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Abstract. A toroidal bubble or a cylindrical gas jet are known to be subjected to the Rayleigh-Plateau insta-
bility. Air bubble rings produced by beluga whales and dolphins however are observed that remain stable for
long times. In the present work, we analyse the generation of such toroidal bubbles via numerical simula-
tions, in particular how the process depends on surface tension. Their stability properties are then briefly
analysed. For the estimated Reynolds and Weber numbers relative to the bubbles produced by these animals,
the presence of a vortex inside and around the bubble is found to strongly stabilize the Rayleigh-Plateau in-
stability.
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1. Introduction

This paper is written in memoriam Y. Couder. Yves was a colleague of deep thoughts and a
humanist. In everyday life, he was prone to enthusiasm and passion for knowledge. He was an
extraordinary observer and many of his breakthroughs originated from careful observations. As a
modest homage, this paper presents a topic that takes its origin from an observation on Youtube!
In his turbulence experiments [1, 2], Yves used bubbles to visualize vortices. The present work
concerns a topic somewhat related: the generation and dynamics of an air bubble in the form
of toroidal rings. It was some kind of surprise to see dolphins [3] or beluga whales [4] generate
bubble rings from their mouth or blowholes and thereafter play for a long period of time with
rings in which any sign of instability was absent.
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2 Yonghui Xu et al.

Indeed an axisymmetric columnar jet of fluid 1 embedded in a fluid 2, when slightly dis-
turbed, is known to break into small droplets or bubbles. This subject was first studied by Lord
Rayleigh [5, 6]. He computed how infinitesimal perturbations (more specifically normal modes
of axial k and azimuthal m wavenumbers) evolve in time and obtained analytically the complex
eigenvalue s(k,m) = sr + isi , and precisely sr their growth rate as a function of wavenumbers k
and m. For an inviscid two-phase column of radius a0, axisymmetric perturbations m = 0 are
the most dangerous ones and the dimensionless eigenvalue s̄ is a function of the dimensionless
wavenumber k̄:

s̄2

(
1+ ρ(2)

ρ(1)

K0(k̄)I ′0(k̄)

K1(k̄)I0(k̄)

)
= k̄

(
1− k̄2) I ′0(k̄)

I0(k̄)
with s̄ ≡

√
a3

0ρ
(1)

σ
s, k̄ ≡ ka0. (1)

For 0 É k̄ É 1, s̄ is real with the two possible signs, meaning that the jet is unstable. For k̄ Ê 1,
s̄ = isi is purely imaginary indicating a stable jet. This result can be explained by the theory
of minimal energy: a multiphase system tends to possess a minimum capillary energy at rest.
This instability known as Rayleigh-Plateau instability is due to a capillary mechanism. It breaks
the jet into several drops or bubbles when k̄ É 1 so that the interface area is minimized. In
order to stabilize Rayleigh-Plateau instability, an added rotation is an interesting possibility for
applications, e.g. liquid atomization, spray generation, combustion processes. Previous works on
the effect of rotation are those of [7–11]. In our case, we introduce this aspect to understand the
video of dolphins playing with ring bubbles!

The present paper covers the three stages observed during the dolphin’s video inside three
separate sections. First, Section 2 introduces the generation of bubble rings through blowhole or
mouth. To do so, one considers an idealized axisymmetric nozzle containing initially a gas bubble
which is rapidly expelled. This part uses direct numerical simulation. A second stage in which the
toroidal bubble is stretched is analyzed in Section 3 by analytical means. As an end result, this
provides the vorticity profile reached after the stretching period. The third stage is discussed in
Section 4 in which we study the stability of this new profile. The ring is replaced by a straight
columnar bubble embedded in a vortex and a standard linear stability method is employed to
investigate how superimposed infinitesimal perturbations evolve in time.

2. Two-phase ring generation

A bubble ring may appear in various ways: a first method consists in generating tiny gas bubbles
in advance in a region which is thereafter crossed by a vortex ring produced away from this
location [12]. The tiny bubbles migrate because of centrifugal force inside the vorticity ring core
and then coalesce to form a toroidal gas bubble transported by the pre-formed vortex ring. In
a second method, the vortex is generated at the same spot where tiny bubbles are located [13].
An other method consists in initializing a unique gas bubble inside a nozzle. Ejecting the fluid
then causes the bubble to deform and break, yielding a toroidal bubble at the same time and
location in which vorticity rolls up, e.g. near the trailing edge of the nozzle. This latter case is
probably pertinent for vortex ring bubbles produced through the mouth or blowholes by belugas
or dolphins. The presence of the tongue and its motion probably facilitate the toroidal bubble
formation as mentioned and demonstrated by a scuba diver [14] but it is shown here not to be an
essential feature.

