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Abstract 18 

This review proposes an insight into the prospects of electrochemistry for the 19 

treatment of highly concentrated effluents in three sections. The first section 20 

focuses on the challenges inherent to such kind of wastewater, divided into five 21 

categories: industrial wastewater (e.g., pharmaceutical, electronics, chemical, 22 

food-processing), hypersaline effluents (e.g., RO concentrates), solutions 23 

contaminated with a mixture of organic and inorganic contaminants (e.g., leachate, 24 

mining), highly viscous solution (or non-Newtonian liquid) (e.g., sludge) and 25 

solutions of high COD load but with low pollutant content (e.g., from soil 26 

washing). The second section of this review then focuses on the treatment 27 

strategies to ensure that the electrochemical treatment is adapted to these very 28 

specific waste streams, including the influence of operating conditions, electrode 29 

materials and processes (with special emphasis on anodic oxidation, electro-Fenton 30 

and electrocoagulation). The final part focuses on the perspectives of 31 

electrochemical treatment of challenging wastewater, by giving the engineering 32 

parameters to ensure successful upscaling of electrochemical processes in terms of 33 

modeling mass transport, charge transfer and hydrodynamics, reactor designs and 34 

energy requirements. The review concludes on process combinations, where 35 

electrochemistry could complement traditional methods of treatment, in order to 36 

improve the overall efficiency of the integrated system. 37 

Keywords: electrochemical advanced oxidation processes, high organic load 38 

wastewater, industrial wastewater treatment 39 

Electrochemical wastewater treatment strategies 40 

This section of the review presents the most relevant treatment strategies involving 41 

electrochemical technologies that have been applied to handle waste streams with high 42 

levels of contamination as defined in the previous section, with a focus on organic 43 

pollutants and real effluents. Waste streams polluted with high concentrations of 44 

inorganic and ionic species will only be briefly mentioned. Moreover, emphasis has been 45 

placed on EAOPs and EC. 46 
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Electrochemical technologies: an overview 47 

Electrochemical technologies have proven to be powerful methods for the treatment of 48 

numerous kinds of waste streams (Martínez-Huitle et al., 2015; Moreira et al., 2017). The 49 

success of the treatment relies first of all on the physicochemical properties of the 50 

wastewater and second, on the electrode materials and thus the type of process that is 51 

applied. EAOPs, based on the production of •OH, are highly efficient in degrading 52 

dissolved organic pollutants, especially aromatic/cyclic and unsaturated compounds that 53 

possess the highest reaction constants with •OH (Buxton et al., 1988). Hence, effluents 54 

containing important amounts of such organic contaminants are excellent candidates for 55 

EAOP treatment, including pharmaceutical, food processing, textile, reverse osmosis 56 

(RO) concentrates and landfill leachate effluents, as well as other waste streams from 57 

various chemical sectors. Highly loaded effluents are also ideal candidates for •OH-based 58 

EAOPs because high concentrations of organics avoid mass transport limitations that are 59 

generally associated with electrochemical methods. Nevertheless, very high contents of 60 

organic matter require longer treatment times and extensive energy consumption, having 61 

a negative impact on the feasibility of the treatment.  62 

Anode materials 63 

In electrochemical processes, the electrode material is a determining factor, as electrode 64 

properties define the type of treatment and thus the chemical and electrochemical 65 

mechanisms that are involved. Anodes with a high O2 evolution overpotential have the 66 

capacity to produce •OH on their surfaces (M(•OH)) and are excellent materials for direct 67 

AO, while anodes with the ability to produce chlorine oxidative species from the 68 

oxidation of Cl- are excellent choices for indirect AO of organic pollutants (Martínez-69 

Huitle et al., 2015). Figure 1 shows the main anode materials typically used for AO. They 70 

have been classified according to their capacity to produce M(•OH), which is linked to 71 
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their oxidative power. Two main classes can be distinguished: “active” (low O2 evolution 72 

overpotential) and “non-active” (high O2 evolution overpotential) anodes. Boron doped 73 

diamond electrodes (BDD) are the most powerful anode materials due to their outstanding 74 

properties, including a high O2 evolution overpotential (2.8 V vs SHE), high chemical 75 

stability and durability (Brillas et al., 2011). Recently, ceramic sub-stoichiometric anodes 76 

(Ti4O7) have also demonstrated their remarkable performance in the 77 

degradation/mineralization of organic contaminants, showing similar properties as BDD 78 

(Ganiyu et al., 2016; Olvera-Vargas et al., 2018; Yang et al., 2020); yet, their application 79 

to wastewater treatment is still at the development stage.  80 

In contrast, water oxidation on electrodes with a low oxygen evolution 81 

overpotential (“active anodes”) leads to O2 with negligible formation of M(•OH) and thus 82 

poor AO performance. Among them, dimensionally-stable anodes (DSA) are good 83 

electrocatalysts for the oxidation of Cl- into chlorine oxidants, making them the most 84 

convenient choice for chlorine-mediated oxidation (AO-Cl). The fundamentals and 85 

applications of EAOPs for wastewater treatment have been thoroughly documented in 86 

several review papers of high impact (Brillas & Martínez-Huitle, 2015; Chaplin, 2014; 87 

Feng et al., 2013; Moreira et al., 2017; Sirés et al., 2014).  88 

Cathode material: Fenton-based methods 89 

Cathodes with the electrocatalytic capability of producing H2O2 from the two-electron 90 

reduction of dissolved O2 represent great options for electrochemical treatment, allowing 91 

the indirect oxidation of organics via the Fenton’s reaction (Brillas et al., 2009). During 92 

EF, the Fe2+ catalyst for the Fenton’s reaction is continuously regenerated on the cathode 93 

surface through reduction of Fe3+. Iron ions are generally supplied as Fe2+ salts (mainly 94 

FeSO4) in catalytic amount. Alternatively, the use of iron anodes can produce the catalyst 95 

in EF-like systems. However, continuous dissolution of a sacrificial anode generates 96 
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considerable amounts of undesirable Fe sludge. Various types of carbonaceous electrodes 97 

have been used in EF, including carbon felt, carbon cloth, carbon fibers, graphite, 98 

reticulated vitreous carbon (RVC), carbon nanotubes (CNT), carbon sponge, gas 99 

diffusion electrodes (GDE), mesoporous carbon and graphene-based electrodes. Carbon 100 

materials have the advantage of being inexpensive, durable and nontoxic. During the last 101 

two decades a great deal of work has been done on the development of carbon-based 102 

electrodes for EF applications. Excellent papers on the topic and a recent book are 103 

available for review (Babuponnusami & Muthukumar, 2014; Brillas, 2017; Brillas et al., 104 

2009; Casado, 2019; Huong Le et al., 2017; Nidheesh & Gandhimathi, 2012). Fenton-105 

based technologies can be substantially improved under UV irradiation, due to the 106 

contribution of different photolytic reactions (photolysis of H2O2 and Fe-carboxylate 107 

complexes, as well as the photoexcitation of semiconductor electrodes). UV-based 108 

EAOPs include photoelectro-Fenton (PEF), solar photoelectro-Fenton (SPEF) and 109 

photoelectrocatalysis (PEC) (Brillas, 2017; Garcia-Segura & Brillas, 2017).  110 

Enormous progress has been made in the development of advanced electrode 111 

materials for EAOPs, including composite electrodes coated with nanomaterials, metallic 112 

catalysts and semiconductor photocatalysts (Garcia-Segura & Brillas, 2017; Huong Le et 113 

al., 2017; Moreira et al., 2017). Nonetheless, such electrodes are still at the development 114 

stage and further work is needed before large-scale applications are envisaged. In fact, 115 

the performances of novel electrodes are generally investigated in synthetic diluted 116 

solutions of model organic pollutants, but practical applications require robust, durable 117 

and mechanically reliable electrodes. Commercially available electrodes commonly used 118 

in electrochemical wastewater treatment include BDD, DSA, Pt, Ti, carbon felt and 119 

carbon-PTFE-GDE. 120 



 
6

For the sake of simplicity, EAOPs are generally performed in undivided 121 

electrochemical reactors in which the anode and the cathode are contained in the same 122 

compartment (more details of this subject will be discussed in the next section). In this 123 

kind of reactor configuration, the performance of the process can be optimized when both 124 

the cathodic and the anodic processes contribute to the oxidative degradation of the 125 

organic pollutants. In this scenario, the coupled EF-AO system has shown great 126 

degradation/mineralization efficiencies when treating several organic pollutants and 127 

waste streams (Olvera-Vargas et al., under review; Oturan et al., 2015; Sopaj et al., 2016) 128 

In this “paired” process, •OH are generated through two routes: i) by the homogeneous 129 

Fenton’s reaction (EF) promoted by H2O2 cathodic formation in carbonaceous electrodes 130 

and; ii) by the discharge of water at powerful anodes like BDD and Ti4O7 (AO). As 131 

mentioned above, greater amounts of •OH are produced when the process is carried out 132 

under UV/vis irradiation (EF and PEC). 133 

Electrochemical technologies are considered green processes because they utilize 134 

electrons (electric current) to generate the oxidizing agents, thus avoiding the handling of 135 

hazardous chemicals. Furthermore, they do not virtually generate secondary wastes. The 136 

main constraint limiting their large-scale application is related to technical aspects and 137 

economic considerations (total capital investment, total product cost, energy 138 

consumption). 139 

Defining the treatment strategy 140 

Most of the investigations on electrochemical processes have been carried out in bench-141 

scale reactors making use of synthetic solutions of target pollutants or simulated waste 142 

streams. However, the use of synthetic solutions avoids real conditions, which are crucial 143 

for the development of large-scale treatment systems. When defining the most appropriate 144 

treatment strategy, there are three key points that need to be taken into consideration: i) 145 
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the physicochemical characteristics of the effluent: amount of organic matter COD, BOD5 146 

and TOC), TSS, TDS, ionic species (inorganic ions and metals) and pH; ii) the goal of 147 

the treatment in terms of water quality targets and; iii) the properties of the treatment 148 

process to be applied. Once these three points have been addressed, the second step 149 

involves the evaluation and optimization of the process. Again, three main actions need 150 

to be taken: i) optimization of the process according to the main variables affecting the 151 

efficiency (current/potential, types of electrodes, pH, catalyst concentration in the case of 152 

EF, supporting electrolyte) (Brillas & Martínez-Huitle, 2015; Chaplin, 2014; Feng et al., 153 

2013; Moreira et al., 2017; Sirés et al., 2014); ii) cost/efficiency evaluation and; iii) design 154 

of large-scale systems (engineering of the electrochemical reactors and electrodes). The 155 

optimization is generally done in small-scale setups and the data obtained from this 156 

evaluation will serve as the starting point for the development of a pilot. This strategy 157 

selection flow is illustrated in Figure 2. In the following sub-sections a discussion of the 158 

most relevant strategies that have been applied to the treatment of highly polluted waste 159 

streams by electrochemical methods is presented, focusing on EAOPs and EC. A 160 

compilation of representative works that have been considered is displayed in Table 1.  161 

Anodic oxidation 162 

For the treatment of highly polluted effluents, the first approach consists of the evaluation 163 

of individual electrochemical processes to assess their feasibility. AO has been the most 164 

commonly used technology because of its simplicity and versatility with respect to the 165 

composition of the effluents. Indeed, AO has shown a greater range of applicability than 166 

EF because its efficiency relies almost entirely on the anode material and is not pH 167 

restricted. BDD has been the most widely utilized electrode, followed by DSA. A great 168 

number of studies have demonstrated the outstanding oxidation capabilities of BDD 169 

during both AO and EF (cf. Table 1). Commercial applications of EAOPs with BDD have 170 
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been proposed by the German and American companies CONDIAS GmbH1 and 171 

Advanced Diamond Technologies Inc.2, respectively. The main limitations of BDD 172 

technology are still the high price of the electrodes and their size (restricted to 1 m2), but 173 

as the market grows, larger electrodes are becoming available.  174 

As an example of AO applied to high strength wastewater, municipal landfill 175 

leachate previously submitted to biological activated sludge was treated by AO-BDD in 176 

a pilot plant in which 250 L of leachate were treated (Anglada, Urtiaga, et al., 2010). The 177 

“DiaCell” treatment unit consisted of three electrochemical reactors, each one containing 178 

five DiaCell sets, where each set comprised ten single cells (anode/cathode pairs). BDD 179 

were used as anodes, while the cathodes consisted of stainless steel (SS). The electrodes 180 

were circular with a surface area of 70 cm2 and separated by 1 mm. The setup was 181 

operated in discontinuous mode at a flow rate of 300 L min-1. More than 70% of COD 182 

removal and 37% of NH4
+ removal were achieved following 8 h of treatment at 450 mA 183 

m2 (COD0 = 3106 - 4057 mg L-1 and [NH4
+]0 = 1300 - 1355 mg L-1). It is important to 184 

mention that the leachate influent was filtered before electrochemical treatment, while no 185 

electrolyte was added because of the high conductivity of leachate (high Cl- content).  186 

DSA are stable and durable materials used in many industrial processes such as 187 

chlorine production, electrowining of metal ores and water electrolysis, among others 188 

(Trasatti, 2000). Since they are commercially available for large-scale applications, they 189 

are convenient materials for practical use. DSA are used especially for effluents 190 

containing important amounts of Cl- ions by promoting the production of chlorine 191 

                                                 

1 Condias - Ihr Partner für elektrochemische Verfahren mit Diamantelektroden | Ihr Partner für elektrochemische 

Verfahren mit Diamantelektroden. http://condias.de/ (accessed April 27, 2018). 

