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Abstract. A common optimization of signal and image processing ap-
plications is the pipelining on multiple Processing Elements (PE) avail-
able on multicore or manycore architectures. Pipelining an application
often increases the throughput at the price of a higher memory footprint.
Evaluating different pipeline configurations to select the best one is time
consuming: for some applications, there are billions of different possi-
ble pipelines. This paper proposes a fast heuristic to pipeline signal and
image processing applications modelled with the Synchronous DataFlow
(SDF) Model of Computation (MoC). The heuristic automatically adds
pipeline stages in the SDF graph in the form of delays, given the Exe-
cution Time (ET) of the actors and the number of PEs. The heuristic
decreases the time spent by the developer to pipeline its application from
hours to seconds. The efficiency of the approach is illustrated with the
optimisation of a set of signal and image processing applications exe-
cuted on multiple PEs. On average, when adding one pipeline stage, our
heuristic selects a stage resulting in a better throughput than 90% of all
possible stage emplacements.

Keywords: SDF · pipeline · parallelism · throughput

1 Introduction

Synchronous DataFlow (SDF) [10] is widely used to model signal and image
processing applications and to optimize them on multicore embedded systems.
Pipelining is made possible in SDF by adding delays. Delays represent initial
data in buffers, which break data dependencies. This method has already been
proved to be efficient on SDF applications [9] but usually requires to add the
delays manually in the SDF graph or to call heuristics [7]. Indeed, computing
the optimal throughput of an application is a problem of high complexity that
also requires computing the scheduling, the mapping and the pipelining.

In this paper we propose a fast heuristic to automatically pipeline an appli-
cation modelled with an SDF graph. This heuristic is performed before mapping
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and scheduling the application, and is thus suboptimal but fast and scalable. It
automatically adds delays in the SDF graph, given the number of Processing El-
ements (PEs) and application profiling information. The heuristic is parametric:
the user can choose the number of pipeline stages that he wants to add. Various
experiments demonstrate that our heuristic increases the throughput of the ma-
jority of the tested applications. When adding one pipeline, the heuristic finds
the solution ensuring optimal throughput for 19 applications out of 24 tested.

The paper is organized as follows. Section 2 presents the main properties of
the SDF Model of Computation (MoC). Section 3 specifies the notion of pipeline
for SDF graphs and outlines necessary conditions for their validity. The main
contribution, automatic pipelining of SDF graphs, is developed in Section 4. Ex-
tensive experiments follow in Section 5 with both theoretical evaluation of the
throughput gain and real measurements on hardware. The main drawback of
pipelining, memory footprint increase, is also quantified. Related work is pre-
sented in Section 6. Finally, Section 7 concludes this paper.

2 Background

SDF [10] graphs are directed multi-graphs annotated with data communication
rates. The vertices are called actors, and the edges are called buffers. Actors
correspond to the processing of the application, while buffers contain the data
sent from an actor to another. Data stored in a buffer are called tokens. Two rates
are specified per buffer b: a production rate prod(b) ∈ N∗ on the sending side of
b, and a consumption rate cons(b) ∈ N∗ on the receiving side. Hence, each time
an actor is fired, which means its computations are executed, it consumes and
produces a fixed number of tokens on each input and output buffers, respectively.

Only consistent SDF graphs are considered in this paper. An SDF graph is
consistent when there exists a finite number of firings of each actor bringing
back all buffers with the exact same number of tokens as initially. Such minimal
number of firings is called a repetition vector and denoted ~r. It is computed from
the buffers production and consumption rates.

To avoid deadlocks, cycles of the graph need initial tokens in at least one
of their buffers. These initial tokens are called delays. The size of a delay on a
buffer b, that is the number of initial tokens that b contains, is denoted d0(b). In
this paper, it is assumed that the user already set delays in cycles, ensuring no
deadlock. Delays are not restricted to cycles though; when placed correctly and
outside cycles, delays cut some data dependencies and create pipeline stages.
This point will be discussed and illustrated in the next section.