We study below the toroidal bubble production through the mouth or blowholes in an ideal-
ized and simplest fashion without introducing the effect of the tongue. The geometry is an ax-
isymmetric nozzle of radius R0 and of thickness 2b0 = R0/4 with an edge at 26.5◦ (see Figure 1a).
The nozzle edge enables to fix the region of boundary layer separation and ends at x = 2.8R0.
Initially the two fluids are at rest and inside the tube, an air bubble of axial length LB is located
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Yonghui Xu et al. 3

Figure 1. (a) Scheme of the numerical nozzle. (b) The whole numerical domain. In the
yellow region, the mesh size is ∆c = 0.125R0 and in the red region, ∆c = 0.0078R0. (c) The
three initial cases: the flow is at rest and a gas bubble (in red) of length LB is contained in
the nozzle. From top to bottom: LB = 0.6R0, 1.2R0 and 2.4R0.

within the axial interval x ∈ [2.6R0 −LB,2.6R0] (see Figure 1c). The numerical domain (see Fig-
ure 1b) has been checked to be large enough to avoid boundary effects during the time of simu-
lation: it is a square box (x,r ) ∈ [0,16R0]× [0,16R0]. Outflow boundary condition (stress free) are
imposed at the downstream domain boundary x = 16R0, impenetrability and slip condition on
the lateral wall r = 16R0 and no-slip everywhere else except for the region x = 0 and r É R0 where
the velocity is imposed. The air bubble is suddenly expelled from the nozzle and injected inside
the ambient water. This occurs together with the phenomenon of roll-up of the boundary layer
vorticity. The velocity field far inside the nozzle (at x = 0) mimics this rapid ejection

ux (x = 0,r, t ) =U0 erf

(
t

τ

)
erf(η), ur = 0 with η= R0 − rp

ν(w)t
≥ 0, (2)

where

erf(x) ≡ 2p
π

∫ x

0
exp(−s2)ds

stands for the error function. The center velocity is changing from rest to a constant value U0

within a time scale τ. For this problem we assume that τ¿ R0/U0: the center velocity reaches its
constant value rapidly compared to the time of roll-up itself. In our simulations, this parameter is
fixed at τ̄ ≡ τU0/R0 = 0.1. Moreover the flow is almost spatially uniform inside the tube except
near the tube border r = R0 where a boundary layer is present to ensure no-slip at the wall.
This solution is close to what would be observed in a long tube subjected to a sudden pressure
gradient. Kinematical viscosity of air and water are taken to be respectively (dimensional values
are given in SI units) ν(a) ∼ 1.8×10−5 and ν(w) ∼ 9×10−7 and air and water density respectively
ρ(a) = 1, ρ(w) = 103. Finally, air-water surface tension is assumed to be σ= 73.4×10−3.

Based on the nozzle radius R0 as characteristic length scale and U0 as the velocity scale, as well
as water density and viscosity, this flow is defined by several dimensionless numbers: a Reynolds
number, a Weber number and the relative length rB of the bubble:

Re = U0R0

ν(w)
, W e = ρ(w)U 2

0 R0

σ
, rB ≡ LB

R0
. (3)

Note that Re/W e1/2 = (ρ(w)σR0)1/2/µ(w) is independent on velocity and is equal to Re/W e1/2 ≈
104R0

1/2 when R0 is expressed in SI units. The boundary layer thickness δ0 verifies δ0/R0 =p
t̄/Re, where a nondimensional time variable t̄ ≡U0t/R0 is introduced. This thickness remains

small for advective times much less than the Reynolds number t̄ ¿ Re. The largest vorticity

C. R. Mécanique, 0000, 1, n 0, 000-000



4 Yonghui Xu et al.

Table 1. Estimated typical Reynolds and Weber numbers for scuba divers, beluga whales
or dolphins

SI units R0 = 0.02,U0 = 0.1 R0 = 0.1,U0 = 0.1 R0 = 0.02,U0 = 0.3 R0 = 0.1,U0 = 0.3
Re 2222 11111 6666 22222
W e 2.72 13.6 24.5 120

occurs at the tube wall. In the bubble, for times such that t̄ is of order one, the dimensionless
vorticity maximum is of order

R0

U0
max(ω) ∼− 2p

π

p
Rep

ν(a)/ν(w)
∼−

√
Re

15.7
. (4)

For Re = 5000, the maximum is close to the value 17.8. Using dimensionless quantities, the
entrance condition reads

ux = erf

(
t̄

τ̄

)
erf(η), ur = 0, with η= 1− rp

t̄/Re
. (5)

The axisymmetric flow is described by the velocity fields ui (x,r, t ) with i = 1,2 related to the
pseudo-scalar vorticity component ωθ(x,r, t ), the plane (x,r ) being oriented by the normal unit
vector ez . In the present work, we focus on the transient period once the ejection has started: we
hence study how the roll-up is modified by surface tension. For the formation process of the ring,
axisymmetry is an adequate hypothesis but later on, one expects three-dimensional instabilities
to appear on the starting bubble ring for a monophasic [15,16] as for a two-phase vortex [15]. The
numerical code we use in the present work is the Basilisk code [17]. It has been largely tested and
used to simulate two-phase flow problems. One problematic aspect is the motion of the triple
line between bubble, solid and liquid, present during the initial ejection stage. We will not go into
numerical details here but let us simply mention en passant that Basilisk numerically mimics the
presence near the triple line of a Navier condition, i.e. the presence of a slip length condition
which is used in the phenomenology of triple line motion. Here the slip length is half the mesh
size near the solid boundary, namely 1

