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type for Maass forms on GL(n, R) and explore three applications.

Introduction

Elliott [START_REF] Elliott | Probabilistic Number Theory, II: Central Limit Theorems[END_REF], [START_REF] Elliott | Probabilistic Number Theory, I: Mean-Value Theorems[END_REF], and Montgomery and Vaughan [START_REF] Montgomery | Extreme values of Dirichlet L-functions at 1[END_REF] independently developed some sort of large sieve inequalities to study Linnik's problem, which may yield a more general result than the classical Vinogradov's result, cf. [START_REF] Lau | On the least quadratic non-residue[END_REF]. This device, known as the large sieve inequalities of Elliott-Montgomery-Vaughan (EMV) type, was generalized to the setting of primitive holomorphic cusp forms on GL(2, R) and applied to obtain some statistical results on Hecke eigenvalues of primitive holomorphic cusp forms in [8]. Later, Wang [START_REF] Wang | A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms with applications to Linnik's problem[END_REF] generalized the results to the case of Maass forms on GL(2, R).

It is natural to ask for a generalization of large sieve inequalities of EMV type to Maass forms on GL(n, R) (n ≥ 3). There are two main difficulties: the first one is that for n ≥ 3 the Hecke relations for GL(n, R) are much more complicated than those of GL(2, R), and the trace formula for GL(n, R) with n ≥ 3 is not as simple as the trace formula (say Kuznetsov's and Petersson's trace formulas) on GL(2, R). Recently, Xiao and Xu [START_REF] Xiao | A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms on GL 3[END_REF], using Kuznetsov's trace formula and Hecke's relations, made a breakthrough and obtained a large sieve inequality of EMV type to Maass forms on GL(3, R). Moreover, they also applied their large sieve inequality to get a statistical result of sign changes on the Hecke eigenvalues for GL (3, R).

In this paper, we generalize the large sieve inequalities of EMV type to Maass forms on GL(n, R) for all n ≥ 3, and the result is comparable to the case of automorphic forms on GL(2, R) (see [8,[START_REF] Wang | A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms with applications to Linnik's problem[END_REF]). Our main tool is the automorphic Plancherel density theorem -a recent great progress due to Matz and Templier [START_REF] Matz | Tate equidistribution for families of Hecke-Maass forms on SL(n, R)/SO[END_REF]. We remark the use of properties of (degenerated) Schur's polynomials instead of Hecke's relations to avoid the complicated calculations as in [START_REF] Xiao | A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms on GL 3[END_REF]. More precisely the (degenerated) Schur polynomial is employed to evaluate the main term when applying the truncated trace formula [START_REF] Lau | Statistics of Hecke Eigenvalues for GL(n)[END_REF]Corollary 3.3] since the main term in [START_REF] Lau | Statistics of Hecke Eigenvalues for GL(n)[END_REF]Corollary 3.3] is expressed in the form of orbital integral involving the (degenerated) Schur polynomial by the work of Matz and Templier [START_REF] Matz | Tate equidistribution for families of Hecke-Maass forms on SL(n, R)/SO[END_REF]. Moreover, we apply our large sieve inequality -Theorem 1.1 on the GL(n, R) analogue of Linnik's problem, the sign change problems, and the Montgomery-Vaughan conjecture.

Let H ♮ = {φ j } be an orthogonal basis consisting of Hecke-Maass cusp forms for SL(n, R). Each φ j is associated with a Langlands parameter µ j ∈ a * C /W where a * C ∼ = {z ∈ C n : i z i = 0} and W is the Weyl group of GL(n, R). For t ≥ 1, we let

H t := {φ j ∈ H ♮ : µ j 2 ≤ t, µ j ∈ ia * } (1.1)
where • 2 is the standard Euclidean norm, and

ia * ⊂ a * C is isomorphic to iR n-1 . It is known that |H t | ≍ t d with d = n(n + 1)/2.
Let A φ (m 1 , m 2 , . . . , m n-1 ) be the Fourier coefficient of φ ∈ H t . In this paper, we normalize each φ ∈ H t such that

A φ (1, 1, . . . , 1) = 1.

It is well known that

A φ (m 1 , m 2 , . . . , m n-1 ) = A φ (m n-1 , m n-2 , . . . , m 1 ).

