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Abstract We present a method for exceeding the naïve axial (i.e., depth) resolution limit of terahertz (THz) deconvolution by autoregressive 

spectral extrapolation (AR) based on the modified covariance method (AR/MCM). In contrast to Wiener filtering combined with wavelet 

denoising, AR/MCM does not discard any frequency components in the low signal-to-noise (SNR) regions of the measured data, and unlike the 

AR approach based on the Burg method (AR/BM), neither peak-splitting (single peaks in the impulse response function appearing as double 

peaks) nor frequency bias (spectral peaks shifted with respect to their correct positions) is observed after deconvolution. After verifying the 

advantages of AR/MCM over Wiener filtering in conjunction with wavelet denoising as well as over AR/BM, using synthetic data, AR/MCM is 

employed to reconstruct a single layer of mill scale on a steel coupon from experimental THz time-of-flight tomography data. The reconstruction 

shows good agreement with the film thickness obtained from destructive cross-sectional measurements.  In addition, unlike AR/BM, optimizing 

the parameters to obtain stable reconstruction is straightforward relying on Akaike’s information criterion. This suggeststhat AR/MCM can be 

easier to implement for THz nondestructive characterization of stratigraphy under noisy conditions, particularly when estimates of the stratigraphy 

may not a priori be available.  

 

Keywords Terahertz imaging; Autoregressive spectral extrapolation; Burg method; Modified covariance method; Deconvolution; 

Pulsed terahertz tomography. 

 

1 Introduction 

The terahertz (THz) electromagnetic band (100 GHz–10 THz) is situated between millimeter waves and the mid-infrared regions 

of the electromagnetic spectrum. Terahertz time-of-flight (TOF) tomography is a noninvasive, noncontact, nondestructive, and 

nonionizing method to characterize quantitatively the structure of numerous nonelectrically conducting materials that may be 

opaque at visible and infrared wavelengths, or relatively transparent to x-rays. Currently, the approach has attracted considerable 

attention for various applications, including coating thickness determination [1]-[3], archeology and art [4][6], security [7], material 

characterization [8][10], and quality control [10][12].   

    In general, the stratigraphy of a layered sample subjected to an incident roughly single-cycle THz pulse can be quantitatively 

measured based on the arrival time of reflected pulses (henceforth called echoes) reflected from internal and external interfaces 

presenting dielectric discontinuities.  When the thickness of an individual layer is optically thin in THz regime [physical thickness 

divided by the refractive index less than about half the minimum wavelength in the high signal-to-noise (SNR) band]; however, 

the reflected echoes will temporally overlap, rendering the individual echoes visually indistinct. Therefore, signal-processing 

techniques may be required to separate the overlapping echoes and extract their precise arrival times from which the thicknesses 

of the individual layers can then be reconstructed. 

    In other words, what we desire from such measurements is the reflective impulse-response function h(t), which is intrinsic to 

the sample structure and does not depend on the temporal pulse shape used to interrogate the sample.  For a layered structure with 

 
 

  D.S. Citrin 

      david.citrin@ece.gatech.edu 

      Min Zhai  

      mzhai6@gatech.edu 

      Alexandre Locquet 

     alexandre@gatech.edu 

      Cyrielle Roquelet 

     cyrielle.roquelet@arcelormittal.com 

1   School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250 USA 

2   Georgia Tech-CNRS UMI2958, Georgia Tech Lorraine, 2 Rue Marconi, 57070 Metz, France 

3   ArcelorMittal Maizières Research SA, Voie Romaine, 57280 Maizières-lès-Metz, France. 

Terahertz time-of-flight tomography beyond the axial-

resolution limit: Autoregressive spectral estimation based on 

the modified covariance method 

Min Zhai1,2, Alexandre Locquet1,2, Cyrielle Roquelet3, D.S. Citrin1,2  

mailto:david.citrin@ece.gatech.edu
mailto:mzhai6@gatech.edu
mailto:alexandre@gatech.edu
mailto:cyrielle.roquelet@arcelormittal.com


 2 

abrupt interfaces, h(t) can be approximated as a temporal sequences of Dirac -functions corresponding to the various interfaces 

(as well as accounting for multiple reflections, but these are typically weak and will not be considered here), the amplitudes of 

which are determined by the Fresnel coefficients of those interfaces. Naïvely, we can obtain the Fourier transform of h(t), i.e., the 

transfer function 𝐻(𝜔) with  the angular frequency, as the ratio of the Fourier transforms of the reflected to the incident electric-

field amplitudes. In practice, however, noise may severely limit the useable bandwidth of 𝐻(𝜔), and introduce anomalous peaks 

in the reconstructed h(t) after inverse Fourier transformation. The conventional denoising approach is to apply a frequency-domain 

filter to eliminate high-frequency noise. Double-Gaussian [14], van Hann [15], and Gaussian filters [16] are commonly selected. 

