
HAL Id: hal-02993507
https://hal.science/hal-02993507

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Let There Be Light: Revealing Hidden MPLS Tunnels
With TNT

Jean-Romain Luttringer, Yves Vanaubel, Pascal Merindol, Jean-Jacques
Pansiot, Benoit Donnet

To cite this version:
Jean-Romain Luttringer, Yves Vanaubel, Pascal Merindol, Jean-Jacques Pansiot, Benoit Donnet. Let
There Be Light: Revealing Hidden MPLS Tunnels With TNT. IEEE Transactions on Network and
Service Management, 2020, 17 (2), pp.1239-1253. �10.1109/TNSM.2019.2962278�. �hal-02993507�

https://hal.science/hal-02993507
https://hal.archives-ouvertes.fr

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

Let There Be Light:
Revealing Hidden MPLS Tunnels with TNT

Jean-Romain Luttringer‡, Yves Vanaubel∗, Pascal Mérindol‡, Jean-Jacques Pansiot‡, Benoit Donnet∗

∗ Montefiore Institute, Université de Liège – Belgium
‡ Icube, Université de Strasbourg – France

Abstract—Internet topology discovery aims at analyzing one
of the most complex distributed systems currently deployed.
Usually, it relies on measurement campaigns using hop-limited
probes sent with traceroute. However, this probing tool comes
with several limits. In particular, some MPLS clouds might
obfuscate collected traces. The resulting Internet maps, their
inferred properties, and the graph models are thus incomplete
and inaccurate.

In this paper, we introduce TNT (Trace the Naughty Tunnels),
an extension to Paris traceroute for revealing, or at least detect,
all MPLS tunnels along a path. First, along with traceroute
and ping probes, TNT looks for hints indicating the presence of
hidden tunnels. Those hints are peculiar patterns in the resulting
output, e.g., significant TTL shifts or duplicate IP addresses.
Second, if those hints trigger alarms, TNT launches additional
dedicated probing for possibly revealing hidden tunnels. We
use GNS3 to reproduce, verify, and understand the limits
and capabilities of TNT in a controlled environment. We also
calibrate the thresholds at which alarms are triggered through
a dedicated measurement campaign. Finally, we deploy TNT on
the Archipelago platform and provide a quantified classification
of MPLS configurations. All our results, including the data, the
code, and the GNS3 experiments, are fully and publicly available.

Index Terms—TNT, MPLS, FRPLA, RTLA, BRPR, DPR, finger-
printing, taxonomy

I. INTRODUCTION

For now twenty years, the Internet topology discovery has
attracted a lot of attention from the research community [1,
2]. First, numerous tools have been proposed to better cap-
ture the Internet at the IP interface level (mainly based on
traceroute) and at the router level (by aggregating IP
interfaces of a router through alias resolution). Second, the
data collected has been used to model the Internet [3], but
also to have a better knowledge of the network ecosystem and
how it is structured and organized by operators.

However, despite the work done so far, a lot of issues
still remain, especially in data collection processes based on
traceroute. For instance, collecting data about Layer-2
devices connecting routers is still an open question, although
it has been addressed previously with a, nowadays, deprecated
tool (i.e., IGMP-based probing [4]). Another example is the
relationship between traditional network hardware and the so-
called middleboxes [5, 6]. Last but not least, MPLS tunnels [7]
also have an impact on topology discovery as they allow
operators to hide internal hops, as highlighted by our previous
works [8, 9].

This paper focuses on the interaction between
traceroute and MPLS. In a nutshell, MPLS has
been designed to reduce the time required to make forwarding
decisions thanks to the insertion of labels (called Label
Stack Entries, or LSE) before the IP header.1 In an MPLS
network, packets are forwarded using an exact match lookup
of a 20-bit value found in the LSE. At each MPLS hop, the
label of the incoming packet is swapped with its associated
outgoing label (such a mapping being defined in a specific
MPLS switching table). The MPLS forwarding engine is
lighter than the IP one, as performing an exact match for a
label is simpler than retrieving the longest matching prefix
for an IP address.

Some MPLS tunnels may be visible to traceroute
because MPLS routers are able to generate ICMP
time-exceeded messages when the MPLS TTL expires.
Since the ICMP message embeds the LSE, the presence of
the tunnel is then obvious [8, 10]. However, MPLS supports
optional features that make tunnels more or less invisible to
traceroute. Such features modify the way routers process
the IP and MPLS TTL of a packet. By carefully analyzing
MPLS related patterns based on TTL values (e.g., the quoted
TTL or the returned TTL of both error and standard replies),
one can identify and possibly discover L3-hops hidden within
an MPLS cloud. We already proposed a first attempt for
revealing so-called Invisible tunnels [9].

This paper aims at improving the efficiency of this discovery
in order to reveal (or at least identify) more invisible tunnels at
a lower cost. This is achieved by introducing TNT (Trace the
Naughty Tunnels), an open-source scamper [11] plugin exten-
sion based on Paris traceroute [12], that includes techniques
for inferring, classifying, and possibly revealing MPLS tunnel
content. In particular:

1) we strongly revise the MPLS tunnel classification we
previously proposed [8]. In particular, we subdivide the
“Invisible Tunnel” class in two more accurate categories,
“Invisible PHP” and “Invisible UHP”. We show that those
tunnels can be systematically revealed when they are built
with basic P2P LDP [13] or RSVP-TE [14] circuits, and
can be at least detected if constructed with more complex
technologies such as P2MP VPRN [15]. We also explain
why the content of most “Opaque” tunnels cannot be
revealed in practice. Finally, we refine and update the

1While MPLS can be used with IPv6, we only consider IPv4 in this paper.

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

previous quantification of each tunnel class with large-
scale measurements performed in the wild;

2) we complement the state of the art with traceroute-
based measurement techniques able to reveal most (or
at least detect all) MPLS tunnels, even those built to
hide their content. While our previous work [9] required
to target suspect and pre-analyzed zones in the Internet
(i.e., considering high degree nodes and their neighbors
visible in the ITDK dataset [16]), TNT includes new
fully integrated measurement techniques. We associate
indicators or triggers with each category of tunnels within
our classification. They are used to determine, on the
fly, the potential presence of a tunnel and, possibly,
its nature. In particular, in this paper, we are able to
identify the presence of the newly introduced “UHP
Invisible” tunnel class thanks to the duplication of an
IP address in the traceroute output. When a trigger
is pulled during a traceroute exploration, an MPLS
revelation [9] is launched with the objective of revealing
the tunnel content. We validate the indicators, triggers,
and revelations using GNS3, an emulator running the
actual OS of different brands of routers in a virtualized
environment2, on a large set of realistic configurations.
We also show, through measurements, that our techniques
are efficient in terms of cost (i.e., the additional amount
of probes injected is reasonable, especially compared to
the quality of new data discovered) and errors;

3) we implement those techniques within Scamper [11], the
state of the art network measurements toolbox as a Paris
traceroute extension, called TNT, and deploy it on the
Archipelago infrastructure [17]. TNT aims at replacing
the old version of Scamper and, as such, it is launched
every day towards millions of destinations. We thus argue
that TNT is useful to study MPLS deployment and usage
over time, increasing so our knowledge and culture on
this technology;

4) we analyze the data collected, the efficiency of TNT
in doing so (for tuning it to its best set of calibration
parameters) and report a new quantification on MPLS de-
ployment in the wild, correcting and updating so previous
results that erroneously underestimated or overestimated
the prevalence of some tunnel classes [8]

5) we work in a reproducibility perspective. As such, all
our code (TNT, GNS3 configurations and their experi-
mental outcomes, data processing and analysis) as well
as our collected dataset are made available.3

Compared to the conference version of this paper [18],
we provide a more comprehensive description of MPLS
mechanisms (Sec. II-B and II-C), a deeper discussion on
TNT limits – in particular with respect to Opaque tunnels
(Sec. V-B), a more refined calibration analysis (Sec. VI-C),
and a deeper discussion on how TNT behaves in the wild
(Table IV). We also provide additional explanation on the
relationships between Opaque tunnels and VPRN, explaining
so why Opaque tunnels content cannot be revealed (Fig. 6).

2See https://gns3.com/
3See http://www.montefiore.ulg.ac.be/~bdonnet/mpls

Router Signature Router Brand and OS
< 255, 255 > Cisco (IOS, IOS XR)
< 255, 64 > Juniper (Junos)
< 128, 128 > Juniper (JunosE)
< 64, 64 > Brocade, Alcatel, Linux

TABLE I: Summary of main router signature, the first initial
TTL of the pair corresponds to ICMP time-exceeded,
while the second is for ICMP echo-reply.

0 19 20 22 23 24 31

Label TC S LSE-TTL

Fig. 1: The MPLS label stack entry (LSE) format.

The remainder of this paper is organized as follows: Sec. II
provides the required technical background for this paper;
Sec. III revises the MPLS taxonomy initially introduced by
Donnet et al. [8] in the light of newly understood MPLS
behaviors; Sec. IV describes our techniques for detecting and
revealing hidden tunnels; Sec. V formally introduces TNT, our
extension to traceroute for revealing the content of all
MPLS tunnels; Sec. VI discusses TNT parameters and its cal-
ibration, while Sec. VII presents results of the TNT deployment
over the Archipelago architecture; Sec. VIII positions our work
with respect to the state of the art; finally, Sec. IX concludes
this paper by summarizing its main achievements.

II. BACKGROUND

This section discusses the technical background required
for the paper. Sec. II-A explains how hardware brands can be
inferred from collected TTLs. Sec. II-B provides the basics
of MPLS labels and introduces the MPLS control plane.
Eventually, Sec. II-C focuses on the MPLS data plane and
the MPLS TTL processing. Table II provides a summary of
the main acronyms related to the MPLS ecosystem and their
corresponding concepts in the classic IP world. Moreover,
Fig. 2 (upper part) illustrates the main vocabulary associated
to MPLS tunnels.