Moreover, for any

κ = (κ 1 , • • • , κ n-1 ) ∈ N n-1 0 and any prime p, A φ (p κ ) := A φ (p κ1 , p κ2 , • • • , p κn-1 ) (1.2) = S κ (α φ,1 (p), α φ,2 (p), • • • , α φ,n (p))
where S κ is the (degenerate) Schur polynomial (see Section 2 for definition and refer to [START_REF] Goldfeld | Automorphic forms and L-functions for the group GL(n, R)[END_REF] or [START_REF] Lau | Absolute values of L-functions for GL(n, R) at the point 1[END_REF] for a detailed exposition) and α φ (p

) := (α φ,1 (p), α φ,2 (p), • • • , α φ,n (p))
is (a representative of) the Satake parameter associated to φ at p. Every Satake parameter α φ (p) satisfies n i=1 α φ,i (p) = 1 and

α φ,1 (p) + • • • + α φ,n (p) = A φ (p, 1, . . . , 1). Put κ ι = (κ n-1 , • • • , κ 1 ) if κ = (κ 1 , • • • , κ n-1 ). Then we have A φ (p κ ι ) = A φ (p κn-1 , • • • , p κ1 ) = A φ (p κ ), and A φ (p κ ) ∈ R if κ = κ ι . Notation: For κ = (κ 1 , . . . , κ n-1 ) ∈ N n-1 0 , we denote κ := n-1 j=1 (n -j)κ j and |κ| = n-1 j=1 κ j . Theorem 1.1. Let 0 = κ = (κ 1 , . . . , κ n-1 ) ∈ N n-1 0
. Let j ≥ 1 be any integer and let {b p } p be a sequence of complex numbers indexed by prime numbers such that |b p | ≤ B for some constant B > 0 and for all primes p. Then

1 |H t | φ∈Ht P <p≤Q b p A φ (p κ1 , . . . , p κn-1 ) p 2j ≪ t -1/2 BC κ Q L κ log P 2j + (BC κ ) 2 j P log P j 1 + 40j log P P j/3 (1.3)
holds uniformly for

B > 0, j ≥ 1, 2 ≤ P < Q ≤ 2P,
where L is a positive constant, 1 ≤ C κ := 10(1 + |κ|) n 2 -n and the implied constant depends on κ only.

Let q ≥ 2 be an integer and let χ be a non principal Dirichlet character modulo q. Then the evaluation of the least integer n χ among all positive integers n for which χ(n) = 0, 1 is referred as Linnik's problem. One generalization formulated to Maass forms on GL(n, R) is the evaluation of the smallest integer n for which A φ1 (n, 1, . . . , 1) = A φ2 (n, 1, . . . , 1), where φ 1 = φ 2 . We denote this smallest integer by n 1,2 . The first application uses Theorem 1.1 to investigate an analogue of Linnik's problem.

Suppose P is a set of prime numbers of positive density in the sense that (1.4)

z<p≤2z p∈P 1 p ≥ ∆ log z (∀ z ≥ z 0 ),
with some fixed constants ∆ > 0 and z 0 > 0.

Theorem 1.2. Let 0 = κ = (κ 1 , . . . , κ n-1 ) ∈ N n-1 0 and assume the set P (of primes) satisfies (1.4). Let Λ = {λ(p)} p be a fixed complex sequence indexed by prime numbers. For any δ > 0, there is a positive constant C = C(δ, κ, P) such that the number of φ ∈ H t satisfying A φ (p κ1 , . . . , p κn-1 ) = λ(p) for p ∈ P, and

δ log t < p ≤ 2δ log t is bounded by ≪ t d e -Clog t/ log 2 t
where log r is the r-fold iterated logarithm. The implied constant depends at most on δ, κ and P.

Remark 1.1. Refer to [8] and [START_REF] Wang | A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms with applications to Linnik's problem[END_REF] for the case of GL(2, R).

Corollary 1.1. Let φ 0 ∈ H t be fixed and let P be as stated in Theorem 1.2. Let ℓ ∈ N and let δ > 0 be any number. Then there is a positive constant C = C(δ, ℓ, P) such that the number of φ ∈ H t satisfying A φ (p ℓ , 1, . . . , 1) = A φ0 (p ℓ , 1, . . . , 1) for p ∈ P, and δ log t < p ≤ 2δ log t is bounded by ≪ δ,ℓ,P t d e -Clog t/ log 2 t .