Clearly, such approaches can only reduce the bandwidth in which 𝐻(𝜔) is reliably computed, negatively impacting the axial 

resolution and thus the ability to analyze optically thin layers. Mittleman first suggested employing wavelet transforms for THz 

signal processing because THz pulses as produced may be similar in form to common wavelet basis functions [17]. In contrast to 

the Fourier transform, which employs an infinite set of sinusoids with frequency ranging from 0 to ∞ as basis functions, the wavelet 

transform employing a truncated basis may be a more efficient representation of a THz pulse because of the time-frequency 

localization of the wavelet basis function [18]. Chen coupled wavelet denoising with a double-Gaussian inverse filter and achieved 

high resolution for h(t) [16] and Ferguson and Abbott applied wavelet techniques coupled with Wiener deconvolution to 

successfully remove Gaussian white noise [19][20]. Those filters further narrow the bandwidth of 𝐻(𝜔) by eliminating the low-

SNR regions, which also contain information about the sample; therefore, the features in h(t) recovered from the inverse Fourier 

transform of the filtered 𝐻(𝜔) are temporally broader than ideal impulses, which consequently limits the axial resolution.  

Two methods, autoregressive spectra extrapolation (AR) and sparsity-based deconvolution (SD), have been used by our group 

and by others to enable the extraction of depth information below the naïve axial-resolution limit of signals from samples with 

optically thin layers.  SD retrieves h(t) in the time domain assuming only a limited number of non-zero values (sparse constraint).  

SD has improved the axial resolution of THz TOF tomography based on the iterative shrinkage algorithm [21][23].  In Ref. [24], 

SD quantitatively revealed the detailed stratigraphy of a 17th century easel painting with some layer thicknesses less than 50 𝜇m.  

Computation time, however, can be long, making it arduous to handle large data sets.  Autoregressive spectral extrapolation (AR), 

applied previously in geophysics [25] and then extended to acoustics [26][27], enhances the ability to distinguish thin layers by 

extrapolating the data into the low-SNR bands based on the data within the high-SNR region using techniques from time-series 

prediction, though applied in the frequency domain.  In other words, by supplementing the experimental data with expectations 

concerning the information-theoretic complexity of 𝐻(𝜔), one can achieve super-resolution in the axial direction.  In Ref. [28], 

Dong et al. reconstructed h(t) of a single-layer polymer coating of thickness 22.5 𝜇m using AR based on the Burg method 

(AR/BM). Although AR/BM can exceed the naïve axial resolution limit, it may suffer from temporal peak splitting and frequency 

bias when the order of AR model is too large, as reported in Refs. [29][30] and discussed below.  This limits the applicability of 

AR/BM without prior knowledge of the sample structure [31].  Moreover, AR/BM we observe that can be difficult to implement 

insofar as finding parameters providing accurate and robust reconstruction. 

In this paper, AR based on the modified covariance method (AR/MCM) is proposed to provide super-resolution reconstruction 

for optically thin layers applied to pulsed THz TOF tomography while suppressing artifacts that may arise in AR/BM as well as 

easing the choice of parameters associated with AR. In contrast with AR/BM as well as with Wiener filtering combined with 

wavelet denoising, AR/MCM shows better performance in providing super-resolution capability combined with suppression of 

artifacts given noisy data.  Indeed, unlike the former two approaches, AR/MCM exhibits a relative absence of pulse broadening 

and peak splitting.  In order to validate the efficiency of AR/MCM to measure the thickness of an optically thin film, a mill-scale 

layer on steel [32] is investigated by this method. The thickness calculated based on AR/MCM shows excellent agreement with 

destructive measurements obtained by cross-sectional imaging, while being relatively easy to perform compared with AR/BM.  