A. Router Fingerprinting

Vanaubel et al. have presented in [19] a simple router finger-
printing technique that classifies networking devices according
to their hardware and operating system (OS). This method
infers the initial TTL values used by a router when forging
different kinds of packets. It then builds a router signature,
i.e., the n-tuple of n initial TTLs. A basic pair-signature
(with n = 2) simply uses the initial TTL of two different
messages: an ICMP time-exceeded message elicited by a
traceroute probe, and an ICMP echo-reply message
obtained from an echo-request probe. Table I summarizes
the main router signatures, with associated router brands and
router OSes. This feature is particularly useful in our study
since the two most deployed router brands, Cisco and Juniper,
have distinct MPLS behaviors and signatures that we exploit.

B. MPLS Basics and Control Plane Operations

MPLS routers, i.e., Label Switching Routers (LSRs), ex-
change labeled packets over Label Switched Paths (LSPs).

http://dx.doi.org/10.1109/TNSM.2019.2962278
https://gns3.com/
http://www.montefiore.ulg.ac.be/~bdonnet/mpls

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

In practice, those packets are tagged with one or more label
stack entries (LSE) inserted between the frame header (data-
link layer) and the IP packet (network layer). Each LSE is
made of four fields as illustrated by Fig. 1: an MPLS label
used to forward the packet, a Traffic Class field (for quality of
service, priority, and Explicit Congestion Notification [20]), a
bottom of stack flag bit (to indicate whether the current LSE
is the last in the stack [21])4, and a time-to-live field (LSE-
TTL) having the same purpose as the IP-TTL field [22] (i.e.,
avoiding routing loops).

Labels may be allocated through the Label Distribution
Protocol (LDP) [13]. Each LSR announces to its neighbors
the association between a prefix in its routing table and a
label it has chosen for a given Forwarding Equivalent Class (a
FEC is a destination prefix by default), populating so a Label
Forwarding Information Table (LFIB) in each LSR. LDP is
mainly used for scalability reasons (e.g., to limit BGP-IGP
interactions to edge routers) and to avoid anomalies for the
transit traffic such as iBGP deflection issues. Indeed, LDP
deploys tunnels following the same routes as the IGP. Labels
can also be distributed through RSVP-TE [14] when MPLS is
used for Traffic Engineering (TE) purposes. In practice, most
operators deploying RSVP-TE tunnels also use LDP [9] as an
underlying default labeling protocol.

With LDP, MPLS has two ways of binding labels to destina-
tion prefixes: (i) through ordered LSP control (default config-
uration of Juniper routers [23]) and, (ii) through independent
LSP control (default configuration of Cisco routers [24, Chap.
4]). In the former mode, an LSR only binds a label to a
prefix if it is local (the LSR is the exit point of the LSP),
or if it has received a label binding proposal from the IGP
next hop towards this prefix. This mode is thus iterative as
each intermediate upstream LSR waits for a proposal from its
downstream LSR, building thus the LSP from the exit to the
entry point. Juniper routers use this mode as default and only
propose labels for loopback IP addresses.

In the second mode, the Cisco default one, an LSR creates a
label binding for each prefix it has in its RIB, even if it is not
directly connected to it. This label binding is then distributed
to its neighbors. This mode does not require any proposal from
downstream LSRs. Consequently, a label proposal is sent to
all neighbors without ensuring that the LSP is enabled up to
the wanted exit point. LSP setup takes less time but may lead
to uncommon situations in which an LSP can end abruptly
before the supposed exit point of the tunnel (see Sec. III for
details).

The last LSR towards an FEC is the Egress Label Edge
Router (the Egress LER – PE2 in Fig. 2). Depending on its
configuration, two labeling modes may be performed. The
default mode [9] is Penultimate Hop Popping (PHP), where
the Egress advertises an Implicit NULL label (label value
of 3 [21]). In this case, the previous LSR (Penultimate Hop
LSR, PH LSR – P3 in Fig. 2) – is in charge of removing the
LSE to reduce the load on the Egress. In the Ultimate Hop

4To simplify the presentation we will assume only one LSE in this section
of the paper. This simplification is reasonable as the vast majority of collected
tunnels only carry one label (i.e. more than 95% of the cases excluding VPRN
usages).

Acronym Meaning IP
LSR Label Switching Router

RouterPH LSR Penultimate Hop LSR
EH Ending Hop LSR
LER Label Edge Router Border Router
LSP Label Switching Path Tunnel
LSE Label Stack Entry Header
LSE-TTL LSE Time-to-Live IP-TTL
LDP Label Distribution Protocol SignalingRSVP-TE ReSerVetation Protocol – Traffic Engineering (control plane)
LIB Label Information Base RIB
LFIB Label Forwarding Information Base FIB
PHP Penultimate Hop Popping DecapsulationUHP Ultimate Hop Popping
FEC Forwarding Equivalent Class QoS Class

TABLE II: MPLS terminology with its classic IP matching.

Popping (UHP) mode, the Egress LER advertises an Explicit
NULL label (label value of 0 [21]). In this case, The PH LSR
will swap the current label with an Explicit NULL label and
the Egress LER will be responsible for its removal. Labels
assigned by LSRs other than the Egress LER are distinct from
Implicit or Explicit NULL labels. The Ending Hop LSR (EH)
is the LSR in charge of removing the LSE, it can be the PH
LSR in case of PHP, or the Egress LER in case of UHP5.

C. MPLS Data Plane and TTL processing

Depending on its location along the LSP, an LSR applies
one of the three following operations:
• PUSH (Sec. II-C1): the first MPLS router (the tunnel

entry point) pushes one or several LSEs in the IP packet,
turning it into an MPLS one. The Ingress Label Edge
Router (Ingress LER) associates the packet FEC to its
LSP;

• SWAP (Sec. II-C2): within the LSP, each LSR makes a
label lookup in the LFIB, swaps the incoming label with
its corresponding outgoing label, and sends the MPLS
packet further along the LSP;

• POP (Sec. II-C3): the EH, the last LSR of the LSP, deletes
the LSE, and converts the MPLS packet back into an
IP one. The EH can be the Egress Label Edge Router
(the Egress LER) when UHP is enabled or the PH LSR
otherwise.

1) LSP Entry Behavior (PUSH): When an IP packet enters
an MPLS cloud, the Ingress LER binds a label to the packet
thanks to a lookup into its LFIB, depending on the packet
FEC, e.g., its IP destination prefix. Before pushing the LSE
into the packet, the Ingress LER has to initialize the LSE-
TTL (see Fig. 1). Two behaviors can then be configured:
either the Ingress LER sets the LSE-TTL to an arbitrary value
(255, no-ttl-propagate) or it copies the current IP-
TTL value into the LSE-TTL (ttl-propagate, the default
behavior). Operators can configure this operation using the
no-ttl-propagate option provided by the router manu-
facturer [22]. In the former case, the LSP is called a pipe LSP,
while, in the latter case, a uniform one.

Once the LSE-TTL has been initialized, the LSE is pushed
on the packet that is sent to an outgoing interface of the Ingress

5Note that, in the case of independent LSP control, any LSR can be in
charge, despite itself, of the popping operation when the tunnel ends abruptly.

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

P1
<latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit>

LSP
<latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit>

Invisible UHP

Explicit Implicit

Invisible PHP

Fig. 2: Illustration of MPLS vocabulary and relationship between MPLS and traceroute. The figure is made of three parts.
The upper part represents the network topology used throughout the paper to illustrate MPLS and TNT concepts. In particular,
with respect to MPLS, P1 is the LSP First Hop (FH), while P3 is the Penultimate Hop LSR (PH LSR). In case of PHP, P3

is the Ending Hop (EH) responsible for removing the LSE, while, with UHP, it is the Egress LER (PE2). The middle part of
the figure presents our MPLS classification. Finally, the bottom part of the figure provides triggers and indicators of an MPLS
tunnel presence when probing with TNT. The relationship between the trigger/indicator and the observation made with probing
is provided in red. Additional information (e.g. time-exceeded path length) are provided to illustrate TNT in Sec. V.

LER. In most cases, except for a given Juniper OS (i.e., Olive),
the IP-TTL is decremented before being encapsulated into the
MPLS header.

2) LSP Internal Behavior (SWAP): Upon an MPLS packet
arrival, an LSR decrements its LSE-TTL. If it does not expire,
the LSR looks up the label in its LFIB. It then swaps the top
LSE with the one provided by the LFIB. The operation is
actually a swap only if the outgoing label returned by the
LFIB is neither Implicit NULL nor empty6. Otherwise, it is
a POP operation as described in the next subsection. Finally,
the packet is sent to the outgoing interface of the LSR with a
new label, both according to the LFIB.

If the LSE-TTL expires, the LSR, in the fashion of any IP
router, forges an ICMP time-exceeded that is sent back
to the packet originator. It is worth to notice that an LSR may
implement RFC 4950 [25] (as should be the case in all recent
OSes). If so, the LSR will quote the full MPLS LSE stack of
the expired packet in the ICMP time-exceeded message.

ICMP processing in MPLS tunnels varies according to the
ICMP type of message. ICMP Information messages (e.g.,
echo-reply) are directly sent to the destination (e.g., the
originator of the echo-request) if the IP FIB allows
for it (otherwise no replies are generated). On the contrary,
ICMP Error messages (e.g., time-exceeded) are generally
forwarded to the Egress LER that will be in charge of forward-
ing the packet through its IP plane [8]. Differences between

6In practice the actual label used for the forwarding is then greater than
or equal to 0 (this specific value being reserved for Explicit NULL tunnel
ending, i.e. for UHP) but excluding by design the reserved value 3 that is
dedicated for Implicit NULL.

Juniper and Cisco OS and configurations are discussed in
details in Sec. V-B

3) LSP Exit Behavior (POP): Upon the MPLS packet
arrival, the EH decrements the LSE-TTL. If this TTL does
not expire, the EH then pops the LSE stack after having
determined the new IP-TTL.

Using PHP comes with the advantage of reducing the load
on the Egress LER, especially if it is the root of a large
reverse LSP-tree. Indeed, when using PHP, the last MPLS
operation (i.e., POP) is performed one hop before the Egress
LER, on the PH LSR. On the contrary, UHP7 is generally
used only when the ISP implements more sophisticated traffic
engineering operations or wants to make the tunnel content and
semantics more transparent to the customers (e.g., for VPRN
purposes).