By the corollary, we see that for any fixed φ 1 , the number of φ 2 ∈ H t for which

n 1,2 ≪ log t does not hold is ≪ H t e -Clog t/ log 2 t .
The second application concerns the sign changes of Maass forms on GL(n, R). In the case of GL(2, R), there are fruitful results (for example, see [START_REF] Kowalski | On modular signs[END_REF], [START_REF] Matomäki | On signs of Fourier coefficients of cusp forms[END_REF], [START_REF] Matomäki | Sign changes of Hecke eigenvalues[END_REF]). In the case of GL(3, R), Steiger [START_REF] Steiger | Some aspects of families of cusp forms[END_REF] proved that there is a positive proportion of Hecke-Maass forms φ with positive real part of A φ (p, 1) for a fixed prime p and Xiao and Xu [START_REF] Xiao | A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms on GL 3[END_REF] gave a statistical result on the signs of A φ (p κ1 , p κ2 ) + A φ (p κ2 , p κ1 ). Applying Theorem 1.1, we obtain the following result.

Theorem 1.3. Let 0 = κ = (κ 1 , . . . , κ n-1 ) ∈ N n-1 0
. Let {ε p } p∈P be a sequence of real numbers with ε p ∈ {±1} where the set of primes P satisfies (1.4). For any δ > 0, there is a positive constant C = C(δ, κ, P) such that the number of φ ∈ H t satisfying ε p (A φ (p κ1 , . . . , p κn-1 ) + A φ (p κn-1 , . . . , p κ1 )) > 0 for p ∈ P and δ log t < p ≤ 2δ log t is bounded by

≪ t d e -Clog t/ log 2 t .
The implied constant depends at most on δ, κ and P.

Remark 1.2. Refer to [8] and [START_REF] Wang | A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms with applications to Linnik's problem[END_REF] for the case of GL(2, R) and to [START_REF] Xiao | A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms on GL 3[END_REF] for GL(3, R).

The size of L(1, f ) for L-functions over a family of f has attracted much interest. For φ ∈ H t , its associated L-function is defined as

L(s, φ) := m≥1 A φ (m, 1, • • • , 1)m -s ,
for ℜe s > (n + 1)/2, and factors into the Euler product

L(s, φ) = p n i=1 (1 -α φ,i (p)p -s ) -1
where α φ,i (p), 1 ≤ i ≤ n, are the Satake parameters. It is well known that L(s, φ) can be analytically continued to the whole complex plane.

Recently, Lau and Wang [START_REF] Lau | Absolute values of L-functions for GL(n, R) at the point 1[END_REF] proved that for all φ ∈ H t , we have

{1 + o(1)}(2B - n log 2 t) -A - n ≤ |L(1, φ)| ≤ {1 + o(1)}(2B + n log 2 t) A + n .
under the Generalized Ramanujan Conjecture and the Generalized Riemann Hypothesis. Here B ± n are the positive constants in [7, Lemma 5.3] and

A + n := n and A - n := n if n is even, n cos(π/n) if n is odd.
On the other hand, Lau and Wang [START_REF] Lau | Absolute values of L-functions for GL(n, R) at the point 1[END_REF] also proved that there exist φ ± ∈ H t such that

|L(1, φ -)| ≤ {1 + o(1)}(B - n log 2 t) -A - n , |L(1, φ + )| ≥ {1 + o(1)}(B + n log 2 t) A + n .
The proportion of such exceptional φ ± in H t is at least exp -(log t)/(log 2 t) 3+o (1) . In fact, alongside the Montgomery-Vaughan conjecture (cf. Conjecture 1 in [START_REF] Soundararajan | The distribution of values of L(1, χ d )[END_REF]), the proportion of

φ ± in H T satisfying |L(1, φ ± )| ±1 ≥ (B ± n log 2 T ) A ±
n is predicted to be > exp(-C log t/ log 2 t) and < exp(-c log t/ log 2 t) respectively for some constants C > c > 0.