2∆c = 0.0039 R0.
The present work is not intended to be an extensive investigation of the parameter space of

this problem, which in itself would cover several articles. We simply provide here some evidence
about the generation of a bubble ring. Table 1 gives estimated Reynolds and Weber numbers
for the toroidal bubble produced by scuba divers, beluga whales or dolphins. As a consequence,
we use a realistic Reynolds number which is still affordable by numerical simulations running
on a standard workstation. For most simulations, the Reynolds number is set at Re = 5000. In
the monophasic case, the standard vortex is formed by vorticity sheet roll-up. In the two-phase
situation, this mechanism is still active but the bubble expelled from the tube may break up in the
same time interval. More importantly, the bubble contains and is surrounded by positive vorticity
transported from the boundary layer at the nozzle wall but also from positive and negative
vorticity produced at the interface. This interfacial vorticity (related in particular to capillary
waves and bubble retraction) is shed in the bulk in the form of vortices. At later times, such
vortices may induce a dynamics on the bubble as do the vortices generated by the nozzle wall
vorticity roll-up.

The first set of simulations corresponds to a small Weber number W e = 3. For a length rB = 0.6
(Figure 2), the toroidal vortex is not formed but a bubble remains with vortices inside. This means
that when surface tension is too strong, inertial effects are too weak to deform the bubble and
thus to generate a toroidal bubble. The second simulation (Figure 3) corresponds to a larger width
rB = 2.4. In this instance, the bubble ring is again not formed but the starting period is quite
complicated with phase of disconnection followed by reconnection. In this process, multiple

C. R. Mécanique, 0000, 1, n 0, 000-000



Yonghui Xu et al. 5

Figure 2. Simulations at Re = 5000, W e = 3 and rB = 0.6. From left to right, the snapshots
correspond to times t̄ = 2, 3.2 and 6.4. The upper half displays phases and interfaces (red is
gas and blue water) and the lower half the vorticity field. The vorticity value is colored with
a maximum scale of ω = 3.75, which is one fifth of the absolute vorticity maximum at the
wall boundary layer (see (4)).

Figure 3. Simulations at Re = 5000, W e = 3 and rB = 2.4. From left to right, first row: t̄ = 4,
6, 8; second row: t̄ = 8.4, 10 and 16. Visualizations are similar to Figure 2.

Figure 4. Simulations at Re = 5000, W e = 100 and rB = 0.6. From left to right: t̄ = 2.8, 4.8,
7.2 and 15.2. Visualizations are similar to Figure 2.

vortices shed at the interface tend to favor this reconnection process. For larger bubbles, the
starting vortex is shed inside the air bubble. As a conclusion, it can be checked that for small
Weber numbers (e.g. W e = 3), the bubble that is formed is not toroidal!

The second set displayed on Figures 4–5 corresponds to a large Weber number W e = 100 for
rB = 0.6 and rB = 2.4 respectively. In the first case (rB = 0.6, Figure 4), the bubble becomes a thin
layer near the centre and a rim forms near r = R0 with the vorticity roll-up (t̄ = 2.8). The layer
breaks thereafter into small fragments since surface tension is too weak and a toroidal bubble is
formed near the edge attached to the nozzle edge (t̄ = 4.8). The flow then detaches the toroidal
bubble (t̄ = 7.2) and the system evolves through capillary waves dynamics and interactions with

C. R. Mécanique, 0000, 1, n 0, 000-000



6 Yonghui Xu et al.

Figure 5. Simulations at Re = 5000, W e = 100 and rB = 2.4. From left to right, first row:
t̄ = 4.8, 7.2, 8, 11.2; second row: t̄ = 13.6 and 19.6. Visualizations are similar to Figure 2.

Figure 6. Simulations at Re = 5000, W e = 100 and rB = 8. From left to right: t̄ = 14, 20, 24
and 40. Visualizations are similar to Figure 2.

vortices (t̄ = 15.2). For a larger rB (here rB = 2.4, Figure 5), the boundary layer is not thin but the
roll-up of the vortex sheet is still located near r = R0 (t̄ = 4.8). At the center, the two interfaces get
nearby (t̄ = 7.2) and then reconnect forming a unique toroidal bubble (t̄ = 8). Later the bubble
is stretched (t̄ = 11.2) before being detached (t̄ = 13.6). The result is a larger toroidal bubble
(t̄ = 19.6). The process is identical for rB = 8 (Figure 6). For even larger values of rB, the bubble
does not break and the vorticity roll-up occurs inside the gas bubble. The largest toroidal bubble
appears for a value of rB which is clearly dependent on the Weber number.