When a packet exits the tunnel, the router is left with a
packet containing two TTLs: the IP-TTL, and the LSE-TTL.
It thus has to decide which TTL should be kept and copied
in the IP header before forwarding the packet as a standard
IP packet. To ensure that the outgoing TTL cannot be greater
than the incoming one, the EH would theoretically have to
consider the configuration of the Ingress LER. If the Ingress
LER has activated the no-ttl-propagate option, the EH
should pick the IP-TTL of the incoming packet while the LSE-
TTL should be selected otherwise. Indeed, in the former case,
because the tunnel is hidden, the LSE-TTL was initialized at
255 and is likely superior to its IP counterpart. Consequently,

7The UHP feature has been recently made available on Juniper routers
when LSPs are set with LDP. However, PHP remains the rule on Juniper [26,
Chap. 1].

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

the EH should select the IP-TTL to ensure a monotonic
decrement. In the latter case, the LSE-TTL was initialized at
the value held by the IP-TTL, and is thus necessarily smaller
than the IP-TTL upon exiting the tunnel as it now takes
into account the MPLS hops. Consequently, the EH should
here select the LST-TTL to ensure a monotonic decrement.
In both cases, the TTL behavior remains monotonic. In order
to synchronize both ends of the tunnel without any message
exchange, two mechanisms might be used to select the IP-TTL
at the EH:

1) applying a MIN(IP-TTL, LSE-TTL) operation (solution
implemented for Cisco PHP configurations [24]), i.e.,
selecting the TTL which holds the smallest value;

2) assuming that the Ingress configuration
(ttl-propagate or not) is the same as the local
configuration (solution implemented by some JunOS and
also in some Cisco UHP configuration).

Applying the MIN(IP-TTL, LSE-TTL) seems to be the best op-
tion, as it correctly supports heterogeneous ttl-propagate
configurations while mitigating forwarding loops without ex-
changing signalization messages. This MIN(IP-TTL, LSE-
TTL) operation might be used to detect the presence of
hidden MPLS tunnels [9]. Indeed, it is likely that the ICMP
time-exceeded message generated by the EH will enter
the same MPLS cloud immediately to reach the vantage point.

In that case, when the reply leaves the MPLS cloud, its IP-
TTL will not have been decremented, while the LSE-TTL will
take the number of hops within the MPLS tunnel into account.
Consequently, the EH of the return path (P1 in Fig. 2) will
choose to copy the LSE-TTL in the IP-TTL, as the IP-TTL
of the reply still holds its maximum value (255 for a Cisco
router – see Sec. II-A). Thus, while the forward path through
the hidden MPLS cloud has no effect on the IP-TTL of the
packet, the return path is taken into account, as the PH LSR of
the return path (P1), copies the LSE-TTL within the IP-TTL.

It is interesting to mention that this MPLS behavior strongly
depends on the implementation and configuration. For in-
stance, on some Juniper OS routers or when the UHP option
is activated on some Cisco IOS, the MIN(IP-TTL, LSE-TTL)
operation is not systematically applied. The EH assumes an
homogeneous propagation configuration among LERs. When
it is not the case (ttl-propagate at one end of the tunnel
and no-ttl-propagate at the other end), the EH will
use the IP-TTL instead of the LSE-TTL, leading to a so-
called jump effect with traceroute. In other words, as
many hops as the LSP length are skipped after the tunnel
by traceroute, the TTL of the packet is brought back to
the value it held before going through the LSP. Except when
explicitly stated, we will consider homogeneous configurations
(e.g., ttl-propagate on the whole tunnel) in the remain-
der of the paper. Finally, it is worth noticing that mixing UHP
and PHP (hybrid configurations) can also result in uncommon
behaviors.8

8Those behaviors are described and discussed in details in a companion
technical report [27].

III. REVISITING MPLS TUNNELS TAXONOMY

According to whether LSRs implement RFC4950 (i.e.,
ICMP time-exceeded quoting MPLS LSE) or not and
whether they activate the ttl-propagate option or not,
MPLS tunnels are more or less visible to traceroute [8].

Explicit tunnels are tunnels with RFC4950 and the
ttl-propagate option enabled. As such, they are fully
visible with traceroute, including the labels used along
the LSP. Implicit tunnels also enable the ttl-propagate
option but do not implement the RFC4950. IP level informa-
tion is not missing but LSRs are seen as ordinary routers;
leading to a lack of “semantic” in the traceroute output.
Opaque tunnels are partially obscured from traceroute as
the ttl-propagate option is disabled while the RFC4950
is implemented. Moreover, an Opaque LSP ends at its EH
with a non-terminating label. Consequently, the EH is the only
hop being seen as an MPLS one while the internal content of
the LSP is totally hidden. Finally, Invisible tunnels are fully
hidden as the no-ttl-propagate option is enabled and
the LSP ends properly (RFC4950 being implemented or not).

As illustrated in Fig. 2, Explicit tunnels constitute the
ideal case as all the MPLS information comes natively with
traceroute. For Implicit tunnels, Donnet et al. [8] have
proposed techniques to identify their LSRs based on the way
they process ICMP messages and the quotation of the IP-TTL
in the time-exceeded reply (qTTL and UTURN in Fig. 2).

Opaque tunnels are only encountered with Cisco LSPs and
are due to LSPs ending abruptly, in an improper fashion. In
other words, the MPLS packet reaches the exit point of the
tunnel without a terminating label (Implicit or Explicit NULL)
within its LSE to properly signal the end of the LSP, causing
the LSP to break. Thanks to our large scale campaign and
experiments with our emulation platform, we conclude that
the vast majority of Opaque tunnels are caused by Carrier-
of-Carriers VPN [28] or similar technologies. Indeed, such
technologies provoke an abrupt tunnel ending as the LSP ends
with the LSE containing the label used to identify the VPN
instead of a standard terminating label. As we will show later
in details, they lead to non-revealable tunnels.

The traceroute behavior for Invisible tunnels differs
according to the popping scheme (i.e., PHP or UHP) and the
OS, as illustrated in Fig. 2. While Invisible PHP tunnels are
identified through path length asymmetry [9] (see Sec. V),
Invisible UHP tunnels provoke a duplicated IP (at least with
the IOS 15.2). More precisely, upon the reception of a packet
having an IP-TTL of 1, the Egress LER (PE2 in Fig. 2) does
not decrement this TTL, but rather forwards the packet to the
next hop (CE2 in the example), leading so to the Egress being
hidden in the trace. In contrast, the next hop will appear twice:
once for the probe that should have expired at the Egress and
once at the next probe. This surprising pattern, a duplicated IP
at two successive hops, illustrated as Invisible UHP in Fig. 2
might be misunderstood as a forwarding loop.

IV. HIDDEN TUNNEL REVELATION

Techniques for revealing the content of Invisible PHP and
UHP tunnels are similar. In the case of an Invisible PHP

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

tunnel, they can be applied directly as we know both ends of
the tunnel (Ingress and Egress LER – see Fig. 2). However,
for Invisible UHP, the Egress LER is missing from the
traceroute output (look at middle part of Fig. 2).

It is nevertheless possible with Invisible UHP to infer the
outgoing IP interface of the Egress LER (the right interface,
in green, on PE2 in Fig. 2). Thanks to its retrieval, TNT can
force replies from the Egress LER incoming interface (the
left one, in red, on PE2 in Fig. 2). This technique, called
buddy, assumes a simple point-to-point connection between
the Egress LER and its next-hop (this naive assumption comes
for the sake of simplicity, but the technique can be extended
to deal with point-to-multipoint subnet [4, 29, 30]). The IP
addresses belonging to the same /31 or /30 prefix are called
buddies and TNT just needs to infer the correct prefix length
to guess the address of CE2’s buddy (i.e., PE2.right in Fig. 2).

With a /30, four IP addresses are available: addresses 0 and 3
are the network and broadcast addresses while addresses 1 and
2 are used for numbering interfaces. If CE2.left corresponds
to address 0 (resp. address 3) in a /30, it means that PE2

and CE2 share a /31 and PE2.right is address 1 (resp. address
2) of the /30. However, if CE2.left corresponds to address
1 (resp. address 2), we launch a ping towards address 0
within the /30. If an echo-reply is received, both interfaces
are on a /31 and PE2.right corresponds to address 0 (resp.
address 3). Otherwise, both interfaces are on a /30 and
PE2.right corresponds to address 2 (resp. address 3 if CE2.left
corresponds to address 2). Note that the buddy identification
process can be further improved by considering more advanced
techniques [31] whose probing overhead can be mitigated.

As ICMP time-exceeded typically contains the IP ad-
dress of the incoming interface having received the expiring
probe, running a traceroute towards the inferred address
of PE2.right allows to obtain PE2.left. Once the potential
Ingress and Egress LERs are known, we can launch a hidden
tunnel revelation technique, i.e., DPR or BRPR [9]. The choice
of technique depends on the way labels have been bound to
destination prefixes (see Sec. II-B). It is worth recalling that
one can easily discriminate Cisco and Juniper devices using
network fingerprinting [19].

On the one hand, with ordered LSP control used with
Juniper by default on loopback addresses, all the external BGP
transit traffic goes through MPLS tunnels while the traffic
destined to internal prefixes relies on IP forwarding. Thus,
a single traceroute targeting the internal Egress LER is
enough to reveal all LSRs along the LSP. This technique is
called Direct Path Revelation (DPR). Applying DPR on Fig. 2,
TNT simply sends probes targeting PE2 revealing P1, P2, and
P3 in a single shot (without labels, as the probe targeting
PE2 follows the same path as a transiting probe, but without
entering the MPLS cloud).

