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Abstract: This paper considers the microwave imaging reconstruction problem, based on additive
penalization and gradient-based optimization. Each evaluation of the cost function and of its gradient
requires the resolution of as many high-dimensional linear systems as the number of incident fields, which
represents a large amount of computations. Since all such systems involve the same matrix, we propose
a block inversion strategy, based on the block-biconjugate gradient stabilized (BiCGStab) algorithm,
with efficient implementations specific to the microwave imaging context. Numerical experiments
performed on synthetic data and on real measurements show that savings in computing time can reach a
factor of two compared to the standard, sequential, BiCGStab implementation. Improvements brought
by the block approach are even more important for the most difficult reconstruction problems, that
is, with high-frequency illuminations and/or highly contrasted objects. The proposed reconstruction
strategy is shown to achieve satisfactory estimates for objects of the Fresnel database, even on the most
contrasted ones.

Keywords: microwave imaging; inverse scattering; numerical optimization; block system inversion

1. Introduction

Microwave imaging aims at estimating the dielectric properties (permittivity and conductivity)
of objects illuminated by incident electromagnetic fields [1]. This technique has been used in a
wide range of applications such as biomedical imaging [2,3], geophysics [4,5] and nondestructive
testing [6,7]. Quantitative inverse scattering methods estimate the complex permittivity map inside
the object from a set of measured scattered electromagnetic fields around it. When the object size is
comparable to the wavelength, diffraction occurs and the forward scattering model, which defines the
scattered field as a function of the dielectric properties at any point of the object, becomes non-linear.
The resulting reconstruction problem is ill-posed [8,9], and its resolution becomes particularly difficult with
high-frequency illuminations and/or for highly contrasted objects—that is, if the permittivity inside the
object strongly differs from that of the background—where the Born approximation is not valid anymore.

Imaging methods usually rely on solving an optimization problem, whose complexity is strongly
impacted by the non-linearity of scattering. In order to circumvent this difficulty, several works introduced
additional variables, corresponding to the total fields inside the object, which are jointly estimated together

Sensors 2020, 20, 6282; doi:10.3390/s20216282 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6660-2704
https://orcid.org/0000-0003-4087-0302
http://dx.doi.org/10.3390/s20216282
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6282 2 of 20

with the contrast function (i.e., the relative complex permittivity). Within this formulation, the domain
equation, which links the total fields to the contrast function, is not exactly solved, but the resulting
bilinear model allows the low-cost computation of iterates in the optimization procedure. The Modified
Gradient Method [10] and Contrast Source Inversion methods [11,12] fall within this category, which
achieve satisfactory compromise between computation time and reconstruction quality in cases where
diffraction remains limited [13]. Although some works addressed 3-D reconstruction based on this
formulation [7,14–16], most of them were limited to 2-D problems, where the number of unknowns
remained relatively small [13,17–24].

A second class of methods, which dominates in the recent 3-D microwave imaging literature [25–35].
directly incorporates the domain equation into the problem formulation. The price to pay for using
such an exact form of the domain equation is a much more complex evaluation of the cost function
and of its gradient : both require a numerical solver for computing the forward problem, based on the
resolution of very large linear systems, especially in the 3-D case. The related computational effort then
represents the major cost of the reconstruction procedure. Therefore, developing efficient strategies for
such system resolutions remains one of the current challenges for improving the efficiency of microwave
imaging techniques [33,36,37]. In order to reduce the size of the problem, some works focused on
the reconstruction of strongly constrained, parameterized, objects. Efficient numerical methods were
developed with global convergence properties, e.g., based on evolutionary algorithms [38] or Markov
Chain Monte-Carlo methods, coupled with surrogate models [39]. In the particular case of point-like
scatterers, the two-step procedure in [40] efficiently accounts for the sparsity of the object.

In this paper, we focus on methods that aim to estimate any permittivity distribution (that is,
without any strong prior assumption on the inspected object), based on the exact problem formulation.
Previous works based on multiplicative [33] or additive [13], edge-preserving or sparsity-enhancing [41],
regularization fall within this category. All these methods rely on repeated computations of forward
scattering problems. One generally resorts to iterative system solving algorithms, which are stopped as
soon as an acceptable residual error is obtained. Several such algorithms have been used in microwave
imaging, e.g., the conjugate gradient (CG) algorithm [42,43], the biconjugate gradient (BiCG) algorithm [44],
the quasi-minimal residual (QMR) algorithm [45,46] or the biconjugate gradient stabilized (BiCGStab)
algorithm [33,36,37,47]. BiCGStab is now one of the most popular algorithms in this field and it was shown
to converge faster than CG, BiCG and QMR [47].

In microwave imaging, as many forward scattering models as the number of illuminating sources
must be computed. Such computations are usually performed sequentially or via massively parallel
procedures [33,48]. Note that all such linear systems involve the same system matrix, which only
depends on the object dielectric properties and on the discretization scheme. A classical solution relies
on the preliminary LU-decomposition of the system matrix [4]. However, this possibility becomes
prohibitive in 3-D imaging [49]. Block iterative algorithms specifically address the resolution of such
linear systems with multiple right-hand sides (RHSs), by jointly solving all systems. Block versions of
several standard iterative methods have been proposed in the applied mathematics literature, including
the block-conjugate (and bi-conjugate) gradient algorithms [50], the block-QMR algorithm [51] and the
block-BiCGStab algorithm [52]. Such block algorithms were shown to achieve better performance than
their sequential counterparts in generic contexts. Block-QMR has been used in microwave imaging [49].
The block-BiCGStab algorithm proposed in [52] was shown to outperform block-QMR. Its standard
implementation, however, is rather unsatisfactory for microwave imaging forward problems, where
the system matrices are much larger, and where there are many more RHS terms which are highly
correlated [53].