Theorem 1.1 gives an upper bound towards the Montgomery-Vaughan conjecture. Define

F + t (s) = 1 |H t | φ∈Ht |L(1,φ)|>(B + n s) A + n 1 and 
F - t (s) = 1 |H t | φ∈Ht |L(1,φ)|<(B - n s) A - n 1.
Theorem 1.4. For any ε > 0, there are two positive constants c = c(ε) and t 0 = t 0 (ε) such that

F ± t (log 2 t + r) ≤ exp -c(|r| + 1) log t (log 2 t)(log 3 t)(log 4 t) for t ≥ t 0 and log ε ≤ r ≤ (9 -ε) log 2 t.
Remark 1.3. Refer to [8] and [START_REF] Wang | A large sieve inequality of Elliott-Montgomery-Vaughan type for Maass forms with applications to Linnik's problem[END_REF] for the case of GL(2, R).

Preliminaries

The Fourier coefficients A φ (p κ ) can be expressed in terms of the (degenerate) Schur polynomials and Satake parameters as in (1.2). The degenerate Schur polynomial is defined as

(2.1) S κ (x 1 , x 2 , • • • , x n ) := det x n-i l=1 (κ l +1) j 1≤i,j≤n det x n-i l=1 1 j 1≤i,j≤n for κ = (κ 1 , • • • , κ n-1 ) ∈ N n-1 0 .
Matz and Templier established an automorphic equidistribution of the family {A φ (p κ ) : φ ∈ H ♮ } -the vertical Sato-Tate law for Hecke-Maass forms. Now we explain a consequence of the equidistribution result.

Let S n be the symmetric group and let

T 0 = (e iθ1 , e iθ2 , . . . , e iθn ) ∈ (S 1 ) n : e i(θ1+θ2+•••+θn) = 1 .
We define two measures dµ ST and dµ p on T 0 /S n whose integration formulas (over [0, 2π] n-1 ) are given by

dµ ST = 1 n! 1 (2π) n-1 1≤i<j≤n |e iθi -e iθj | 2 dθ 1 • • • dθ n-1 and dµ p = 1 n! n i=2 1 -p -i 1 -p -1 • 1≤i<j≤n e iθi -p -1 e iθj e iθi -e iθj -2 • 1 (2π) n-1 dθ 1 • • • dθ n-1 . Define S κ (1, • • • , 1) by taking x i → 1. By [7, Lemma 7.1 (2)], we have for any X ≥ 1 and κ ∈ N n-1 0 , (2.2) max |xi|≤X, ∀ i |S κ (x 1 , • • • , x n )| ≤ X κ S κ (1, • • • , 1) ≤ X κ (1 + |κ|) n 2 -n .
A consequence of Matz and Templier's work on the vertical Sato-Tate is the following, cf. [6, Corollary 3

.3]. Lemma 2.1. Let κ = (κ 1 , • • • , κ n-1 ) ∈ N n-1 0 , H t and A φ (p κ ) = A φ (p κ1 , • • • , p κn-1
) be defined as above, cf. where L is a positive constant,

1 ≤ c κ := (1 + |κ|) n 2 -n .
The product of two Schur polynomials S κ and S κ ′ may be evaluated with the Littlewood-Richardson rule:

(2.3) S κ S κ ′ = S κ • S κ ′ = ξ d ξ κκ ′ S ξ
where the d ξ κκ ′ 's are nonnegative integers and the summation runs over ξ ∈ N n-1

0 satisfying ξ ≤ κ + κ ′ and ξ ≡ κ + κ ′ mod n. (Recall that κ := i (n -i)κ i .
) Moreover {S κ } form an orthonormal set under the inner product induced by the measure dµ ST ,

S κ , S κ ′ = [0,2π] n-1 S κ (θ)S κ ′ (θ)dµ ST = δ κ=κ ′ . (2.4)
As well, by [7, Proposition 7.4 (1)] we have

T0/Sn S κ dµ p = n-1 i=1 (1 -p -i ) • η∈N n-1 0 d η κη • p -η
where the sum over η is supported on |η| ≥ κ /n and with (2.2) and (2.4),

0 ≤ d η κη = T0/Sn S κ |S η | 2 dµ ST ≤ (1 + |κ|) (n 2 -n) .
Consequently, for κ = 0 we have

T0/Sn S κ dµ p ≤ (1 + |κ|) (n 2 -n) n-1 i=1 (1 -p -i ) max i ηi=⌈ κ n ⌉ 1≤i≤n-1 ℓ≥ηi p -iℓ ≤ (1 + |κ|) (n 2 -n) max |η|=⌈ κ n ⌉ p -η ≤ (1 + |κ|) (n 2 -n) p -1 (2.5)
where ⌈x⌉ denotes the smallest integer greater than or equal to x. (Note |η| ≤ η .)