On the other hand, with independent LSP control used by
Cisco by default on all IP addresses, LDP is entirely enabled
for all the network such that each LSR binds labels for each
prefix in its IGP RIB. Thus, as all traffic goes through the
MPLS cloud, DPR can not be used. Our other revelation
technique, Backward Recursive Path Revelation (BRPR) takes
benefit from the prefix locality: the targeted incoming interface

of the Egress LER is in the same prefix as the outgoing
interface of the PH LSR. Thus, since the PH LSR is directly
connected to the targeted prefix, it acts as the Egress LER
for it and consequently becomes visible to traceroute.
Applying this method iteratively in a backward fashion up until
the Ingress LER, we can reveal each hidden LSR. Applying
BRPR on Fig. 2, we first send a traceroute towards PE2

and discover P3. We next send a traceroute towards P3

and discover P2 and so on until the Ingress LER is met again.
As the targeted IP changes at each iteration of BRPR, its

outcome may be affected by load balancing. Revealed links
may not belong to the same consistent path. Conversely, DPR
works in a single shot and does not suffer from this limit (as
TNT is built upon Paris Traceroute which relies on constant
five tuples in each probe of the same trace).

V. TNT DESIGN

This section introduces our tool, TNT (Trace the Naughty
Tunnels), able to reveal most of MPLS tunnels hidden along
a path. TNT is an open-source scamper [11] plugin extension
built upon Paris Traceroute [12], in order to mitigate load
balancing issues.
TNT consists in collecting, in a hop-limited fashion, in-

termediate IP addresses between the vantage point and a
given target. The tracing phase ends when the target has been
reached or a gap has been encountered (e.g., five consecutive
non-responding hops). TNT uses a moving window of two
hops such that, at each iteration, it looks for <Ingress/Egress>
pairs of candidates, possibly hiding Invisible tunnels.

For each pair of collected IP addresses, TNT checks for
the presence of tunnels through so-called indicators and
triggers. The former provides reliable indications about the
presence of an MPLS tunnel without requiring additional
probing. Indicators suggest uniform tunnels, and are basic
evidence of visible MPLS presence such as LSEs quoted in
the ICMP time-exceeded packet (see Sec. V-A1 for details
and exceptions). Triggers, except DUP_IP, consider unsigned
values suggesting the presence of Invisible tunnels through a
large shifting in path length (see Sec. V-A2 for more details).
When exceeding a given threshold T , a revelation is attempted
as already developed in Sec. IV. TNT is cautious by design:
we do not conclude anything from revelations or detections
hindered by network anomalies. In addition, while TNT is,
as other active probing tools, subject to network anomalies,
we designed it to be fairly resilient to load balancing and
rate limiting thanks to its Paris Traceroute base and inherent
lightweight nature respectively.

Fig. 2 highlights the main patterns TNT looks for in a simple
scenario where forward and return paths are symmetrical.

A. Indicators and Triggers

Listing 1: Pseudo-code for checking indicators and triggers
1 i f (i s _ m p l s (cur_hop))
2 i f (TLSE_TTL < cur_hop . l s e _ t t l < 255)
3 re turn LSE−TTL #Opaque t u n n e l
4 e l s e
5 re turn LSE # E x p l i c i t t u n n e l
6

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

7 i f (cur_hop . q t t l > 1)
8 re turn qTTL # I m p l i c i t t u n n e l
9

10 i f (cur_hop == nex t_hop)
11 re turn DUP_IP # I n v i s i b l e UHP t u n n e l
12

13 # i n f e r r i n g p a t h l e n g t h from raw TTLs
14 LTE

R = p a t h _ l e n (cur_hop . t t l _ t e)
15 LER

R = p a t h _ l e n (cur_hop . t t l _ e r)
16 LT = cur_hop . p r o b e _ t t l
17 d i f f _ t e _ e r = LTE

R − LER
R

18

19 i f (s i g n _ i s _ j u n O S (cur_hop))
20 i f (d i f f _ t e _ e r ≥ TRTLA)
21 re turn RTLA # I n v i s i b l e PHP t u n n e l
22 e l i f (| d i f f _ t e _ e r | > TUTURN)
23 re turn UTURN # I m p l i c i t t u n n e l
24 i f (LTE

R − LT ≥ TFRPLA)
25 re turn FRPLA # I n v i s i b l e PHP t u n n e l

Listing 1 provides the pseudo-code for checking indicators
and triggers such as implemented in TNT.

1) Visible Tunnel Indicators: They are pieces of evidence
of an MPLS tunnel presence and concern cases where tun-
nels (or parts of them) can be directly retrieved from the
traceroute output. Explicit tunnels are indicated through
LSEs directly quoted in the ICMP time-exceeded message
– See line 5 in Listing 1 and traceroute output on Fig. 2.

The indicator for Opaque tunnels consists of a single hop
LSP with a quoted LSE-TTL not being equal to an expired
value. This abnormal behavior is due to the way labels are
handled with Cisco routers, in particular with VPRN tunnel
ending. This is illustrated in Fig. 2 where we get a value of
252 because the LSP is actually 3 hops long. This surprising
quoted LSE-TTL is evidence in itself. It is illustrated in lines 2
to 3 in Listing 1. A single hop is tagged as Opaque if the
quoted LSE-TTL is between a minimum threshold (Sec. VI
discusses its calibration), TLSE_TTL and 254 (the LSE-TTL
being initialized to 255). This is the only indicator that can
fire additional probing in order to reveal the content of the
tunnel. However, we will explain in the next section why, in
practice, it does not perform well as a trigger.

Implicit tunnels are detected through qTTL and/or UTURN
indicators [8]. First, if the IP-TTL quoted in an ICMP
time-exceeded message (qTTL) is greater than one, it
likely reveals the ttl-propagate option at the Ingress
LER of an LSP. As the LSE-TTL was initialized at the
IP-TTL value, the packet can expire within the LSP. How-
ever, as the IP-TTL is not decremented within the tun-
nel, the qTTL is greater than one. For each subsequent
traceroute probe within the LSP, the qTTL will be one
greater, resulting in an increasing sequence of qTTL values.
This indicator is considered in line 7 in Listing 1. Second
and by default, the UTURN indicator relies on the fact that
LSRs send ICMP time-exceeded messages to the Egress
LER which, in its turn, forwards the packets to the probing
source. However, such LSR reply directly to other kinds of
probes (e.g., echo-request) using their own IP forwarding
table, if available. As a result, return paths are generally
shorter considering echo-reply messages than regarding
time-exceeded replies. Thereby, the UTURN indicator
reflects this difference in these lengths. Note that while the
UTURN and RTLA computations are identical, Juniper routers
do not exhibit, by default, any implicit UTURN pattern. Con-

sequently, even though some configurations could enable this
pattern on Juniper routers, we do not consider this case.

2) Triggers for Revealing Invisible Tunnels: They are pat-
terns suggesting their presence (both for Invisible PHP and
UHP) and so firing additional probing (see Sec. IV). TNT
looks first for potential Invisible UHP tunnels (line 10). As
explained in Sec. III, they occur with Cisco routers using IOS
15.2 and result in a duplicate IP address in the trace output
(CE2 in Fig. 2).

The two remaining triggers, RTLA (Return Tunnel Length
Analysis) and FRPLA (Forward/Return Path Analysis) [9],
rely on path lengths. More precisely, RTLA is the difference
between the time-exceeded and the echo-reply return
path lengths, while FRPLA is the difference between the
forward and the return path lengths of traceroute probes
and associated replies. Both triggers are based on the idea
that replies sent back to the vantage point are also likely to
cross back the MPLS cloud, which will lead to the application
of the MIN(IP-TTL, LSE-TTL) operation at the EH of the
return tunnel. In the absence of Invisible tunnels, we expect
to find length differences equal or close to 0. Therefore, any
significant deviation9 from this value is interpreted as the
potential presence of an Invisible MPLS cloud, and thus, fires
additional path revelation techniques (see Sec. IV).

To check for those triggers, we first extract the key distances
thanks to the IP-TTLs in replies received by the vantage point
(lines 14 to 16 in Listing 1). Since RTLA only works with
JunOS routers [9], prior to estimating the triggers, TNT uses
network fingerprinting [19] to determine the router brand of
the potential Egress LER (line 19 in Listing 1).

In the presence of a JunOS hardware (line 19),
time-exceeded and echo-reply packets have different
initial TTL values [19], and the RTLA trigger can exploit
the TTL gap between those two kinds of messages caused
by the MIN(IP-TTL, LSE-TTL) behavior at the Egress LER.
Indeed, the LER

R is longer than the LJTE
R as the MIN operation

considers a differentiated pick. This difference represents the
number of LSRs in the return LSP, and is compared to a pre-
defined threshold TRTLA(line 20). This threshold (see Sec. VI
for the parameter calibration) filters out very short LSPs.
Finally, if the signature does not correspond to JunOS, TNT
falls back to the UTURN indicator (see line 23).

FRPLA is more generic and applies thus to any configu-
ration. FRPLA compares the lengths of the forward (i.e., LT)
and return paths (i.e., LTE

R). In the presence of MPLS tunnels,
return paths are expected to be seen as longer than forward
ones. Indeed, LSRs are not counted in the forward path while
they are taken into account in the return paths due to the
MIN(IP-TTL, LSE-TTL) behavior at the return Egress LER.
Then, we can analyze their length difference and check if
a shift appears (see Line 24). This is illustrated in Fig. 2
(“Invisible PHP”) in which LT is 3 while LTE

R is equal to
6, leading so to an estimation of the return tunnel length of 3.
At the AS granularity, when no IP hop is hidden, we expect
that the values associated to FRPLA will look like a normal

9In practice, we do not consider negative values. Indeed, they do not suggest
the presence of MPLS tunnels but rather path asymmetry evidences (for
FRPLA) or load balancing practices on the return path (for RTLA).

