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Context

→ Classification problem: decide if a message is abusive or not
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Context
Graph embedding

• Represent graphs as low-dimensional vectors
• Automatically learned
• Preserve at least a part of their topological properties

• 4 main categories of graph embedding methods
• Node embedding
• Edge embedding

• Subgraph embedding
• Whole-graph embedding

• Some methods can capture additional information
• node labels
• edge weights

• edge directions
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Method
Graph2vec

• Whole-graph embedding
• Captures structural equivalence
• Includes node labels in the representation learning process

1 Input: Set of graphs to represent

2 Extracts rooted subgraph surrounding each node

3 Fetches these subgraphs (vocabulary) to a doc2vec SkipGram [LM14]
model.

4 Output: Graph representations
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Experiments
Data

• 1,320 messages (50% Abuse, 50%
Non-Abuse)

• Constitute a conversation by
leveraging the targeted message and
the neighboring messages.

• Extraction of a conversational
graph [Pap+19]

• Nodes = users
• Links = interactions

User4: PTDR

User1: salut !

User2: alors, ce raid?

User1: je l'ai raté !

User1: je dormais...

User2: naaaan !

User3: quoi ?!
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Experiments
Labeling strategies

→ Study of the effectiveness of different node labeling strategies in the
context of online abuse detection.

• Degree: degree of the node (default strategy)
• Random multiple: random label with with a same label possibly assigned
to distinct nodes over the whole corpus

• Random unique: random label, each label being unique in the whole
corpus

• Author ID: ID of the author represented by the node
• Distance to target: Distance to the targeted node in the graph
• Targeted: Binary label depicting whether the node is the targeted node
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Experiments
Results

Node labeling strategy Micro F-measure Runtime
Degree 80.47 8:05
Random multiple 78.26 6:59
Random unique 79.00 7:04
Author ID 81.79 7:41
Distance to target 84.03 8:28
Targeted 81.90 7:10

• Random labels do not bring any useful information
• Nodes with the same degree might have a similar role in the graph
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Experiments
Results

Node labeling strategy Micro F-measure Runtime
Degree 80.47 8:05
Random multiple 78.26 6:59
Random unique 79.00 7:04
Author ID 81.79 7:41
Distance to target 84.03 8:28
Targeted 81.90 7:10

• Class of nodes improves the representation
• Distance to target combines generic and problem-related aspects
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Experiments
Results

Node labeling strategy Micro F-measure Runtime
Degree 80.47 8:05
Random multiple 78.26 6:59
Random unique 79.00 7:04
Author ID 81.79 7:41
Distance to target 84.03 8:28
Targeted 81.90 7:10
Topological measures [Céc+19] 88.08 8:19:10
Topological measures TF [Céc+19] 86.01 14:10

• Topological measures outperforms previous strategies but is much less
time efficient

• Topological measures TF requires an important effort to determine the top
features
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Conclusions & Perspectives

• Main results
• Appropriate labels with Graph2vec allows improving the quality of the
generated embeddings

• Graph embeddings are much more time efficient than traditional topological
measures

• Perspectives
• Other graph embedding methods could benefit information such as node
labels
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Questions?
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