Ancestral lineages in mutation-selection equilibria with moving optimum - Archive ouverte HAL Access content directly
Journal Articles Bulletin of Mathematical Biology Year : 2022

Ancestral lineages in mutation-selection equilibria with moving optimum

Raphaël Forien
Jimmy Garnier
Florian Patout


We investigate the evolutionary dynamics of a population structured in phenotype, subjected to trait dependent selection with a linearly moving optimum and an asexual mode of reproduction. Our model consists of a non-local and non-linear parabolic PDE. Our main goal is to measure the history of traits when the population stays around an equilibrium. We define an ancestral process based on the idea of neutral fractions. It allows us to derive quantitative information upon the evolution of diversity in the population along time. First, we study the long-time asymptotics of the ancestral process. We show that the very few fittest individuals drive adaptation. We then tackle the adaptive dynamics regime, where the effect of mutations is asymptotically small. In this limit, we provide an interpretation for the minimizer of some related optimization problem, an Hamilton Jacobi equation, as the typical ancestral lineage. We check the theoretical results against individual based simulations.
Fichier principal
Vignette du fichier
0main.pdf (2.03 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02993590 , version 1 (06-11-2020)
hal-02993590 , version 2 (07-12-2021)



Raphaël Forien, Jimmy Garnier, Florian Patout. Ancestral lineages in mutation-selection equilibria with moving optimum. Bulletin of Mathematical Biology, 2022, 84 (9), pp.93. ⟨10.1007/s11538-022-01048-w⟩. ⟨hal-02993590v2⟩
109 View
72 Download



Gmail Facebook X LinkedIn More