2 Advanced Diamond Technologies. http://www.thindiamond.com/ (accessed April 27, 2018). 
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oxidizing species by electrochemical oxidation of Cl-. In this way, chlorine species are 192 

the prime oxidizing agent in the bulk solution (AO-Cl). Yet, because of their restricted 193 

capacity to generate M(•OH), DSA anodes are known to achieve only moderate 194 

degradation/mineralization yields: indeed, the standard reduction potentials of Cl2 195 

(E˚(Cl2/Cl-) = 1.36 V vs SHE) and HClO (E˚(HClO/Cl2) = 1.49 V vs SHE) are lower than 196 

that of •OH (E˚(•OH/H2O) = 2.8 V vs SHE) (Deborde & von Gunten, 2008). For example, 197 

an RO concentrate contaminated with 28 pharmaceuticals and pesticides, and high 198 

amounts of Cl- (1500 mg L-1) was treated by AO using a Ti/Ru0.7Ir0.3O2 mesh anode 199 

(Radjenovic, Bagastyo, et al., 2011). 10 L of sample were treated in a batch setup operated 200 

in recirculation mode with a flow rate of 162 mL min-1. The electrochemical reactor 201 

consisted of a divided filter-press cell (114 mL-capacity) containing a DSA and a SS 202 

cathode both with 24 cm2 of projected surface area. 25% of the dissolved organic carbon 203 

(DOC) was removed at 250 A m-2 and 437 A h m-3, while 20 of the 28 organic pollutants 204 

were totally degraded. Spectrophotometric analyses revealed the formation of chloro-, 205 

bromo- and hyrodroxylated byproducts which were suspected to induce the high toxicity 206 

levels found after treatment, according to bioluminescence toxicity tests. 207 

As illustrated in the previous example, electrochemical technologies have been 208 

applied to the treatment of RO/nanofiltration (NF) concentrates with significant 209 

advantages, since these effluents contain high concentrations of electrolytes, beneficial 210 

for electrochemical methods. Furthermore, the presence of salts, such as Cl-, contributes 211 

to the oxidation capacity through the formation of oxidizing chlorine derivatives (mainly 212 

in the case of AO-DSA). However, DSA may entail the formation of chlorinated 213 

compounds, which is an important limitation, owing to their toxicity. This can be avoided 214 

when BDD is utilized due to its superior mineralization performance. For example, it was 215 

reported that the AO treatment of Cl--rich RO concentrates from municipal WWTPs 216 
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yielded a maximum of 22% of DOC removal with formation of halogenated intermediates 217 

when using a Ti/SnO2-Sb anode (Bagastyo et al., 2013). In contrast, the treatment with 218 

BDD enhanced the DOC removal to 41% with negligible formation of halogenated 219 

substances. Moreover, the mineralization yield (DOC abatement) was improved to 51%  220 

when the Cl- ions where previously removed by electrodialysis and substituted with SO4
2-221 

.   222 

Electro-Fenton 223 

Because it makes use of inexpensive carbon cathodes, EF has been one of the most widely 224 

used EAOPs. However, one of its main limitations lies in its narrow operational pH range 225 

(optimal pH value of around 3), which restricts its large-scale application because of the 226 

need for pH adjustment before and after treatment. Thus, the number of reports of highly 227 

concentrated real wastewater treatment by AO surpasses that using EF. Research on EF 228 

has been mostly carried out on synthetic solutions containing moderate amounts of COD 229 

and TOC, with concentration ranging between 10 and 300 mg L-1. As mentioned above, 230 

BDD anodes have sometimes been combined with EF, significantly enhancing the 231 

mineralization performance (cf. Table 1). However, since EF relies on the cathodic 232 

production of H2O2 and the homogenous Fenton’s reaction, inert anodes, such as Pt, have 233 

also been used to a great extent (cf. Table 1). Following the same reasoning, despite their 234 

low mineralization capability, DSA electrodes arise as a very attractive option for EF, 235 

especially when only partial mineralization of refractory effluents is required (EF as part 236 

of a sequential treatment process). In this way, •OH production is ensured by the electro-237 

Fenton reaction (Olvera-Vargas et al., under review; Sopaj et al., 2016), while the process 238 

benefits from the commercial advantages of DSA. In addition, if Cl- ions are present in 239 

the target effluent, the performance can be improved by indirect chlorine oxidation (AO-240 

Cl).  241 
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For example, landfill leachates were treated by means of EF using an undivided 242 

electrochemical reactor operated in batch mode (Oturan et al., 2015). Pt or BDD were 243 

used as anodes, while high surface area 3D carbon felt served as the cathode. The initial 244 

total organic carbon concentration of the leachates ranged from 1600 to 3100 mg L-1, 245 

containing several recalcitrant organic pollutants, such as polycyclic aromatic 246 

hydrocarbons (PAHs), humic substances, volatile organic compounds (VOCs), organo-247 

halogenated compounds (OCHs), alkylphenols, pesticides and pharmaceuticals. 93.2% of 248 

TOC removal was achieved following 18 h of treatment by EF-BDD at 1 A of current, 249 

constant air flow at 1 L min-1 and room temperature. The use of a Pt anode (EF-Pt) yielded 250 

78.2% of TOC removal under the same experimental conditions. In both cases, all the 251 

identified organic contaminants were almost totally degraded during treatment. It is 252 

important to mention that the pH of the samples was adjusted to 3 prior to EF treatment. 253 

Moreover, due to the high amount of TSS, it was recommended to filter the sample before 254 

electrolysis, since suspended solids can clog the channels of electrochemical reactors and 255 

contribute to electrode passivation.  256 

EF paired with BBD was recently used to treat real refractory pharmaceutical 257 

wastewater (COD = 1253.3, TOC = 431.5 and BOD5/COD = 0.18) (Olvera-Vargas et al., 258 

under review). EF-BDD achieved 97.1% of TOC removal in 6 h of treatment at 4.17 mA 259 

cm-2 and 0.2 mM of Fe2+, much higher than the 64.3% of TOC removal achieved when 260 

EF was combined with a DSA. However, EF-DSA proved equally efficient at increasing 261 

the biodegradability of the effluent with much lower operational costs (BOD5/COD = 262 

0.68 at US$ 1.46 m-3 in 4 h vs. 1.68 US$ m-3 for BOD5/COD = 0.58 in 4 h with EF-BDD). 263 

These findings demonstrate not only the superb potential of EF to treat real 264 

pharmaceutical wastewater with a complex matrix, but also its versatility to reach 265 

different targets of water quality depending upon the anode materials: EF-DSA to 266 
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increase the biodegradability of refractory wastewater vs. more powerful (though costlier) 267 

EF-BDD for quasi-complete mineralization. Furthermore, this work presented an 268 

interesting account on the respective contribution of homogeneous •OH and 269 

heterogeneous BDD(•OH) generated during EF-BDD, whose synergistic effects 270 

accelerated the mineralization of organics, with homogeneous •OH dominating during 271 

the first treatment stages, while BDD prevailed in the last stages through electron transfer 272 

reactions. 273 

In another recent work, waste streams from the electronics industry were treated 274 

by EF using a graphene-based GDE (Garcia-Rodriguez et al., 2018). The experiments 275 

were performed in an undivided electrolytic reactor using BDD as anode and 0.4 L of 276 

wastewater sample. Before trial, the effluent was conditioned by adding 0.05 M of K2SO4 277 

and diluted H2SO4 to bring the pH to 3. Following 3 h of treatment, the TOC was depleted 278 

by 90% when the initial TOC concentration was 53.46 mg L-1 and by 60% when the initial 279 

TOC was 299.31 mg L-1. The enhanced production of H2O2 (up to 495 mg L-1 280 

accumulated in the solution in 3 h of electrolysis) promoted by the graphene-coated GDE 281 

maintained the continuous formation of •OH through the Fenton’s reaction that took care 282 

of the mineralization of the organic constituents. 283 

Electrocoagulation 284 

For waste streams with high amounts of suspended solids and colloids, including oily 285 

waters, EC emerges as the most feasible option. EC is in fact a well-known 286 

electrochemical technology whose utilization can be traced back to the beginning of the 287 

20th century (Mollah et al., 2001). Very comprehensive reviews on EC, its principles and 288 

fields of application are available in the literature (Garcia-Segura et al., 2017; Hakizimana 289 

et al., 2017; Moussa et al., 2017). EC is able to remove organic pollutants, heavy metals 290 

and other inorganic species (sulfate, phosphate, chloride and nitrate, among others) by 291 
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adsorption onto the electrochemically-produced coagulants followed by settling or 292 

flotation. Moreover, colloidal suspensions are easily destabilized and coagulated 293 

afterwards. Non-toxic and inexpensive iron and aluminum electrodes are generally used. 294 

In fact, EC has become a powerful and effective wastewater treatment technology widely 295 

used even for large-scale applications. For example, F&T water solutions3 manufactures 296 

EC systems with capacities between 10 to 1000 GPM. Powell Water4, WaterTectonics5, 297 

Elgressy Engineering Services LTD6. and Hydroleap7 are other companies that 298 

commercialize EC technologies. Their main drawbacks lie in the production of secondary 299 

iron/aluminum sludge that requires further disposal and the important consumption of 300 

electrical energy. Besides, as EC is primarily a separation technology, it does not provide 301 

high efficiencies in the removal of dissolved organic carbon. For this reason, EC has been 302 

coupled to other oxidative technologies when high TOC removal is the goal (Thiam et 303 

al., 2014). In this respect, EC is a perfect candidate for integrated systems either as a 304 

conditioning (reduction of solids and the organic charge) or polishing (elimination of 305 

remaining inorganic species) step (Bocos et al., 2016). Combined processes will be 306 

covered in depth in a dedicated section of this review. 307 

As an example of EC as stand-alone technology, the treatment of 3.5 L of real 308 

textile wastewater with a high COD concentration of 2000 mg L-1 and 230 mg L-1 of 309 

                                                 

3 F& T Water Solutions | Electrocoagulation for Industrial Wastewater Treatment. http://www.ftwatersolutions.com/ 

(accessed April 27, 2018). 

4 Powell Water - Powell Electrocoagulation Waste Water Treatment. http://powellwater.com/ (accessed April 27, 

2018). 

5 WaterTectonics - Advanced Water Treatment Solutions. http://www.watertectonics.com/ (accessed April 27, 2018). 

6 Elgressy Engineering Services Ltd. http://www.elgressy.com/ (accessed April 27, 2018). 

7 hydroleap. https://www.hydroleap.com/ (accessed April 27, 2018). 
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suspended solids was conducted by Kobya et al. (Kobya et al., 2016). The experiments 310 

were conducted in a continuous flow reactor, in which the electrochemical cell was 311 

equipped with two pairs of electrodes connected in monopolar parallel configuration with 312 

a space of 20 mm between them. When Fe electrodes were used, 85% and 76% of COD 313 

and TOC removal, respectively, were achieved under optimal conditions: inlet flow rate 314 

of 0.01 L min-1, 80 min of treatment and a current density of 65 A m2. With Al electrodes, 315 

COD and TOC removal efficiencies of 77% and 72%, respectively, were attained. The 316 

final COD and TOC values after treatment were lower than the permissible limit of 317 

discharge into the sewage, according to the Turkish legislation.   318 

In a different study conducted at pilot scale (working volume of 53 m3 day-1) in a 319 

Korean municipal wastewater treatment plant, a 200-L EC reactor with Al cylindrical 320 

electrodes placed concentrically with a gap of 2.25 cm was operated at 10 V and a 321 

hydraulic retention time of 2 min (Nguyen et al., 2014). The treatment system was capable 322 

of removing total phosphorus (mainly PO4
3-) by 97.21-100% and COD by 95.38%, while 323 

NH4
+ was totally removed. Moreover, TSS were reduced to less than 5 mg L-1 and 324 

coliform bacteria to 30 MPN mL-1.  325 

In conclusion of this section, we would like to highlight that works dealing with 326 

electrochemical processes as individual systems are mostly focused on the removal of 327 

organic contaminants and they do not usually address the fate of inorganic species, 328 

including supporting electrolytes and other ionic compounds formed during treatment. 329 

Scale up and system integration: state of the art and perspectives 330 

Much of the vast experimental work reported with respect to EAOPs has been conducted 331 

at laboratory scale with volumes lower than 1 L. Great progress has been made in the 332 

optimization of such processes in these conditions, improving the electrode materials as 333 

well as the operational parameters (applied current density, flow rates, electrolysis time, 334 
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etc.). In this final section, we wish to bring attention to the recent efforts in bringing these 335 

technologies to practical wastewater treatment applications, an indication of the new state 336 

of maturity that they have reached in the recent years. The approach is two folds: (i) need 337 

for scale-up through a combined modeling and experimental approach and; (ii) system 338 

integration with traditional treatments, as part of an overall wastewater treatment system. 339 

In the previous section, we have reported a methodology to select an overall strategy for 340 

electrochemical treatment, in relation with the characteristics of the wastewater to be 341 

treated (Figure 2). Therefore, the engineering parameters of the reactor must be tailored 342 

according to the type of EAOP and the effluent. Additionally, there are certain general 343 

considerations to take into account when scaling up an electrochemical process. In this 344 

section, the parameters of utmost importance for scaling up an electrochemical reactor 345 

are addressed in a general form. In order to assess the feasibility of the wastewater 346 

treatment process, the first step always consists of a laboratory test, followed by pilot 347 

scale runs and ending with an industrial or commercial application. Usually, modular 348 

reactors composed of several electrode pairs are the most common approaches in 349 

electrochemical industrial processes. Therefore, the most critical stage is the transition 350 

from laboratory to pilot scale, where one or two pairs of electrodes, can be used as cell 351 

stack in the pilot plant. This allows estimating the efficiency as well as the number of cell 352 

stack modules needed for commercial applications.   353 

Modeling of EAOPs 354 

Modeling is a powerful tool for scaling up electrochemical processes. Modeling relies on 355 

mathematic equations, in order to predict parameters, such as the chemical oxygen 356 

demand (COD) evolution, mass-transport coefficients, intermediate profile 357 

concentrations, etc. under an extensive number of operating conditions. Modeling is 358 

useful to reduce test trials and operating costs; moreover, the use of computational fluid 359 
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dynamics (CFD) has been very helpful to study the hydrodynamic behavior of 360 

electrochemical reactors, which allows improving their design. In spite of the wide range 361 

of modeling classification, most of the reviewed models presented next, are semi-362 

empirical models, meaning they are located in between the phenomenological and 363 

mechanistic models (Zhen et al., 2014). Since every electrochemical treatment process is 364 

unique, different approaches have been made in an effort to have a better understanding 365 

of each specific process. 366 

Anodic oxidation modeling 367 

Comninellis and collaborators were the pioneers in the development of mathematical 368 

models for AO (Gherardini et al., 2001; Panizza et al., 2001; Rodrigo et al., 2001; Simond 369 

et al., 1997). Their model, based on the relation between the limiting current (jlim) and 370 

COD (Eq. 1), considers that the degradation of the pollutant is carried out only at the 371 

anode surface. 372 

jlim(t)=nFkmCOD(t)   (1) 373 

where jlim(t) refers to the limiting current density (A m-2) at time t , F is the 374 