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

Configurations Pop Cisco iOS15.2 Juniper VMX
P2P circuits PHP FRPLA, BRPR RTLA, DPR
(e.g., LDP or 2�4 2�
RSVP-TE tunnels) UHP DUP_IP, BRPR++ RTLA, DPR

2�4 2�
P2MP overlays PHP LSE-TTL, - RTLA++, -
(e.g., VPRN: CsC or 4 4
VPN BGP-MPLS) UHP LSE-TTL++, - N/A

4
TABLE III: TNT revelation (2�) and classification (4) capaci-
ties according to the OS and the MPLS tunneling technologies
(P2P or P2MP). This table also provides the default indica-
tor/trigger and its associated path revelation method.

distribution centered in 0 (i.e., forward and return paths have,
on average, a similar length). If we rather observe a significant
and generalized shift towards positive values, it means the AS
probably makes use of the no-ttl-propagate option. As
it relies on the difference in length of return paths, RTLA is
resilient to path asymmetry. FRPLA, however, relying on the
difference between a forward and return path, is more sensible
to it. To handle path asymmetry at the trace granularity, TNT
uses a threshold, TFRPLA> 0, to avoid generating numerous
false positives.

The main purpose of triggers is to limit the overhead
generated by TNT. Revelations launched at each hop in a
brute force fashion may reveal nearly all MPLS tunnels.
However, by first checking for triggers, we limit the amount
of unnecessary probes (i.e., leading to no revelation).

B. TNT Limits and Opaque Tunnels

By using GNS3, we aimed first at verifying that the in-
ference assumptions considered in the wild are correct and
reproducible under a controlled environment, validating so
the triggers, indicators, and revelation methods used by TNT.
Second, some of the phenomena we exploit to reveal tunnels
in the wild have been directly discovered in our testbed by
reverse-engineering the TTL processing of some common
OSes used by many real routers. Indeed, our emulated testbed
allowed us to run several OSes and numerous configurations in
a controlled environment, similarly to a physical testbed. Thus,
we could link each triggers and indicators to specific kinds of
tunnels as well as establish the limits of TNT. All details and
results of experiments done with GNS3 are provided in the
companion technical report of this paper [27].

Table III provides a summary of TNT revelation and dis-
crimination capacities considering several MPLS usages in
standard configurations. In particular, it shows that TNT is
able to discriminate between Cisco Invisible UHP and PHP
tunnels while it is not the case for Juniper routers. Indeed,
for both UHP/PHP Juniper configurations, the trigger and the
revelation methods are the same (RTLA and DPR respectively).
Moreover, we also show for which cases our basic set of
techniques needs to be extended for enabling revelation and
distinction among different classes. We use the symbol ++ to
highlight these new requirements. For example, revealing UHP
Cisco tunnels requires to extend BRPR with the additional
buddy functionality (see Sec. IV) and UDP10 probing in order

10With ICMP probes, the target will not answer with its incoming IP address
as the probe does not result in a error reply when reaching the target.

to extract the incoming Egress IP address that, in turn, allows
TNT to reveal the tunnel. LSE-TTL++ refers to a way of
discriminating UHP VPRN from PHP ones, both resulting in
Opaque tunnels (with UHP, the quoted LSE-TTL is equal to
255 instead of reflecting the length of the tunnel). Finally,
RTLA++ is a way to distinguish VPRN configuration from
basic tunneling on Juniper devices. We discuss this specific
situation at the end of the section as it is more complex.

Generally speaking, Opaque tunnels may arise for different
reasons, such as routing devices heterogeneity, BGP edge
configurations, or VPRN. Our GNS3 platform shows that
VPRN content cannot be revealed with TNT, while other
Opaque tunnels can. However, both arise from a non-standard
terminating label. Indeed, upon its arrival at the Egress, at least
one label is still present in the MPLS header. This surviving
inner label is used to identify the VPN and the associated
VRF11. As the VPN label value is neither Explicit NULL nor
Implicit NULL, the Egress behaves as if the tunnel did not
end in a controlled fashion.

This absence of content revelation can be explained by the
IP address collected by TNT from the ICMP reply. Usually,
this address is the one of the incoming interface of the Egress
PE. In the Cisco VPRN case, the collected IP address is the
one assigned to the interface onto which the VRF is attached
which usually is the outgoing interface, towards the VPN at
the customer’s side (see Sec. VII for details). Because the
incoming address is the only one that enables a successful
revelation, this type of Opaque tunnels cannot be revealed.
While the outgoing address usually allows TNT to get the
incoming one, it turns out to be impossible within a VPRN, as
all probes are pushed to the VRF of the VPN and its associated
interface before the error message is generated.

Juniper VPRNs behave in a slightly different fashion. For
such tunnels, no Opaque indicator can be seen. Instead,
similarly to Cisco Invisible UHP tunnels, the packets destined
to the VPN are IP forwarded directly to the next-hop without
manipulating or looking at the IP-TTL whatever its value.
Thus, when performing a direct trace targeting the IP interface
of the Egress LER belonging to the VPN, this address and
its buddy appear in the wrong order. The two addresses are
switched, meaning that the CE IP address appears before the
Egress one. Indeed, being forwarded without inspecting the
IP-TTL, the probes targeting an IP belonging to the VPN
are automatically forwarded to the corresponding CE router
where they expire. The next probe, having a greater initial
TTL, follows the same path, but can be forwarded back to the
Egress, its destination, by the CE router. This about-turn can
be inferred as the two IP addresses are switched regarding their
actual position, and the TTL of the ICMP time-exceeded
deviates from its strict monotony (as the first probe went
further than the second one). These two artifacts are reflected
by the RTLA++ method in Table III.

While RTLA++ can theoretically discriminate Juniper
VPRN from basic P2P circuits, this extended trigger would
be fairly unreliable in practice, as the artifacts it tries to detect

11In case of VPRN, a router contains a Virtual Routing and Forwarding
table (VRF) for each virtual network.

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

are minute compared to the Opaque indicator. However, RTLA
being itself a pretty reliable trigger for Juniper devices, it
should consequently always result in the revelation of internal
LSRs. Thus, following an RTLA trigger, if no new content is
revealed while the Ingress was reached, one can conclude at
a Juniper VPRN.

VI. TNT CALIBRATION

As shown in the previous section, TNT relies mainly on
four thresholds related to indicators and triggers to limit its
overhead: TLSE_TTL for Opaque tunnels, TUTURN for Implicit
tunnels, and both TRTLA and TFRPLA for Invisible ones. This
section aims at experimentally calibrating those thresholds, as
well as evaluating the probing cost of our approach in general.
We do not aim here at validating TNT, but merely calibrating
it in order to make it more effective in terms of probing cost.

A. Calibration Setup

For this specific calibration analysis, we deployed TNT over
a limited number of vantage points (VPs) as such experiments
are costly due to the brute force approach detailed below.
In practice, we consider only 3 VPs over the Archipelago
infrastructure [17]. They were located in Europe (Belgium),
North America (San Diego), and Asia (Tokyo). TNT was
run on April 6th, 2018 towards a set of 10,000 destinations
(randomly chosen among the whole set of Archipelago desti-
nations list). Each VP had its own list of destinations, without
any overlapping.

First, we have observed that abnormal12 LSE-TTL values
vary between 236 and 254. Consequently, a value of 236 for
TLSE_TTL would be enough for detecting the presence of an
Opaque tunnel. Lower values are considered as anomalies.

Besides, from indicators and triggers described in Sec. V-A,
one can observe that the UTURN computation is equivalent to
RTLA for Juniper routers (in practice, only RTLA is considered
for Juniper routers as they do not exhibit such an Implicit
pattern by default on our testbeds). The TUTURN value used for
Cisco implicit tunnels does not need to be the same value
than TRTLA for Juniper routers. By design, TUTURN = 0 as
any difference between echo-reply and time-exceeded
replies for the Cisco router signature indicates a LSE-/IP-TTL
shifting. In practice, we reinforce the condition by looking for
at least two consecutive hops having a cumulated UTURN ≥ 3.

Finally, for thresholds TRTLA and TFRPLA , we scanned all
values between 0 and 4. A full calibration campaign was
launched for each pair of thresholds. For each pair, if no trigger
is pulled, a so-called brute force revelation is undertaken:
DPR/BRPR are then launched (with the use of the buddy when
required) in any case. This brute force data is used as a basis
to evaluate the quality and cost of each threshold value.

Indeed, due to the reliability of our revelation methods (tak-
ing advantage of the inner workings of MPLS), we calibrate
our triggers by checking if they accurately reflect the data TNT
produces when used in a brute force fashion (i.e., revelation is

12Abnormal here means “different from 1 or 255” which is the LSE-TTL
value that should be obtained in ICMP time-exceeded messages. More
details can be found in our technical report [27].

Fig. 3: Receiver operating characteristic (ROC) curve provid-
ing the performances of TNT according to the thresholds used
for revealing Invisible tunnels. TRx refers to TRTLAwith the
value x, while TFy

to TFRPLAwith the value y.

fired at each hop and if nothing is revealed, we consider that
there is no tunnel).

B. Calibration Analysis

The two explored triggers, namely FRPLA and RTLA, and
their associated thresholds provide a certain prediction, while
the results of additional probing give reliable facts, i.e., if a
tunnel is present or not by showing new IP hops. This binary
classification allows us to assess the performances of FRPLA
and RTLA according to the calibration of their thresholds. We
evaluate their conjoint performances through the analysis of
True Positive Rate (TPR) and False Positive Rate (FPR). We
plot the results on a Receiver Operating Characteristic (ROC)
curve in Fig. 3. We define TPR as the ratio of TNT success
to the number of links actually being MPLS tunnels (having a
length greater than 1). In such a case, TNT correctly triggered
additional probing for revealing Invisible tunnels. We then
have TPR + FNR = 1, i.e., when adding to False Negative
Rate (tunnels revealed only with the brute force approach),
we obtain all links being long enough tunnels. FPR is defined
as the ratio of TNT failure to the number of standard IP
links: additional probing was triggered but without revealing
anything. We have FPR + TNR = 1, i.e., when adding
to True Negative Rate, that is IP links where nothing can
be discovered despite additional probing, we obtain all IP
links without tunnels. In practice, False Negatives and False
Positives are only an issue when considering the use of triggers
only, without relying on additional revelation launches. Indeed,
False Negatives may be filtered out through the use of a brute
force approach or using lenient trigger thresholds. Similarly,
False Positives may be filtered out as the triggered revelation
will not reveal any hidden hops.