Here, we propose a reconstruction procedure based on additive penalization, where the evaluation of
both the cost function and its gradient are performed with a dedicated block-BiCGStab implementation.
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Specific tunings of the block-BiCGStab algorithm are discussed, and the overall efficiency of the inversion
method is evaluated as a function of the problem difficulty (illuminating frequency and contrast). We
show in particular that improvements are even greater as the problem complexity increases. We provide
reconstruction results obtained on the Fresnel database [54], where the proposed implementation allows
the accurate reconstruction of the most difficult objects.

In Section 2, the 3-D forward scattering model is built using an integral formulation. A discretization
procedure based on the method of moments is used, and our inversion formulation based on additive
regularization is detailed. In Section 3, we propose efficient adaptations of block-BiCGStab for forward
scattering computations, and for their implementation within the reconstruction procedure. In Section 4,
algorithmic performance is evaluated with simulated data, as a function of the object complexity,
with different illuminating frequencies and contrast levels. In Section 5, our method is applied to real
measurements extracted from the Fresnel database [54], where reconstruction quality and computation
times are discussed. Concluding comments are given in Section 6.

2. Formulation of 3-D Forward and Inverse Scattering Problems

2.1. Forward Scattering Problem

The forward scattering model defines the total electric field in a given volume V containing the
scattering object, as a function of the spatial distribution of the object permittivity. We adopt a standard
approach based on the integral formulation of the domain equation [1], followed by a discretization
procedure based on the method of moments [55]—see for example [14,36,37,43,44] for similar choices.
We consider a background medium with constant complex permittivity εb, containing the object under
study with complex permittivity ε(r) where r denotes the vector of spatial coordinates. The object is
illuminated by an incident wave with angular frequency ω. In the sequel, the time dependency exp(−jωt)
of all quantities is omitted. The electric field integral equation gives an implicit relation between the
unknown total electric field at any point inside the domain under study and the object permittivity
distribution [1]:

~Etot(r) = ~Einc(r) +
(

k2
b +∇∇·

) ∫
r′∈V

g(r− r′)χ(r′)~Etot(r′)dr′, ∀r ∈ V, (1)

where ~Etot(r) and ~Einc(r) respectively denote the total and the known incident 3-D electric field vectors
at point r ∈ V, µ0 is the vacuum permeability, kb =

√
ω2µ0εb is the wavenumber in the background

medium, g(r) = exp(jkb‖r‖)/4π‖r‖ is the Green function and χ(r) = (ε(r) − εb)/εb is the contrast
function. The term ∇∇· represents the gradient of the divergence with respect to r.

Using the discretization procedure based on the method of moments (see [14] for the 3-D case),
the volume V is divided into N cubic voxels and the integral Equation (1) turns into:

etot = einc + GDXetot. (2)

The size-3N vectors einc and etot respectively contain the three spatial components of the 3-D incident and
total electric field vectors, discretized on the N voxels that are sorted according to the lexicographic order.
The size-N vector x corresponds to the contrast function discretized on the N voxels, put in vector form,
and X is the 3N × 3N diagonal matrix whose diagonal contains three replicas of x. The 3N × 3N matrix
GD corresponds to the discretization of the 3× 3 Green tensor

(
k2

bI3 +∇∇
)

g(r − r′) on the N voxels,
where I3 denotes the 3× 3 identity tensor (see for example [53] for details). From (2), the discretized total
field is the solution to the following linear system:
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Lxetot = einc, with Lx = I3N −GDX, (3)

where I3N denotes the 3N × 3N identity matrix.
In microwave imaging, the object is successively illuminated with a set of NS sources at different

spatial locations, creating incident fields einc
i , i = 1, . . . , NS. Then, computing the corresponding total fields

etot
i amounts to solving NS linear systems Lxetot

i = einc
i , that is:

LxEtot = Einc, with Etot =
[
etot

1 , . . . , etot
NS

]
and Einc = [einc

1 , . . . , einc
NS
], (4)

where all linear systems involve the same system matrix Lx. Such a property is the key point for our block
resolution strategy.

2.2. Observation Model

The scattered field ~Escat at any point r outside V is defined by the volume integral observation
equation:

~Escat(r) =
(

k2
b +∇∇·

) ∫
r′∈V

g(r− r′)χ(r′)~Etot(r′)dr′. (5)

Using the same discretization procedure as in Section 2.1, considering a set of NM measurement
points, it becomes:

escat = GOXetot, (6)

where the size-NM vector escat collects the measurements of the scattered fields at the receiver locations, and
the NM × 3N matrix GO corresponds to the discretization of the Green tensor

(
k2

bI3 +∇∇
)

g(r− r′), for r′

at the N voxels in V and r at the measurement points [56]. Combining both domain (3) and observation (6)
equations finally yields the observation model:

escat
i = GOXL−1

x einc
i = GOX(I3N −GDX)−1einc

i , for any incident field einc
i . (7)

2.3. Inverse Problem Formulation

The microwave imaging inverse problem consists of estimating the contrast function from the
measured scattered fields at the receivers. This problem is ill-posed [8,9], notably because the relation
between the contrast function and the data, obtained from the two coupled Equations (1) and (5) in the
continuous formulation (Equations (2) and (6) in the discrete case), is highly nonlinear.