Faraday’s constant (C mol-1), n is the number of exchanged electrons, km states for the 375 

mass transfer coefficient (m s-1) in the electrochemical cell and COD is the chemical 376 

oxygen demand of the electrolyte at time t. 377 

This model considers two possible working regimens: i) when the applied current 378 

density (jappl) is below the limiting current density, the system is under current control 379 

and; ii) on the contrary, when the applied current density exceeds the limiting current 380 

density, the system becomes controlled by mass transfers. COD evolution can then be 381 

described by Eqs 2 and 3, respectively. 382 

COD(t) = COD0 ቀ1-
∝Akm

VR
tቁ   (2) 383 
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COD(t) = ∝COD0exp ቀ-
Akm

VR
t+

1-∝

∝
ቁ   (3) 384 

Where COD0 is the initial COD (mol O2 m-3), α is the ratio of applied current 385 

density and the initial limiting current density (jappl/𝑗௟௜௠
଴ ), A corresponds to the electrode 386 

area (m2) and VR the reactor volume (m3).  387 

Although, this model has been applied successfully in many studies (Aquino et 388 

al., 2014; Barbosa et al., 2016; Steter et al., 2014) and can satisfactorily predict the 389 

experimental data, its application is limited to direct oxidation processes at the electrode. 390 

Other approaches of mathematic models for anodic oxidation include that of Cañizares et 391 

al. (Cañizares et al., 2004), Mascia et al. (Mascia et al., 2010) and Lan et al. (Lan et al., 392 

2018), among others. One of the most interesting studies with respect to this review 393 

consists of the works by Anglada et al (Anglada et al., 2009; Anglada et al., 2011; 394 

Anglada, Urtiaga, et al., 2010), dealing with modeling of real highly concentrated 395 

wastewater in pilot-scale reactors. They have demonstrated that the rate of COD removal 396 

is directly proportional to the ratio of the anode area over treated wastewater volume. In 397 

this way, they used kinetic modeling for COD elimination to calculate the required total 398 

anode area for scale up (Anglada, Urtiaga, et al., 2010).  399 

Electro-Fenton modeling 400 

Unlike AO, which mostly takes place at the anode surface, EF modeling is more complex 401 

because it involves a series of reactions that take place concomitantly at the cathode 402 

surface and in the bulk solution. The main reactions include the generation of H2O2 403 

through the reduction of oxygen via 2e‾ (Eq. 4), the •OH radical generation (Eq. 5) and 404 

the organics degradation (Eq. 6). Furthermore, there are several side reactions that coexist 405 

with the main process, e.g. Eqs 7-10, among others. 406 

𝑂ଶ + 2𝐻ା + 2𝑒
௞ଵ
ሱሮ 𝐻ଶ𝑂ଶ   (4) 407 
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𝐹𝑒ଶା + 𝐻ଶ𝑂ଶ

௞ଶ
ሱሮ 𝐹𝑒ଷା + 𝑂𝐻• + 𝐻𝑂ି  (5) 408 

𝑂𝐻• + 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 
௞ଷ
ሱሮ  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠   (6) 409 

𝐹𝑒ଶା + 𝑂𝐻
௞ସ
ሱሮ 𝐹𝑒ଷା + 𝐻𝑂ି•    (7) 410 

𝐹𝑒ଷା + 𝐻ଶ𝑂ଶ

௞ହ
ሱሮ 𝐹𝑒ଶା + 𝐻𝑂ଶ

• + 𝐻ା  (8) 411 

𝐻ଶ𝑂ଶ + 𝑜𝑟𝑔𝑎𝑛𝑖𝑐
௞଺
ሱሮ  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠   (9) 412 

𝑂𝐻+𝐻ଶ𝑂ଶ

௞଻
ሱሮ• 𝐻𝑂ଶ

• + 𝐻ଶ𝑂   (10) 413 

In spite of the complexity to predict organic pollutant abatement by EF, Liu et 414 

al. (Liu et al., 2007) presented the first kinetic model using phenol as model organic 415 

pollutant. Their model used the rate constants presented in Eqs 4 to 10 and is based on 416 

the assumption that the organic substance (S) is mainly degraded by •OH radicals, with 417 

a reaction rate described by Eq. 11. 418 

−
ௗ(ௌ)

ௗ௧
= 𝑘ଷ[ 𝑂𝐻• ][𝑆]   (11) 419 

Using Eq. 11 as starting point, they presented a pair of equations to describe 420 

H2O2 accumulation (Eq. 12) and the organic substance degradation (Eq. 13), deduction 421 

described elsewhere (Liu et al., 2007)). 422 

[𝐻ଶ𝑂ଶ] =  𝑗௔௣௣௟
௞భ௄ೌ೏[ைమ]

௞మఒ[ி௘మశ]బ(ଵା௄ೌ೏[ைమ])
ቀ1 − 𝑒ି௞మఒൣி௘మశ൧

బ
௧ቁ   (12) 423 

Where jappl is the applied current density, Kad corresponds to the adsorption 424 

equilibrium constant of dissolved oxygen on the cathode surface and 𝜆 is a fixed ratio of 425 

[𝐹𝑒ଶା]଴/[𝐹𝑒ଶା]. 426 

𝐿𝑛
[ௌబ]

[ௌ]
+ 𝑎([𝑆଴] − [𝑆]) = 𝑏 ቀ𝑡 −

ଵି௘ష೎೟

௖
ቁ   (13) 427 

Where 𝑎 =  𝑘ଷ/𝑘ସ𝜆[𝐹𝑒ଶା]଴,  𝑏 =  𝑗௔௣௣௟𝑘ଵ𝑘ଷ𝐾௔ௗ[𝑂ଶ]/𝑘ସ𝜆[𝐹𝑒ଶା]଴(1 +428 

𝐾௔ௗ[𝑂ଶ]) and 𝑐 =  𝑘ଶ𝜆[𝐹𝑒ଶା]଴. 429 
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The validation of this model was carried out through the variation of three 430 

parameters: initial concentration of iron [Fe2+]0, dissolved oxygen concentration [O2] and 431 

applied current density (jappl). The model demonstrated a good fitting with experimental 432 

data, which indicates its suitability to describe the kinetics of EF reaction, not only 433 

mathematically but chemically too. 434 

Despite the good first approach of Liu’s model for EF, it does not provide detailed 435 

information about byproduct evolution during the degradation process, which is of 436 

paramount importance when those intermediates are more toxic than the original 437 

pollutant. To overcome this drawback, Mousset et al. (Emmanuel Mousset et al., 2016) 438 

developed a more comprehensive model, using MATLAB® to perform the simulations. 439 

This model considered five representative steps: (i) in situ electrogeneration of H2O2; (ii) 440 

Fenton’s reaction in bulk solution; (iii) ferrous ion electroregeneration; (iv) scavenging 441 

reactions and; (v) degradation and mineralization of phenol. All these parameters had an 442 

impact on the kinetics of the process; however, step four, corresponding to the scavenging 443 

reaction between Fe2+ and •OH (Eq. 7), was the most important, followed by step 1 (Eq. 444 

4), characteristic of this electrochemical process. It is worth highlighting that this model 445 

was able to predict the profile concentrations of ten compounds and was well 446 

corroborated by experimental data.  447 

Recently, Mousset et al. (Mousset et al., 2019) proved for the first time through a 448 

mathematical model, that COD concentration has a direct impact on the predominant 449 

oxidation process in an electrochemical reactor combining EF and AO, showing that low 450 

COD concentrations lead to a process controlled by mass transfer where EF has the 451 

highest contribution, while AO shows reduced efficiency under these conditions. In 452 

contrast, the treatment of an effluent with a high initial COD load will initially be 453 

dominated by AO before reaching a point where EF then controls the overall process. 454 
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Mousset et al. (Mousset et al., 2019) proposed a mathematical equation for a global 455 

instantaneous current efficiency (ICEglobal) in a reactor combining EF and AO-BDD, 456 

taking into consideration the electro-oxidation at the surface of the anode, the EF process 457 

at the cathode and the indirect mediated oxidation (MO) caused by reactions at the anode 458 

(Eq. 14). 459 

𝐼𝐶𝐸௚௟௢௕௔௟ =
ସி௏

ூ
∗

ௗ[஼ை஽]

ௗ௧
=  𝐼𝐶𝐸௔௡௢ௗ௘ +  𝐼𝐶𝐸௖௔௧௛௢ௗ௘ + 𝐼𝐶𝐸ெை    (14) 460 

Where F is the Faraday’s constant, V the volume of the treated solution and I 461 

corresponds to the applied current.  462 

In this way, their research highlighted the importance of the reactor design to favor 463 

either one or the other electrochemical process depending on the initial organic load of 464 

the wastewater. Besides the presented approaches, other research groups have also tried 465 

to optimize the EF process through the use of modeling (Alvarez-Gallegos & Silva-466 

Martínez, 2018; Khataee et al., 2014; Qiu et al., 2015). However, to our best knowledge, 467 

none of these models is yet validated at large scale. 468 

Electrocoagulation modeling 469 

One of the first proposed models for EC was done by Mameri et al. (Mameri et al., 1998), 470 

who carried out the defluorination of water using bipolar Al electrodes and found a 471 

relation between the electrode area divided by the working volume (A V-1) and the 472 

treatment time. Furthermore, they evidenced the existence of an optimal current density 473 

for a fixed A V-1 relation. Through the use of an equation based on the Faraday’s relation 474 

(Eq. 15), they predicted the necessary treatment time (t), well corroborated by 475 

experimental data. 476 

𝑡 =
௠௡ி

ெಲ೗஺బே
   (15) 477 
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Where m is the theoretical Al mass needed for the elimination of the fluoride ions 478 

(kg), n the Al valence, F corresponds to the Faraday’s constant (C mol-1), MAl corresponds 479 

to the mass of Al (kg), A0 is the electrode area (m2) and N the cells number.  480 

Another approach of EC modeling is through the adsorption phenomenon, where 481 

the electrogenerated metallic hydroxides are considered to be the adsorbent. In this sense, 482 

Carmona et al. (Carmona et al., 2006) showed that the experimental data for the 483 

abatement of oil from water using Al electrodes fitted well a Langmuir-type empirical 484 

equation, describing the efficiency of the treatment based on the applied current density 485 

and pollutant concentration. 486 

Another interesting model that takes into account mass transfers during 487 

electrolysis was proposed by Lu et al. (Lu et al., 2017). They found that the 488 

electrochemical cell experienced different compound concentrations along the electrode 489 

gap, forming three regions: i) an acid front (dominated by H+); ii) a base front (dominated 490 

by HO-) and; iii) a buffering area where amorphous Al(OH)3(S) is formed. 491 

There is a considerable amount of proposed EC models in the literature (Cañizares 492 

et al., 2008; Graça et al., 2019; Safonyk & Prysiazhniuk, 2019; Xiang et al., 2018; Yehya 493 

et al., 2014), with different approaches depending upon the several mechanisms that can 494 

take place in complex processes, including electrochemical phenomena (e.g. charge 495 

transport, electrodes interface, electrochemical kinetics, etc.), adsorption, flocculation, 496 

flotation, settling and complexation (Hakizimana et al., 2017). These mechanisms depend 497 

mainly upon the electrodes material and effluent characteristics. Although Fe and Al 498 

represent the gold-standard electrodes for EC, the vast variety of industrial effluents has 499 

prevented a general systematic approach so far. This emphasizes the need to find out the 500 

most accurate mechanisms, according to the type of wastewater in order to achieve a 501 

model with good predictive value.  502 
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Computational fluid dynamics in electrochemical reactors 503 

In the recent years, the use of CFD to study electrochemical reactors has gained 504 

popularity. The development of softwares such as ANSYS Fluent®, COMSOL 505 

Multiphysics®, OpenFOAM®, among others, has allowed a better understanding of the 506 

hydrodynamics of the system, allowing the prediction of flow patterns, velocity profiles, 507 

concentration profiles, reaction rate distribution at the electrodes, etc. Besides the 508 

acquisition of numerical data, the visual representation of a wide variety of parameters 509 

facilitates the understanding of the system. In the last decade, different research groups 510 

have made use of this type of software to improve and understand systems such as AO, 511 

EC and EF, for example, Figure 3a shows the mixing comparison of a vertical-flow 512 

tubular and a concentric tubular electrochemical reactors, as can be seen the turbulent 513 

intensity of wastewater was  higher around the electrodes in the former reactor, which 514 

translates as a better mass transfer of the active substances towards the electrodes surface 515 

(Wang et al., 2015), Figure 3b illustrates the current distribution in the electrodes of an 516 

EC reactor (Villalobos-Lara et al., 2020) and Figure 3c shows the generation of Fe2+ that 517 

takes place in the cathode due to the reduction of Fe3+ after different time intervals during 518 

the EF process (Reza et al., 2015). 519 

CFD is helpful in improving the reactor design by predicting the efficiency of the 520 

process. For example, Martínez-Delgadillo et al. (Martínez-Delgadillo et al., 2010) 521 

showed the importance of the electrochemical reactor inlet and how it affects the 522 

performance of Cr(VI) removal. In this way, the estimation of the fluid behavior can be 523 

done beforehand to correct and evaluate the reactor operation. Another remarkable study 524 

was conducted by Choudhary et al. (Choudhary & Mathur, 2017), using a rotating 3D 525 

anode in an EC reactor. They showed the effect of rotation speed on mass transfers and 526 

also evidenced the influence of the hydrodynamic regime on the efficiency of the process. 527 
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In this way, they were able to calculate the optimal flow rate and rotation speed using 528 

CFD simulation.  529 

As seen above, modeling through mathematical equations and CFD are important 530 

tools that can improve our understanding of electrochemical wastewater treatment 531 

processes. The integration of both, which is rarely seen, would considerably facilitate the 532 

scale-up process of electrochemical reactors for wastewater treatment. 533 

Reactor design and scale up studies 534 

Typical electrochemical cell designs include 2D and/or 3D electrodes. Within 2D 535 

electrodes, the most common geometry consists of planar electrodes usually in the form 536 

of parallel plates or concentric cylinders. On the other hand, 3D electrodes comprise 537 

porous materials and fluidized bed systems, having the advantage of a high electrode area 538 

x volume-1 ratio. Meanwhile, 2D materials have the benefit of a more homogeneous 539 

electrode potential, which is reflected in a good reaction rate distribution over the 540 

electrode surface, making them the most popular choice for large-scale reactor design. 541 