The intermediate case W e = 20 is an in-between situation (Figures 7–9) in which a fine balance
between the classical roll-up of vorticity and the bubble break-up occurs. For rB = 2.4 (Figure 7),
the same process occurs as at larger W e: a toroidal bubble is formed, first attached to the edge
(t̄ = 9.6) then detached (t̄ = 14.4). Thereafter its cross-section becomes almost circular (t̄ = 20,
t̄ = 24). For rB = 1.2 (Figure 8), the bubble is detached (t̄ = 5.6) before being broken (t̄ = 9.6).
This is due to the presence of a vortex that was previously shed by the boundary layer. More
generally, vorticity production at the interface makes the process quite complex since the toroidal
bubble interacts with the vorticity generated at its interface beforehand, or generated by the wall
boundary layer (see Figure 8 at times t̄ = 9.6, 20 and 30). In many simulations for W e = 20, the
chaotic interaction between such vortices and the toroidal bubble brings this bubble towards the
symmetry axis, merging it into a simple bubble. This process is seen here on a simulation for
rB = 0.6 (Figure 9): the toroidal bubble is formed at t̄ = 4.8 but its reconnects towards the center
at t̄ = 8. This was also observed for rB = 2.4 by slightly changing the Navier condition for the
triple line.

C. R. Mécanique, 0000, 1, n 0, 000-000



Yonghui Xu et al. 7

Figure 7. Simulations at Re = 5000, W e = 20 with rB = 2.4. From left to right, first row:
t̄ = 4.4, 7.2, 9.6; second row: t̄ = 14.4, 20 and 24. Visualizations are similar to Figure 2.

Figure 8. Simulations at Re = 5000, W e = 20 with rB = 1.2. From left to right, first row:
t̄ = 4.4, 5.6, 8, 9.6; second row: t̄ = 20, 30. Visualizations are similar to Figure 2.

Figure 9. Simulations at Re = 5000, W e = 20 with rB = 0.6. From left to right: t̄ = 2, 3.6, 4.8
and 8. Visualizations are similar to Figure 2.

It is worth mentioning that modifying the Reynolds number, as illustrated in Figure 10,
and/or the position of the bubble may change some dynamical features but does not modify the
overall picture described above. When the toroidal bubble is formed in the ejection problem, the
structure of the vorticity field is complex inside the bubble and around it (see Figure 11). This is
also seen on vorticity profiles (see Figure 12). One may define a bubble-ring total length LB which
is of order 2πR0, as well as the size aB of the toroidal bubble section S and the mean circulation
ΓB inside the bubble:

aB =
√

I1

π
R0 and ΓB = I2U0R0, with I1 =

∫
S

dx dr, I2 =
∫

S
ωdx dr. (6)

C. R. Mécanique, 0000, 1, n 0, 000-000
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Figure 10. Simulations with Re = 10000 and rB = 2.4. From left to right, top row: W e = 3
at t̄ = 8, 10, 14.6; bottom row: W e = 100 at t̄ = 8, 10 and 14.6. Visualizations are similar to
Figure 2.

Figure 11. Simulations with Re = 5000, rB = 4. Vorticity field near the bubble for (a) W e = 20
at t̄ = 20; (b) W e = 100 at t̄ = 26.4.

Figure 12. Profiles of vorticity ωθ(x,r ) at Re = 5000, W e = 100, rB = 4 and t̄ = 17.6
(corresponding to the second case of Figure 11) on two orthogonal lines passing through
the center of section S: (a) along the x direction, (b) along the r direction. The red dots are
located inside the gas bubble, blue dots are outside.

C. R. Mécanique, 0000, 1, n 0, 000-000



Yonghui Xu et al. 9

Figure 13. Swirl number qS as a function of nondimensional time t̄ . Simulations at Re =
5000, W e = 100 with (a) rB = 4, (b) rB = 5.

Based on such quantities, one computes the mean vorticity inside the bubble ΓB/(πa2
B). For a

uniform vorticity inside a bubble of radius aB, the azimuthal velocity at the interface is equal
to ΓB/(2πaB). A dimensionless parameter called the swirl number qS can thus be defined as the
ratio of this azimuthal velocity and the characteristic capillary velocity Ucap ≡ [σ/(ρ(w)aB)]1/2:

qS ≡ ΓB

2πaB Ucap
. (7)

After a transient period, this swirl seems to fluctuate around an average value, as illustrated in
Figure 13.