Here, we adopt a classical approach to inverse problems [13,57], which consists of minimizing the
misfit between the data ẽscat

i and the simulated scattered fields escat
i , penalized by an additive regularization

term. More precisely, we define the reconstructed contrast function x̂ by:

x̂ = arg min
x
F (x), with F (x) =

1
2

NS

∑
i=1

∣∣∣∣∣∣ẽscat
i −GOXL−1

x einc
i

∣∣∣∣∣∣2 +R(x), (8)

where the regularization term operates on differences of the contrast function at neighboring voxels:

R(x) = γ ∑
i,j, i∼j

ϕ(xi − xj) with γ > 0, (9)

where notation i ∼ j selects indices of neighbor voxels and ϕ is the “`2`1” function ϕ(u) =
√

δ2 + u2,
where δ is a small positive constant ensuring the differentiability of the cost function, which was set to
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10−2 in all our experiments. Such a penalization favors edge-preserving solutions and leads to a smooth
cost function F . Therefore, optimization can be addressed with gradient-based iterative algorithms.
The penalization weight γ trades off between fidelity to data and regularization, which is necessary since
the problem is ill-posed [8,9]. Its value may depend on the noise level and on the problem size.

Note that alternate regularization strategies, such as multiplicative regularization [33,58], have also
been proposed. Here, we chose additive regularization because it was previously shown to be particularly
efficient in the case of highly contrasted objects [13]. However, the techniques presented in this paper
may also be applied to reconstruction methods based on multiplicative regularization, since both the
corresponding objective function and its gradient present similar algebraic characteristics.

2.4. Optimization and Computational Issues

We propose to solve the optimization problem (9) with the L-BFGS algorithm, which is an
acknowledged method for solving high-dimensional convex optimization problems ([59], see for
example [13] in application to microwave imaging). Each iteration of L-BFGS consists of two steps:
computing a descent direction, based on the computation of the gradient at the current point, and finding
a convenient step size, for which several evaluations of the cost function may be necessary. The gradient
of F reads:

∇F (x) = −Q
NS

∑
i=1

J†
i

(
ẽscat

i −GOXL−1
x einc

i

)
+∇R(x) (10)

where Q = [IN , IN , IN ], the symbol † denotes the conjugate transpose and Ji is the Jacobian matrix
associated to the i-th data misfit term in (8). It can easily be shown that:

Ji = GO

(
LT

x

)−1
diag

{
L−1

x einc
i

}
, (11)

where diag{u} stands for the diagonal matrix with diagonal u, such that the gradient reads:

∇F (x) = −Q
NS

∑
i=1

diag
{

L−1
x einc

i

}†
Lx
−1G†

O

(
ẽscat

i −GOXL−1
x einc

i

)
+∇R(x), (12)

where Lx denotes the conjugate of Lx.
Inspection of (8) and (12) reveals that the bulk of the computational effort required for evaluating

F and ∇F lies in the evaluation of matrix-vector products involving matrices X and GO, and in the
resolution of linear systems with matrices Lx and Lx. Note that GO is an NM × 3N matrix and this
manageable size makes it possible to explicitly store it for direct computations; similarly, X is a 3N × 3N
diagonal matrix, which results in small memory and computational requirements. Indeed, the major
difficulty lies in the resolution of the NS systems of size 3N × 3N involving matrix Lx (computation of
L−1

x einc
i ), and in the resolution of another NS similar systems involving matrix Lx (computation of Lx

−1vi,
with vi = G†

O
(
ẽscat

i −GOXL−1
x einc

i
)
). Note that, in the frequent case where the number of sources exceeds

the number of receivers, by virtue of the Lorentz reciprocity theorem (see for example [60]), one can
equivalently switch the roles of sources and receivers, then reducing the number of systems to be solved.

In Section 3, we propose a dedicated block resolution strategy in order to jointly solve such multiple
systems. This iterative method requires the computation of high-dimensional matrix-vector products
involving matrix Lx (resp. Lx), that is, involving the 3N × 3N matrix GD (resp. GD). Note that these
products are convolution products, which can be efficiently computed with 3-D Fast Fourier Transform
(FFT) algorithms [36,47].
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3. Simultaneous Resolution of Multiple Forward Scattering Problems

We now address the joint resolution of the multiple forward scattering problems (4) by the
block-BiCGStab algorithm proposed in [52]. We present the algorithm and we focus on implementation
issues for solving one set of multiple scattering problems.

3.1. Description of the Block-BiCGStab Algorithm

The pseudo-code implementing the block-BiCGStab algorithm for the joint resolution of (4) is given
in Algorithm 1. The notation 〈T, S〉F represents the Frobenius product of two matrices. For comparison
purposes, the sequential implementation with the BiCGStab algorithm, commonly used in microwave
imaging, is recalled in Algorithm 2.

Algorithm 1 Joint resolution of NS linear systems LxEtot = Einc with block-BiCGStab.