The design of the reactor usually includes two types of electrode arrangement, 542 

monopolar and bipolar. Monopolar refers to a situation where the electrodes are polarized 543 

either negatively or positively, usually accomplished by connecting all of them to the 544 

negative or positive terminal of a power supply. On the other hand, a bipolar arrangement 545 

comprises electrodes without any electrical connection placed in between monopolar 546 

electrodes, where each face of these bipolar electrodes will have the opposite charge of 547 

the parallel electrode besides it. In this way they may adopt a negative and positive charge 548 

at the same time. Despite being a common studied parameter especially in EC processes, 549 

there is always the need of evaluating the electrode arrangement for each particular 550 

system, since there is not a unique criterion that can be applied in general. In one hand, 551 

there are studies concluding that a bipolar system has a better efficiency, e.g. during the 552 
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degradation of alizarin blue black B, a bipolar AO system was 1.2 fold more efficient 553 

than a monopolar AO system, furthermore, the former one didn’t accumulate large 554 

amounts of intermediates unlike the monopolar system (Abdessamad et al., 2013), a 555 

higher efficiency with a bipolar configuration was also observed by (Thiam et al., 2014) 556 

during EC process and was attributed to a higher consumption of the electrode which 557 

resulted in a greater coagulation ability and faster pollutant removal. In the other hand, 558 

(Nidheesh et al., 2020) found that a monopolar connection was more efficient for the 559 

removal of COD and color from wastewater, being able to remove up to 55% and  56%, 560 

respectively, whereas a bipolar configuration removed 43% of COD and 48% of color. 561 

Moreover, (Kahraman & Şimşek, 2020) despite finding a slightly more efficient pollutant 562 

removal with a bipolar EC system, the higher cost due to the potential increase (up to 18.3 563 

V) made the mopolar system more feasible where the potential was less than 5V. The 564 

increase in potential with a bipolar configuration, could explain why in EF processes is 565 

preferred a monopolar configuration (Sultana et al., 2018) since high potentials would 566 

lead to parasitic reactions such as H2 evolution and O2 reduction via 4 electrons.  567 

Despite the great advances in the understanding of EAOPs, there is a lack of 568 

systematic approach to carry out the reactor design, which is reflected in their great 569 

variety; however, many studies agree that the mass transfer and the area of the electrode 570 

per unit of volume should be as high as possible, resulting in a compact reactor. Over the 571 

past decades a wide range of reactor designs have thus been developed, including filter 572 

presses (Figure 4a), fluidized beds (Figure 4b), rotating electrodes (Figure 4c) and fixed 573 

beds (Figure 4d). Such designs can be used for any of the processes mentioned earlier. 574 

The main differences between reactors for AO, EF or EC lie in the electrode materials 575 

and in the operating conditions, with minor modifications to the reactor design. 576 
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Most EAOP studies have been performed in electrochemical cells with volumes 577 

around 100 mL. Even though the number of studies making use of actual industrial waste 578 

streams, usually with high pollutant concentrations, is increasing (Garcia-Segura et al., 579 

2018), there is still a lack of information regarding their treatment in larger volumes. To 580 

the best of our knowledge, the applications of EAOPs for the treatment of highly 581 

concentrated waste streams at volumes above 1 L (and up to 1 m3) are compiled in Table 582 

2. When the scale up process is carried out, many factors need to be considered for the 583 

design of such reactors, including the final effluent target quality, treatment capacity and 584 

time. However, as mentioned by Anglada et al. (Anglada, Urtiaga, et al., 2010), the A V-585 

1 ratio also needs to be taken into account and thus this ratio is also presented in Table 2.  586 

From Table 2, the average electrode area needed for the treatment of one cubic 587 

meter of wastewater was 1.9 m2, 6.6 m2 and 9.2 m2 for EF/SPEF (combined or alone), 588 

AO and EC, respectively. It thus appears that processes involving the Fenton’s reagent 589 

need a lower electrode area; however, most of the effluents tested were less concentrated, 590 

which has consequences in terms of a higher energy consumption per mass unit of 591 

pollutant. On the other hand, EC requires a higher electrode area and the electrodes 592 

lifespan is shorter than for the other 2 processes. Finally, AO appears to be a versatile 593 

process, with electrode area as low as 0.71 m2 per m3 of treated wastewater; however, the 594 

cost of the electrodes is the highest among the three families of electrochemical processes. 595 

Although the number of wastewater treatment electrochemical studies at pilot or 596 

industrial scale is increasing, there is still a critical need for real field and long-term 597 

studies, where the constraints related to their operation and application will be identified 598 

and solved. 599 
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Energy requirements 600 

AO, EC and EF, are mainly driven by electricity, which makes energy consumption the 601 

prime expense for these electrochemical processes. Energy consumption mostly arises 602 

from pumping, aeration and applied current to carry out the electrolysis, all of these 603 

parameters being directly related to the operational costs. Other operational costs, 604 

including electrode replacement, sludge management, chemicals cost, maintenance, 605 

among others, are not covered in this review but can be found elsewhere (Cañizares et 606 

al., 2009; Garcia-Segura et al., 2017; Ibarra-Taquez et al., 2017; Liu et al., 2017; E. 607 

Mousset et al., 2016).  608 

The energy consumption expressed in kWh per kg of pollutant in the above-609 

mentioned studies (Table 2), was evaluated using Eq. 16 (García-Rodríguez et al., 610 

2016). 611 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ 𝑘𝑔ିଵ 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡) =
ா೎೐೗೗ூ௧∗ଵ଴଴଴

௏ೞ∆(௣௢௟௟௨௧௔௡௧)೐ೣ೛ 
   (16) 612 

Where Ecell is the average potential difference (V) of the electrochemical reactor, 613 

I corresponds to the applied current (A), t is the time of electrolysis (h), Vs is the treated 614 

volume (L), ∆(𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡)௘௫௣ corresponds to the pollutant decay (mg L-1), and a 615 

conversion factor of 1000 Wh mg-1 = 1 kWh kg-1 is applied. 616 

From Table 2, it can be seen that in most cases, the energy consumption is 617 

inversely proportional to the concentration of contaminants. One of the main explanations 618 

could be the better mass transfer towards the electrodes, as evidenced in other studies 619 

(Garcia-Rodriguez et al., 2018). This is important, because the volumes generated for 620 

highly polluted wastewater are typically smaller than for wastewater with low 621 

concentrations, where dilution creates larger amounts of wastewater. This would render 622 

the treatment of highly concentrated wastewater typically more cost-effective. 623 
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Integration of electrochemical methods in multi-stage sequential strategies 624 

Due to the complex composition of real and highly contaminated waste streams, the 625 

application of a single universal treatment method is generally not feasible. In most cases, 626 

proper treatment can only be achieved through a series of sequential steps, depending 627 

upon the treatment strategy, the type of contaminants and the final water quality objective 628 

(Figure 2). When combining different treatment methods in a sequential integrated 629 

process, the main advantages of the individual processes can be refined under optimal 630 

conditions, while the other processes forming part of the overall treatment train can 631 

overcome the individual drawbacks inherent to each method. In this scenario, the 632 

integration of electrochemical technologies with other methods shows potential to 633 

become an excellent solution for the treatment of numerous waste streams with different 634 

characteristics. Coupled systems are designed not only to attain the treatment objectives, 635 

but also to reduce the treatment costs, through the conception of a technologically and 636 

economically feasible strategy. From this perspective, it is clear that when 637 

conceptualizing coupled systems, conventional methods will always be the first option to 638 

combine with advanced technologies. The outstanding oxidizing capabilities of EAOPs 639 

can then be exploited for example to degrade refractory and toxic organics that resist 640 

biological degradation or to prevent membrane fouling (Ganiyu et al., 2015; Ganzenko et 641 

al., 2014). Table 3 compiles a number of studies dealing with the coupling of 642 

electrochemical technologies with biological processes, membrane technology, other 643 

AOPs and flocculation/coagulation, among others. 644 

The combination of electrochemical technologies with biological methods is 645 

especially promising because biological methods are by far the most utilized form of 646 

wastewater treatment at the industrial scale, due to their economic and technological 647 

assets. However, when refractory effluents cannot be treated by microbiological attack, 648 

the use of highly oxidative technologies becomes one the most convenient options (Oller 649 
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et al., 2011). EAOPs can turn refractory organics into biodegradable compounds over 650 

short treatment times, that can then be more easily handled biologically, while reduced 651 

electrochemical treatment times represent significant savings. The opposite treatment 652 

strategy can also be applied, where the biodegradable fraction of the effluent can first be 653 

treated by biological means, while the remaining refractory pollutants can be degraded 654 

by EAOPs as a subsequent step, as long as the refractory compounds are not toxic to the 655 

biomass. This option can also be advantageous when the effluent displays high initial 656 

organic load (Kishimoto et al., 2017).  Recent reviews on this topic with more detailed 657 

information can be found in the literature (Ganzenko et al., 2014; Olvera-Vargas et al., 658 

2017).  659 

Membrane technology has also become a prime actor of the wastewater industry. 660 

However, membrane fouling caused by chemical agents is a major drawback of 661 

membranes, alongside the need to dispose the concentrated brine rejects. In this respect, 662 

the integration of membranes with electrochemical processes is very promising, where 663 

chemicals responsible for fouling can be first degraded by EAOPs prior to membrane 664 

filtration or EAOPs can be applied as a post-treatment for the concentrates. A third 665 

alternative that has been explored is the use of electrocatalytic membranes that function 666 

as both separation and oxidation units with self-fouling control properties; yet, these 667 

systems are still in the early stages of development (Yang et al., 2012). More extensive 668 

information with regard to membrane/EAOP systems can be found in a review paper by 669 

Ganiyu et al. (Ganiyu et al., 2015). Some relevant sequential strategies that have been 670 

used in the treatment of highly loaded hard-to-treat waste streams are described below. 671 

The acidic and alkaline effluents from a cellulose bleaching industry (details of 672 

the sample composition can be found in Table 3) were treated by a sequential filtration-673 

AO process (Salazar et al., 2015). The AO reactor consisted of an undivided cylindrical 674 
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glass cell with either DSA-RuO2 or BDD anodes and a carbon-PTFE GDE fed with 675 

compressed air at 1 L min-1. Filtration units made use of flat ultrafiltration, NF and RO 676 

membranes at 20 ˚C. AO without previous filtration (BDD anode, 12 V of potential, 800 677 

rpm of stirring and 25 ˚C) only removed 65% of the initial TOC of the alkaline effluent, 678 

while NF removed TOC up to 72%. Yet, when combined, NF followed by AO resulted 679 

in an overall 96% of TOC removal in the alkaline effluent, following 9 h of AO treatment 680 

of the NF permeate. In this work, the suspended solids were first removed by 681 

microfiltration.  682 

Anaerobically-digested food processing wastewater with high concentration of 683 

organic matter and NH4
+ (COD = 3200-3400 mg L-1, NH4

+ = 3352-3790 mg L-1 and TSS 684 

= 15580 mg L-1) was treated by a sequential system consisting of electrochemical 685 

peroxidation, (ECP, consisting of EC with iron anodes and external addition of H2O2), 686 

followed by AO (Shin et al., 2017). ECP was conducted in a 1-L undivided reactor with 687 

2 pairs of SS electrodes positioned in parallel. The AO reactor also consisted of an 688 

undivided cell with a capacity of 0.3 L, a DSA and a SS cathode. Under optimal 689 

conditions, the integrated ECP-AO process achieved over 90% of TOC removal and 690 

almost complete NH4
+ removal, following 150 min of ECP (pH 3, 28.5 mA cm-2, H2O2 691 

feeding at 1.67 mmol min-1 and 1 M NaCl as supporting electrolyte) and 150 min of AO 692 

(pH 5, and 200 mA cm-2). During the ECP step more than 80% of the TOC was removed, 693 

while NH4
+ was reduced by less than 25%. ECP benefits from a highly oxidative 694 

environment, where the addition of H2O2 and the dissolution of the iron anode promote 695 

the production of •OH through the Fenton’s reaction. The remaining TOC and NH4
+ after 696 

ECP were removed by AO, mainly by intermediacy of chlorine species generated in the 697 

bulk solution. Before treatment, the wastewater sample was centrifuged at 3000 rpm for 698 

20 min to remove the solids.  699 



 
30

Anaerobically digested sludge generated in a poultry farm (COD = 26,200 mg L-700 

1, TOC = 5,235 mg L-1 and TSS = 31,300 mg L-1) was successfully treated by means of 701 

an integrated process consisting of ECP with Fe electrodes followed by EF with a carbon 702 

brush cathode and a BDD anode (Olvera-Vargas et al., 2019). The synergistic effects of 703 

electrocoagulation and advanced oxidation during ECP (initial pH of 5, [H2O2]/[Fe2+] 704 

ratio of 5, 15.38 mA cm-2 and 2 h of treatment) achieved 89.3% and 85.6% of COD and 705 

TSS removal, respectively, increasing sludge dewaterability and reducing the amount of 706 

disposable solid sludge in the process. The wastewater treated by ECP was then subjected 707 

to further EF treatment, once the solid sludge was removed from the effluent (such residue 708 

was free of coliforms and rich in nutrients with fertilizing potential). EF achieved almost 709 

total mineralization of the remaining organic matter under optimal conditions (pH 3 and 710 

25 mA cm-2), leaving only 24.6 mg L-1 and 16.3 mg L-1 of COD and TOC, respectively, 711 

after 8 h of treatment. This two-step electrochemical process proved to be a powerful 712 

strategy to deal with highly polluted and viscous sludge.  713 

In another sequential treatment, (diluted) pharmaceutical wastewater was pre-714 

treated by EF followed by activated sludge (AS) (Mansour et al., 2015). The AS treatment 715 

was conducted in 500-mL reactors containing 200 mL of the effluent and 1 g L-1 of 716 

biomass from a municipal wastewater treatment plant, at neutral pH and with different 717 

organic nutrients. For EF, 1-L samples were treated in an undivided electrolytic cell 718 

containing a Pt anode and a carbon-felt cathode under constant aeration and stirring. The 719 

optimal conditions determined for EF were 0.69 mM of Fe2+, 466 mA of current and pH 720 