 

2 Principle 

We start with a description of the general AR process. Assume frequency 𝐻𝑖  within a window 𝐻𝑖𝐿
< 𝐻𝑖 < 𝐻𝑖𝐻

, where 𝐻𝑖𝐿
 and 𝐻𝑖𝐻

 

define the upper- and lower-frequency limits of that window. The AR model serves as a prediction filter to find data components 

outside the window for i > 𝑖𝐻 using the forward-prediction equation 

𝐻̂𝑖 = − ∑ 𝑎𝑘𝐻𝑖−𝑘
𝑝
𝑘=1 . 

Similarity, the backward-prediction filter is used to find the missing component for i < 𝑖𝐿, 

𝐻̂𝑖 = − ∑ 𝑏𝑘𝐻𝑖+𝑘
𝑝
𝑘=1 , 

where p is the order of the AR process, and 𝑎𝑘 and 𝑏𝑘 are the coefficients of the AR forward- and backward-prediction filters, 

respectively.  

    Choosing an appropriate value for the order p is essential for the success of AR.  On the one hand, a too small value means that 

the model is not sufficiently complex to represent a signal with many subtle important features, meaning that the estimator would 

be less flexible to capture the underlying trends of spectrum with high SNR.  On the other hand, for an excessively large value of 

p, the overly complex model will exaggerate minor fluctuations; in other words, the estimator captures erroneous trends, which 

may result from noise still present in the high-SNR region. The optimum forward and backward coefficients are determined by 

minimizing the squared error 𝜀𝑝
2 between the model and the available data. In this case, the sum of both the forward- and backward-

prediction errors 
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is considered. 

    Akaike’s information criterion (AIC), based on the information-theoretic entropy, provides a standard technique to select the 

order of the AR model [33],[34]. AIC quantifies a compromise between the accuracy and the complexity of the model, and is 

defined as  

AIC[𝑝] = 𝑁log(𝜀𝑝
2) + 2𝑝 

where the first term rewards goodness-of-fit while 2p represents an additive penalty term for increasing order, aimed at 

discouraging overfitting.  According to Akaike’s theory, the minimum value of AIC corresponds to the best-fit, i.e., the value of p 

to be used in the AR model. 

The two techniques compared in this article, AR/BM and AR/MCM, rely on a minimization of the forward and backward 

prediction errors in the least squares sense. In the case of AR/BM, however, the parameters are constrained to satisfy the Levinson-

Durbin recursion.  In the recursive procedure in AR/MCM, which has the advantage of being computationally efficient, at each 

step of recursion, a single coefficient is estimated to minimize the sum of the forward and backward prediction errors.  

While we have successfully applied both AR/BM and AR/MCM to characterize the thickness of the layers (see below and Ref. 

[32]), AR/MCM has the distinct advantage that far less effort is needed to find parameters related to the reconstruction algorithm 

that give accurate results.  For AR/BM, though Levinson-Durbin recursion can reduce computation time, we observe that the 

optimal order p is inconsistent with the value minimizing AIC, which we interpret as resulting from the loss of accuracy introduced 

by the Levinson-Durbin constraint. Consequently, the reconstructed h(t) based on nonoptimal coefficients may exhibit spurious 

peaks that misrepresent the stratigraphy, which is of particular concern if we do not have prior information about the structure, in 

particular if we do not know beforehand the number of layers.  For AR/MCM, because no constraint is added to the minimization 

of the prediction error, the optimal model order p shows a better correspondence with the value that minimizes the AIC. 

 

3 Experiment 

The measurement in this work is carried out using a pulsed, broadband THz time-domain system from TeraView Ltd (TPS Spectra 

3000), shown schematically in Fig. 1. The GaAs photoconductive antenna is excited and produces roughly single-cycle THz pulses 

with bandwidth extending from 60 GHz to 3 THz. The laser used is an Er-doped fibre laser which emits 780 nm pulses with sub-

100 femtosecond pulse duration at a repetition rate of 100 MHz and has a time-averaged output power of > 65 mW. THz TOF 

tomography is performed in reflection mode at almost normal incidence. Before acquiring data, the time domain THz reference 

signal produced by the system was recorded by placing a metal plate (excellent reflector) at the sample position. The spectrum of 

the THz reference signal f(t) is obtained by Fourier transforming the temporal pulse. The sample is raster-scanned by a set of 

motorized stages moving in the x- and y-directions with step size 0.2 mm. Each recorded reflected THz pulse r(t) contains 4096 

data points, and the signal is averaged over 10 shots per pixel. 