By Cauchy-Schwarz's inequality and (2.2), we have

ξ ≤n|κ| (d ξ κκ ′ ) 2 = S κ S κ ′ , S κ S κ ′ ≤ S κ (1, . . . , 1)S κ ′ (1, . . . , 1) S κ , S κ 1/2 S κ ′ , S κ ′ 1/2 ≤ ((1 + |κ|)(1 + |κ ′ |)) n 2 -n = c κ c κ ′ . (2.6)
We need an arithmetic function and a result from [8].

Lemma 2.2. Let 2 ≤ P < Q ≤ 2P , j ≥ 1 and n ≥ 1. Define a j (n) = a j (n; P, Q) = | {(p 1 , . . . , p j ) : p 1 • • • p j = n, P < p 1 , . . . , p j ≤ Q} |.
For any d > 0, n a j (n)d Ω(n) /n ≪ (3d/ log P ) j ; moreover,

n a j (n 2 ) d Ω(n) n 2 ≤ δ 2|j 3dj P log P j/2 n ♮ a j (n) d Ω(n) n ≤ 12d 2 j P log P j/2 1 + j log P 54P j/6 m ♭ ♮ (m,n)=1 a j (mn) d Ω(mn) m 2 n ≤ 48d 2 j P log P j/2 1 + 20j log P P j/6
where Ω(n) counts the number of (not necessarily distinct) prime divisors, δ 2|j = 1 if 2|j or 0 otherwise, ♭ and ♯ run over squarefree and squarefull integers respectively.

Proof of Theorem 1.1

Let a j (•) be defined as in Lemma 2.2. Squaring out, we have

P <p≤Q b p A φ (p κ1 , . . . , p κn-1 ) p 2j =   P <p≤Q b p A φ (p κ1 , . . . , p κn-1 ) p   j   P <p≤Q b p A φ (p κ1 , . . . , p κn-1 ) p   j =   P j <ℓ≤Q j a j (ℓ) b ℓ ℓ p u ℓ A φ (p κ1 , . . . , p κn-1 ) u   ×   P j <m≤Q j a j (m) b m m q v m A φ (p κ1 , . . . , p κn-1 ) v   = P j <ℓ,m≤Q j a j (ℓ)a j (m) b ℓ b m ℓm × p up ℓ,p vp m
A φ (p κ1 , . . . , p κn-1 ) up A φ (p κ1 , . . . , p κn-1 )

vp Averaging over φ ∈ H t , it follows from Lemma 2.1 that

1 |H t | φ∈Ht p up ℓ,p vp m • • • (3.1) = p up ℓ,p vp m T0/Sn S up κ S vp κ dµ p + O t -1/2 c κ Q L κ 2j .
Thus the left side of (1.3) can be expressed as follows:

1 |H t | φ∈Ht P <p≤Q b p A φ (p κ1 , . . . , p κn-1 ) p 2j = M + E. (3.2)
The error term E is

≪ t -1/2 c κ Q L κ 2j P j <ℓ,m≤Q j a j (ℓ)a j (m) b ℓ b m ℓm ≪ t -1/2 c κ Q L κ 2j 3B log P 2j (3.3) by Lemma 2.2.
Next we evaluate the main term