The contribution of this paper is a heuristic for automating the placement
of pipeline delays in any SDF graph. Following the semantics introduced in [2],
we assume all delays being permanent, which means that their token values are
transmitted from one graph iteration to the next.
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3 Admissible graph cuts for pipelining

Admissible graph cuts for pipelining correspond to feed-forward graph cuts as
defined for the design of integrated circuits [14]. A graph cut is a set of edges
which, if removed, disconnects the graph in two or more components. In a feed-
forward graph cut, all edges of the cut are going in the same direction. Hence,
such cut cannot contain an edge from a cycle. The direction of an edge is deduced
from the topological ranks of the actors. An example of actor ranks of As Soon
As Possible (ASAP) and As Late As Possible (ALAP) topological orderings is
presented in Figure 1a. Lowest actor rank 1 correspond to actors without input
buffers, and the highest actor rank correspond to actors without output buffers.

A pipeline is created by adding delays on all buffers of a feed-forward graph
cut, in order to break the data dependencies. For example, the feed-forward
graph cut (dashed line) between topological ranks 1 and 2 of the graph in Fig-
ure 1a breaks the data dependencies between actors A and B, and A and ∆.
The pipeline increases the throughput of the graph, as depicted in Figure 1b.
In Figure 1a as in all SDF graphs presented in this section, rates are all equal
to 1 for simplification. The throughput is defined by the inverse of the Initia-
tion Interval (II) duration, that is the duration to periodically execute a graph
iteration. A graph iteration contains as many firings as in the repetition vector
~r. We assume that there is a synchronization barrier at the end of each graph
iteration. On the left part of Figure 1b, without pipeline, the II duration is 3,
whereas on the right part, the II duration is only 2 with the pipeline. Note that,
depending on the topological ordering, the graph cuts may not be identical.

To create a pipeline on an SDF graph, the size of a delay on a buffer b must
be equal to d0(b) = prod(b)×~r[src(b)] = cons(b)×~r[dst(b)]. Thus, dependencies
between all firings of producer actor src(b) and receiver actor dst(b) are broken.
If multiple feed-forward graph cuts contains the same buffer, the delay sizes
are summed. In this paper, the number of pipelines n correspond to n different
feed-forward graph cuts, dividing the execution of the application in n+1 stages.

A1

B2 Γ 3

∆ 2/3T

(a) Graph example annotated with ASAP
and ALAP topological orderings. ALAP or-
dering is specified with T , only if different
from ASAP.

1 2 3

PE 1 A ∆

PE 2 B Γ

1 2

PE 1 A ∆

PE 2 B Γ

(b) Two schedule examples of graph
1a on two PEs: on the left without
pipeline, on the right with one pipeline
between ranks 1 and 2.

Fig. 1: Topological ordering and schedule example without and with pipeline.

Unfortunately, the number of admissible graph cuts may be large. An ex-
ample is given with a commonly used split-join graph topology [17], which is
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a subcategory of SDF graph. Although the graph represented in Figure 2 only
contains 4 parallel paths with 3 buffers each, 34 = 81 cuts are admissible. Indeed,
if l paths connect a split actor to a join actor, each path having m buffers, the
total number of feed-forward graph cuts is equal to ml. Because the number of
admissible graph cuts may grow exponentially with the number of edges of the
graph, exploring them all is not feasible. For this reason, our heuristic algorithm
will only explore a subset of the admissible cuts. For example, our heuristic con-
siders at most 3 admissible cuts for the graph in Figure 2. Those admissible cuts
are detailed in the next section.

Fig. 2: Split-join graph with four
parallel branches. 2 admissi-
ble cuts are represented with a
dashed line, among 81 possible.

4 Automatic pipelining of SDF graphs

The automatic pipelining heuristic has two main steps: (1) generation of topolog-
ical graph cuts, (2) selection of topological graph cuts. The first step, described
in Section 4.1, computes a subset of admissible cuts. The second step, detailed
in Section 4.2, selects a few cuts among the cuts computed in step (1).

4.1 Computing topological graph cuts

The heuristic selects a subset of admissible graph cuts: topological graph cuts
according to the ASAP and ALAP topological orderings. A topological graph
cut of rank c contains all buffers coming from an actor of rank lower than c
and going to an actor of rank higher than or equal to c. Such topological cut is
admissible if none of its buffers is part of a directed cycle of the graph.