 

4 Results and Discussion 

Reconstruction based on synthetic data is first carried out to compare the performance of the three deconvolution techniques: 

Wiener filtering, AR/BM, and AR/MCM. Neglecting material dispersion, an ideal impulse response function h0(t) (the subscript 0 

denote synthetic signals) of a simple double layered structure, which contains 4096 data points with the same sampling period Ts, 

is assumed as 

ℎ0[𝑛] = {

    1,       𝑛 = 1500
   0.5,     𝑛 = 1530
−0.2,    𝑛 = 1630

       0,     otherwise

, 

where n is a discrete-time variable such that t = nTs (we use n and t interchangeably as convenient) in which the corresponding 

time delay associated with the two layers is either 30Ts or 100Ts.  Therefore, for numerical computation, the impulse-response 

function is built up from discrete-time -functions. The reflected signal r0(t) is simulated from the convolution between the 

reference signal f(t) and the synthetic impulse response function h0(t) together with additive uncorrelated Gaussian white noise 

en(t), i.e., r0(t)=f(t)⊗h0(t)+en(t), where ⊗ denotes the convolution operator. 

Wiener filtering with wavelet denoising: Figure 2 shows the synthesized impulse response function h0(t) (red) and reflected 

signal r0(t) obtained by convolution with f(t) and subsequently adding with noise en(t).  As is evident in the figure, the reflected 

echoes temporally overlap and cannot be visually distinguished in the computed raw reflected signal r0(t), owing to the short time 

interval between echoes arising from two closely-spaced interfaces. In order to separate the overlapping echoes, a combination of 

Wiener filtering and wavelet decomposition is first applied to attempt to reconstruct the impulse response function h0(t). The 

reconstructed transfer function is  

𝐻̂(𝜔) =
𝑅(𝜔)𝐹∗(𝜔)

|𝐹(𝜔)|2+𝑄2, 
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where the asterisk denotes complex conjugation. Here, 𝑅(𝜔) and 𝐹(𝜔) correspond to the Fourier transforms of r0(t) and f0(t), 

respectively, with  the angular frequency. The Wiener filter acts like a noise-desensitizing factor Q2 [35] leading to a reconstructed 

transfer function 𝐻̂ () which does not exhibit unruly behavior outside the high-SNR band.  The value chosen for Q2 was 

0.01max(|𝐹(𝜔)|) [36].   Compared with the transfer function H(𝜔) setting Q2 = 0, i.e. in the absence of Wiener filtering, the noise 

outside the high-SNR band is regularized by removing the anomalous features in the low-SNR bands of H().  

In order to eliminate the remaining noise still present after Wiener filtering, wavelet denoising is employed.  In the process of 

wavelet denoising, based on what was found in Ref. [37], symlet (sym4) wavelets were selected with a level of 5 for the wavelet 

decomposition, as no significant improvement was found for higher levels; the reconstructed h(t) for various SNR are presented in 

Fig. 3. After deconvolution by Wiener filtering and wavelet denoising, only the first positive and negative echoes can be resolved. 

Distinguishing the second positive echo, due to the short time interval 30Ts between the first and third echoes, is beyond the 

capability of this technique. Moreover, the band-limited nature of the Wiener filter broadens the pulses making up h0(t), ultimately 

obscuring the locations of the various echoes underlying the reconstructed impulse response function h(t). In addition, anomalous 

features still remain in both the low- and high-frequency regions even after Wiener filtering when SNR is relatively low, and these 

features introduce pronounced artifacts in h(t). Besides, the desensitizing factor Q2 distorts the deconvolved signal somewhat even 

within the high-SNR band in the low-noise limit.   

Autoregressive extrapolation: AR, one category of parametric spectrum estimation methods, was next used to enhance the ability 

to reconstruct h(t). Unlike the previous approach employing Wiener filtering and wavelet denoising, which discards high-frequency 

components with low SNR, AR in general aims at recovering the missing frequency components in the low-SNR regions of the 

spectrum based on the data within high-SNR regions; hence, the transfer function H() can be estimated well beyond the low-

SNR band, and the peaks in h(t) may not be broadened. Compared with nonparametric methods, no windowing of the 

autocorrelation sequence is applied, less spectral leakage and better frequency resolution with less computational complexity can 

be achieved. We therefore expect that this approach may enhance the axial resolution.  