M = P j <ℓ,m≤Q j a j (ℓ)a j (m) b ℓ b m ℓm p up ℓ,p vp m T0/Sn S up κ S vp κ dµ p . (3.4) Write ℓ = ℓ 1 ℓ ′ and m = m 1 m ′ such that ℓ 1 m 1 is squarefree, ℓ ′ m ′ is squarefull and (ℓ 1 m 1 , ℓ ′ m ′ ) = 1. 1 (Note ℓ 1 m 1 = 1 when ℓm is squarefull.) Set h = ℓ 1 m 1 and r = ℓ ′ m ′ .
We split the product over prime divisors of ℓm in (3.4) into a product of two pieces over prime divisors of ℓ 1 m 1 and ℓ ′ m ′ respectively:

p up ℓ,p vp m • • • = p up ℓ1,p vp m1 T0/Sn S up κ S vp κ dµ p p up ℓ ′ ,p vp m ′ T0/Sn S up κ S vp κ dµ p .
Inside the second product, we invoke the trivial bound (2.2) and for the first product, (as ℓ 1 m 1 is squarefree) we have u p + v p = 1 and thus apply (2.5). This leads to

p up ℓ,p vp m T0/Sn S up κ S vp κ dµ p ≤ (1 + |κ|) Ω(ℓ ′ m ′ )(n 2 -n) p up ℓ1,p vp m1 (1 + |κ|) n 2 -n p -1 ≤ (1 + |κ|) 2j(n 2 -n) h -1 ,
and

|M | ≤ (1 + |κ|) 2j(n 2 -n) P j <ℓ1ℓ ′ ,m1m ′ ≤Q j a j (ℓ 1 ℓ ′ )a j (m 1 m ′ ) b ℓ1ℓ ′ b m1m ′ (ℓ 1 m 1 ) 2 ℓ ′ m ′ ≤ (1 + |κ|) 2j(n 2 -n) B 2j ♭ h ♮ r 1 h 2 r P j <ℓ1ℓ ′ ,m1m ′ ≤Q j ℓ1m1=h, ℓ ′ m ′ =r a j (ℓ 1 ℓ ′ )a j (m 1 m ′ ) ≤ (1 + |κ|) 2j(n 2 -n) B 2j ♭ h ♮ r a 2j (hr) h 2 r ≪ (1 + |κ|) 2j(n 2 -n) B 2j 96j P log P j 1 + 40j log P P j/3
where the implied constant is independent of j. 1 The decomposition is unique. Assume ℓ = ℓ 1 ℓ ′ = ℓ 2 ℓ ′′ and m = m 1 m ′ = m 2 m ′′ are two such decomposition. Every positive integer decomposes uniquely into a product of a squarefree integer and a squarefull integer. From (ℓ 

1 m 1 )(ℓ ′ m ′ ) = (ℓ 2 m 2 )(ℓ ′′ m ′′ ), we get ( * ): ℓ 1 m 1 = ℓ 2 m 2 and ℓ ′ m ′ = ℓ ′′ m ′′ . As ℓ 1 m 1 is squarefree, we have (ℓ 1 , m 1 ) = 1; with (ℓ 1 m 1 , ℓ ′ m ′ ) = 1, we infer (ℓ 1 , m) = 1. So (ℓ 1 , m 2 ) = 1,

Proof of Theorem 1.2

Let δ log t ≤ P ≤ (log t) 10 and write P P := P ∩ (P, 2P ]. Define E(t; P ) = {φ ∈ H t : A φ (p κ1 , . . . , p κn-1 ) = λ(p) for p ∈ P ∩ (P, 2P ]} .

As the Ramanujan Conjecture is open, we consider the exceptional set over each prime Applying the lower bound (4.7) to the left-hand side of (4.4), we thus infer

E(t, p) = φ ∈ H t : log max 1≤i≤n |α φ,i (p)| >
∆ 2 log P 2j E * (t; P )\ ξ =0 ξ ≤n|κ| E ξ (t; P ) ≪ t d (B 1 C κ ) 2 j P log P j + t d-1/2 B 1 C κ Q L κ log P 2j
and, together with (4.6),

|E * (t; P )| ≪ t d (B 1 C nκ ) 2 j log P ∆ ′ 2 P j + t d-1/2 B 1 C nκ Q L κ ∆ ′ 2j . (4.9)
Recall δ log t ≤ P ≤ (log t) 10 . Take j = ∆ * log t log P with

∆ * = min δ 40 , δ∆ ′2 (2B 1 C nκ ) 2 , 1 8L κ .
Thus (4.2) is valid and the term inside the first bracket of (4.9) is bounded by 1/4. Let T 0 be large enough so that 1 < j < δ(log t)/(log 2 t) and the second term in the right-side of (4.9) is less than t d-1/6 whenever t > T 0 . Then we conclude that |E * (t; P )| ≪ t d e -Clog t/ log 2 t for some constant C > 0 depending on δ, κ and P. The proof of Theorem 1.2 is complete.