1: For an initial matrix guess Etot(0),

set R(0) = Einc − LxEtot(0), P(0) = R(0)

2: Choose an arbitrary 3N × NS matrix R̃0
3: k = 0
4: repeat
5: V = LxP(k)

6: solve (R̃†
0V)A = R̃†

0R(k)

7: S = R(k) −VA
8: T = LxS
9: ω = 〈T, S〉F/〈T, T〉F

10: Etot(k+1)
= Etot(k) + P(k)A + ωS

11: R(k+1) = S−ωT
12: solve (R̃†

0V)B = −R̃†
0T

13: P(k+1) = R(k+1) + (P(k) −ωV)B
14: k← k + 1
15: until ∀i, ‖r(k)i ‖/‖e

inc
i ‖ < tolerance

Algorithm 2 Sequential resolution of NS linear systems Lxetot
i = einc

i , i = 1, . . . , NS, with BiCGStab.

0: for i = 1, . . . , NS do
1: For an initial guess etot

i
(0),

set r(0) = einc
i − Lxetot

i
(0), p(0) = r(0)

2: Choose an arbitrary vector r̃0
3: k = 0
4: repeat
5: v = Lx p(k)

6: α = (r̃†
0r(k))/(r̃†

0v)
7: s = r(k) − αv
8: t = Lxs
9: ω = t†s/t†t

10: etot
i

(k+1)
= etot

i
(k)

+ αp(k) + ωs
11: r(k+1) = s−ωt
12: β = (αr̃†

0r(k+1))/(ωr̃†
0r(k))

13: p(k+1) = r(k+1) + β(p(k) −ωv)
14: k← k + 1
15: until ‖r(k)‖/‖einc

i ‖ < tolerance,
16: end for
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In both algorithms, the most time-consuming operations concern the computation of matrix-vector
products of the form Lx p = p−GDXp in steps 5 and 8. Note that the same number (2NS) of such products
are performed by one iteration of block-BiCGStab and NS iterations of BiCGStab. In the remaining steps,
a set of NS dot products and scalar-vector products (one per system inversion) in BiCGStab are replaced
by one NS-dimensional matrix-vector product in block-BiCGStab. Similarly, a set of NS scalar divisions are
replaced by one NS × NS system inversion (steps 6 and 12). Therefore, such block operations generate
a slight extra cost in block-BiCGStab compared to BiCGStab. Because of the small size of the involved
systems, this remains negligible compared to the computation time required by multiplications with Lx.
Most of all, block operations introduce some coupling in the auxiliary variables and, subsequently, in the
directions that are computed in order to update the solution at step 10. The rationale behind block versions
is that coupling the descent directions yields more efficient update steps, and therefore results in a decrease
in the total number of iterations and computing time.

3.2. Efficient Implementation for Solving Multiple Forward Problems

In its original description [52], the block-BiCGStab algorithm was evaluated on problems involving
only a small number (5 to 10) of RHS vectors which were drawn independently, in moderate dimensions
(up to 2500× 2500). In microwave imaging, the number of RHS vectors—the number of measurements—is
much higher, and vectors are highly correlated, since they correspond to the different incident illuminating
fields, which are spatially close to each other. Moreover, matrices involved in 3-D problems are usually
much bigger than those used in [52].

Numerical experiments, whose salient results are reported in Section 4.2, revealed that the
conditioning of matrix R̃†

0V, which enters steps 6 and 12 of Algorithm 1, has a critical impact on the
behavior and convergence of the block-BiCGStab algorithm. Inspection of steps 1 and 5 clearly indicates
that the conditioning of V strongly depends on that of R(0). With the standard initialization Etot(0) = Einc,
when two sources i and j are close, the corresponding incident fields einc

i and einc
j which make up the

corresponding columns of Etot(0), become highly correlated; hence, R(0) becomes poorly conditioned and
R̃†

0V is near-singular, which may lead to numerical errors propagating in the computations of matrices A
and B (steps 6 and 12). This pathological behavior does not occur in the simulated experiments reported
in [52], since only statistically independent RHS vectors are considered.

Here, we propose to add a small random quantity to Etot(0) in the initialization step 1. This reduces
the correlation between columns of Etot(0), and thus improves the conditioning of matrix R̃†

0V. Empirically,
we have found that an initial perturbation with a signal-to-noise ratio ranging from 40 to 100 dB yielded
roughly the same favorable effect, while a higher level of perturbation would slow down the convergence,
and a smaller one would amount to no perturbation. In all experiments in this paper including such noisy
initialization, the signal-to-noise ratio was set to 50 dB. The results reported in Section 4.2 show that the
algorithm behaves in a satisfactory manner with such an initialization. Regarding the choice of matrix R̃0,
various options were studied; the best results were obtained by using the choice proposed in [52], that is,
R̃0 = R(0) = Einc − LxEtot(0).