3. The action of stretching on the bubble ring

In the videos [3, 4], dolphins or beluga whales play with the vortex rings and are able by a motion
of their head to increase the bubble length. This is typically known as stretching mechanism of
vortex tubes. Starting from a vorticity structure similar to the field obtained numerically at the
end of the simulations in the previous section (that is those corresponding to vorticity fields in
Figure 11), one should model the effect of the dolphin head. In order to remain simple, we analyse
the effect of this stretching mechanism by a simplified model which enables us to use analytical
methods. An air column of radius aB replaces the two-phase bubble ring with a vorticity field
vanishing away from the bubble and the effect of stretching for the ring is introduced in the
associated columnar bubble via an axial axisymmetric unsteady stretching

u = [
γ(t )x, uy (y, z, t )− 1

2γ(t )y, uz (y, z, t )− 1
2γ(t )z

]
. (8)

The vorticity structure at t = 0 is characterized by a unique vorticity component ωx (y, z) along
x which is identical to ωθ(r, z) obtained at the end of previous simulations (see for instance
Figure 11). The stretching occurs during a finite period of time between time t = 0 and t = TS .
The stretched solution is again characterized by the unique vorticity component ωx (y, z, t ). This
field satisfies the governing equation

Dωx

Dt
= γ(t )ωx +ν∆2Dωx , (9)

where ∆2D stands for the two-dimensional Laplacian and D ·/Dt for the material derivative:

∆2D ≡ ∂2

∂y2 + ∂2

∂z2 ,
D

Dt
≡ ∂

∂t
− 1

2
γ(t )

[
y
∂

∂y
+ z

∂

∂z

]
+uy

∂

∂y
+uz

∂

∂z
. (10)

C. R. Mécanique, 0000, 1, n 0, 000-000



10 Yonghui Xu et al.

Across any point at the interface, the velocity field is continuous i.e. u(1)
y = u(2)

y and u(1)
z = u(2)

z ,
and the tangential stress is continuous as well. Let us now introduce the following change of
variables [18]

τ≡
∫ t

0
S(t ′)dt ′, with S(t ) ≡ exp

[∫ t

0
γ(t ′)dt ′

]
, χ=

√
S(t )y, η=

√
S(t )z, (11)

as well as a rescaling of vorticity and velocity fields

ω̃x (χ,η,τ) =ωx /S(t ), ũy (χ,η,τ) = uy /
√

S(t ), ũz (χ,η,τ) = uz /
√

S(t ). (12)

After such changes, the field [ũy (χ,η,τ), ũz (χ,η,τ)] has the dynamics of an unstretched solution
with the same initial condition:

Dω̃x

Dτ
= ν∆̃2Dω̃x , with ∆̃2D ≡ ∂2

∂χ2 + ∂2

∂η2 and
D

Dτ
≡ ∂

∂τ
+ ũy

∂

∂χ
+ ũz

∂

∂η
, (13)

associated to equivalent boundary conditions.
This trick allows one to obtain the effect of stretching on a vortex profile in two steps: first,

one solves the pure two-dimensional advection-diffusion equation (13) starting with the velocity
field at τ = t = 0 and ending the simulation at τ = τS ≡ ∫ t=TS

0 S(t ′)dt ′; second, one applies the
scalings (11)–(12) back to the initial variables pertinent to describe the physical state. In the
videos [3], the bubble ring length LB increases in a substantial manner: assume this increase to
be by a factor of F and γ to be constant, this means that F = exp(γTS ) and thus τS ≡ ∫ t=TS

0 S(t ′)dt ′

yields (F −1)/γ. Hence, the ratio τS /TS = (F − 1)/lnF is large: for a factor F = 10, its value is
around 4. The first stage of the simulation is thus a pure two-dimensional advection diffusion
equation applied during a time τS larger than TS . In the monophasic case, differential rotation in
such an equation is known to accelerate diffusion [19], so that the vorticity profile rapidly tends
towards a smoother axisymmetric one. More generally, two-dimensional vortical flows localized
in a finite region are known to decay towards an axisymmetric monopole or, in case the total
circulation is zero, towards a dipole [20, 21]. The present case is slightly different because of
the presence of two phases. Since ν(a)/ν(w) = 20 is large, vorticity actually diffuses much more
rapidly inside the bubble than outside. This implies that vorticity tends to become uniform
inside the bubble. Vorticity outside becomes smoother than initially and the interface becomes
axisymmetric by damping of capillary waves. This evolution is partially seen on Figure 14. In order
to go back to the vortex solution at t = TS (second step), one applies the transformation inverse of
(11)–(12). The stretching transformation leaves the vorticity uniform in the bubble, the section of
which is now circular with radius anew ¿ a(t = 0). Indeed, by conservation of mass, anew/a(t = 0)
is of the order of 1/

p
F . If we assume that the circulation ΓB inside the bubble is not changing

much, this stretched vortex also possesses a new swirl number

qnew
S ∼

√
a(t = 0)

anew
qS (t = 0) ∼

p
F qS (t = 0). (14)

The swirl number is thus expected to increase when the bubble ring length increases.