Proof of Theorem 1.3

The method of proof is the same as Theorem 1.2, starting with the set F (t; P ) = φ ∈ H t : ε p A φ (p κ1 , . . . , p κn-1 ) + A φ (p κn-1 , . . . , p κ1 ) > 0 for p ∈ P P .

The task is to evaluate

F * (t; P ) = F (t; P ) \ p∈PP E(t, p).
Using the positivity of ε p A φ (p κ1 , . . . , p κn-1 )+A φ (p κn-1 , . . . , p κ1 ) for φ ∈ F * (t; P ), we have where δ κ,κ ι if κ = κ ι or 0 otherwise, and κ ι = (κ n-1 , . . . , κ 1 ).

|A φ (p κ1 , . . . , p κn-1 ) + A φ (p κn-1 , . . . , p κ1 )| 2 ≤ 2e κ (1 + |κ|) n 2 -n ε p A φ (p κ1 , . . . , p κn-1 ) + A φ (p κn-1 , . . .

Proof of Theorem 1.4

Let ε ∈ (0, 10 -10 ] be fixed. We need a short Euler product approximation for a bulk of L(1, φ)'s. for some constant c > 0, by [START_REF] Lau | Absolute values of L-functions for GL(n, R) at the point 1[END_REF]Theorem 7.3] (see also [7, (6.1)]). We work on K t with the argument in [8] to complete the proof. Now we prove Theorem 1.4. For φ ∈ H t \E 1 (z), we have

|L(1, φ)| ≤ 1 + O 1 log 2 t p≤z 1 - α ′ p -n ≤ 1 + O 1 log 2 t (e γ log z) α ′ n ≤ e γ (e γ(1-1/α ′ ) log z) α ′ + C 0 (log 2 t) α ′ -1 n ,
where C 0 is an absolute constant and α ′ = exp(1/(log 3 t)(log 4 t)). Taking z = e e -γ(1-1/α ′ ) (log 2 t+r-C0(log 2 t) α ′ -1 ) 1/α ′ = e (1+O((log 4 t) -1 )(log 2 t+r-C0(log 2 t) α ′ -1 ) , the proof is complete for F + t . The case of F - t is treated in the same fashion.

2 p

 2 (1.1), (1.2) and (2.1). Then for any ℓ, m ∈ N, 1 |H t | φ∈Ht p up ℓ,p vp m A φ (p κ1 , . . . , p κn-1 ) up A φ (p κ1 , . . . , p κn-1 ) vp = p up ℓ,p vp m T0/Sn S up κ S vp κ dµ p + O t -1/up ℓ,p vp m c κ p L κ up+vp

  and (ℓ 2 , m 1 ) = 1 by symmetry. By ( * ), ℓ 1 = ℓ 2 and m 1 = m 2 .

2 = 2 = 2 ( 1 +

 2221 , p κ1 ) by (2.2), and the analogue of (4.5) follows from (2.3) and (2.4):|A φ (p κ1 , . . . , p κn-1 ) + A φ (p κn-1 , . . . , p κ1 )| 2A φ (p κ1 , . . . , p κn-1 )A φ (p κn-1 , . . . , p κ1 ) + A φ (p κ1 , . . . , p κn-1 ) 2 + A φ (p κn-1 , . . . , p κ1 ) δ κ,κ ι ) + ξ =0 |ξ ≤2n|κ| (d ξ κκ + 2d ξ κκ ι + d ξ κ ι κ ι )A φ (p ξ1 , . . . , p ξn-1 )
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 61 There are a constant c ′ > 0 and a subset E 1 (z) of H t such that