3.3. Implementation within the Reconstruction Procedure

We now consider the use of the block-BiCGStab algorithm for solving the two multiple linear
systems involved in the evaluation of the cost function (8) and of its gradient (12) at each iteration
of the optimization procedure. The first system reads S (t) : Etot(t) = L−1

x(t)
Einc, and the second one is of the

form S (t) : V(t) = L−1
x(t)U

(t), where notation (t) indexes the iteration number. According to the expression

of the gradient (12), the RHS term U(t) in S (t) depends on the solution of S (t), so the two systems can only
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be solved sequentially and not jointly. In the following, details are given considering S (t), but similar

arguments hold for S (t).
As discussed in Section 3.2, initialization of block-BiCGStab plays an important role in the algorithm

efficiency. Our implementation is based on the fact that two consecutive iterates of the optimization
algorithm are close to each other, especially when the reconstruction algorithm is near to convergence.
Therefore, the solution Etot(t+1) should be close to that obtained at the former iteration Etot(t), and Etot(t)

could be used as an initialization of block-BiCGStab for solving S (t+1). In particular, Etot(t) should be
much closer to Etot(t+1) than the matrix formed by the incident fields Einc, that was used for initializing
block-BiCGStab for the resolution of a single set of forward problems in Section 3.2. We noticed, however,
that implementing this strategy led to poor convergence rates, because the total fields Etot(t) are highly
correlated with each other, which generated conditioning issues similar to that explained in Section 3.2.
Therefore, we propose to initialize iteration t + 1 using a random perturbation added to Etot(t).

4. Performance of Block-BiCGStab on Synthetic Data

The results presented in this section were obtained on synthetic data representing a typical
experimental setup. First, we illustrate the impact of the implementation choices discussed in Section 3.2.
Then, we investigate the performance of the proposed block-BiCGStab implementation for computing
multiple forward scattering problems as a function of the problem difficulty, by varying the object contrast
and the illuminating frequency. Finally, the computational efficiency of block-BiCGStab is evaluated on
the full reconstruction process.

4.1. Description of the Numerical Example and Implementation Details

The object used in our experiments was composed of two nested cubes embedded in air. This example
was taken from [33] and the contrast was increased by a factor of two in order to make the reconstruction
problem more challenging. The object domain V was a cube with a 30-cm edge size, which was discretized
onto a 30× 30× 30 regular Cartesian grid (1 cm3 voxels). It is usually acknowledged that the discretization
grid must have at least four voxel sides per wavelength for accurate estimation of the scattered field.
Here, the highest illuminating frequency is 3 GHz (see Section 4.3.1), that is, λ = 10 cm, so that the voxel
side is λ/10. The external part of the object was a cube with a 20-cm edge size, the contrast of which
was set to χ1 = 0.6 + j0.8. The internal part was a smaller cube with a 10-cm edge size and contrast
χ2 = 1.2 + j0.4. The object was illuminated by NS = 160 sources (vertical electric dipoles) that were
regularly spaced around the object on five circles with a 60 cm diameter, at heights z = −20 cm, −10 cm, 0,
10 cm and 20 cm. Measurements were simulated by considering 160 receivers at the same locations as the
sources. The object and the acquisition setup are represented in Figure 1.

Data were generated according to model (7) using a grid twice as fine as the one used in our numerical
experiments (60× 60× 60 voxels) for more accurate computations, and circular Gaussian white noise was
added in order to obtain a 20-dB SNR. Only the z component of the scattered field was used in our tests.
Then, the reconstruction problem had 303 = 27,000 complex unknowns and 1602 = 25,600 complex-valued
data points.

All computations were performed with an Intel Core i7-5960X (eight cores) clocked at 3 GHz using
Matlab, with multithreaded operations. For BiCGStab, a marching-on-in-source procedure [37] was used
when it improved convergence. This procedure allows for better initialization of the solutions by using an
interpolation based on the total fields previously computed for the nearest sources. The tolerance on the
relative residuals imposed for convergence of both BiCGStab and Block-BiCGStab (line 15 in Algorithms 1
and 2) was set to 10−6. Therefore, the solutions obtained by the two algorithms are the same up to such
numerical precision.
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Figure 1. Real (a) and imaginary (b) parts of the contrast function of the simulated object (two nested cubes
in air), with the corresponding discretization grids, and acquisition setup for the simulated object (c): the
black cube represents the unknown volume V in which the object is placed. The gray circles represent the
sources positions around the volume. The receivers are located at the same positions as the sources.

4.2. Impact of Initialization

The solution to the 3D forward problem corresponding to the experimental setup presented in
Section 4.1 was computed with both BiCGStab and block-BiCGStab algorithms. First, the solutions
were initialized to the incident fields (etot

i
(0)

= einc
i ). Evolution of the iterated relative residuals ‖einc

i −
Lxetot

i
(k)‖/‖einc

i ‖ is shown in Figure 2a,b. BiCGStab converges in between 18 and 21 iterations for all
problems, whereas block-BiCGStab residuals first slowly decrease, and then increase, leading to divergence.

Then, as described in Section 3.2, noise with 50 dB SNR was added to the initial solution of
block-BiCGStab. The corresponding iterates are shown in Figure 2c—BiCGStab iterates, which are not
represented, behave similarly to those represented in Figure 2a. On the contrary, block-BiCGStab iterates
now converge much faster: in this example, block-BiCGStab converges in 40% less iterations than BiCGStab,
corresponding to a similar saving in terms of computation time.

In all remaining experiments in the paper, the block-BiCGStab algorithm was initialized by adding
such a noise to the incident fields.