3. Following 180 and 300 min of EF treatment, the BOD5/COD ratio (biodegradability 721 

index) increased from 0.40 to 0.45 and 0.47, respectively, while the TOC was only 722 

reduced by 14 and 18%, respectively. After 15 days of AS treatment, the overall TOC 723 

removal was 80% and 89% for following 180 min and 300 min of electrolysis, 724 
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respectively. These results demonstrate the potential of EF as pre-treatment to increase 725 

the biodegradability of refractory waste streams, a strategy that deserves more exploration 726 

(Olvera-Vargas et al., 2017).  727 

A large-scale sequential system including several steps was reported by Moreira 728 

et al. (Moreira, Soler, et al., 2015), in which the remediation of sanitary landfill leachate 729 

was conducted by a sequence of AS, coagulation and PEF/SPED. In this case, the aim of 730 

the electrochemical treatment was to increase the biodegradability of the pre-treated 731 

effluent as a conditioning step prior to biological polishing. The AS process was 732 

performed in a 12-L bioreactor with a conical bottom where 8 L of landfill leachate were 733 

treated using AS from a municipal WWTP. The pH was maintained between 6.5 and 9. 734 

After sedimentation, the supernatant was transferred to a coagulation tank where FeCl3 735 

was added at pH 3 and stirred for 15 min. 48 h of sedimentation were required, after 736 

which the effluent was sent to the electrochemical treatment. The 35-L electrochemical 737 

flow-through system comprised an electrochemical filter-press cell with a BDD anode 738 

and a carbon-PTFE GDE cathode, a 20-L recirculation tank and a photoreactor. The AS 739 

treatment achieved 13-33% of DOC removal, as well as total oxidation of NH4
+ and 740 

complete alkalinity removal. With the coagulation process, 63% of DOC abatement was 741 

attained. During the SPEF process, 53% of the remaining DOC was removed at a current 742 

density of 200 mA cm-2, 60 mg L-1 of Fe2+, pH of 2.8 and 20 ˚C (after SPEF, the effluent 743 

was neutralized to pH 7.5 and submitted to 3 h of clarification to remove the remaining 744 

sludge). Overall, 87% of DOC removal was achieved at the end of the multi-stage 745 

treatment. The resulting COD, BOD5 and total nitrogen values were still above the 746 

Portuguese and European regulations for discharge. However, Zhan-Wellens 747 

biodegradability tests indicated that the sample was suitable for further biological 748 

treatment to comply with the discharge limits.  749 
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In summary, electrochemical technologies have demonstrated their extraordinary 750 

capacity to treat a great diversity of waste streams containing high loads of organic 751 

pollutants and other types of chemicals. Their outstanding oxidative power has made 752 

them top choices to integrate as part of sequential treatment systems. Such systems are 753 

undoubtedly the most feasible way to clean wastewater either for discharge or for reuse. 754 

Electrochemical technologies are currently reaching maturity for industrial-scale 755 

applications. The design and construction of electrochemical reactors and pilot plants 756 

(tightly linked to the development of electrode materials) is crucial for the success of 757 

electrochemical processes in the years to come. Besides, fundamental research remains 758 

essential to further position electrochemical methods as a valid technology for treating 759 

highly contaminated waste streams. 760 

 761 

Applications to highly concentrated wastewater: nature, characteristics and 762 

challenges 763 

Many industrial sectors and other human activities result in the production of high 764 

quantities of very highly loaded effluents and waste streams. The type of contamination 765 

may vary but the challenge always lies in the lack of a gold standard for the effective 766 

treatment of such kinds of wastewater. Electrochemistry may occupy a niche there 767 

because a lot of the characteristics of highly concentrated waste streams make them ideal 768 

candidates for electrochemical treatment. For instance, the volumes generated are usually 769 

low, giving an edge to electrochemical approaches, that are generally well adapted to 770 

small decentralized treatment systems. Furthermore, the high concentration of salts and 771 

organics may act like a natural electrolyte and may provide catalysts and reactive species 772 

for electrochemical reactions, thus lowering the treatment costs as compared to the 773 

treatment of diluted effluents. Yet, specific strategies need to be implemented and there 774 
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are in fact very few instances of pilot or full-scale demonstration of electrochemical 775 

treatment for such kind of wastewater.  776 

Highly concentrated solutions need particular attention and their physical and 777 

chemical characteristics determine the type of treatment to be applied, based on pH, 778 

electrical conductivity, chemical oxygen demand (COD), total organic carbon (TOC), 779 

biodegradability – that can be assessed with the biochemical oxygen demand after 5 days 780 

(BOD5) over COD ratio – total inorganic carbon (TIC), total suspended solids (TSS), total 781 

dissolved solids (TDS), main inorganic ions (Cl-, SO4
2-, NH3/NH4

+, NO2
-, NO3

-, PO4
3-) 782 

and heavy metals analyzes. In the last two decades, electrochemical processes have 783 

attracted a lot of interest for their high versatility, i.e. their possibility to treat solutions 784 

containing low or high concentrations of organics and/or inorganics. In this section, five 785 

categories of wastewater are investigated, alongside their properties and influence on the 786 

type of electrochemical processes to be applied, with emphasis on electrochemical 787 

advanced oxidation processes (EAOPs), in combination or not with electrocoagulation 788 

(EC). They consist of (i) high COD effluents of industrial origin; (ii) hypersaline 789 

effluents; (iii) solutions contaminated with a mixture of organic and inorganic 790 

contaminants; (iv) effluents with high rheological complexity and; (v) solutions with high 791 

COD load but low pollutant content. 792 

High COD effluents of industrial origin 793 

Industrial waste streams are often characterized by high COD content and need a specific 794 

treatment. The main industry sectors that have attracted attention due to their recalcitrance 795 

to biological processes comprise textile, petroleum, tannery, chemical, pharmaceutical 796 

and paper mill activities. Electrochemical processes and in particular EAOPs have 797 

attracted a lot of interest due to their strong ability to degrade and mineralize heavily 798 

loaded effluents containing xenobiotic contaminants, such as synthetic dyes, phenolic 799 
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compounds, aliphatic hydrocarbons, aromatic hydrocarbons, pesticides, lignosulfonate 800 

compounds, antibiotics, anti-inflammatory drugs, stimulants, analgesics, etc. (Garcia-801 

Segura et al., 2018). Selected studies are listed in Table 4. All these effluents have in 802 

common a high COD content varying from 1.0 g-O2 L-1 to more than hundreds g-O2 L-1 803 

(Chanworrawoot, 2012; Valero et al., 2014). Electrochemical processes have the 804 

capability to mineralize those effluents until quasi-complete mineralization, especially 805 

with EAOPs (anodic oxidation, AO, with boron-doped diamond anode (BDD) and 806 

electro-Fenton, EF) that make use of very strong oxidizing agents like hydroxyl radicals 807 

(OH). The limiting factor is the time required to reach high levels of organic removal 808 

that can considerably increase the electrical energy consumption. The amount of organic 809 

by-products generated is also substantial due to the high initial quantity of carbon content. 810 

Some of these degradation intermediates can potentially be more toxic than the parent 811 

compounds, so that ecotoxicity studies have to be performed to verify the evolution of 812 

toxicity with electrolysis time (Gargouri et al., 2014). 813 

Hypersaline effluents 814 

Besides industrial wastewater, waste streams containing high amount of salts are typically 815 

found in reverse osmosis (RO) concentrates. These hypersaline brines constitute a major 816 

drawback of such membranes and often cannot be discharged into surface water or by 817 

deep well injection, due to increasingly stringent environmental restrictions (Van Hege 818 

et al., 2002). The advantage of using electrochemical technology is that the high salinity 819 

– with conductivity ranging from 2 to 22 mS cm-1 – ensures great conduction of current, 820 

which reduces the energy requirements (Table 5). In addition, the high chloride ion (Cl-) 821 

content (0.3-1.4 g L-1; Table 5) can generate hypochlorous acid (HClO), which is an 822 

oxidizing agent able to degrade organic compounds (Eqs. 17-18) (Perez-Gonzalez et al., 823 
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2012): 824 

2Cl-  → Cl2 + 2e-       (17) 825 

Cl2 + H2O → HOCl + H+ + Cl-      (18) 826 

It is important to highlight that the formation of halogenated by-products, such as 827 

trihalomethane (THM), could pose a health risk (Hurwitz et al., 2014). Though the initial 828 

COD of RO concentrate is quite low (14-190 mg-O2 L-1, Table 5), organic intermediates 829 

are still formed (Lütke Eversloh et al., 2014). Because maintaining a short electrolysis 830 

time is usually preferred for minimizing electrical energy consumption, close monitoring 831 

of those potentially toxic by-products and their level of ecotoxicity is advised. 832 

Solutions contaminated with a mixture of organic and inorganic contaminants 833 

The treatment of mixtures of inorganic and organic compounds represents another 834 

technical issue. Landfilling is the most important solid waste management solution 835 

performed worldwide owing to its low-cost and simplicity (Fernandes et al., 2015; 836 

Mandal et al., 2017). Leachate collection systems are conventionally implemented and 837 

the characteristics of these leachates depend upon the hydrogeology, the age of the 838 

landfill, the composition and moisture content of the waste, as well as seasonal variations 839 

(Mandal et al., 2017). The great challenge of landfill leachates lies in their varying 840 

composition, high concentration and their toxicity. Several studies proposed to deal with 841 

raw landfill leachate using electrochemical technologies, as reviewed by Mandal et al. 842 

(2017), an up-to-date selection of which is given in Table 6. The amount of carbon content 843 

is usually very high, with COD varying from 1 to 50 g-O2 L-1, generally basic pH (8-9) 844 

and high concentrations of inorganic ions, such as Cl- (1.5 – 6 g L-1), SO4
2- (0.1-1.8 g L-845 

1) and NH3 (0.4-3.2 g L-1). Such complex solutions are non-biodegradable (BOD5/COD 846 

< 0.2), which restricts the secondary treatment possibilities. The advantage of electro-847 

oxidation is that the initial presence of chloride ions leads to the formation of active 848 
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chlorine species, such as HClO, as described earlier (Eqs. 1-2) (Cossu et al., 1998). This 849 

oxidizing agent participates in the degradation and mineralization of organic compounds; 850 

however, some organo-halogenated transformation byproducts can also be generated. 851 

These compounds are known to be potentially toxic and therefore deserve particular 852 

attention. The initial presence of ammonia at high level could also constitute a drawback, 853 

since this species can be oxidized to nitrate (NO3
-), an unwanted final product at 854 

concentrations higher than the disposal regulations (Anglada, Urtiaga, et al., 2010). The 855 

formation of this ion must therefore be carefully monitored. In order to have an overall 856 

approach for a cost-effective complete removal of organic and inorganic species, 857 

combination with separation processes (e.g., nanofiltration, reverse osmosis, etc) (Cui et 858 

al., 2018; El Kateb et al., 2019; Fernandes et al., 2019; Ukundimana et al., 2018) and/or 859 

biological technologies (Anglada, Urtiaga, et al., 2010; Baiju et al., 2018; Ding et al., 860 

2018; El Kateb et al., 2019; Moreira, Soler, et al., 2015; Turro et al., 2012; Zhao et al., 861 

2010) has been suggested in previous studies. The advantages of such combined 862 

approaches will be reviewed in a dedicated section towards the end of this review. 863 

Another challenging source of mixed contamination (organic and inorganic) that 864 

represents a major problem in the mining industry is acid mine drainage (AMD), 865 

generated by the oxidation of sulfides during ore processing, leading to sulfuric acid (Eq. 866 

19).  867 

FeS2(s) + 3/2O2(g) + H2O(l)  → Fe2+(aq) + 2H+(aq) + 2SO4
2-(aq) (19) 868 

The chemical composition of AMD depends on the mined rock mass and 869 

hydrogeology; they are typically characterized by acidic pH as low as 2, abundance of 870 

dissolved species, including sulfate, iron and other toxic metals (mainly lead, copper, 871 

cadmium, and arsenic) (Bejan & Bunce, 2015). Sulfate is usually found at high 872 

concentration (in the range of hundreds to thousands of mg L-1) from (di-)sulfide air/water 873 
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oxidation and its water discharge regulation is becoming more stringent (Nariyan et al., 874 

2018). In parallel, ferric hydroxide (Fe(OH)3) precipitation is another environmental 875 

issue. Several studies on the efficiency of electrochemical treatment of AMD as shown 876 

in Table 7. The primary goal of electrochemistry is to increase the pH, as an alternative 877 

to chemical neutralization and precipitation, by reducing H+ into hydrogen gas (H2(g)) at 878 

the cathode, according to Eq. 20: 879 

H+(aq) + e- → ½H2(g)        (20) 880 

For this purpose, the operation in divided cell is favored in order to avoid the 881 

oxidation of Fe2+ into Fe3+ that then precipitates on the electrodes – especially on the 882 

cathode – and subsequently causes electrode fouling (Chartrand & Bunce, 2003). The 883 

assistance of chemical alkalinization using CaO as pre-treatment before the 884 

electrochemical step has also demonstrated synergistic effects (Orescanin & Kollar, 2012; 885 

Radić et al., 2014). Additional benefits can be obtained from such electrochemical 886 

treatment by electrodeposition of metals and by producing a dewaterable sludge for 887 

possible valorization (Bunce et al., 2001). Another interesting feature is the elimination 888 

of inorganics such as sulfate by EC (Mamelkina, Tuunila, et al., 2019; Nariyan et al., 889 

2017). It is finally worthy of note that the initial presence of iron could enhance the 890 

electrochemical process efficiency by involving OH radicals through the Fenton’s 891 

reaction in an EF process. 892 

Effluents with high rheological complexity 893 

Most of the electrochemically treated solutions have a simple rheological nature with 894 

Newtonian behavior, following the common Newton’s law of viscosity. In Newtonian 895 

fluids, the contaminant concentration is easily homogenized in the bulk solution upon 896 

reaching stationary stage with sufficient convection. However, in non-Newtonian liquids, 897 

the pollutants concentration is not homogeneous even with good stirring. Then, the 898 
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challenge is to increase the contact between the electro-generated oxidants and the 899 

contaminants in the electrochemical cell. Sludge from wastewater treatment plant 900 