The number of admissible topological graph cuts is upper bounded by the
diameter of the graph, that is the number of buffers on the longest path. For
example, the graph depicted in Figure 2 admits only 3 topological cuts according
to ASAP graph ordering, whereas this graph admits 81 admissible cuts in total.
Moreover, in the case of Figure 2, ASAP and ALAP graph orderings are identical
so the same 3 graph cuts are considered for both topological orderings.

In order to build the ASAP and ALAP topological orderings, a cycle analysis
of the graph is run first: the Johnson’s algorithm [6] computes all simple cycles
of a directed graph. Johnson’s algorithm upper bounds the complexity of the
whole heuristic. The buffers being part of cycles are recorded to later filter the
admissible cuts. For example, the topological cut of rank 3 in the SDF graph
depicted in Figure 1a is invalid since there is a cycle between actors B and Γ .
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Note that it is assumed that the user sets enough delays on at least one buffer
of any cycle, so that this buffer breaks the data dependency of the cycle. Thanks
to this assumption, ASAP and ALAP orderings are computed by a mere breadth
first search on the graph, not visiting the buffer breaking each cycle.

The number of admissible topological graph cuts is small and upper bounded
by the graph diameter, enabling our heuristic to be fast. The admissible topo-
logical graph cuts naturally include all cuts located at sequential bottlenecks
of the application, so they are the best candidates to increase the application
performances by pipelining. Formally, sequential bottlenecks are located on sin-
gle paths of the graph: when two successive actors of ranks c − 1 and c are
the only actors having these ranks. Selecting such cuts particularly benefits the
applications having single paths and their repetition vector equal to ~1.

4.2 Selecting best topological graph cuts

To select the best topological graph cuts, the presented heuristic relies on a
map linking topological ranks to an estimate of the Execution Time (ET) of all
their actors. By definition, all actors having the same topological rank can be
executed in parallel. We introduce a few notations to formalize the computation
of this map. T (a) denotes the Execution Time (ET) of an actor a. The number of
firings of a is ~r[a]. The rank of a is rank(a). The number of PEs is #PE. The ET
estimate of rank c, denoted rankLoad(c), is computed as follows in Equation (1).

rankLoad(c) =

∑
rank(a)=c

⌈
~r[a]
#PE

⌉
× T (a)

#{a| rank(a) = c}
(1)

The main purpose of Equation (1) is to provide a metric indicating if cutting
before actors of rank c improves the throughput, that is to balance the compu-
tation before and after the cut. To do so, we actually compare the estimated ET
of all ranks before the cut of rank c,

∑
1≤i<c rankLoad(i), with the estimated

ET of all ranks after the cut of rank c,
∑

c≤i rankLoad(i). However, it is needed
to weight the ranks according to the amount of parallelism that they contain, so
that the graph is cut where it matters most: on single paths for example. Thus,
Equation (1) contains two divisions in order to reduce the weight of already par-
allel ranks: the repetition factor is divided by #PE, and the whole sum is divided
by the number or actors in the considered rank. The rankLoad is averaged for
both ASAP and ALAP topological orderings.

The selection of cuts is parameterized by two integers: the number of cuts
wanted by the user x, selected among the number of balanced cuts to consider
y (denoted D x, y in Section 5). We always have x lower than or equal to y,
and y lower than the highest actor rank. y helps to define a first set of equally
distributed topological graph cuts. To do so, the sum of all rankLoad(i) is divided
by y, giving an average stage load avgStageLoad. Then we enumerate ASAP
cuts by increasing order of their rank, and select the closest ones to a multiple
of avgStageLoad. The same operation is performed on ALAP cuts sorted by
decreasing order of their rank. At most, 2×y balanced cuts are selected, since cuts
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selected with ASAP and ALAP orderings may not be identical. Both orderings
are considered in order to avoid selecting 0 cuts because of unbalanced ETs.