Our ROC curve has been plotted considering the TRTLA and
TFRPLA thresholds between 1 and 4. The red dotted diagonal
provides the separation between positive results for TNT
(above part of the graph) and negative results (below part of
the graph). Finally, the black dotted line is the interpolation
of experimental results.

We observe that the results are essentially positive for
TNT. Considering the couples (TR1

, TF3
) and (TR2

, TF3
),

performances are close to a pretty good classification (upper

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

0 2 0 2 0 2 0 2 0 2TRtla

0

25

50

75

100
R

aw
nb

.
of

p
ro

b
es

(×
10

4) TFrpla=0 TFrpla=1 TFrpla=2 TFrpla=3 TFrpla=4

Original

Revelation

No Revelation

Inconclusive

B. Force Revelation

B. Force No Revelation

B. Force Inconclusive

Fig. 4: Probing cost associated to TNT according to TFRPLAand
TRTLAthresholds. Here we also evaluate their uses with a value
of 0 leading to 25 combination pairs (instead of 16 previously).
The X-Axis plots, for multiple TFRPLA(see labels above) the
corresponding TRTLA(∈ [0, 4]).

left corner). These couples are thus considered as the best
choice for defining our thresholds TRTLA and TFRPLA. We obtain
a compromise close to 80%-20%: while we expect to reveal ≈
80% of existing tunnels (MPLS links), TNT has a controlled
overhead of 20%, i.e., it only fires useless additional probing
for an average limited to two actual IP links out of ten. One
can reach a higher TPR (close to 95% for TF1), leading to
a higher FPR (close to 40%). However, as mentioned before,
these False Positives do not distort the resulting statistics, but
merely lead to a higher (but still limited) overhead as more
revelations will be launched.

Since our triggers detected most MPLS tunnels that were
revealed through brute force probing, we can conclude that our
set of detection methods covers by themselves the detection of
a large share of MPLS tunnels (and so limit the extra probing
cost of revelations).

C. Probing Cost

Fig. 4 illustrates the probing cost associated to TNT. In
particular, it focuses on additional measurements triggered by
RTLA or FRPLA for revealing Invisible tunnels. The light grey
zone (labeled as “Original” on Fig. 4) corresponds to probes
associated to standard traceroute. The green, orange, and
dark grey zones correspond to probes sent when additional
measurements are triggered by RTLA or FRPLA. In particular,
the green zone corresponds to additional measurements that
were able to reveal the content of an Invisible tunnel. On the
contrary, the orange zone refers to additional measurements
that failed, i.e., no Invisible tunnel content was revealed.
Finally, the dark grey zone refers to inconclusive revelation:
the trigger has led to additional measurements but TNT was
unable to reach the potential Egress LER (i.e., the IP address
that engaged the trigger generally due to unresponsive IP
interfaces) or TNT was unable to reach again the candidate
Ingress LER because the path has changed (ECMP or BGP
routing noises).

The amount of probes linked to successful revelations
(green) remains almost stable whatever the values for
TFRPLA and TRTLA are. However, a very slow and limited

decrease occurs for high values (some tunnels are missed when
using too conservatives thresholds). Further, the additional
traffic generated by erroneous triggers (orange) or by incon-
clusive revelation (dark grey) decreases while TFRPLAincreases.
This result is aligned with Sec. VI-B in which the best values
for TFRPLA are between 1 and 3. Note that FRPLA is more
generic but less reliable than other triggers, thus using more
conservatives thresholds quickly limits some of the noise. On
the contrary, the TRTLA threshold has a minor effect on the
amount of probes sent as the associated trigger is more reliable
and specific.

Hatched zones (orange, dark grey, and green) correspond
to the amount of probes sent using brute force. The results
showcased on Fig. 3 are here shown in a more practical
fashion, and exhibit two interesting ways of calibrating TNT.
The more conservative configuration (TRTLA=2 and TFRPLA=3)
leads to a slightly higher number of undetected tunnels (dashed
green) compared to its more lenient counterpart (TRTLA=1 and
TFRPLA=1), but reduces the number of unsuccessful launched
revelations (dashed orange and grey). The more lenient thresh-
olds increase the number of probes used (plain), but allows to
detect about 95% of all tunnels seen (green).

Generally speaking, considering the information gathered,
one can observe that the overhead of TNT is limited compared
to a standard active campaign. In particular, using correct
thresholds to limit both useless probes and missed tunnels
(e.g., TR1

, TF3
), our tool generates less than 10% of additional

probing compared to the underlying campaign and reaches a
satisfying compromise where ≈ 80% of tunnels are revealed.

VII. TUNNELS QUANTIFICATION WITH TNT

This section aims at discussing the capacities of TNT in the
wild Internet. In particular, it analyzes the relative coverage of
each indicator and trigger with respect to possible revelation
techniques. Sec. VII-A describes the measurement setup, while
Sec. VII-B discusses the results obtained.

A. Measurement Setup

We deployed TNT on the Archipelago infrastructure [17] on
April 23rd, 2018 with parameters TFRPLAfixed to 3 and TRTLAto
1, according to results discussed in Sec. VI-B.
TNT has been deployed over 28 vantage points, scattered

all around the world: Europe (9), North America (11), South
America (1), Asia (4), and Australia (3). The overall set of
destinations, nearly 2,800,000 IP addresses, is inherited from
the Archipelago dataset and spread over the 28 vantage points
to speed up the probing process.

A total of 522,049 distinct unique IP addresses (excluding
traceroute targets) have been collected, with 28,350 being
non-publicly routable addresses (and thus excluded from our
dataset). Each collected routable IP address has been pinged
once per vantage point, allowing us to collect additional data
for fingerprinting (see Sec. II-A). Our dataset and our post-
processing scripts are freely available.3

Fig. 5 shows the proportion of paths, per monitor, that
crosses at least one LSP. We see that, for more than half of
the monitors, at least 50% of the paths include one MPLS

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

0 3 6 9 12 15 18 21 24 27
Monitor ID

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Fig. 5: Paths, per monitor, crossing at least one LSP.

Status # probes
traceroute ping buddy

original 63,559,385 7,109,075 −

at
te

m
pt revealed 2,190,275 206,842 19,181

no revelation 1,640,224 − 556
TARGET_NOT_REACHED 4,174,404 − 9,888
ING_NOT_FOUND 1,790,900 − 7,326

TABLE IV: Raw number of probes sent by TNT over the set
of 28 vantage points.

tunnel or more. This echoes previous work on MPLS large
deployment [8, 10, 32].

B. Results

Table IV provides the amount of probes sent by
traceroute-like probing in TNT, ping, and buddy bit ex-
ploration. The row “original” refers to standard traceroute
(i.e., actual IP links, Explicit, or Implicit tunnels).

The main outcome of Table IV is the amount of
probes involved in inconclusive revelations, i.e. TAR-
GET_NOT_REACHED cases (TNT was unable to reach the
potential Egress LER) and ING_NOT_FOUND cases (TNT
did not cross the potential Ingress LER). In particular, TAR-
GET_NOT_REACHED generate almost twice more probes than
revealed tunnels. Those particular inconclusive revelations
might be explained by ICMP rate limiting due to additional
probing. Another explanation is that those potential Egress
LERs respond to initial traceroute with an IP address
that is not globally announced. As such, no route is available
to reach them. The potential Egress LER turned out to be
unreachable for about 40% of all the attempted revelations.
While the revelations were inconclusive, this result can be
seen as an evidence of MPLS usage, as it may be due to a
router possessing an incomplete IP routing table, or operator
policies aiming to hide their network.

Table V provides the number of MPLS tunnels discovered
by TNT, per tunnel class as indicated in the first column. The
indicators/triggers are provided, as well as the additional rev-
elation technique used. Explicit tunnels are the most prevalent
class (76% of tunnels discovered): most operators do not seem
to hide their MPLS infrastructure.

Implicit tunnels represent 5% of the whole dataset, with
the UTURN indicator being more present than the qTTL one.
Compared to previous works, it is clear that this class is not as
prevalent as expected at the time, both because we corrected
and improved our methodology by defining RTLA for Juniper

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Most specific covering prefix length

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
p

ro
b

ab
ili

ty

All tunnels

Opaque tunnels

Fig. 6: Distribution of most specific prefix covering pair
(Egress LER,next-IP).

routers, and also because the RFC4950 is likely to be more
and more deployed.

Opaque tunnels are less prevalent (1.7% of tunnels discov-
ered). Additional revelation techniques (DPR or BRPR) do not
perform well with such tunnels. The content of 98% of Opaque
tunnels cannot be revealed, suggesting that the vast majority of
Opaque tunnels arise due to Cisco VPRNs. This is confirmed
by Fig. 6 that plots, as a CDF (Y-Axis), the distribution of
most specific prefix length (X-Axis) covering the pairs (Egress
LER, next-IP). We call “next-IP” the IP address following the
Egress LER in the trace. The black dashed line provides the
distribution for all MPLS tunnels, while the distribution for
Opaque tunnels is plotted with a plain red line. For most
non-Opaque tunnels, a large proportion (about 46%) has a
most specific covering prefix length equal to 0 or 1. The fact
that the two considered IP addresses are often almost entirely
different is not surprising, as exiting an LSP is often equivalent
to exiting an AS. Thus, the Egress of such LSPs are still within
the deploying AS, while the next-IP belongs to a new domain,
which is likely using a different prefix. On the contrary, a
large proportion of Opaque tunnels (roughly 65%) has a most
specific covering prefix greater or equal to a /30. Note that,
since Juniper devices do not generate Opaque tunnels, this
distribution reflects the way Cisco VPRN affects the trace’s
output, as mentioned in Sec. V-B. Indeed, due to those kinds
of configurations, we gather the outgoing IP address of the
Egress LER, followed by the incoming IP address of the next-
IP. It is, thus, likely for these two addresses to share the same
/30 or /31 prefix. The fact that the majority of (Egress LER,
next-IP) couples share a /30 or /31 prefix is in adequacy with
the fact that most Opaque tunnels seem to arise due to VPRN
configurations, as can be seen in Table V