4. Instability of a columnar interface in the presence of surface tension and rotation

After the stretching phase, a toroidal gas bubble inside a vortex with an almost circular section is
generated. In order to understand its stability, we proceed again by studying the same simplified
problem: an air column of radius a0 = anew replaces a two-phase bubble ring with a vorticity field
vanishing away from the bubble. This simplified problem is much more tractable since the base
flow is homogeneous in the axial direction x. Whenever necessary, the notation Q(p) is explicitly
used to represent the quantity Q in the inner phase p = 1 or the outer phase p = 2. The jump of a
field Q across a point x of the interface is denoted by [[Q]] ≡Q(1)(x, t )−Q(2)(x, t ).
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Figure 14. Evolution of the vorticity field ω̃x (χ,η,τ) near the bubble, starting from the
initial condition corresponding to the second case in Figure 11 and evolving through the
two-dimensional advection-diffusion equation (13), represented (left to right and top to
bottom) at times τ= 0, 8, 16, 24, 32 and 40.

Figure 15. Growth rate s̄ as a function of wavenumber k̄ for axisymmetric modes m = 0.
(a) Inviscid column of liquid 1 surrounded by a liquid 2 at various density ratios ρ(2)/ρ(1) =
103, 102, 10, 1, 10−1 and 10−3. (b) Viscous air column surrounded by water at various
Ohnesorge numbers Oh between 10−3 and 10−1 with µ(2)/µ(1) = 50. The inviscid curve
almost concides with that of case Oh = 10−3.

The theoretical relation (1) indicates that the presence of an external liquid does not change
the stability criterion for various density ratios ρ(2)/ρ(1) (Figure 15a). Here, the density ratio is
ρ(w)/ρ(a) = 103, which simply makes the system of a columnar fluid 1 more stable: while the
Laplace pressure pushes fluid 1 outward, fluid 2 will oppose a force, which slows down the
instability and shift the most unstable wavenumber k̄ to a smaller value [22]. The significance
of dynamical viscosity µ(1) (fixing the ratio µ(2)/µ(1) to the value µ(w)/µ(a) ≈ 50) compared to
surface tension σ is described by the dimensionless Ohnesorge number Oh = µ(1)/(ρ(1)σa0)1/2,
a larger Ohnesorge number indicating an increased influence of viscosity. Since µ(1)/(ρ(1)σ)1/2 ≈
6.64×10−5, Oh ≈ 6.64×10−4 for a radius a0 = 1 cm. Figure 15b presents the classical dispersion
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relation for an air column surrounded by water when viscosity is taken into account. Again it is
found that viscosity makes the system less unstable and shifts the most amplified wavelength to
a longer on from Oh = 10−2 on. The added inertia and viscosity are hence incapable to bring the
system from an unstable to a stable configuration.

We assume here that an additional rotational motion stabilizes the toroidal bubble generated
by dolphins: with an appropriate azimuthal speed, the centrifugal force stabilizes the Rayleigh–
Plateau instability. The stability analysis for a swirling jet has been already studied by Hocking [7].
In the case of an inviscid fluid column with no external fluid and subjected to rotation of
constant angular rotation rate Ω0 (or equivalently of constant vorticity 2Ω0), a stability criterion
for azimuthal wavenumber m at k = 0 was obtained using the Weber number based on the
velocity Ω0a0, i.e. W e = ρ(1)a3

0Ω
2
0/σ (not to be confused with the Weber number used in (3)

which was based on U0 and R0). This criterion implies that a mode with k = 0 and m 6= 0 is
stable when W e É m(m + 1). The planar mode (k = 0,m = 1) being a displacement mode, it is
neutral and stability for (k = 0,m 6= 0) modes is ensured when W e ÉW ec = 6. In follow-on studies,
Gillis [10] provided a general stability criterion for three-dimensional disturbances on a viscous
fluid column with no external fluid

W e É (ka0)2 +m2 −1. (15)

Weidman [11] showed how the dominant azimuthal mode for a two-phase axisymmetric rotating
system depends on the Reynolds number Re. Finally the linear stability of a uniformly rotating
viscous liquid column has been investigated by Kubitschek and Weidman [8] and validated
experimentally [9]: the dominating mode depends on Re and on the rotation speed. In the
present work, we study how perturbations evolve when superimposed on an axisymmetric air
column in an infinite ambient fluid, namely water. We consider the case where surface tension,
viscosity, density contrast and centrifugal force act on the instability growth rate, and in which the
angular velocity profile Uθ(r )/r is not uniform outside the bubble. To the best of our knowledge,
this stability problem has not yet been performed.

4.1. The governing equation for a columnar flow with rotation

We adopt the model of an infinitely long two-phase capillary jet of radius a0. The inner and outer
fluid are both incompressible, immiscible and viscous. Using now radius a0, [ρ(1)a3

0/σ]1/2 and
ρ(1) as characteristic scales for length, time and density, we write the Navier–Stokes equations
inside each fluid p = 1 or 2:

∇̄ · ū(p) = 0 (16)

ρ̄(p) D

Dt̄
ū(p) =−∇̄p̄(p) + µ̄(p)