(WWTP) is an example of non-Newtonian liquid (Ratkovich et al., 2013). The sludge 901 

from WWTP is characterized by a high moisture content, usually higher than 97% 902 

alongside high total solids (TS) content, in the range of 1 g L-1 to several tens of g L-1, 903 

resulting in a solid-liquid mixture (Cai et al., 2019; Chen et al., 2019). WWTPs generate 904 

a lot of sludge from primary treatment and biological processes that then need to be 905 

disposed safely. Land application is one of the most appropriate solution to benefit from 906 

the fertilizers present in the sludge after appropriate pre-treatment. Several publications 907 

proposed to pre-treat the sludge mainly for dewatering purpose by electrochemical 908 

process, a selection of which is presented in Table 8.  909 

The presence in sludge of initial salts such as chloride ions induces several 910 

positive effects on the process efficiency. The electro-oxidation of Cl- at Ti/RuO2 anode 911 

further allows the generation of hypochlorous acid (HClO, Eqs. 1-2) (Bureau et al., 2012; 912 

Song et al., 2010), a powerful oxidizing agent known to inhibit the activity of micro-913 

organisms. HClO could also oxidize the organic compounds presents in the sludge so that 914 

a decrease of COD is observed. Finally, a decrease of phosphate (PO4
3-) initially present 915 

in the sludge was also observed (Bureau et al., 2012), which could be attributed to the 916 

oxidation of ferrous into ferric iron by HClO (Eq. 21) and then Fe3+ reaction with H2PO4
- 917 

formed a FePO4 precipitate (Eq. 22) (Bureau et al., 2012): 918 

2Fe2+ + HClO + H+ → 2Fe3+ + Cl- + H2O   (21) 919 

Fe3+ + H2PO4
-   → FePO4 + 2H+   (22) 920 

In addition, calcium (Ca), potassium (K) and magnesium (Mg) concentrations 921 

increased by 20% to 50%, while total nitrogen content remained stable (Bureau et al., 922 

2012), ensuring that the fertilizing value of the sludge was not compromised. Finally, 923 
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electro-oxidation pre-treatments allowed sludge disinfection, a decrease in organic 924 

carbon content, metal deposition and a raise in nutrient content (Drogui et al., 2013; 925 

Masihi & Gholikandi, 2018; Tuan & Sillanpaa, 2020). The potential problems of 926 

electrode fouling and corrosion as well as biofilm development in long-term use have not 927 

yet been discussed in detail and should be tested in further studies. 928 

High COD load with low pollutant content 929 

The advanced electrochemical treatment of solutions highly loaded with COD but 930 

containing low pollutant content mostly alludes to soil remediation. Organic pollutants 931 

that remain in the soil have different properties regarding their volatility, hydrophobicity, 932 

water solubility and therefore different technologies have been tested, including thermal 933 

treatment, biological processes and physicochemical techniques. Among the latter, soil 934 

washing and soil flushing have emerged as cost-efficient alternatives to thermal processes 935 

that denature the soil and to bioremediation when pollutants are biorefractory.  936 

In soil washing/flushing technologies, extracting agents are added most of the 937 

time in a water solution before washing the excavated soil or flushing the non-excavated 938 

soil in order to solubilize the hydrophobic organic pollutants (Mousset et al., 2013). A 939 

good washing agent is a compound with high extraction efficiency (thus requiring as low 940 

an amount of agents as possible), low ability to adsorb onto soil and low toxicity towards 941 

soil microorganisms. They usually have amphiphilic properties that allow dissolving soil 942 

pollutants into the water solution. There are many kinds of agents that have been tested 943 

in the literature including co-solvents, dissolved organic matter, deoxyribonucleic acids, 944 

vegetable oils, fatty acid methyl esters, cyclodextrins and surfactants (Trellu et al., 2016). 945 

Most of them (except for co-solvents) have a high molecular weight ranging from 250 to 946 

1500 g mol-1. As soil washing/flushing only transfers the pollution from solid to liquid 947 

matrix, there is a need for a post-treatment to remove the contaminants. In the past few 948 



 
40

years, advanced electrochemical treatment has appeared as a promising alternative to 949 

biological post-treatment, since those pollutants are barely biodegradable (Mousset et al., 950 

2017).  951 

Table 9 presents the state of the art of electrochemical treatment of soil 952 

washing/flushing solutions. Generally, it is observed that organic pollutants represent 953 

only 1% to 5% of the total organic carbon fraction, the remaining part consisting mostly 954 

of the extracting agent, while the organic matter content extracted from soil is negligible 955 

(Mousset et al., 2017). Interestingly, using different families of extracting agents has 956 

shown to affect the electrochemical treatment efficiency. Surfactants have a long C-C 957 

bond hydrophobic chain and a hydrophilic head, which allows them to form micelles after 958 

reaching a minimal concentration, known as the critical micelle concentration (CMC, 959 

Figure 5a) (Mousset et al., 2014a). These micelles can then trap the hydrophobic organic 960 

contaminants (HOCs), leading to steric hindrance during the oxidation of the pollutant. 961 

Thus, the surfactants are preferentially degraded as compared to the pollutants. 962 

Alternative agents such as cyclodextrins have also been proposed (Mousset & Oturan, 963 

2014), with a toroidal shape that allows trapping the organics into their hydrophobic 964 

cavity (Figure 5b). The functional groups at the surface of cyclodextrins (carboxylic 965 

groups, hydroxyl groups, etc) allow them to bound to ferrous iron under EF treatment, 966 

with hydroxyl radicals being produced close to the contaminants. The pollutant was 967 

therefore preferentially degraded as compared to the cyclodextrin, thanks to the ternary 968 

complex formation (Fe2+:HPCD:HOC) according to Eqs. 23 and 24: 969 

Fe2+:HPCD:HOC + •OH   Fe2+:HPCD:HOC(OH)• (23) 970 

Fe2+:HPCD:HOC(OH)• + O2   Fe2+:HPCD:HOC(OH)+HO2
•(24) 971 

Interestingly, iron can be present initially in the soil solution at concentrations 972 

high enough to avoid external addition (Mousset et al., 2016). Such treatment even allows 973 
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reusing the cyclodextrins for further soil washing/flushing cycles in order to decrease the 974 

treatment cost. Still, Tween 80 surfactant could extract ten times more pollutants from 975 

soil than cyclodextrin, which counterbalanced the ability of cyclodextrin to be more easily 976 

recycled (Mousset et al., 2017). Even if surfactants are the most important family of 977 

agents employed in soil washing/flushing owing to their cost-effectiveness, it is important 978 

to emphasize that an overview of the complete soil remediation treatment needs to be 979 

obtained before the selection of a suitable extracting agent can be made. Additionally, 980 

treating soil washing/flushing solutions electrochemically leads to high energy 981 

consumption (100-500 kWh m-3) (Mousset et al., 2017) and the faradaic yield, i.e. the 982 

ratio between the electric energy devoted to the target compound and the total electric 983 

energy applied, is in this case an important parameter to optimize when treating such soil 984 

solutions.  985 

 986 

Conclusion 987 

In conclusion, this review has provided an insight into the specificities of highly 988 

concentrated waste streams, why and how electrochemical treatments constitute a 989 

promising option for such effluents. The first section defined the types of wastewater that 990 

display the best potential for electrochemical treatment. Several advantages make them 991 

particularly suitable for electrochemistry and in particular their high salinity, providing a 992 

source of natural electrolyte and favoring the formation of active species with great 993 

decontamination and disinfection potential. Challenges exist in terms of variability, need 994 

for high faradaic yields, and special care to be given to degradation byproducts before 995 

discharge (e.g., organo-halogenated compounds). To face these challenges, we examined 996 

a number of strategies for electrochemical wastewater treatment, with special focus on 997 

AO, EF and EC, alone or in combination with other processes. In particular, for highly 998 
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concentrated wastewater, it may prove more beneficial to apply electrochemistry as a pre- 999 

or post- treatment approach, combined with a more economical conventional biological 1000 

treatment system. Process optimization and cost-efficiency are at the core of a suitable 1001 

treatment strategy; yet, there is a lack of a focused and consistent approach to scale up 1002 

electrochemical reactors. In fact, there are very few pilot studies and therefore, the final 1003 

section of this review emphasized the importance of modeling electrochemical processes, 1004 

as well as the rheological and mass transfer conditions in large scale electrochemical 1005 

reactors. By combining various modeling approaches, electrochemical wastewater 1006 

treatment can be understood in a more systematic manner and adequate reactors can be 1007 

designed. We defined the electrode area over treated volume ratio (A\V) as a key 1008 

parameter, which in turn influences energy consumption. We concluded that in most 1009 

cases, the specific energy consumption is lower when the wastewater contains a high 1010 

concentration of contaminants. At a time that electrochemistry for wastewater treatment 1011 

reaches maturity, highly contaminated waste streams may therefore provide the best niche 1012 

to demonstrate the potential of electrochemical wastewater treatment at large scale.  1013 
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Table 1. Compilation of representative publications on stand-alone electrochemical processes applied to the treatment of highly polluted 

wastewater. 

Wastewater Composition* Process 

Reactor 

capacity 

(L) 

Anode Cathode 
Reactor 

type** 
Efficiency Reference 

Textile 
COD = 470, TSS = 68, 

pH = 8.8, 
AO 0.5 BDD Zr UR 85% TOC removal 

(Tsantaki et 

al., 2012)  

Textile COD = 5957, pH = 7.3 AO 
Bench-

scale 
DSA  SS FTR 

94-99% of color 

removal, COD no 

reported 

(Vaghela et 

al., 2005) 

Textile 

COD = 1224, BOD5 = 

324, pH = 4.8, SO4
2- = 

38, Cl- = 234 

EF 0.5 Pt 
Carbon 

fiber 
UR 75.2% COD removal 

(Wang et al., 

2010) 
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Pharmaceutical 

COD = 12000, TOC = 1 

600, C = 7.00, pH = 7, 

TS = 5000 

AO 0.6 BDD SS FR 
Almost complete 

TOC removal 

(Domínguez et 

al., 2012) 

Municipal and 

textile after 

RO 

COD = 158.08, pH = 

8.21, Cl- = 592.02, ClO3
- 

= 1.17, NH4
+ = 48.24, C 

= 3.99 

AO 1 BDD Ti FR > 80% COD removal 
(Van Hege et 

al., 2002) 

Industrial after 

UF-RO 

(spiked with 

28 

micropollutant

s) 

DOC = 57, C = 4.250, 

pH=7.5, Fe=0.22, SO4
2- = 

242, Cl- = 1500 

AO 10 
Ru0.7Ir0.3

O2 
SS mesh FR 30% DOC removal 

(Radjenovic, 

Bagastyo, et 

al., 2011) 



 
70

Municipal 

sanitary 

landfill 

leachate 

COD = 3385, BOD5 = 

500, C = 22.60, pH = 8.4, 

SO4
2- = 11, Cl- = 2574, 

NH4
+ = 1591, NO3

- = 1.9, 

PO4
3- = 31 

AO 10 BDD BDD FR 

51% COD removal 

and 32% ammonia 

removal 

(Anglada et 

al., 2011) 

Municipal 

sanitary 

landfill 

leachate 

COD = 3782, BOD5 = 

560, pH = 8.4, Cl- = 

3702, NH4
+ = 3143 

AO 0.8 
RuO2-

IrO2 
SS UR 

26.5% COD removal 

and 81.1% NH4
+ 

removal 

(Zhang et al., 

2010) 

Industrial 

landfill 

leachate 

COD = 17100-18400, pH 

= 9, Fe = 20, Cl- = 

52300, NH4
+ = 1200 

AO 1.1 
carbon 

plate 
SS UR 83% DOC removal 

(Nageswara 

Rao et al., 

2009) 

Municipal 

sanitary 

COD = 920-1448, C = 

10.00-10.90, pH = 8.1-

9.4, SO4
2- = 140-199, Cl- 

AO 250 BDD SS Pilot FR  

70% of COD 

removal and 37% of 

NH4
+ 

(Anglada, 

Urtiaga, et al., 

2010) 
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landfill 

leachate 

= 1615-1819, NH4
+ = 

896-980, NO3
-=5-1207 

Municipal 

sanitary 

landfill 

leachate 

NH4
+ = 1934, COD = 

4434, TOC = 2782, 

BOD5 = 640, TSS = 317, 

C = 12.77, pH = 8.35 

AO NA BDD SS FR Total NH4
+ removal 

(Cabeza, 

Urtiaga, 

Rivero, et al., 

2007) 

Municipal 

sanitary 

landfill 

leachate 

DOC = 1600-3100, TSS 

= 15310-17602, pH = 8-

9, SO4
2- = 60-240, Cl- = 

5000-6200, NH4
+=1900-

3200, with and without 

filtration 

AO, EF 0.25 BDD CF UR 
93% DOC removal 

(EF) 

(Oturan et al., 

2015) 

Municipal 

sanitary 

landfill 

COD = 1030-1505, DOC 

= 337-430, BOD5 = 1-10, 

NO3
- = 1035-1192, SO4

2- 

SPEF 1.18 BDD 

Pt, C-

PTFE 

GDE 

FR  80% DOC removal 

(Moreira et al., 

2016) 
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leachate 

(previously 

subjected to 

biological and 

coagulation) 

= 1749-1917, Cl- = 3046-

3822, pH = 2.2-2.9 

 

Textile 

COD = 1224, BOD5 = 

323.8, TOC = 394.6, Cl- 

= 233.9, C = 2.91 

EF 0.5 Pt 

Carbon 

fiber 

cloth 

UR 75.2% COD removal 
(Wang et al., 

2010) 

Olive oil mill 

wastewater 

COD = 2368, BOD5 = 

790, TSS = 3712, SO4
2- = 

910 

AO / EF 

/ PEF 
0.1 BDD 

C-PTFE 

GDE 
UR 80% TOC removal 

(Flores et al., 

2017) 

RO 

concentrate 

COD = 120-150, BOD5 = 

15-18, TOC = 25-35, pH 

= 7.2-7.6, C = 22.30 

EF 0.2 Pt 
Carbon 

felt 
UR 62% COD removal 

(Zhou et al., 

2012) 
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Slaughterhouse 

wastewater 

COD = 405.6, TSS = 

150, Cl- = 364, pH = 8.5 
EF 1 

DSA/BD

D 

Carbon 

felt 
UR 

83.50% COD 

removal 

(Paramo-

Vargas et al., 

2015) 