(a) BiCGStab (b) block-BiCGStab (c) block-BiCGStab
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i
(0)

= einc
i etot

i
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i etot
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Figure 2. Resolution of 160 forward problems with biconjugate gradient stabilized (BiCGStab) (a) and
with block-BiCGStab (b,c): evolution of the residuals for the 160 iterates. (a,b): initialization is set to the
incident fields. (c) initialization of block-BiCGStab is perturbed with 50 dB circular Gaussian noise. Note
the different abscissa scale on panel (b).
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4.3. Performance for Different Forward Scattering Configurations

We now compare BiCGStab and block-BiCGStab for several configurations of the 3-D forward problem
based on the previous setup. The tests consisted of solving the NS systems (I3N −GDX)etot

i = einc
i , and we

focused on the influence of the illuminating frequency and of the contrast values in X, since both factors
impact the problem difficulty—the Born approximation, for example, is only valid for low-contrast objects
with small electric size.

4.3.1. Impact of the Frequency

We first study the algorithmic performance as a function of the illuminating frequency. The object
defined in Section 4.1 was used, with frequencies equal to 1, 2 and 3 GHz. The corresponding wavelengths
are respectively λ = 30 cm, λ = 15 cm and λ = 10 cm, and the size of the reconstructed volume
respectively corresponds to λ, 2λ and 3λ: the higher the frequency, the bigger the electric size of the object.

Table 1 gives the corresponding central processing unit (CPU) time and the number of iterations
required for BiCGStab and block-BiCGStab to converge. First, in accordance with the discussion in
Section 3.1, the CPU time is almost proportional to the number of iterations performed by both algorithms.
Second, block-BiCGStab always yields a shorter computation time than BiCGStab, and the improvement
becomes more significant as the frequency increases: at 3 GHz, block-BiCGStab is 33% faster than BiCGStab
for solving the 160 systems.

Table 1. CPU time and number of iterations required for computing the 160 forward simulations with
BiCGStab and block-BiCGStab for three different frequencies. Results are averaged over the 160 resolutions
for BiCGStab and over 20 realizations of the random initialization for block-BiCGStab.

CPU Time Number of Iterations
CPU Time Ratio
Block/BiCGStab

Frequency [min, Average, max]

BiCGStab Block BiCGStab Block

1 GHz 116 s 110 s [7 8.0 10] [7 7.9 9] 0.95
2 GHz 187 s 138 s [13 13.4 15] [10 10 10] 0.74
3 GHz 245 s 164 s [17 17.9 21] [12 12 12] 0.67

4.3.2. Impact of the Contrast

We now evaluate the computation time as a function of the contrast. A scaling factor ranging from
0.25 to 2.5 was applied to the synthetic object defined in Section 4.1. The illuminating frequency was set to
3 GHz. Table 2 gives the corresponding CPU time and the number of iterations required for BiCGStab and
block-BiCGStab. Here again, the CPU time is almost proportional to the number of iterations. In all cases,
block-BiCGStab is faster than BiCGStab and, more importantly, the relative saving in CPU time increases
with the contrast of the object: for a contrast factor of 2.5, block-BiCGStab runs approximately twice as fast
as BiCGStab.

The results reported in Sections 4.3.1 and 4.3.2 therefore suggest that block-BiCGStab is best suited
for the resolution of difficult problems, i.e., involving large and/or highly contrasted objects.
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Table 2. CPU time and number of iterations required for computing the 160 forward simulations with
BiCGStab and block-BiCGStab for different contrast levels. Results are averaged over the 160 resolutions
for BiCGStab and over 20 realizations of the random initialization for block-BiCGStab.

CPU Time Number of Iterations CPU Time Ratio
Block/BiCGStabContrast [min, Average, max]

BiCGStab Block BiCGStab Block

0.25 105 s 86 s [7 7.01 8] [6 6 6] 0.82
0.5 152 s 120 s [10 10.3 12] [8 8.5 9] 0.79
1 245 s 164 s [17 17.9 21] [12 12 12] 0.67

1.5 361 s 217 s [25 26.9 29] [15 16.1 18] 0.60
2 482 s 271 s [34 36.1 39] [19 20.2 21] 0.56

2.5 610 s 331 s [44 45.9 50] [23 24.8 26] 0.54

4.4. Inversion Procedure and Object Reconstruction

We now consider the reconstruction problem with the simulation setup described in Section 4.1. Since
the object was highly contrasted, illuminations at frequencies 1, 2 and 3 GHz were used and the following
frequency hopping technique was implemented (see [28,61,62] for example):

• the initial solution was set to zero, and Nit iterations of the inversion algorithm were performed with
the 1 GHz data;

• another Nit iterations were then performed with the 2 GHz data, with an initial solution set to the
output of the previous step;

• the reconstruction algorithm was finally applied to 3 GHz data, with an initial solution set to the
output of the previous step, and iterations are run until the `∞-norm of the gradient becomes lower
than 10−6.

The number Nit of iterations for each intermediate frequency is a trade-off between reconstruction
quality and computation time. In this experiment, we found that Nit = 20 iterations were sufficient to
achieve satisfactory results (that is, more iterations at intermediate frequencies would not improve the
final reconstruction and would unnecessarily increase the computation time). The regularization weight
in (9) was set to γ = 10−6 for the three frequencies.