There are several possibilities concerning how the spectral extrapolation is carried out. In addition to the BM and MCM, 

described hereabove, the Yule-Walker method and the covariance methods are also commonly employed in spectral estimation 

[38]. The two latter methods, however, rely on a minimization of the forward prediction error only. Because low SNR regions are 

found at both ends of the THz spectrum, it is important to minimize both the forward (towards higher frequencies) and the backward 

(toward lower frequencies) prediction errors, and not favor one type of error only. We have verified indeed that Yule-Walker and 

the covariance methods indeed lead systematically to worse results that the Burg and MCM methods. In the following, we will 

focus on the latter two techniques only.  

In order to be able to apply AR/BM, one must be able to identify low- and high-SNR regions. These can be determined by 

examining the result of the direct division of 𝑅(𝜔) by 𝐹(𝜔), in which the low- and high-SNR bands stand out as they contain wild 

fluctuations corresponding to high- and low-frequency noise, and can thus be separated by inspection. Still, noise remains within 

the high-SNR band.  Wavelet denoising is thus applied first to selectively reduce noise prior to AR. In the wavelet denoising 

process, symlet (sym4) wavelets are selected with a level of 9 for the wavelet decomposition.  Note that wavelet denoising is a 

selective (and complex) filter that is intended to retain insofar as possible only features resembling f0(t).  Thus, apart from removing 

noiselike features from the transfer function, it retains relevant information throughout the high-SNR region.   

Autoregressive extrapolation with the Burg method:  Following the wavelet denoising just described, AR based on the high-

SNR regions is employed.  The forward coefficients 𝑎𝑘 are estimated from fitting the data within the band [0.2 THz, 1.5 THz], and 

the backward coefficients 𝑏𝑘  are separately estimated (in BM) from fitting the data within [0.14 THz, 1.41 THz].  The order p is 

determined to minimize AIC.  For example, for SNR = 10 dB, the order is p = 65. After fitting the AR model as a prediction filter 

to extrapolate the missing data below 0.14 THz and above 1.5 THz, the entire spectrum of 𝐻(𝜔) can be estimated. The elimination 

of wild fluctuations in the transfer function outside the high-SNR band and the recovery of data within the low-SNR bands results.  

Thanks to AIC, over- and under-fitting can be avoided.  

Following this procedure, h(t) for a range of SNRs is shown in Fig. 4(a)-(c). The values for the order of the AR process are p 

= 70, 82, and 100 when SNR = 20 dB, 10 dB, and 5 dB, respectively, unless otherwise noted.  Three peaks, corresponding to the 

three interfaces of the synthesized double-layered structure h0(t), can be found even under relatively high SNR.  Shifts of peak 

positions in h(t) compared with h0(t), are found, however, and are a typical shortcoming of the Burg method [39][40].  Further, 

Fig. 4(d) illustrates that spurious peaks occur in the AR/BM reconstruction with p = 72, which is another know shortcoming of 

BM.  Based on Ref.[34], temporal peak splitting is most likely to occur with AR/BM when the SNR and the model order are both 

high. Spurious peaks could be misinterpreted as additional layers that are not actually present. 

Autoregressive extrapolation by the modified covariance method: To overcome these shortcomings, AR/MCM is applied.  

Owing to the absence of Levinson-Durbin recursion to solve for the model coefficients, higher computational cost is demanded by 

AR/MCM.  

   In addition, because there is no guarantee that the system poles lie inside the unit circle, it is crucial to stabilize the AR model. 