The last step of the heuristic is to select x cuts among the 2×y balanced cuts.
This is done by two means: removing cuts that are too close from each other,
and then selecting the one using less delays. Two topological cuts of rank c1
and c2 are considered too close from each other if the sum of their intermediate
estimated ET is lower than avgStageLoad, as formalized in Equation (2).

avgStageLoad >
∑

c1≤i<c2

rankLoad(i) (2)

5 Evaluation

The presented heuristic is evaluated on various applications coming from the
StreamIt [18] benchmark, the examples provided with the SDF3 [16] tool, and the
applications provided with the Preesm [15] tool. These applications represent
a panel of basic state of the art signal and image processing algorithms, as
well as more complex telecommunications, video coding and computer vision
applications. The heuristic results are compared by gain in throughput, relative
to the sequential non-pipelined throughput on a single Processing Element (PE).

Three different evaluations are performed. In Section 5.1, the theoretical
throughput gain is computed based on the schedule length obtained after adding
the pipelines selected by the heuristic. A comparison is made with the optimal
throughput gain among all admissible cuts, for applications amenable to an ex-
haustive exploration, while large applications are detailed in Section 5.2. Finally
in Section 5.3, the throughput and memory increases are measured on real exe-
cutions of applications running on hardware.

All experiments have been run with the open-source Preesm tool (https:
//preesm.github.io/), on a laptop with an Intel processor i7-7820HQ. For all
selected applications, the execution time of the proposed heuristic is between 1
and 18 ms (maximum reached for SIFT). Note that the StreamIt/SDF3 applica-
tions are all stateless, except h263decoder (noAC) having self-loops. Self-loops
disable auto-concurrency of an actor: multiple firings are serialized.

Main characteristics of the applications are presented in the results tables.
In the second column, MAP is the Maximum number of Actors in Parallel in
the SDF graph; MAP equals the maximum number of parallel paths in the
graph. When known, the total number of admissible graph cuts is specified in the
column labeled #Cuts. Note that multiple versions of SIFT and sobel-morpho
applications are considered: their graph is identical but they do not have the
same amount of firings. Some of their actors are fired a number of times equal
to a multiple of a parameter p. Only SIFT and stereo contain directed cycles in
their SDF graph. In all results tables, the columns labeled by D x, y contain the
throughput gain obtained by the heuristic selecting x pipelines among y balanced
pipelines. Columns labeled by C x contain the optimal throughput gain, over all
admissible cuts, for x pipelines. Lines of results tables without any value printed

https://preesm.github.io/
https://preesm.github.io/
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in bold means that the throughput gain is similar for all setups; otherwise, the
value in bold corresponds to the best gain among the line.

5.1 Theoretical throughput gain: regular applications

Theoretical throughput gain obtained with the heuristic is presented in Ta-
ble 1, for three setups: no pipeline, one pipeline among one, three pipelines
among three. Most applications have a repetition vector ~r equal to ~1, except
Chain4.2noAC (which contains self-loops), cd2dat, h263decoder, modem, mp3decoder,
samplerate and satellite. Chain4.2noAC and Chain4.1 are toy examples made to
fit the best cases of the heuristic; they correspond to the graph depicted in
Figure 2, with only one path instead of four.

In Table 1, the best throughput gain is obtained by the heuristic with 3 cuts
(D 3,3) for 11 of the 17 applications. More importantly, the heuristic finds a close
to the optimal throughput with 1 cut for all applications except mp3decoder.
The number of admissible cuts generating a throughput gain lower than or equal
to D 1,1 is reported as a percentage of the total number of admissible cuts,
in column %. In average, D 1,1 reaches a better throughput gain than 91%
of the admissible cuts. Note that two applications are not compared with the
optimal gain, FMRadio and Vocoder, because they admit too many cuts. These
applications, and three others, are discussed in section 5.2.

On DCT and h263decoder, the throughput gain is less than 2.0, even with
3 pipelines: this comes from too few actors in the original graphs (respectively
8 and 4), having unbalanced ETs. This configuration leads the heuristic to find
only 2 graph cuts for DCT and h263decoder, even if 3 pipelines were asked by
the user. The number of effectively selected cuts is specified as an exponent. The
same behavior happens for modem and mp3decoder applications: only 2 cuts are
selected whereas 3 pipelines were asked. To avoid this problem, only 2 pipelines
among 3 are requested for the Preesm applications, see Table 2 Indeed, in these
applications the ETs are greatly unbalanced and the ET of the longest actor
represents up to 47% of the sequential ET of sobel-morpho (p1).