Reconstruction was performed using BiCGStab and block-BiCGStab, following the procedure
proposed in Section 3.3. Since both algorithms used the same convergence thresholds, evaluations
of the objective function and of its gradient at any point by the two algorithms were nearly identical;
therefore, the minimization process followed roughly the same sequence, and the reconstructed objects
obtained with both approaches are comparable. Reconstruction results are shown in Figure 3, together
with the true object. The shapes of the two cubes are well retrieved and the contrast of the outer cube
(χ1 = 0.6 + j0.8) is very close to that of the true object. The boundaries of the reconstructed cubes slightly
exceed the true ones, especially for the inner cube. The contrast value in the inner cube is also slightly
misestimated (underestimation of the real part and overestimation of the imaginary part). Note that the
inner cube is highly contrasted (χ2 = 1.2 + j0.4), which makes it very difficult to reconstruct.
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Figure 3. Reconstruction results (contrast values) for the simulated object defined in Section 4.1. Each panel
represents the 30 slices (30× 30 pixel images) of the three-dimensional object. True (left) and reconstructed
(right) objects, with real (top) and imaginary (bottom) parts of the contrast function.

For this problem, the reconstruction lasted about 21.3 h when computations were performed with
BiCGStab. The reconstruction time dropped to 16.8 hours when block-BiCGStab was used, which
represents a saving of more than 20%.

5. Reconstruction of the Fresnel Database Objects

We finally consider the reconstruction of the five objects of the Fresnel database [54]. Such objects
have already been reconstructed in many papers [27–29,61,63,64]—see also a summary of reconstruction
results in [65]. Due to space limitations, we restrict the presentation to two objects, which can be considered
as the two most difficult ones: the TwoSpheres and the Cylinder objects.

The 3-D experimental setup for the Fresnel data set is detailed in [54]. Using the reciprocity theorem
and the two polarizations of the experimental data [29], we consider that the setup was equivalently
composed of 36 sources placed on a circle at z = 0 with a 1.796-m radius. Data were equivalently acquired
with 81 receivers placed on a sphere with a 1.796-m radius [54]. The incident fields were plane waves
polarized along the z-axis and acquisitions were performed at frequencies ranging from 3 to 8 GHz. The two
polarizations were used (co- and cross-polarization). Since the measurements were performed in the
far-field zone of the scattering object, the electric field at the receivers is transverse (that is, its longitudinal
component is zero). When projected into the Cartesian coordinate system, the three spatial components
of the measured field are generally non-zero. Thus, each data set is made up of 36× 81× 3 = 8748
complex-valued measurement points. For all objects, the volume of interest V was defined as a cube
with a 10 cm edge size divided into 30× 30× 30 voxels, so that the object is fully enclosed in V in each
case. The maximum frequency is 8 GHz, that is, λ = 37.4 mm, so that the coarser discretization scheme
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corresponds to 11.3 voxel sides per wavelength. We then have 27,000 complex-valued unknowns. In all
experiments, the regularization parameter γ in (9) was set to γ = 10−6.

Here also, as discussed in Section 4.4, a frequency hopping procedure was used to carry out the
reconstructions as follows:

• Perform Nit iterations of the reconstruction algorithm with the 3 GHz data and initial contrast function
set to zero.

• Perform Nit iterations of the reconstruction algorithm with the 4 GHz data and initial contrast function
set to the final iterate of the previous step.

• Repeat the previous step with the 5 GHz, 6 GHz and 7 GHz data.
• Perform reconstruction of the object with the 8 GHz data, initial contrast function set to the final

iterate of the previous step and a stopping rule on the `∞-norm of the gradient set to 10−6.

For all objects except Cylinder, computing Nit = 10 iterations at each frequency empirically led to a
satisfactory compromise between reconstruction quality and time. For Cylinder, which was bigger and
more contrasted, Nit = 20 intermediate iterations were necessary in order to achieve the best reconstruction.

The TwoSpheres object was composed of two identical spheres in contact embedded in air, 50 mm
in diameter and with uniform, real-valued, relative permittivity equal to 2.6, that is, contrast χ = 1.6.
Figure 4 (top) shows 30 slices of the true object and of our corresponding reconstruction, and Figure 4
(bottom) represents the isosurface of the reconstruction at the contrast value χ = 1. Note that we only
present the real part of the estimated contrast function because the estimated imaginary part was very
small. The latter is presented in the supplementary data files. It can be observed that the shape of the
object was well reconstructed, even at the contact point. The contrast value was slightly overestimated
at the contact point (the estimated contrast was about 1.8), and slightly underestimated around it (the
estimated contrast was about 1.3).

The Cylinder object was composed of a cylinder of 80 mm in length and 80 mm in diameter, with
uniform relative permittivity equal to 3.05 (contrast χ = 2.05). It was the most difficult object of the
database because of its large size and high contrast, and several methods failed to reconstruct this
object [28,33,63,66], while many others produced poor quality results [27,29,61,62,64]. Figure 5 shows our
reconstruction results. The shape and the contrast were adequately reconstructed: the contrast function
was homogeneous inside the object and the estimated value at the center voxels was close to the true one,
since the estimated permittivity is about 1.9. To the best of our knowledge, this reconstruction of Cylinder
outperformed all other results previously reported in the literature.
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Figure 4. Reconstructed contrast function for the TwoSpheres object. Top: 30 horizontal slices of the true
object (left) and the 30 slices of the reconstructed object (right). Bottom: isosurfaces of the true object
discretized on the reconstruction grid (left), and of the reconstructed object (right), for contrast value 1.
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Figure 5. Reconstructed contrast function for the Cylinder object. Top: 30 horizontal slices of the true
object (left) and the 30 slices of the reconstructed object (right). Bottom: isosurfaces of the true object
discretized on the reconstruction grid (left), and of the reconstructed object (right), for contrast value 1.5.
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On a broader perspective, Table 3 provides a heuristic assessment of the reconstruction quality for all
objects in the Fresnel database. Each cell in the table contains a subjective comparison of our result with
previously obtained ones for each object, based on the figures in the corresponding papers. We consider
that the proposed method provided results at least similar to previous ones, and often better for the
most difficult objects. The reader is referred to supplementary files associated with the paper, that depict
graphical representations of all reconstructed objects and provide all reconstruction results as Matlab files.