The approach we use is to reflect the instable poles inside the unit circle by applying the following procedure 

𝐷𝑖
′ = {

𝐷𝑖                       for |𝐷𝑖| ≤ 1
1

|𝐷𝑖|
2

𝐷𝑖             for |𝐷𝑖| > 1
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where 𝐷𝑖are the poles of the system and 𝐷𝑖the updated poles. More details can be found in Ref. [41].  By comparison, AR/BM is 

computationally more efficient and produces a stable model; a major drawback is, however, that the value of p is difficult to 

determine and for instance often does not correspond to the minimization of AIC.  Consequently, unless we can optimize p with 

samples of known thickness, it is difficult to assess the accuracy of the approach.  On the other hand, AR/MCM is computationally 

more intensive, but intrinsically may suffer from instabilities.  The latter can often be tamed, resulting in AR/MCM’s main 

advantage: since the forward- and backward-prediction errors are minimized simultaneously, with no restriction introduced by an 

additional constraint, the value of p that minimizes AIC results in much more reliable reconstruction of h(t).  Of course, in both 

cases, it is the presence of noise that introduces difficulties.  As discussed below, for high-SNR, AR/BM is much more likely to 

be successful. 

The corresponding results based on AR/MCM for various SNR are shown in Fig. 5.  The values of the order of the AR process 

are p = 60, 55, and 65 when SNR = 20 dB, 10 dB, and 5 dB, respectively.  Compared with the AR/BM reconstructions (see Fig. 

4), even though a significant improvement results from AR/MCM and AR/BM with regard to the ability to reconstruct optically 

thin layer thicknesses, fewer erroneous shifts in the peak positions in h(t) result from applying AR/MCM, suggesting an advantage 

of the latter approach in that it is not as sensitive to residual noise even after wavelet denoising. In addition, AR/MCM does not 

suffer from spurious peaks in h(t) under various SNR conditions; AR/MCM thus reliably provides a more accurate reconstruction 

of the stratigraphy.  As for the AM/BM results, those spurious peaks in the reconstructed h(t) may be erroneously interpreted as 

additional layers that are not actually present.   

Because minimizing AIC with respect to p is still likely to result in artifacts in h(t) and finding the optimal value of p may 

require optimization with a sample of known thickness for AR/BM, we conclude that AR/MCM provides a significantly more 

reliable approach to finding the optimal order p and the reconstruction h(t) is much less likely to suffer from the artifacts 

encountered in the AR/BM reconstruction in the presence of noise. 

Experimental verification: Having compared the performance of AR/MCM using synthetic data, we next test the approach using 

experimental THz TOF tomography data from a single layer of mill scale on a steel coupon.   

To return to the experiments and reconstruction carried out here, the nominal thickness of the scale layer investigated is 

characterized independently by a destructive cross-sectional measurement and was found to be 18.5 𝜇m. The composition of the 

scale layer is also identified by x-ray diffraction.  Based on the Rietveld refinement principle, the concentrations of the various 

iron-oxide phases present in the mill scale are shown in Fig. 6 showing wüstite to be dominant, with mass percentage 58 % and 

magnetite (a conductor) the second most dominant phase.  Based on this information, we estimate that the refractive index of the 

scale film is approximately that of wüstite, ~4.7 [42].  (We do expect the other iron-oxide phases present to contribute mainly to 

attenuation, which given the small thickness of the film is not of great importance to the measurement.)  

A typical experimental reflected THz signal at a representative position on the coupon is shown in Fig. 7(a).  Due to the fact that 

the mill scale is thinner than the naïve axial resolution, the echoes reflected from the air/mill-scale and the mill-scale/steel interfaces 

temporally overlap.  Wiener filtering combined with wavelet denoising, AR/BM, and AR/MCM are employed to characterize the 

thin film, and the corresponding results are also shown in Fig. 7(b)-(d), respectively.  

The reconstruction by Wiener filter and wavelet denoising only has one peak, and it therefore is entirely inadequate to recover 

the two echoes from the air/mill scale and mill scale/steel interfaces, and thus to reconstruct the stratigraphy of the film. 

Both AR/BM and AR/MCM provide reconstructions showing two peaks, and the coating thickness estimated based on the 

optical delay between the two positive peaks is 17.7 μm and 18.4 μm for AR/BM and AR/MCM, respectively. The former value 

exhibits a ~ 10 % error (too large) while the latter shows no significant error.  Not shown here, measurements taken at several 

positions on the sample exhibit the same trends.  