Soils 

contaminated 

with petroleum 

(washing 

solution) 

COD = 22000, TOC = 

5100 
EF 0.4 BDD 

Carbon 

felt 
UR >97% TOC removal 

(Huguenot et 

al., 2015) 

Oily water 

(synthetic) 
COD = 1000 , pH = 7 AO 

Bench-

scale 

TiO2-

coated 

carbon 

membran

e 

SS UR >90% COD removal 
(Yang et al., 

2012) 
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Carwash 

wastewater 

COD = 572, BOD5 = 

178, pH = 6.4, C = 1.6, 

Anionic surfactants = 

95.5 

AO 0.4 
BDD/Pb

O2 
SS UR-R  

Almost total COD 

removal 

(Panizza & 

Cerisola, 

2010) 

Melodonin 

wastewater 

(glucose and 

glycine) 

COD = 2500, TOC = 

1000, pH = 7 
AO 0.6 BDD SS FR 

Complete COD 

removal 

(Cañizares et 

al., 2009) 

Almond 

industry 

wastewater 

COD = 1300, TOC = 

410, TSS = 33, Cl- = 

2000, pH = 6.7 C = 5.3 

AO 20 
DSA-

RuO2 
SS FR 80% COD removal 

(Valero et al., 

2014) 

Textile 

COD = 2000 DOC = 

485, pHv=v6.8, TSS = 

230 

EC 3.5 

Fe or Al 

in 

monopol

ar 

Fe or Al 

FTR 

(continu

ous flow) 

85% COD removal 

(Fe) and 77%  (Al) 

(Kobya et al., 

2016) 
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connecti

on 

Municipal 

COD = 238.63, BOD5 = 

205.76, SS = 281.9, pH = 

7.7, NH4
+ = 29.85,  

EC 200 Al Al 

FTR 

(continu

ous flow) 

97.27-100% Total-P 

and NH4
+ removal 

(Nguyen et al., 

2014) 

Olive oil mill 

wastewater 

COD = 1393.3, TOC = 

581.1, pH = 6.83, TSS = 

1890, TN = 16.7, Cl- = 

41.8, SO4
2- = 1558.3 

EC-PEF 0.15 / 0.1 Fe/BDD 

Fe/ C-

PTFE 

GDE 

UR 

40% TOC and COD 

(EC), 97% (coupled 

EC-PEF) 

(Flores et al., 

2018) 

Phosphates 

(synthetic) 
PO4

3-=27, SO4
2- = 500 EC 0.5 Fe/Al Fe/Al FR  

Complete PO4
3- 

removal 

(Lacasa et al., 

2011) 

Copper 

mineral 

processing 

As(V) = 2200,  pH = 2.1 EC 1 Fe Fe UR 
Complete removal of 

As(V) 

(Nuñez et al., 

2011) 
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Acid mine 

drainage  

SO4
2- = 13000, TDS = 

19790, pH = 2.68, C = 

10.66 

EC 0.5 Al Fe UR 
41% of SO4

2- 

removal 

(Nariyan et al., 

2017) 

Washing 

machine 

wastewater 

COD = 783, TOC = 680, 

C = 1.29, pH = 15 
AO 1 BDD/Pt Ti FR  

88% COD removal 

(BDD),  71% (Pt) 

(Durán et al., 

2018) 

Soils 

contaminated 

with PAH 

(washing 

solutions) 

Total PAH = 2.2 and 

31.1, TOC (from PAH) = 

37 and 272 * 

EF 0.4 Pt 
Carbon 

felt 
UR >99% PAH removal 

(Mousset et 

al., 2016) 

Electronics 

wastewater 

TOC = 53.46 and 299.31, 

COD = 190, BOD5 = 49, 

acetone = 73.03, 

isopropanol = 10.01, 

EF 0.4 BDD 

Graphen

e-PTFE-

GDE 

UR 

90% and 60% TOC 

removal (for low and 

high TOC0, 

respectively) 

(Garcia-

Rodriguez et 

al., 2018) 
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NH4
+ = 100, PO4

3- = 636, 

pH = 8.50, C = 2.1 

RO 

concentrate 

COD = 53, DOC = 53, 

pH = 7.8, Cl- = 1526, 

NO3
- = 14.1, SO4

2- = 253 

AO 1 

BDD/DS

A (Pt-

IrO2 and 

SnO2-

Sb2O5) 

SS 

FR 

(undivid

ed)  

74% COD removal 

and 51% DOC 

(BDD) 

(Bagastyo et 

al., 2013) 

RO 

concentrate 

from 

Municipal 

WWTP 

COD = 17, pH = 7.5, 

TSS = 5.7, NH4
+ = 120, 

C = 2665, Cl- = 501-808, 

SO4
2- = 514-560, NO3

- = 

95-145 

AO 2 BDD SS FR  

95% removal of 12 

selected 

micropollutants 

(Urtiaga et al., 

2013) 

RO 

concentrate 

from WWTP 

COD = 272, pH = 8.3, 

Cl- = 1500, C = 2.6, TN 

= 40.8 

AO 0.82 Ti/PbO2 Ti UR 
72% COD and 18% 

of TN removal 

(Wang et al., 

2018) 
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Pharmaceutical 

COD = 1253.3, TOC = 

431.5, BOD5/COD = 

0.18, pH = 8.1, C = 2.2 

EF 0.5 
BDD and 

DSA 

Carbon 

brush 
UR 

Total COD removal 

and 97.1% of TOC 

removal 

(Olvera-

Vargas et al., 

under review) 
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Table 2. AO, EC and EF studies carried out at volumes above one liter. 

Process Wastewater 

Treated 

volume 

(L) 

Pollutant 

concentration 

Removal 

(%) 

Treatment 

time 

(min) 

Electrode 

area 

(cm2) 

A V-1 

(m2 m-3) 

Current 

Density 

(mA 

cm-2) 

Energy 

consumption 

(kWh kg-

1
pollutant)  

Ref. 

AO Tannery 1.2 
1202.5 mg L-

1 COD 
51.53 90 16 1.3 25 

16.1 kWh kg-

1
COD 

(Liu et al., 

2017) 

AO 
Washing 

machine 
1 

783 

mg L-1 COD 
79.7 360 63.5 6.4 16.6 - 

(Durán et 

al., 2018) 

AO 
landfill 

leachate 
10 

3385 

mg L-1 COD 
30 180 70 0.7 257 

134 kWh kg-

1
COD 

(Anglada et 

al., 2011) 

AO 

rubber 

manufacturing 

process 

200 
1500 

mg L-1 COD 
80 600 2800 1.4 60 

77 kWh kg-

1
COD 

(Urtiaga et 

al., 2014) 
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AO 
landfill 

leachate 
250 

860 

mg L-1 COD 
80 420 10500 4.2 30 

53 kWh kg-

1
COD 

(Anglada, 

Ortiz, et al., 

2010) 

AO 

Industrial 

landfill 

leachate 

1.1 
17750 

mg L-1 COD 
80 360 140 12.7 21.4 

6.8 kWh kg-

1
COD 

(Nageswara 

Rao et al., 

2009) 

AO 
Almond 

industry 
20 

1300 

mg L-1 COD 
70 330 3300 16.5 32 

319.1 kWh kg-

1
COD 

(Valero et 

al., 2014) 

AO 1,4‐Dioxane 66 

1300 

 mg L-1 1,4‐

DX 

54 206 h 8400 12.7 0.3 
345.5 kWh kg-

1
1,4-DX 

(Blotevogel 

et al., 2019) 

AO 
cooking 

wastewater 
500 

3160  

mg L-1 COD 
59.5 212 16320 3.3 0.5 

0.2 kWh kg-

1
COD 

(Liu et al., 

2020) 

EC 
oily 

wastewater 
333 

870 

mg L-1 COD 
77 20 80000 6.3 5 

3 kWh kg-1
COD 

 

(Bilgili et 

al., 2016) 
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EC 
petroleum 

refinery 
1000 

4700 

mg L-1 COD 
35 60 36500 3.6 1.8 - 

(El-Naas et 

al., 2016) 

EC Tannery 2 
6000 

mg L-1 COD 
95 360 105 5.3 40 

5.5 kWh kg-

1
COD 

(Elabbas et 

al., 2016) 

EC Winery 8 
10240 

mg L-1 COD 
55 310 937.5 11.7 70 

75.2 kWh kg-

1
COD 

(Orescanin 

et al., 2013) 

EC Textile 3.5 
2000 

mg L-1 COD 
85 80 660 18.9 6.5 

45 kWh kg-

1
COD 

(Kobya et 

al., 2016) 

EC 

Table olive 

processing 

wastewaters 

200 
1000 

mg L-1 COD 
42.5 50 9600 4.8 5.7 

1.3 kWh kg-

1
COD 

(Benekos et 

al., 2019) 

EC 

Raw cheese 

whey 

wastewater 

3 
29,563 mg L-

1 TOC 
22.1  60 140 4.7 30 

3.3 kWh kg-

1
TOC 

(Tirado et 

al., 2018) 
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EC-Fenton 
Olive mill 

wastewaters 
36 

95000 

mg L-1 COD 
48 240 6451 17.9 3.1 

0.8 kWh kg-

1
COD 

(Khoufi et 

al., 2009) 

EF 
Aged landfill 

leachate 
1.5 

490 

mg L-1 COD 
83.5 80 24 1.6 30 - (Lu, 2019) 

EF 
Aniline 

solution 
30 

780 

mg L-1 TOC 
61 120 100 0.3 200 

81.4 kWh kg-

1
TOC 

(Brillas & 

Casado, 

2002) 

EF Bisphenol A 1.5 
379 

mg L-1 COD 
18 90 67 4.5 120 - 

(Chmayssem 

et al., 2017) 

EF- 

Adsorption 
Phenol 1.2 

940  

mg L-1 

Phenol 

99 120 120 10 2.5 
0.6 kWh kg-

1
phenol 

(Garcia-

Rodriguez et 

al., 2020) 

SPEF-AO 
Winery 

wastewater 
1.3 

380 

mg L-1 COD 
68.4 240 10 0.8 25  

19.6 kWh kg-

1
COD 

(Moreira, 

Boaventura, 

et al., 2015) 
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SPEF-AO 

Industrial 

textile 

wastewater 

10 
1763 

mg L-1 COD 
93 360 50 0.5 25 

4.2 kWh kg-

1
COD 

(Salazar et 

al., 2019) 

SPEF-AO 
Mixture of 

parabens 
2.5 

100  

mg L-1 TOC 
66 240 20 0.8 10 

84 kWh kg-

1
TOC 

(Steter et al., 

2018) 

SPEF-AO 
Mixture of 

azo dyes 
2.5 

105  

mg L-1 TOC 
98.8 300 20 0.8 100 

660 kWh kg-

1
TOC 

(dos Santos 

et al., 2018) 

SPEF-AO 

EC pre-

treated cheese 

whey 

wastewater 

2 
23,029 mg L-

1 TOC 
27.1 420 20 1 100 

7.3 kWh kg-

1
TOC 

(Tirado et 

al., 2018) 

SPEF-AO 
Mixture of 

pesticides 
75 

71  

mg L-1 DOC 
32 120 400 0.5 74 

1201.4 kWh 

kg-1
DOC 

(Salmerón et 

al., 2019) 

SPEF 
benzoic acid 

solution 
10 

100 

mg L-1 TOC 
95 60 100 1 200 - 

(Casado et 

al., 2006) 
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Table 3. Compilation of representative publications on the treatment of highly polluted wastewater by electrochemical processes in combination 

with other methods. 

Wastewater Composition* Process 

Reacto

r 

capacit

y (L) 

Anode Cathode 
Reactor 

type** 
Efficiency Reference 

Municipal 

sanitary 

landfill 

leachate 

COD = 3106-4057, 

BOD5 = 180-300, TSS = 

525-630, NH4
+ = 1300-

1355, Cl- = 2220-2780 

BIO + 

Coagulatio

n / 

aeration + 

EF, SPEF-

UV, SPEF 

25 BDD 
C-PTFE 

GDE 
FR 

78% DOC removal 

(SPEF) 

(Moreira, 

Soler, et al., 

2015) 

Municipal 

sanitary 

COD = 4430, 1300 and 

200, BOD5 = 1196, 175, 

NA pH = 8.4, 7.7, 7.5, 

BIO-

Fenton + 

AO 

1 BDD SS FR 
Overall, > 95% of 

COD removal and 

(Urtiaga et al., 

2009) 
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landfill 

leachate 

SO4
2- = 438,500,3100, Cl- 

= 2124, 1876, 1460, 

NH4
+ = 1225, 750, 700, 

NO3
- = NA, 700, 660 

complete NH4
+ 

removal 

Landfill 

leachate  

COD = 7200, 

BOD5/COD = 0.03, Cl- = 

6000, Fe = 70, pH = 8.2, 

TDS = 9500 

Heterogen

eous EF + 

BIO 

1 Ti/TiO2 Graphite UR 

82% of COD 

removal with EF, 

overall 97%  

(Baiju et al., 

2018) 

Winery 

wastewater 

COD = 10240, C = 1.10, 

TSS = 2860, pH = 3.7, Fe 

= 17 

AO + EC 

+ 

Electroma

gnetizatio

n + 

Clarificati

8 SS SS UR 

77% COD removal, 

99% removal of 

PO4
3- and TSS 

(Orescanin et 

al., 2013) 
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on + O3 / 

H2O2 / UV 

Winery 

wastewater 

COD = 12000, 380, 

BOD5 = 7950, 150, TSS 

= 81, 72, pH = 3.7, 8.3 

BIO + AO 

/ EF / PEF 

/ SPEF 

1.25 BDD 
C-PTFE 

GDE 
FR 

COD, BOD5, NH4
+, 

NO3
- and SO4

2- 

above regulatory 

levels 

(Moreira, 

Boaventura, et 

al., 2015) 

Cellulose 

bleaching 

COD = 1250 (acid), 1500 

(basic), BOD5 = 563 

(acid), 595 (basi), pH = 

2.5, 10.5, Cl-=488.2 

(acid), 349.9 (basic), 

TOC = 499 (acid), 594 

(basic) 