For the Preesm applications evaluated in table 2, the heuristic reaches the
best throughput in 7 cases out of 9. SIFT application is a difficult case: its SDF
graph is widely parallel (up to 30 parallel paths) and contains multiple cycles.
Moreover, its parallel paths have unbalanced ET. In this situation, selecting
topological cuts is not the best option and 1 optimal cut (C 1) even reaches a
better throughput than 2 cuts from the heuristic (D 2,3): for SIFT (p1) and SIFT
(p2). However, when more balanced parallelism is expressed, for SIFT (p4), the
heuristic configuration D 2,3 once again is better than the other setups.

5.2 Theoretical throughput gain: widely parallel applications

This subsection evaluates the applications revealing the main advantage of the
presented heuristic: no explosion of the number of cuts to test when the SDF
graph is already parallel. Indeed, all evaluated applications in Table 3 admit be-
tween 105 and 1010 cuts, which makes it impossible to evaluate the throughput of
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Name MAP #Actors #Cuts D 0 D 1,1 C 1 % D 3,3

Chain4.1 1 4 3 1.0 2.0 2.0 100 3.9
Chain4.2noAC 1 4 3 1.4 2.3 2.3 100 3.4

BitonicSort 4 40 141 1.6 2.9 2.9 100 3.6
cd2dat 1 6 5 4.0 4.0 4.0 80 4.0
DCT 1 8 7 1.0 1.8 1.8 100 1.82

DES 3 53 128 1.2 2.2 2.2 96 2.4
FFT 1 17 16 1.0 2.0 2.0 100 3.7
FMRadio 12 43 — 3.1 3.3 — — 3.3
h263decoder (noAC) 1 4 3 1.8 1.8 1.9 100 2.02

modem 1 6 5 2.0 3.3 3.3 100 3.32

mp3decoder 2 14 33 3.7 3.7 3.8 66 3.72

MPEG2noparser 3 23 140 1.1 2.2 2.2 100 2.7
samplerate 1 6 5 4.0 4.0 4.0 60 4.0
SAR 2 44 63 1.0 1.8 1.8 100 2.3
satellite 3 22 90 4.0 4.0 4.0 68 4.0
TDE 1 29 28 1.0 1.9 1.9 100 3.4
Vocoder 17 114 — 1.2 2.1 — — 2.6

Table 1: Characteristics and throughput gain with delays (D) of SDF benchmark
applications, on four PEs. D 0 corresponds to no pipeline. D 1,1 corresponds to
one pipeline selected among one. C 1 corresponds to the optimal single stage
pipeline. % is the percentage of cuts worst than or equal to the heuristic. D 3,3
corresponds to three pipelines selected among three.

Name MAP #Actors #Cuts D 0 D 1,1 C 1 % D 2,3

SIFT (p1) 30 54 868 1.2 1.6 2.2 92 1.6
SIFT (p2) 30 54 868 2.3 2.8 3.7 91 3.0
SIFT (p4) 30 54 868 3.5 3.5 3.6 80 3.7

sobel-morpho (p1) 1 6 5 1.0 2.0 2.0 100 2.0
sobel-morpho (p2) * 1 6 5 1.7 2.4 2.4 100 2.6
sobel-morpho (p3) * 1 6 5 2.3 3.5 3.5 100 3.4
sobel-morpho (p4) 1 6 5 2.3 2.8 3.3 40 3.3

stereo 3 28 3631 3.3 3.9 3.9 99 3.9

lane-detection * 3 11 24 1.0 1.7 1.7 100 2.5

Table 2: Throughput gain with delays (D) of SDF benchmark applications, on
four PEs. D 0 corresponds to no pipeline. D 1,1 corresponds to one pipeline
selected among one. C 1 corresponds to the optimal single stage pipeline. % is
the percentage of cuts worst than or equal to the heuristic. D 2,3 corresponds
to two pipelines selected among three possibilities.
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each cut by performing scheduling and mapping. Moreover, the number of possi-
bilities also explodes with the number of pipelines asked: it is equal to the number
of cut combinations without repetition (binomial coefficient):

(
#Cuts

#Stages−1

)
.