ReB
∇2ū(p),

1

ReB
=Oh = µ(1)√

ρ(1)σa0

(17)

where the Reynolds number ReB of the vortex is the inverse of the Ohnesorge number. Ratios
µ̄(p) = µ(p)/µ(1), and ρ̄(p) = ρ(p)/ρ(1) are fixed : µ̄(2) = 50 and ρ̄(2) = 103 and by definition µ̄(1) =
ρ̄(1) = 1. In the following, we use only dimensionless quantities except when specified and the
bar notation is assumed. Since the inner fluid p = 1 is air and the outer fluid p = 2 is water, it is
clear that

ReB =
√

1

ρ(2)

√
a0

R0

Rep
W e

≈ 300
p

a0 (18)

when a0 is the bubble radius in SI units. When a0 ∼ 1 cm, this implies ReB ∼ 30, and when
a0 ∼ 10 cm, this implies ReB ∼ 100. Alternatively, if one assumes that a0/R0 ∼ 0.1, for simulations
Re = 10000 and W e = 100, one gets ReB = 10; for simulations Re = 10000 and W e = 1, one gets
ReB = 100.
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The Navier–Stokes equations are written in cylindrical coordinates. The radial position of the
interface between the two fluids can be described by a function ζ in cylindrical coordinates:
r = ζ(θ, x, t ). This interface is characterized by a outward normal n and two tangential vectors
tx and tθ:

tx =
(
∂ζ
∂x ,0,1

)
√

1+
(
∂ζ
∂x

)2
, n =

(
1,− 1

ζ
∂ζ
∂θ ,− ∂ζ

∂x

)
√

1+
(
∂ζ
∂x

)2 +
(

1
ζ
∂ζ
∂θ

)2
, tθ = tx ×n, (19)

forming an orthonormal basis (tx ,n,tθ). The velocity is continuous across the interface [[u]] = 0.
The normal velocity must be compatible with the interface motion

Dζ

Dt
= vr (ζ,θ, x, t ). (20)

The dynamic conditions express that normal stress and tangential shear must be balanced by the
surface tension effect:[[

−p +2
µ

ReB
n ·e ·n

]]
= 1

R1
+ 1

R2
, [[2µtθ ·e ·n]] = 0 with e(p)

i j = 1

2

∂u(p)
i

∂x j
+
∂u(p)

j

∂xi

 . (21)

4.2. The rotating base state

Here, we mainly study a basic state u = Wθ(r, t )eθ which possesses the feature described in
Section 3: it is characterized by a non-uniform angular velocity Wθ/r and a non-uniform axial
vorticity ω = [Wθ/r + ∂Wθ/∂r ]ex in phase 2 only, and the interface is circular ζ(x,θ, t ) = 1.
If one neglects the unsteadiness due to bulk viscosity, such profile is a possible solution. In
physical terms, this approximation is pertinent since instability occurs a priori much faster than
the diffusion of the base state. To be mathematically correct, one introduces a body force to
counterbalance the bulk diffusion for the basic state. However viscous effects are still present
in the boundary conditions at r = 1:

W (1)
θ

(1) =W (2)
θ

(1), (22)

µ(1)

(
∂W (1)

θ

∂r
(1)−W (1)

θ
(1)

)
=µ(2)

(
∂W (2)

θ

∂r
(1)−W (2)

θ
(1)

)
. (23)

This latter condition can be rewritten as well as

ω(2)
x (1) = µ(1)

µ(2)
ω(1)

x (1)−2

(
µ(1)

µ(2)
−1

)
W (1)
θ

(1). (24)

In each phase (p), the basic pressureΠ(r ) should satisfy equation ρW 2
θ

(r )/r = ∂Π/∂r and a jump
condition at r = 1. This leads to a pressure of the following form:

Π(1)(r ) = ρ(1)
∫ r

0

[W (1)
θ

(r ′)]2

r ′ dr ′, Π(2)(r ) =Π(1)(1)+ρ(2)
∫ r

1

[W (2)
θ

(r ′)]2

r ′ dr ′−1. (25)

The vorticity profile is assumed to be uniform in fluid 1 that is

W (1)
θ

(r ) = qr, ω(1)
x = 2q for r < 1,

where the dimensionless parameter q is equal to the ratio of the dimensional azimuthal velocity
at the interface with respect to the characteristic capillary velocity [σ/(ρ(1)a0)]1/2 — this quantity
is equal to 0.27/a0

1/2 when a0 is expressed in SI units. Note that

q ≡
√
ρ(1)

ρ(2)
qS =

√
ρ(a)

ρ(w)
qS . (26)
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Figure 16. (a) Normalized vorticityωx (r )/(2q) and (b) normalized velocity Wθ(r )/q profiles
for the base state with ρ(2)/ρ(1) = 103, µ(2)/µ(1) = 50 for δ= 0.3 (left), δ= 1 (center) or δ= 2
(right).

Vorticity in phase 1 being uniform, Equation (24) imposes that ω(2)
x (1) = 2q . Apart from this

constraint, let us assume a vorticity profile ω(2)(r ) = ω(2)
x (1) f (r ) in phase 2, where function f is

chosen as f (r ) = exp[−(r −1)2/δ2] and decays in the radial direction, thus generating a vortex
ribbon of radial size δ in phase 2 surrounding the interface. It is easily seen that

W (2)
θ

(r ) = q

r
+2

q

r

∫ r

1
r ′ f (r ′)dr ′, ω(2)

x (r ) = 2q f (r ) for r > 1.