  1whose size is under control. Indeed, analogously to Sarnak's bound for the GL(2) Maass forms, we have |E(t, p)| ≪ t d-c0/ log p where c 0 > 0 is a constant, cf.[START_REF] Lau | Absolute values of L-functions for GL(n, R) at the point 1[END_REF] Theorem 7.3]. Hence ≪ δ,κ,P t d e -Clog t/ log 2 t for all t > T 0 , where T 0 = T 0 (δ, κ, P) is a sufficiently large number. We may assume (p κ1 , . . . , p κn-1 ) = |A φ (p κ1 , . . . , p κn-1 )| 2 for φ ∈ E * (t; P ), it follows that = e κ (1 + |κ|) n 2 -n and Q = 2P , in view of (4.1).The size of |A φ (p κ1 , . . . , p κn-1 )| 2 is about 1 on average. To see it, we firstly deduce from (1.2) and (2.3) that |A φ (p κ1 , . . . , p κn-1 )| 2 = A φ (p κ1 , . . . , p κn-1 )A φ (p κn-1 , . . . , p κ1 ) = (κ n-1 , . . . , κ 1 ). (Then κ ι = n|κ| -κ .) Secondly, we exploit the oscillation among A φ (p ξ1 , . . . , p ξn-1 ) by Theorem 1.1 (again). For ξ = (ξ 1 , . . . , ξ n-1 ) with 1 ≤ ξ ≤ n|κ| = |nκ|, we defineE ξ (t; P ) = φ ∈ H t : ′ := ∆/(2c κ c κ ι ) < ∆/2.Taking b p = 1 if p ∈ P P or 0 otherwise, we get from Theorem 1.1 with C ξ ≤ C nκ that |E ξ (t; P )| ≪ t d C 2 nκ j log P ∆ ′ 2 P Here we have applied that c κ c κ ι ∆ ′ ≤ ∆/2 and

	It remains to prove that E (4.1) for all P ≤ p ≤ 2P ; otherwise the set E(t; P ) is empty by (2.2). Suppose j ∈ N is |λ(p)| < e κ (1 + |κ|) n 2 -n chosen such that j ≤ P 40 log P . (4.2) We apply Theorem 1.1 with (4.3) b p = λ(p) if p ∈ P P , 0 otherwise. Since λ(p)A φ φ∈E * (t;P ) p∈PP |A φ (p κ1 , . . . , p κn-1 )| 2 p 2j (4.4) ≤ φ∈Ht P <p≤2P b p A φ (p κ1 , . . . , p κn-1 ) p 2j ≪ t d (B 1 C κ ) 2 j P log P j + t d-1/2 B 1 C κ Q L κ log P 2j ξ =0 ξ ≤n|κ| d ξ κκ ι A φ (p ξ1 , . . . , p ξn-1 ) (4.5) where κ ι P <p≤2P p∈P A φ (p ξ1 , . . . , p ξn-1 ) p ≥ ∆ ′ log P where ∆ j + t d-1/2 C nκ Q L ξ ∆ ′ 2j . (4.6) For φ ∈ E * (t; P )\ ξ =0 ξ ≤n|κ| E ξ (t; P ), the inner sum (over p) in (4.4) is, by (4.5), ≥ P <p≤2P p∈P 1 p -ξ =0 ξ ≤n|κ| d ξ κκ ι P <p≤2P p∈P A φ (p ξ1 , . . . , p ξn-1 ) p ≥ ∆ 2 log P (4.7) ξ =0 ξ ≤n|κ| d ξ κκ ι ≤ ξ ≤n|κ| (d ξ κκ ι ) 2 ≤ c κ c κ ι (4.8) where B 1 = 1 + by (2.6).

p∈PP E(t, p) ≪ t d-c ′ / log P for some constant c ′ . Set E * (t; P ) = E(t; P ) \ p∈PP E(t, p). * (t; P )

  uniformly for ε log t ≤ z ≤ (log t)10 and all Maass forms φ ∈ H t \ E 1 (z), where the implied constant in the O-term is absolute and|E 1 (z)| = O ε t d exp -c ′ log t (log 2 t)(log 3 t)(log 4 t) .Proof. We follow the same approach as in the proof of [8, Proposition 8.1]. A crucial difference is without the Ramanujan bound now, and thus we exclude the forms outside the setK t = K t (η) := φ ∈ H t : log max 1≤i≤n |α φ,i (p)| ≤ 1/(log 3 t)(log 4 t), ∀p ≤ (log t)1/η where η > 0 is any number. The size of the exceptional set, i.e. H - t = H t \K t , is small: (6.1) H - t ≪ t d exp -c η log t (log 2 t)(log 3 t)(log 4 t)

	1 -	p α φ,i (p)	-1
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