Table 3. Subjective comparison of the obtained reconstruction results with previously published works on
Fresnel database objects: “=”, “+” and “++” respectively mean that our reconstruction is of comparable,
better, and much better quality. N/A means that reconstruction of the object is not presented in the
corresponding paper.

Paper Ref. TwoCubes IsocaSphere CubeSpheres TwoSpheres Cylinder

[63] ++ = = ++ N/A
[29] ++ = + ++ ++
[28] + + = + N/A
[64] ++ + + ++ ++
[61] + = + = +
[27] + = = = ++
[33] + = N/A N/A N/A
[66] + N/A N/A = N/A
[62] N/A N/A + = ++

Table 4 finally gives the reconstruction time for the five objects of the Fresnel database using either
BiCGStab or block-BiCGStab. The time saved by block-BiCGStab becomes more important as the difficulty
of the reconstruction problem increases (i.e., as objects become larger and/or more contrasted). For
the most difficult Cylinder object, the reconstruction time drops from 60 h to 28.3 h, which means that
block-BiCGStab is more than twice faster than BiCGStab.

Table 4. Reconstruction time for the five objects of Fresnel database using BiCGStab and block-BiCGStab
for linear system inversions.

Object from Time Time Time Ratio
Database BiCGStab Block-BiCGStab Block/BiCGStab

TwoCubes 2.33 h 2.07 h 0.89
IsocaSphere 4.38 h 3.58 h 0.82

CubeSpheres 3.21 h 2.60 h 0.81
TwoSpheres 8.60 h 6.41 h 0.75

Cylinder 60.0 h 28.3 h 0.47

6. Discussion

We proposed a reconstruction strategy based on an additive regularization framework,
where optimization is performed via first-order optimization. Computations of the cost function and
of its gradient were performed through a dedicated implementation of the block-BiCGStab algorithm
for multiple RHS systems inversion. In all our experiments, such an implementation led to a significant
reduction of the computation time (up to one half) compared to BiCGStab, the gain being all the more
significant that the reconstruction problem is difficult and the computation time is high. The procedure
proposed in this paper is therefore particularly attractive for problems dealing with high-frequency
illuminations and/or highly contrasted objects, which are of great interest: high-frequency acquisitions
contain more detailed spatial information about the object under study, yielding higher resolution,
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and highly contrasted objects may be encountered in many application areas, such as biomedical imaging.
Consequently, the proposed procedure may contribute to reducing the computational burden of microwave
imaging, which still represents a crucial issue in the development of practical applications.

Improved convergence properties of block-BiCGStab over its sequential counterpart also enable
block-BiCGStab to reach a low residual level for each iterative system inversion. In our experiments,
the tolerance threshold on the norm of the residuals was set to 10−6, whereas higher values are commonly
used. More accurate solutions to the forward problem yield more efficient optimization steps; this may
explain why the proposed procedure achieved satisfactory reconstruction results for the most difficult
objects of the Fresnel database, for which no result of equivalent quality has been reported in the literature.

Exploiting the proposed block resolution strategy may also improve the efficiency of any other
microwave imaging inversion method requiring the computation of similar quantities (i.e., the total fields
from the incident fields), either based on additive [13] or multiplicative [33] regularization. This strategy
can also be advantageously used whatever the choice of the optimization method, such as non-linear
conjugate gradient [29,64], regularized Gauss–Newton [33], Levenberg–Marquardt [67], or distorted Born
iterative method [27]. It would also be worth studying the numerical performance of the block-BiCGStab
algorithm in different geometrical configurations concerning, e.g., data acquisition setups or discretization
schemes. Finally, it may also be efficiently used in other applications involving the computation of the total
electromagnetic field accounting for scattering, e.g., radar cross-section [48,68,69], eddy-current [26,70] or
magnetotelluric [71] computations. Depending on the complexity of the problem, specific tuning of the
block-BiCGStab algorithm could be required, for which the strategies proposed in this paper may help.

Further improvements may be brought by parallel implementation of the proposed procedure. In our
experiments, multicore architecture was taken advantage of only by performing multithreaded operations
at a low level within the block-BiCGStab loop. However, massive parallelization of the resolution of
independent systems (with BiCGStab) reduces the computation time by exploiting parallelization at
a higher level [33]. Indeed, the two parallelization levels could be combined into a block resolution
procedure, where the multiple systems would be split into several subsystems to be solved in parallel.
In [53], such an idea was successfully tested on an early version of block-BiCGStab. This remains a
promising possibility to accelerate microwave imaging in the context of High Performance Computing,
as well as parallelization capacities brought by GPU- or multi-GPU-based implementations.
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