Table 3 presents results for the applications already having parallelism ex-
pressed in their graph: MAP is between 12 and 17 for all of them. In this ex-
periment, the throughput is evaluated on 64 PEs for the heuristic setup D 3,3
selecting 3 pipelines. Having 64 PEs ensures to observe the effect of the pipelines
instead of the inherent task parallelism. Indeed, the maximum number of actors
in parallel MAP (17) is almost 4 times smaller than the number of PEs. The
maximum theoretical throughput gain with unlimited PEs, Max Θ, is given as
a reference. All applications in Table 3 are acyclic, so Max Θ is computed by
dividing the sequential ET of the application by the ET of its longest actor, as
if each buffer had a pipeline delay. Adding 3 pipelines increases the throughput
gain from a factor 2 (for FMRadio) to 3 (for ChannelVocoder).

Name MAP #Actors #Cuts D 0 D 3,3 Max Θ

Beamformer 12 57 1.7 × 107 8.9 19.0 25.6
ChannelVocoder 17 55 1.3 × 1010 11.1 33.2 33.4
Filterbank 16 85 4.3 × 108 10.5 30.5 32.2
FMRadio 12 43 2.6 × 105 6.0 12.7 13.1
Vocoder 17 114 3.0 × 1010 1.2 2.7 2.8

Table 3: Throughput gain with delays (D) of SDF benchmark applications, on
sixty-four PEs. D 0 corresponds to no pipeline. D 3,3 corresponds to three
pipelines selected among three possibilities. Max Θ corresponds to the maxi-
mum possible throughput gain, with unlimited PEs.

5.3 Practical experimentation

In this subsection, the throughput and memory measurements come from real
executions on hardware, on the same laptop used for all experiments, having 4
PEs. Note that the scheduler used in this practical experimentation differs from
the one used in the theoretical experimentation. Both schedulers are a variant
of list scheduling [8]. Memory is allocated after the scheduling process, with
buffer merging [4] optimizations activated. The memory needed is computed by
Preesm, and compared with the sequential version on 1 PE for reference.

Results are provided in Table 4, for an average of 100 executions for SIFT and
stereo, and 10000 executions for sobel-morpho and lane-detection. The heuristic
especially improves the throughput of SIFT and sobel-morpho with p = 1 and
p = 2, that is, when the application is not parallel enough. Yet, for lane-detection
which has ~r = ~1, the heuristic only slightly increases the throughput, while
increasing the memory by a factor 1.9. The theoretical throughput gain of lane-
detection is 2.5, that is two times higher than reality. We explain this gap by the
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variability of the ET of the display actor, representing 28% of the application
sequential execution time. Also, synchronization points added by Preesm may
be non-negligible. None of the applications reaches the throughput expected in
the theoretical evaluation.

An interesting point is that selecting 1 cut among 2 (D 1,2) gives better
results than 1 among 1 for half of the cases. Such heuristic setups may compen-
sate the case of unbalanced ETs or cycles, especially for SIFT (p2). Moreover
for SIFT (p2) the D 1,2 setup greatly reduces the memory footprint compared
to D 1,1: from a factor 3.0 to 1.1. Finally, the heuristic offers a trade-off between
memory footprint and throughput. This trade-off is especially needed for mem-
ory bounded application as SIFT requiring 197 MBytes (reference). At worst, for
sobel-morpho (p4), adding one pipeline decreases the throughput while greatly
increasing the memory (3.3 times). The memory increase is due to the graph
cut location: between buffers transmitting numerous data, and thus it causes
additional time for memory copies and synchronizations.

Name D 0 D 1,1 D 1,2 D 2,3
Sp. Mem. Sp. Mem. Sp. Mem. Sp. Mem.