In addition, owing to the high sensitivity of AR to noise as well as the AR parameters, we see that peak splitting occurs in h(t) 

reconstructed by AR/BM if we choose an excessively high order p, as shown in Fig. 7(f).  Of course, in the present case we can 

choose a more reasonable value of p to avoid peak splitting, but then, the errors discussed above are still present.  As for AR/MCM, 

due to the approach discussed above to guarantee the stability of the AR model and the reliability of choosing p to minimize AIC, 

line splitting is not observed and the film thickness is quite accurately reconstructed. In conclusion, a more accurate reconstruction 

based on AR/MCM compared with AR/BM is achieved.  

 

 

5 Conclusion 

In this paper, AR/MCM is explored to enhance the ability to reconstruct the stratigraphy of samples with optically thin layers, and 

has been used to analyze pulsed THz imaging data.  We begin by comparing with Wiener filtering combined with wavelet 

denoising. This method attempts at reducing noise but cannot effectively reconstruct information outside the high-SNR band.  The 

parametric models AR/BM and AR/MCM aim at precisely this.  While AR/BM attempts to minimize the prediction errors it must 

simultaneously satisfying the Levison-Durbin constraint, making it difficult to choose the optimal order p of the AR model. 

Moreover, AR/BM tends to broaden features in the reconstructed impulse response if the order is reasonable or too low, while may 

lead to the appearance of erroneous peaks (peak splitting) if the order is too high.   AR/MCM, on the other hand, though suffering 

from possible instability, can in practice be stabilized, and avoids the problems mentioned above with AR/BM.  
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We verify the utility of AR/MCM for optically thin layers in the presence of significant noise highlighting its advantages 

compared with AR/BM using both synthetic and experimental data, and argue that AR/MCM can be more reliable under practical 

conditions where the structure of the sample unknown and significant noise is present. 
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Figures 

 
Fig. 1. Schematic diagram of the pulsed THz TDS system. The incident and reflected THz signals impinge 

at the same point on the sample and are spatially separated in the figure for clarity. 
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Fig. 2. The synthesized impulse response function (red) ℎ0(𝑡) and computed reflected THz signal (black) 

𝑓0(𝑡) ⨂ ℎ0(𝑡) + 𝑒𝑛(𝑡) for various SNRs. The simulated THz signal 𝑟0(𝑡) convolves the actual THz reference 

signal 𝑓0(𝑡) with the assumed impulse response function ℎ0(𝑡) with additive Gaussian white noise 𝑒𝑛(𝑡). 
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Fig. 3. Black curves show synthesized reflected signals r0(t) at the various noise levels indicated. 

Reconstruction of h0(t) by Wiener filtering followed by wavelet denoising shown in red.  The position of 

second echo, expected at time delay 17.76 ps, is not clearly identified.  See Fig. 2 for the corresponding ℎ0(𝑡) 

and computed reflected THz signals 𝑓0(𝑡) ⨂ ℎ0(𝑡) + 𝑒𝑛(𝑡). 
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Fig. 4. Comparison of the synthetic reflected THz signals 𝑓0(𝑡) ⨂ ℎ0(𝑡) + 𝑒𝑛(𝑡)  (black) and AR/BM 

reconstruction h(t) (red) with SNR (a) 20 dB, (b) 10 dB, and (c) 5 dB. (d) Line-splitting [actual peaks in h0(t) 

appearing as double peaks in h(t)] occurs for SNR = 20 dB when an excessively high order is employed, here 

p = 72. 
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Fig. 5. Comparison of the synthetic reflected THz signals 𝑓0(𝑡) ⨂ ℎ0(𝑡) + 𝑒𝑛(𝑡) (black) and AR/MCM 

reconstruction h(t) (red) with SNR (a) 20 dB, (b) 10 dB, and (c) 5 dB.  Note that erroneous peaks in h0(t) in 

Fig. 4(d) are not present here.  
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Fig. 6. X-ray diffractogram of 18.5-μm thick mill-scale layer on steel substrate. The inset shows the 

estimated proportion of various iron oxides in the 18.5-μm film.  
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Fig. 7. (a) Raw experimental reflected THz signal for 18.5-μm thick mill scale on steel and the reconstructed 

impulse-response function h(t) based on (b) Wiener filtering combined with wavelet denoising, (c) AR/BM 

(p = 75), (d) AR/MCM (p = 60), with the corresponding representation of round-trip echoes in (e). (f) Peak 

splitting occurs in AR/BM when an excessively high order p is chosen (p = 98). 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 


