez, B. and Gabriel, P. (2019). On an irreducibility type condition for the ergodicity of noncon-
servative semigroups. arXiv preprint arXiv:1909.07363.

Collot, D., Nidelet, T., Ramsayer, J., Martin, O. C., Méléard, S., Dillmann, C., Sicard, D., and
Legrand, J. (2018). Feedback between environment and traits under selection in a seasonal
environment: consequences for experimental evolution. Proceedings of the Royal Society B:
Biological Sciences, 285(1876):20180284.

Coville, J. and Hamel, F. (2019). On generalized principal eigenvalues of nonlocal operators witha
drift. Nonlinear Analysis, page 111569.

Desai, M. M., Walczak, A. M., and Fisher, D. S. (2013). Genetic diversity and the structure of
genealogies in rapidly adapting populations. Genetics, 193(2):565–585.

Diekmann, O., Jabin, P.-E., Mischler, S., and Perthame, B. (2005). The dynamics of adapta-
tion: an illuminating example and a Hamilton-Jacobi approach. Theoretical Population Biology,
67(4):257–271.

Etheridge, A. and Penington, S. (2020). Genealogies in bistable waves. arXiv:2009.03841 [math],
2009.03841.

Ethier, S. N. and Kurtz, T. G. (2009). Markov processes: characterization and convergence, volume
282. John Wiley & Sons.

Evans, L. and Souganidis, P. (1989). A PDE approach to geometric optics for certain semilinear
parabolic equations. Indiana University mathematics journal, 38(1):141–172.

Figueroa Iglesias, S. and Mirrahimi, S. (2018). Long time evolutionary dynamics of phenotypically
structured populations in time-periodic environments. SIAM Journal on Mathematical Analysis,
50(5):5537–5568.

Figueroa Iglesias, S. and Mirrahimi, S. (2019). Selection and mutation in a shifting and fluctuating
environment. HAL Preprint 02320525.
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6. Appendix

We detail in this Appendix how we deal with the simulations of the individual based model and
the lineages. Population at each time t is made of a number N(t) of alive individuals. Let us
consider an individual, denoted i, that is alive at time t, with 1 6 i 6 N(t). It has the trait zi ∈ R.
The outcome for this individual is one of the following :

. Birth of a descendant: happens with an uniform rate among individuals riB = β.

. Death of the individual i: the possibility of dying is decomposed in two separate events:
(a) Death by selection The individual may die because its phenotype is really ill-

adapted in the phenotype landscape. This happens at the rate:

riDs = µ(zi − ct).
(b) Death by density dependence Alternatively, an individual may die because of

the density dependence in the population, at a rate that is prescribed by the size of
population at time t and the carrying capacity N

rDdd =

N(t)∑
j=1

1

N
=
N(t)

N
.

Next event : incrementation of the time step The time step is the smallest time for all
individuals to go through one of the previous steps. Thanks to the Markov property, each event
occurs following an exponential law of parameter dictated by its rate r.

dt ∼ min
16i6N(t)

E(riB + riDs + rDdd).(6.1)

By the property of ”absence of memory” of the exponential law, dt also can be drawn from an
exponential law which rate is the sum of the rates of all the independent events:

dt ∼ E
(∑

i

(riB + riDs + rDdd)

)
.

Alternatively, one can present the individual based process as the following point measure (em-
pirical density):

νKt (dz) :=
1

N

NN
t∑

j=1

δzi(t)(dz),

and describe its evolution through its actions on measurable bounded functions by the generator
of νKt .

Actualization of the population: Once the next event is decided, according to the law
(6.1), the population at time t + dt is deduced by either adding the individual that was born
(N(t + dt) = N(t) + 1) or subtracting the one that died (N(t + dt) = N(t) − 1). In the case of a
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birth event, the trait of the offspring is drawn according as prescribed by the operator B in (1.2),
as:

zoffspring = zparent + σdK.