SIFT (p1) 1.2 1.1 1.6 2.1 1.4 1.3 1.3 1.8
SIFT (p2) 1.8 1.1 1.9 3.0 2.4 1.2 2.2 2.3
SIFT (p4) 2.5 1.2 2.2 1.1 2.2 1.1 2.5 1.8

sobel-morpho (p1) 0.9 1.0 1.3 2.2 1.3 2.6 1.6 3.8
sobel-morpho (p2) 1.7 1.6 2.3 2.1 2.5 2.4 2.1 3.4
sobel-morpho (p3) * 2.3 2.1 2.4 2.8 2.5 2.6 2.5 3.2
sobel-morpho (p4) 2.5 2.0 1.9 2.6 2.2 2.3 2.4 3.3

stereo 2.2 1.1 2.3 1.1 2.3 1.1 2.4 1.1

lane-detection * 1.0 1.0 1.1 1.8 1.1 1.7 1.2 1.9

Table 4: Throughput and memory increases with delays (D), on four PEs, for
different parallelism parameters (p). Specific mapping constraints are enforced
for applications marked with *: read and display actors are alone on their core
if there is a pipeline.

6 Related work

Pipelining and more generally retiming has been extensively studied in the con-
text of VLSI circuit design [11,14]. Pipelining legality was formally defined by
Parhi [14] for a subset of SDF graphs: Homogeneous Synchronous DataFlow
(HSDF) graphs, which always have their repetition vector equal to ~1. It was
also studied for software pipelining [1], with retiming methods used in this con-
text [3]. Our work focus on pipelining SDF graphs, avoiding the costly conversion
to HSDF and thus reducing the analysis complexity.
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Pipelining of SDF graphs was originally proposed by Lee [9] as an optimiza-
tion. Gordon et al. [5] proposed an heuristic to pipeline a partially unfolded
SDF graph, as well as Kudlur et al. [7]. The heuristic presented by Kudlur et al.
requires the Initiation Interval (II) length as an input of their algorithm; on the
contrary, our heuristic requires a maximum number of pipelines as an input, and
tries to minimize the II accordingly. Also, the heuristic presented by Gordon et
al. relies on a first transformation of the original actors, in order to balance the
ETs and to adapt the amount of parallelism.

Multiple works [21,12] addressed the optimal finding of a retiming to reduce
the makespan of a graph. Additionally, [21] accepts a constraint on the maximum
number of processors, at the cost of non-optimality. Both use symbolic execution
of a partially unfolded SDF graph to find a retiming. In this paper we focus on
the pipelining of an SDF graph in its reduced original form to provide a fast
heuristic. We do not perform any execution, symbolic or not.

Scheduling has been largely explored in optimal and heuristic forms [8,13]. A
few works look at combining pipelining with scheduling, restricted to HSDF
graphs [19] or acyclic SDF graphs [20]. Our work separates pipelining from
scheduling. Scheduling is computed afterwards on the pipelined graph, taking
advantage of original data and task parallelism, as well as temporal parallelism.

7 Conclusion

A fast heuristic to automatically pipeline SDF applications at coarse grain has
been presented and actually improves the throughput of the evaluated appli-
cations. The heuristic is able to quickly pipeline applications containing up to
billions of admissible cuts. Our algorithm limits its exploration to a few cuts
to reduce analysis time, and experiments show this method is close to the op-
timal solution. The last experiment have shown a gap between the theoretical
throughput gain and the practical gain, always lower than expected. This gap is
observed for both our heuristic and the theoretical optimal solution.

The presented heuristic is especially useful when considering a large amount
of PEs. However, our method can still be improved for complex applications,
especially if containing cycles, for examples by adding smaller delays to break
the dependencies between only a certain amount of firings instead of all.

Finally, this heuristic is only one optimization method among various oth-
ers, as the most related to this work: retiming. Combination of our pipelining
heuristic and classic retiming techniques is kept for future work.
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Addendum

This addendum is not part of the original accepted paper: it has been added by
A. Honorat after publication and has not been reviewed. It focuses on:

– linear equation to find all admissible graph cuts;
– details on ALAP ordering;
– example for selection of balanced cuts.