This expression, which can be written as well as

W (2)
θ

(r ) = q

r

[
1+δ2

(
1−e−(r−1)2/δ2

)
+δpπerf

(
r −1

δ

)]
for r > 1, (27)

is displayed in Figure 16.

4.3. The linear instability results

We study the linear stability of the above base flow using standard but cumbersome methods. In-
deed, the problem is an eigenvalue problem s̄(k̄,m) for given axial k̄ and azimuthal m wavenum-
bers, that contains viscous diffusion in the bulk as well as on the interface. A code has been specif-
ically developed, that solves coupled Orr–Sommerfeld equations in cylindrical coordinates for
the two phases. For obvious reasons, details on the implementation will be published elsewhere,
and only results for the air-water columnar bubble are presented here.

Figure 17 displays the growthrate s̄ as a function of wavenumber k̄ for the axisymmetric mode
m = 0, which is known to be the most unstable mode for q = 0. The presence of rotation is found
to stabilize axisymmetric modes, and for q larger than a critical value qc ≈ 0.03, waves become
stable for all wavelengths. This observation holds irrespective of the Reynolds number and δ

within the studied interval δ ∈ [0.3,2]. Actually the structure in the corona at r > 1 seems to play
a minor role for the axisymmetric mode.
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Figure 17. Growth rate s̄ as a function of wavenumber k̄ for axisymmetric mode m = 0
at various swirl numbers q = 0, 0.01, 0.02, 0.03. Reynolds number is (a) ReB = 10, (b)
ReB = 100. Viscous air column surrounded by water with δ= 0.3 (left) or δ= 2 (right), with
ρ(2)/ρ(1) = 103 and µ(2)/µ(1) = 50.

Figure 18. Growth rate s̄ as a function of wavenumber k̄ for a viscous column of air
surrounded by water at δ = 0.3, ReB = 10 and various swirl q = 0.2,0.4,0.6. (a) m = ±1;
(b) m =±2; (c) m =±3. Positive m: symbols; negative m: bold line.

Figure 19. Same as Figure 18 but for δ= 1 (ReB = 10).

Figures 18–21 provide linear instability results for non axisymmetric modes m ±1, ±2 and ±3.
The first observation is that, at given k̄ and |m| values, the growth rate is found almost the same
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Figure 20. Same as Figure 18 but for δ= 0.3 and ReB = 100.

Figure 21. Same as Figure 18 but for δ= 1 and ReB = 100.

for m > 0 and m < 0. The equality exactly holds when q = 0 for symmetry reasons, and the fact
that it holds also roughly for q 6= 0 can be explained by the uniform vorticity inside the bubble.
Interestingly, rotation does not influence mode |m| = 1, that remains stable. For sufficiently low
Reynolds number and small δ, other azimuthal modes m 6= 0 for small k can be destabilized. For
instance, the mode m = 2 is found unstable for ReB = 10 and δ= 0.3 (Figure 18b). The growth rate
decreases as the Reynolds number increases (Figure 20b). This is reminiscent of planar modes
k = 0 in Ref. [8]. Note that for larger values of δ, this mode is restabilized: for δ = 1, all modes
tested are stabilized by rotation, this conclusion holding irrespective of the Reynolds number
(Figures 19 and 21).

Finally, going back to the bubble ring, the axisymmetric Rayleigh–Plateau modes are stabilized
by rotation. Indeed, from the simulations in Section 2, the pertinent values of q (Figure 13
and (26)) are found to be q ∼ 10−3/2 ×30 ∼ 0.94. When a stretching factor is applied, q generally
increases (Equations (14) and (26)) and is thus larger than the stability threshold of qc ≈ 0.03.

5. Conclusions

This paper covers three different aspects of the dynamics of toroidal bubbles such as those
produced by scuba divers, beluga whales or dolphins. During the initial production of such
bubble, vorticity trailing from the nozzle or from the opening rolls up into a toroidal vortex ring
able to trap gas in its core; to do so, it has to overcome surface tension which would favor the
formation of a single spherical bubble. Simulations show that vortices shed from the nozzle or
generated at the bubble interface itself can influence the formation dynamics in a non trivial
way. Once formed, the bubble ring may be stretched by an appropriate flow so as to increase
its length. A theoretical model where curvature effects are overlooked shows that, during the
stretching process, the vorticity in the gas tends to become uniform, the cross-section tends to
circular while the core radius is highly reduced and the swirl is enhanced. This latter finding is
important since a linear stability study of a gas columnar vortex surrounded by water eventually
shows that the dominant axisymmetric Plateau instability is stabilized as swirl increases above a
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well-defined critical value. Put all together, these pieces of investigation give some serious clues
to physically understand the surprising stability of swirling bubble rings.
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