The proportion of Invisible tunnels is not negligible: 16% of
tunnels in our dataset. These measurements clearly contradict
our previous work suggesting that Invisible tunnels were
probably 40 to 50 times less numerous than Explicit ones [8,
Sec. 8]. More precisely, Invisible PHP is the most prominent
configuration (87% of Invisible tunnels belongs to the Invisible
PHP class), confirming so our last survey [9]. RTLA appears
as being the most efficient trigger. This is partially due to

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

Tunnel Type Indicator/Trigger # LSP Revealed per Category # LSPs # LSRs # LSRs
DPR BRPR 1HOP_LSP Mix per LSP

Explicit LSE headers - - - - 150,036 31,749 2

Implicit qTTL - - - - 2,689 1,766 2
UTURN - - - - 7,216 7,155 2

Opaque LSE-TTL 22 17 43 - 3,346 52 2
Invisible UHP DUP_IP 1,609 1,531 686 296 4,122 862 2

Invisible PHP RTLA 11,268 1,191 2,595 279 15,333 3,008 4
FRPLA 5,903 2,555 3,260 1,012 12,730 2,897 3

Total 18,802 5,294 6,584 1,587 195,525 47,489 3

TABLE V: Raw number of tunnels discovered by TNT per tunnel category and class (see Sec. III). No additional revelation
technique is necessary for Explicit and Implicit tunnels.

the order13 of triggers in the TNT code as it favors a high
ranked trigger (RTLA) compared to low ranked one (FRPLA).
Moreover, DPR works better than BRPR in practice, showing
that both Juniper routers are popular for MPLS configurations
and the ordered mode applied only on loopback addresses
seems a common practice. It is worth noticing that in 1,784
cases (not shown in the table), RTLA was triggered but no
content could be revealed. This number could represent an
upper bound of Juniper VPRN that were encountered during
the campaign. Those cases are not counted within the 15,333
LSPs shown in Table V. In comparison, FRPLA is responsible
for 11,590 unsuccessful revelation attempts. For Invisible
UHP, less numerous than PHP ones (≈ 2% of all LSPs), it
is worth noticing (although not shown in the table) that the
buddy extension was required in only 25% of the cases.

The column labeled “mix” corresponds to tunnels partially
revealed thanks to BRPR and partially with DPR. Typically,
it comes from heterogeneous MPLS clouds. For instance, an
ISP may deploy both Juniper and Cisco hardware without
any homogeneous prefixes distribution. Note that it is also
possible that the UHP and PHP label popping techniques co-
exist when using BRPR. TNT can deal with such complex
situations, making the tool robust to pitfalls encountered in the
wild (5% of the Invisible tunnels encountered). The column
labeled “1HOP_LSP” corresponds to single LSR tunnels where
DPR and BRPR cannot be distinguished.

It is also worth noting that some tunnels may belong
to multiple classes. We have indeed encountered situations
in which an Explicit tunnel contains a few LSRs without
RFC4950 enabled (i.e., being so Implicit LSR). Those tunnels
and their respective LSRs are not counted in Table V and
represent less than 5% of all tunnels founds.

While the column “# LSPs” provides the total amount
of MPLS tunnels detected or revealed per tunnel class, the
column “# LSRs” gives the contribution of each class in terms
of unique IP addresses detected (with indicators) or revealed
(with triggers). In both cases, the share of new MPLS data
(i.e., non-explicit) that was detected (for Implicit and most
Opaques) or revealed (for Invisible and some Opaques) is
significant, representing more than 20% of the overall quantity
of MPLS information.

Fig. 7 presents the distribution of MPLS tunnels according
to their length. In 60% of the cases, LSPs contain less than

13In case several triggers apply, we prefer to use the most reliable, i.e., the
less subject to any interference like BGP asymmetry.

0 2 4 6 8 10 12 14 16 18 20 22 24
Nb. Internal LSRs

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Explicit

Implicit

Opaque

PHP Invisible

UHP Invisible

Fig. 7: Distribution of the length of the tunnels according to
their classification.

0 5 10 15 20 25 30
Path Length

0

50000

100000

150000

200000

250000

N
u

m
b

er
of

T
ra

ce
s

Traceroute

Median

TNT

Median

Fig. 8: Path length distribution correction with TNT. “Me-
dian” corresponds to the median path length for classic
traceroute exploration (dashed grey) and when additional
paths are revealed through TNT (dotted red).

4 internal LSRs, all types of tunnels combined. They are thus
rather short, which is not surprising in practice, as MPLS
is a technology used in transit networks, where packets are
forwarded to an exit point as fast as possible in order to reduce
resource consumption (hot-potato routing). This observation
also confirms previous results on Invisible [9] and Explicit
tunnels [32]. Besides, Opaque and Implicit LSPs seem shorter
than Explicit ones, while Invisible tunnels14 are a little longer.

Finally, Fig. 8 provides the distribution of path length with
standard traceroute and with TNT. We clearly see that
TNT leads to a shift of the distribution towards the right (longer
paths). This shift is lower than the median length of tunnels
given in the last column of Table V because all traces are
taken into account, even the ones with no tunnels. Vanaubel

14Note that TNT may have been unable to reveal more than one hop for
some UHP Invisible tunnels. As this hop corresponds to the Egress LER, the
tunnel length is equal to 0 (no internal LSR was exposed). It explains why
the grey curve (“UHP Invisible”) starts with a Y value different from 0.

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

et al. [9] have shown how revealing hidden tunnels also impact
standard Internet model metrics.

VIII. RELATED WORK

For years now, traceroute has been used as the main
tool for discovering the Internet topology [1]. Multiple exten-
sions have been provided to circumvent traceroute limits.

Doubletree [33, 34] has been proposed for improving the
cooperation between scattered traceroute vantage points,
reducing so the probing redundancy. Paris traceroute [12]
and recent extensions like [35] have been developed for
fixing issues related to IP load balancing. tracebox [5]
extends traceroute for revealing the presence of mid-
dleboxes along a path. YARRP [36] provides techniques
for speeding up the traceroute probing process. Reverse
traceroute [37] is able to provide the reverse path (i.e.,
from the target back to the vantage point). Passenger [38]
and Discarte [39] extend traceroute with the IP record
route option. Marchetta et al. [40] have proposed to use
the ICMP Parameter Problem in addition to Record Route
option in traceroute. Finally, tracenet [41] mimics
traceroute for discovering subnetworks.
TNT falls within the scope of the hidden router issue,

i.e., any device that does not decrement the TTL causing
the device to be invisible to traceroute probing. Dis-
carte and Passenger, through the use of IP Record Route
Option, allows, to some extent, to reveal hidden routers
along a path. DRAGO [42] considers the ICMP Timestamp
for detecting hidden routers. TNT goes beyond those so-
lutions as it does not rely on specific ICMP messages or
IP options. Such probes are generally filtered by opera-
tors either locally (i.e., the option/message is turned off
on the router) or for transit packets (i.e., edge routers do
not forward those particular packets).15 TNT only relies
on standard messages (echo-request/echo-reply and
time-exceeded) that are implemented and used by the vast
majority of routers and, as such, has the potential to reveal
more information.

MPLS tunnels discovery has been the subject of several
researches those last years. In particular, Sommers et al. [10]
examined the characteristics of MPLS deployments that are
explicitly identified using RFC4950 extensions, as observed in
CAIDA’s topology data. We proposed the first classification
of MPLS tunnels [8] according to the relationship between
MPLS and traceroute. This paper is a revision of our
work in light of a deeper understanding of MPLS mechanisms,
in particular for hidden tunnels (Opaque, Invisible PHP, and
UHP). More recently, we have proposed techniques [9] for
inferring and possibly revealing hidden tunnels: FRPLA, RTLA,
BRPR, and DPR. FRPLA and RTLA were initially not used as
triggers for measurements as we are doing in this paper with
TNT (that also extends and so improves those techniques in
many aspects). In previous works, they were rather used as a
way to infer or validate the length of hidden tunnels. Indeed,

15It has been, however, demonstrated recently that IP Record Route option
might still find a suitable usage in Internet measurements if used with
prudence [43].

we directed BRPR and DPR towards pre-identified high degree
routers with the ITDK dataset used as an external source for
triggering specific measurements (as they were suspected to
be the exit point of a large number of hidden MPLS tunnels).
As such, we did not provide any integrated measurement tool,
on the contrary to TNT, a standalone active tool, with which
MPLS tunnels are discovered on the fly.

IX. CONCLUSION

In this paper, we revised the MPLS classification proposed
by Donnet et al. [8]. Then, we introduced TNT (Trace the
Naughty Tunnels), an extension to Paris traceroute for re-
vealing most MPLS tunnels along a path. Our fully integrated
tool reveals, or at least detects, all kinds of tunnels in two
simple stages. First, TNT relies on indicators and triggers to
classify and possibly tag tunnels as hidden. Second, it launches
additional probing to reveal the underlying MPLS content of
false direct IP links (tagged as suspects by our set of triggers).
TNT provides the ability to unveil the MPLS ecosystem de-

ployed by ISPs. Recent works have indeed shown that MPLS
is largely deployed by most ISPs [8, 10, 32] for many reasons
such as scalability or Traffic-Engineering. By running TNT
periodically from largely distributed measurement platforms
(e.g., Archipelago, RIPE Atlas), we expect to see numerous
studies using our tool in order to correct graph properties and
related models. TNT aims to provide a better understanding of
the actual and current Internet topology.

ACKNOWLEDGMENTS

Authors would like to thank kc claffy and her team at
CAIDA for letting them deploying TNT on the Archipelago
infrastructure. In addition, part of Mr. Vanaubel’s work was
supported by an internship at CAIDA, under the direction of
Young Hyun.

REFERENCES

[1] B. Donnet and T. Friedman, “Internet topology discovery: a survey,”
IEEE Communications Surveys and Tutorials, vol. 9, no. 4, pp. 2–15,
December 2007.

[2] H. Haddadi, G. Iannaccone, A. Moore, R. Mortier, and M. Rio, “Network
topologies: Inference, modeling and generation,” IEEE Communications
Surveys and Tutorials, vol. 10, no. 2, pp. 48–69, April 2008.