Equation to find all admissible graph cuts

Thanks to Michael Masin and his team, we were able to formulate the admissible
feed-forward cut constraint as the following recursive Equation (3). The equality
must be respected for every actor α ∈ V , the set of actors of the SDF graph.
It introduces the notion of actor delay, denoted k. An actor delay corresponds
to a shift of data on all its input. The unit of the actor delay function k is the
number of pipeline stages: if k(α) = 2, there are two pipeline stages until actor
α. In the equation, E is the set of edges of the SDF graph.

∀e ∈ {b ∈ E|dst(b) = α},k(α) = k(src(e)) +
d0(e)

cons(e)× ~r [α]
(3)

The recursion stops on actors having no incoming buffer, where the actor
delay is set to 1 by default: such actors are executed during the first pipeline
stage. It is assumed that the user sets enough delays on at least one buffer of
any cycle; these buffers are ignored for the computation of k, otherwise the
formula Equation (3) would imply an indefinite recursion.

As the placement validity is defined recursively from the actors having no
outgoing buffers, delays may be distributed over the whole paths going to an
actor, and not only on its direct incoming buffers. Figure 3 illustrates this pos-
sibility. Removing one of its two delays makes the cut not admissible anymore.

∆

E

A

B

Γ

Fig. 3: Graph with valid delay placement
distributed on the paths. There are two
pipeline stages: k(∆) = k(E) = k(B) =
1 and k(A) = k(Γ ) = 2.

Details on ALAP ordering

It is important to note that we actually use a modified version of ALAP topologi-
cal ordering, otherwise Equation (3) might not always be respected. The modified
ALAP version enforces that all actors having no incoming buffers (or only incom-
ing buffers breaking cycles) have the lowest topological rank. A counter-example
and a valid example are given in Figure 4.
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A1 B 2

Γ 3

∆2

(a) 8 Regular ALAP topological or-
dering creating invalid graph cut.

A1 B 2

Γ 3

∆1

(b) 4 Modified ALAP topological ordering to
have valid (i.e. feed-forward) graph cuts.

Fig. 4: Graph cut examples for regular and modified ALAP topological ordering.

Example for selection of balanced cuts

An example of preselection and final selection of cuts is depicted in Figure 5.
4 cuts are preselected by the heuristic with configuration D 2, 3 on the given
input graph having 9 actors in line. Each actor is executed only once and its ET
is equal to 10. The two cuts with a dashed line correspond to the cuts found
during the first enumeration of ASAP cuts. The two cuts with a dotted line
correspond to the cuts found during the second enumeration of ALAP cuts. Note
that there are less than 3 cuts preselected by each traversal because an extra
condition stops the traversal when the sum of remaining rankLoad is higher
than avgStageLoad = 22. The current value of the sum of rankLoad and the
closest multiple of avgStageLoad when a cut is preselected is recalled below
the cut in Figure 5. The ranks of the preselected cuts are: 4, 6, 7, 5, in order
of appearance. Except between cuts 4 and 7, none of the other pair of ranks
respects Equation (2). The removal procedure first sorts the cuts by the size
of their pipeline delays, and then starts in the reverse order of appearance to
remove the largest cuts in delay size. In this case, all cuts imply the same delay
size, and the first two cuts to compare are the cuts 5 and 7. As cuts 5 and
7 are too close to each other and imply the same delay size, the highest rank
is removed by default: 7. Then only three preselected cuts remain: cuts 4, 6, 7
and the removal procedure stops since three is the number of preselected cuts
asked by the configuration D 2, 3. Finally, the heuristic selects the first two of
the remaining cuts: 4 and 6.

A B Γ ∆ E Z H Θ I

ASAP
30/22

ALAP
50/44

ASAP
50/44

ALAP
30/22×

= 10 < avgStageLoad = 22

Fig. 5: Preselected and final cuts computed by the delay placement heuristic
with configuration D 2, 3 on a sample chain graph. Dotted cuts correspond to
the preselected cuts while the dashed cuts correspond to the 2 final cuts. Each
actor is fired once and has an ET equal to 10.
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