We repeat all the steps until reaching the desired final time of simulation.
Numerically, this model has a very high computational cost, because it needs a relatively high

number of individuals to best fit the deterministic model given by (1.1). As a consequence, we
performed the simulations using an approximated model, by first fixing dt to a small but determin-
istic value. Then, for each individual, we draw a time of birth following the law E(β) and a time
of death following the law E(µ(zi) + N(t)/N). Then we simply count which individuals led to a
reproduction event and which died on the time-window [t, t+ dt]. This amounts to the supposition
that on this interval of time, individuals cannot reproduce more than once. This algorithm led to
the figure 6.

Finally, let’s explain how we follow the lineage of individuals. We create a huge matrix at the
beginning which is where we will stock the lineage of every individual along the simulation. Every
time an individual appears, its lineage is the one of its parent, translated by one generation. The
numerical procedure works as described in Figure 9, where each line corresponds to a generation
for each individual, without distinction of the time of the birth event, which has to be recorded
separately.

This procedure lead to the Figure 7. The following parameters were used :

α = 2, β = 2, σ = 0.1, N = 20000, c = 0.2 .

z1 z2 z3 ..

... .. .. ..

... .. .. ..

... .. .. ..

... .. .. ..

... .. .. ..

... .. .. ..

z1 + σdK

z1
...
...
...
...
...

z1 produces a new individual

Ancestors

Current population

1

Figure 9. Keeping track of the lineages : a tentative explicative drawing

To conclude, let us discuss the effects of a different set of parameters compared to the one we
previously mentioned. We look at the effect of the speed c and the variance σ, as they are the
two key parameters that must be well adapted in the adaptive dynamics regime we described.
Our results are presented in Figure 10. On the left panel, we present the evolution along time
of the mean of the ancestral process Ys, and on the right panel the evolution of its variance. In
red are the deterministic simulations. The continuous red is obtained by the simulations of the
non-local PDE (1.16), as in the figures of Section 3.3. It is superposed, in dotted red with the
formula for Γ of (4.28). We recall this is obtained by an approximation, with quadratic selection
of the Hamilton Jacobi formula (1.23) of Proposition 1.7. Finally, we plot in dashed red the mean
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of lineages obtained in the diffusive approximation, which corresponds to the model described in
(3.3). In black, is the average trajectory, over 50 replicates of the IBM, of the mean (respectively
the variance) of ancestors among lineages. The grey shadow envelop corresponds to the confidence
interval of the mean (respectively the variance) from 5% to 95% given by 50 replicates of the IBM.

Fist, one observes that the dotted red line which represents the approximation of the Hamilton
Jacobi formula is barely visible, and almost completely overshadowed by the continuous red line
depicting the result of the PDE. This is a little surprising, since we are not considering the specific
regime where the Hamilton-Jacobi approximation is supposed to hold, which consists in c, σ � 1
for the adaptive dynamics and z ∼ z∗ for the approximation.

As expected, compared to the case of one realization of the IBM in Figures 7 and 8, there is a
better match for all times between the averaged IBM simulations and the PDE simulations. We
still observe a better match for small times s. However, the confidence interval for the variance
is considerably larger for all parameters compared to the one for the mean. We observe more
stochasticity for the evolution of the variance than for the evolution of the mean among the replicates
of the IBM. As a matter of fact, the diffusive approximation paints also a different picture more
clearly in the evolution of the variance. Predictably, the non local model consistently presents an
higher variance than the diffusive approximation, even in the regime σ → 0.
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(a) σ = 0.05 and c = 0.025

(b) σ = 0.1 and c = 0.1

(c) σ = 0.1 and c = 0.05

Figure 10. Mean (left) and variance (right) of the ancestral process Ys for
different set of parameters On the left panel, the horizontal blue line is the optimal
trait in the moving frame, 0, and the green line is the dominant trait of the equilibrium
F , denoted z∗. On the right panel, the horizontal cyan line corresponds to the asymptotic
variance given by the deterministic model, see Proposition 1.5. In all cases, the black dashed
line is the average trajectory, over 50 replicates of the IBM, of the mean (respectively the
variance) of ancestors among lineages. All other parameters are taken as previously.
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