[3] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the
Internet: A Statistical Physics Approach. Cambridge University Press,
2004.

[4] P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot, “On the
impact of layer-2 on node degree distribution,” in Proc. ACM Internet
Measurement Conference (IMC), November 2010.

[5] G. Detal, b. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[6] K. Edeline and B. Donnet, “A first look at the prevalence and persistence
of middleboxes in the wild,” in Proc. International Teletraffic Congress
(ITC), September 2017.

[7] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” Internet Engineering Task Force, RFC 3031, January 2001.

[8] B. Donnet, M. Luckie, P. Mérindol, and J.-J. Pansiot, “Revealing
MPLS tunnels obscured from traceroute,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 2, pp. 87–93, April 2012.

[9] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “Through the
wormhole: Tracking invisible MPLS tunnels,” in In Proc. ACM Internet
Measurement Conference (IMC), November 2017.

http://dx.doi.org/10.1109/TNSM.2019.2962278

©IEEE, 2019. This is the author’s version of an article that has been published in this journal. Changes were made to this version by the
publisher prior to publication. The final version of record is available at 10.1109/TNSM.2019.2962278

[10] J. Sommers, B. Eriksson, and P. Barford, “On the prevalence and
characteristics of MPLS deployments in the open Internet,” in Proc.
ACM Internet Measurement Conference (IMC), November 2011.

[11] M. Luckie, “Scamper: a scalable and extensible packet prober for active
measurement of the Internet,” in Proc. ACM Internet Measurement
Conference (IMC), November 2010.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies
with Paris traceroute,” in Proc. ACM Internet Measurement Conference
(IMC), October 2006.

[13] L. Andersson, I. Minei, and T. Thomas, “LDP specification,” Internet
Engineering Task Force, RFC 5036, October 2007.

[14] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Engineering
Task Force, RFC 3209, December 2001.

[15] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “A
framework for IP based virtual private networks,” Internet Engineering
Task Force, RFC 2764, February 2000.

[16] Center for Applied Data Analysis, “The CAIDA UCSD inter-
net topology data kit,” March 2016, see http://www.caida.org/data/
internet-topology-data-kit.

[17] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet
mapping: from art to science,” in Proc. IEEE Cybersecurity Application
and Technologies Conference for Homeland Security (CATCH), March
2009.

[18] Y. Vanaubel, J.-R. Luttringer, P. Mérindol, J.-J. Pansiot, and B. Donnet,
“TNT, watch me explode: A light in the dark for revealing MPLS
tunnels,” in Proc. IFIP Network Traffic Measurement and Analysis
Conference (TMA), June 2019.

[19] Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet, “Network
fingerprinting: TTL-based router signature,” in Proc. ACM Internet
Measurement Conference (IMC), October 2013.

[20] L. Andersson and R. Asati, “Multiprotocol label switching (MPLS)
label stack entry: EXP field renamed to traffic class field,” Internet
Engineering Task Force, RFC 5462, February 2009.

[21] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li,
and A. Conta, “MPLS label stack encoding,” Internet Engineering Task
Force, RFC 3032, January 2001.

[22] P. Agarwal and B. Akyol, “Time-to-live (TTL) processing in multiproto-
col label switching (MPLS) networks,” Internet Engineering Task Force,
RFC 3443, January 2003.

[23] D. Aydin, “CISCO vs. Juniper MPLS,” June 2014, see http://
monsterdark.com/cisco-vs-juniper-mpls/.

[24] L. De Ghein, MPLS Fundamental: A Comprehensive Introduction to
MPLS (Theory and Practice). CISCO Press, November 2006.

[25] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP extensions for
multiprotocol label switching,” Internet Engineering Task Force, RFC
4950, August 2007.

[26] T. Fiola and J. Panagos, This Week: Deploying MPLS, ser. Junos
Networking Technologies Series. Juniper Networks Books, April 2011.

[27] Y. Vanaubel, J.-R. Luttringer, P. Mérindol, J.-J. Pansiot, and B. Donnet,
“Tnt, watch me explode: A light in the dark for revealing MPLS tunnels,”
arXiv, cs.NI 1901.10156, February 2019.

[28] E. Rosen and Y. Rekhter, “BGP/MPLS IP virtual private networks
(VPNs),” Internet Engineering Task Force, RFC 4364, February 2006.

[29] J.-F. Grailet, F. Tarissan, and B. Donnet, “TreeNET: Discovering and
connecting subnets,” in Proc. Traffic Monitoring and Analysis Workshop
(TMA), April 2016.

[30] J.-F. Grailet and B. Donnet, “Revisiting subnet inference WISE-ly,”
in Proc. IFIP Network Traffic Measurementand Analysis Conference
(TMA), June 2019.

[31] ——, “Towards a renewed alias resolution with space search reduction
and IP fingerprinting,” in Proc. IFIP Network Traffic Measurementand
Analysis Conference (TMA), June 2017.

[32] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “MPLS under
the microscope: Revealing actual transit path diversity,” in Proc. ACM
Internet Measurement Conference (IMC), October 2015.

[33] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMETRICS,
June 2005.

[34] R. Beverly, A. Berger, and G. Xie, “Primitives for active Internet
topology mapping: Toward high-frequency characterization,” in Proc.
ACM Internet Measurement Conference (IMC), November 2010.

[35] K. Vermeulen, S.-D. Strowes, O. Fourmaux, and T. Friedman, “Multi-
level mda-lite paris traceroute.” in In Proc. ACM Internet Measurement
Conference (IMC), November 2018.

[36] R. Beverly, “Yarrp’ing the Internet: Randomized high-speed active
topology discovery,” in Proc. ACM Internet Measurement Conference
(IMC), November 2016.

[37] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), June 2010, see https://www.revtr.ccs.neu.edu.

[38] R. Sherwood and N. Spring, “Touring the internet in a TCP sidecar,” in
Proc. ACM Internet Measurement Conference (IMC), October 2006.

[39] R. Sherwood, A. Bender, and N. Spring, “Discarte: a disjunctive Internet
cartographer,” in Proc. ACM SIGCOMM, August 2008.

[40] P. Marchetta, W. de Donato, V. Persico, and A. Pescapé, “Experimenting
with alternative path tracing solutions,” in Proc. IEEE Symposium on
Computers and Communications (ISCC, July 2015.

[41] M. E. Tozal and K. Sarac, “TraceNET: an Internet topology data
collector,” in Proc. ACM Internet Measurement Conference (IMC),
November 2010.

[42] P. Marchetta and A. Pescapé, “DRAGO: Detecting, quantifying and
locating hidden routers in traceroute IP paths,” in Proc. Global Internet
Symposium (GI), April 2013.

[43] B. J. Goodchild, Y.-C. Chiu, R. Hansen, H. Lua, M. Calder, M. Luckie,
W. Lloyd, D. Choffnes, and E. Katz-Bassett, “The record route option is
an option!” in In Proc. ACM Internet Measurement Conference (IMC),
November 2017.

Jean-Romain Luttringer received his master’s de-
gree in Computer Science from the University of
Strasbourg (France) in 2019, where he is currently
pursuing a Ph.D. degree within the Networks Re-
search Group of the ICube laboratory. His research
interests includes routing, network measurements,
path computation and Segment Routing.

Yves Vanaubel received his degree in Computer
Science Engineering from the Université de Liège in
2012. He obtained his Doctoral degree in Computer
Science Engineering from the same University in
2018. His research interest was Internet topology
discovery, focusing on revealing hidden MPLS infor-
mation. Mr. Vanaubel is now working as a Research
Engineer in the Smart Grids team in the University
of Liège

Pascal Mérindol received his Ph.D. degree from the
University of Strasbourg (France) in 2008. Then,
he spent two years in Belgium at the Université
catholique de Louvain as a post-doctoral researcher.
He is now Associate Professor at the Networks
Research Group of the ICube laboratory in the
University of Strasbourg. His main research topics
are routing and Internet measurements.

Jean-Jacques Pansiot received a M.Sc. in Computer
Science from Nancy University (France, 1972), a
Ph.D. in Computer Science from Cornell University
(USA, 1976). He joined the Department of Com-
puter Science from the same University where he
was successively appointed as Assistant Professor,
Associate Professor, and Full Professor (1984). He
led the Network and Protocol group of the LSIIT
Laboratory and is now retired. His research interests
included traffic engineering and Internet cartography.

Benoit Donnet received his Ph.D. degree in Com-
puter Science from the Université Pierre et Marie
Curie in 2006 and has been a PostDoc until 2011
at the Université catholique de Louvain (Belgium).
Mr. Donnet joined the Montefiore Institute at the
Université de Liège since 2011 where he was ap-
pointed successively as Assistant Professor and As-
sociate Professor. His research interests are about
Internet measurements , network modeling, middle-
boxes, new Internet architectures , and Computer
Science Education.

http://dx.doi.org/10.1109/TNSM.2019.2962278
http://www.caida.org/data/internet-topology-data-kit
http://www.caida.org/data/internet-topology-data-kit
http://monsterdark.com/cisco-vs-juniper-mpls/
http://monsterdark.com/cisco-vs-juniper-mpls/
https://www.revtr.ccs.neu.edu

	Introduction
	Background
	Router Fingerprinting
	MPLS Basics and Control Plane Operations
	MPLS Data Plane and TTL processing
	LSP Entry Behavior (Push)
	LSP Internal Behavior (Swap)
	LSP Exit Behavior (Pop)

	Revisiting MPLS Tunnels Taxonomy
	Hidden Tunnel Revelation
	TNT Design
	Indicators and Triggers
	Visible Tunnel Indicators
	Triggers for Revealing Invisible Tunnels

	TNT Limits and Opaque Tunnels

	TNT Calibration
	Calibration Setup
	Calibration Analysis
	Probing Cost

	Tunnels Quantification With TNT
	Measurement Setup
	Results

	Related Work
	Conclusion
	References
	Biographies
	Jean-Romain Luttringer
	Yves Vanaubel
	Pascal Mérindol
	Jean-Jacques Pansiot
	Benoit Donnet