Filtration 

+ AO 
0.2 

DSA or 

BDD 

C-PTFE 

GDE 
UR 96% NF+AO 

(Salazar et al., 

2015) 
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Dairy 

wastewater 

COD = 3859, 395(after 

EC), BOD5 = 1517, TSS 

= >1988, pH = 8.3, Cl- = 

1131, NH4
+ = 177, NO3

- 

= 1.5 

EC + AO 0.1 

DSA 

(IrO2-

Ta2O5) 

Pt UR 85% 
(Borbón et al., 

2014) 

Dairy 

wastewater 

COD = 5600, TOC = 

2464, BOD5/COD = 0.8, 

TDS = 4530, pH = 5.87, 

Cl- = 654, C = 3.2 

EC + 

Phytoreme

diation 

1 Al Fe UR 

86.4% of COD 

removal with EC, 

Overall 97% of COD 

removal 

(Akansha et 

al., 2020) 

Tannery 

COD = 9922-10180, 

BOD5 = 528, TSS = 445-

530, pH =3.7-4.3, Cl- = 

1239, Fe = 2-2.8 

EC / AO / 

EF / PEF 

+ PEF-

UVA 

0.25 BDD Fe/BDD UR 95% EC+PEF 

(Isarain-

Chavez et al., 

2014) 
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Anaerobic 

sludge from 

poultry farm 

COD = 26200, TOC = 

5236, TSS = 31300, TDS 

= 9400, pH = 7.8-8.2, 

total coliforms = 2.4 x 

103 CFU mL-1 

ECP + EF 0.5 

Fe for 

ECP 

BDD for 

EF 

Fe for 

ECP 

Carbon 

brush for 

EF 

UR 

89.3% of COD 

removal by ECP, 

91.6% of COD and 

87.2% of TOC 

removal by EF, 

Overall, 99.1% of 

COD and 93.2% of 

TOC removal 

(Olvera-

Vargas et al., 

2019) 

Anaerobically-

digested food 

wastewater 

COD = 3210-3420, TN = 

4832-4728, NH4
+ = 3352-

3790, SS = 6260-6400, 

TS = 15580 

ECP + AO 1 / 0.3 SS/DSA SS/Ti UR 
>90% TOC and 

NH4
+ removal 

(Shin et al., 

2017) 

Municipal 

wastewater 
COD = 495, BOD5 = 359 

BIO + 

EC/AO 

and 

0.3 
For EC, 

Fe 
SS FR 

80% COD combined 

process 

(Kishimoto et 

al., 2017) 
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(spiked with 

1,4-dioxane) 

EC/AO + 

BIO 

For AO, 

DSA 

(Ti/RuO2

) 

Pulp and paper 

COD = 1450, BOD5 = 

350, TSS = 350, TDS = 

1050, Cl- = 325, pH = 

6.72 

Permanga

nate 

oxidation 

+ ECP + 

Co3 / UV / 

peroxymo

nosulfate 

2 / 0.35 

/ 0.15 
Fe Fe UR 

overall 95% COD 

removal 

(Jaafarzadeh et 

al., 2017) 

Olive oil mill 

wastewater 

COD = 100000, 

polyphenols = 12000 

ECP + 

Anaerobic 

digestion 

+ EC 

3 cast Fe Cast Fe UR 

65.8% of 

polyphenols by ECP 

and reduction of 

(Khoufi et al., 

2006) 
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toxicity; overall 97% 

COD removal 

Winery 

wastewater 

COD = 86100, TOC = 

60100, pH=3.4 

PEF + 

LED 

radiation 

(light 

emitting 

diode) 

0.04 Graphite 

Graphite/

Ni-

foam/GD

E 

UR 

(columns

) 

51% TOC removal 
(Díez et al., 

2017) 

Slaughterhouse 

wastewater 

COD = 1494, TSS = 

19717, BOD5 = 685, pH 

= 7.8, NH4
+ = 181 

Anaerobic 

digestion 

+ SPEF 

0.5 / 

0.1 
BDD 

C-PTFE 

GDE 
UR 

90% COD removal 

with BIO and 97% 

overall 

(Vidal et al., 

2016) 

Cheese whey 

wastewater 

TOC = 29563, pH = 

5.64, TSS = 5880, TN = 

1106, Cl- = 3547, C = 

15.5 

EC + UV-

assisted 

AO 

3.2 L 

for EC, 

2 L for 

AO 

Fe for 

EF, 

BDD for 

AO 

Al/AlSI3

04 for 

EC, 

UR for 

EC, 

FR for 

AO 

22-27% of TOC 

removal with EC, 

Overall 49.1% TOC 

removal 

(Tirado et al., 

2018) 
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Pt for 

AO 

Pharmaceutical 

COD = 72153.34, TOC = 

2045.68, Trimethoprom 

= 0.2 mM 

Aerobic 

sludge + 

EF 

1 Pt 
Carbon 

felt 
UR-R  

Overall 89% of TOC 

removal 

(Mansour et 

al., 2015) 

Mixed 

wastewater 

from WWTP 

COD = 1152, TOC = 

274, BOD5/COD = 0.43, 

TDS = 8370, pH = 7.2, 

Cl- = 3691 

EF with 

persulfate 

+ BIO 

1 Ti/Pt 
Graphite 

felt 
UR 

60% of COD 

removal with EF 

persulfate, 

Overall 94% COD 

removql 

(Popat et al., 

2019) 
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Table 4. Literature review of industrial wastewater treatment by electrochemical processes. 

Kind of 

industry 

Matrix Process Electrode materials Main parameters tested  Reference 

Pharmaceutical Pharmaceutical wastewater 

(COD = 4 g-O2 L-1, pH 5.2, 

conductivity = 0.5 mS cm-1) 

EC/Fered-

Fenton 

Cathode: Fe (22.5 cm2) 

Anode: Fe (22.5 cm2) 

TOC removal, energy 

consumption 

(Başaran Dindaş et 

al., 2020) 

Pharmaceutical Pharmaceutical wastewater 

(COD = 12 g-O2 L-1, pH 8.5, 

conductivity = 7 mS cm-1) 

AO Cathode: stainless steel 

(78 cm2) 

Anode: BDD (78 cm2) 

Current density, flow rate, 

TOC removal 

(Domínguez et al., 

2012) 

Chemical Chemical industry wastewater 

(COD = 1.3 g-O2 L-1, pH 6.7, 

conductivity = 5.3 mS cm-1, 

[Cl-] = 0.4 g L-1) 

AO Cathode: Pt (63 cm2) 

Anode: Ti/IrO2, Ti/RuO2 

(63 cm2) 

Anode materials, 

temperature, current 

density, COD removal, 

energy consumption 

(Valero et al., 

2014) 

Chemical Chemical industry wastewater 

(COD = 1.0 g-O2 L-1, pH 6.1, 

AO Cathode: graphite (100 

cm2) 

COD and TOC removal, 

by-products formation 

(Rajkumar & 

Palanivelu, 2004) 
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conductivity = 3.3 mS cm-1, 

[Cl-] = 0.5 g L-1) 

Anode: Ti/IrO2-RuO2 (28 

cm2) 

Textile Tannery wastewater after 

biological treatment (COD = 

1.6-1.7 g-O2 L-1, 6.2 mS cm-1, 

pH 7.3-7.9, [Cl-] = 720 mg L-1) 

AO Cathode: stainless steel 

Anode: Ti/PbO2 (272 

cm2) 

pH, color removal (Ling et al., 2016) 

Textile Tannery wastewater after 

biological treatment (COD = 

1.3 g-O2 L-1, 1.9 mS cm-1, pH 

8.8, [Cl-] = 180 mg L-1) 

AO Cathode: graphite 

Anode: Ti/Pt 

Electrolyte concentration, 

current density, 

temperature, Color 

removal, COD removal, 

current efficiency 

(Wang et al., 2009) 

Tannery Tannery wastewater (COD=2.4 

g-O2 L-1, conductivity = 18.5 

mS cm-1, pH 7.8, [Cl-] = 5.5 g 

L-1) 

AO Cathode: stainless steel 

(100 cm2) 

Anode materials, current 

density, energy 

consumption 

(Szpyrkowicz et 

al., 2005) 
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Anode: Ti/Pt–Ir, 

Ti/RhOx–TiO2, Ti/PdO–

Co3O4 (100 cm2) 

Tannery Synthetic tannery wastewater 

(COD=2-20 g-O2 L-1, tannic 

acid = 1-3 g/L, conductivity = 

10-30 mS cm-1, pH 3-13, [Cl-] 

= 1.5-28 g L-1) 

AO Cathode: stainless steel 

(25 cm2) 

Anode: Ti/IrO2, Ti/PbO2 

(25 cm2) 

Anode materials, 

temperature, pH, current 

density, current efficiency 

(Panizza & 

Cerisola, 2004) 

Tannery Tannery wastewater (COD = 

10 g-O2 L-1, conductivity = 6.3-

9.1 mS cm-1, pH 3.7-4.3, [Cl-] 

= 1.3 g L-1) 

AO, EF Cathode: BDD, Fe (3 cm2) 

Anode: BDD, Fe (3 cm2) 

Electrode materials, current 

density, mineralization 

evolution, current 

efficiency 

(Isarain-Chavez et 

al., 2014) 

Petroleum Petroleum wastewater 

(COD=19.8 g-O2 L-1, total 

petroleum hydrocarbons = 11.2 

AO Cathode: Pt grid 

Anode: Ta/PbO2 and BDD 

(7 cm2) 

Anode materials, COD and 

TPH removal, by-products, 

ecotoxicity 

(Gargouri et al., 

2014) 
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g L-1, conductivity = 1.5 mS 

cm-1, pH 6.9) 

Petroleum Petroleum wastewater 

(COD=1.6 g-O2 L-1, 

conductivity = 4.6 mS cm-1, pH 

7.5, [Cl-] = 22.4 g L-1) 

AO Cathode: Ti (15 cm2) 

Anode: Ti/Pt, BDD (10 

cm2) 

Anode materials, current 

density, electrolyte 

concentration, agitation 

rate, COD removal, energy 

consumption 

(Rocha et al., 2012) 

Petroleum Petroleum wastewater 

(COD=0.7 g-O2 L-1, 

conductivity = 5.1 mS cm-1, pH 

7.8, [Cl-] = 1.6 g L-1) 

AO Cathode: Ti (63.5 cm2) 

Anode: Ti/IrO2–Ta2O5, 

Ti/PbO2, BDD (63.5 cm2) 

Anode materials, current 

density, COD removal, 

energy consumption 

(da Silva et al., 

2013) 

Paper mill Paper mill industry wastewater 

(COD = 5-6 g-O2 L-1, pH 8, 

conductivity = 7 mS cm-1) 

AO Cathode: stainless steel 

(682 cm2) 

Anode: PbO2 (682 cm2) 

Current density, pH, 

electrolyte concentration, 

color and COD removal, 

energy consumption 

(El-ashtoukhy et 

al., 2009) 
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Paper mill Paper mill industry wastewater 

(COD = 130 g-O2 L-1, pH 12.8-

13, conductivity = 0.2 mS cm-

1) 

AO Cathode: stainless steel 

(141 cm2) 

Anode: Ti/RuO2 (11 cm2) 

Current density, flow rate, 

color and COD removal, 

current efficiency 

(Chanworrawoot, 

2012) 

Paper mill Paper mill industry wastewater 

(COD = 0.3 g-O2 L-1, pH 6.8, 

conductivity = 1.1 mS cm-1) 

AO Cathode: stainless steel 

(50 cm2) 

Anode: BDD, 

Ti/Ti0.5Ru0.45Sn0.05O2 (50 

cm2) 

Current density, flow rate, 

temperature, pH, NaCl 

concentration, energy 

consumption 

(Klidi et al., 2018) 
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Table 5. Literature review of RO concentrate treatment by electrochemical processes. 

Matrix Process Electrode materials Main parameters tested Reference 

RO concentrate (Conductivity = 22.3 mS 

cm-1, COD = 120-150 mg-O2 L-1, pH 7.2-

7.6) 

EF Cathode: graphite felt (120 

cm2) 

Anode: Pt wire 

[Fe2+], cathodic potential, [H2O2], 

pH 

(Zhou et al., 

2012) 

RO concentrate from a tertiary steel WWTP 

(Conductivity = 22.3 mS cm-1, [Cl-] = 6.4 g 

L-1, COD = 120-190 mg-O2 L-1, pH 8.3) 

AO Cathode: stainless steel (3 cm2) 

Anode: BDD, Ti/IrO2–Ta2O5, 

Ti/IrO2–RuO2) (3 cm2) 

Anode materials, pH, COD 

removal, energy consumption 

(Zhou et al., 

2011) 

RO concentrate from tertiary WWTP 

(Conductivity = 5 mS cm-1, [Cl-] = 1.2 g L-

1, COD = 170 mg-O2 L-1, pH 8.0) 

AO Cathode: stainless steel 

(projected surface area: 24 

cm2) 

Anode: Ti/IrO2–Ta2O5, 

Ti/RuO2-IrO2, Ti/Pt-IrO2, 

Ti/PbO2, Ti/SnO2-Sb 

Anode materials, COD and 

inorganic removal, by-products 

evolution 

(Bagastyo et al., 

2011) 
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(projected surface area: 24 

cm2) 

RO concentrate from tertiary WWTP 

spiked with pharmaceuticals (Conductivity 

= 4.2 mS cm-1, [Cl-] = 1.5 g L-1, DOC = 57 

mg-C L-1, pH 7.5) 

AO Cathode: stainless steel 

(projected surface area: 24 

cm2) 

Anode: Ti/RuO2-IrO2 

(projected surface area: 24 

cm2) 

DOC, pharmaceuticals and 

inorganic evolution, by-products 

and toxicity evolution 

(Radjenovic, 

Bagastyo, et al., 

2011) 

RO concentrate from tertiary WWTP 

spiked with pharmaceuticals (Conductivity 

= 4.3 mS cm-1, [Cl-] = 1.6 g L-1, DOC = 57 

mg-C L-1, pH 7.7) 

AO Cathode: stainless steel 

(projected surface area: 24 

cm2) 

Anode: Ti/Ru0.7-Ir0.3O2, 

Ti/SnO2-Sb (projected surface 

area: 24 cm2) 

Anode materials, current density, 

pharmaceutical removal, by-

products and toxicity evolution 

(Radjenovic, 

Escher, et al., 

2011) 
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Electrodialysed RO concentrate from 

tertiary WWTP (Conductivity = 6.0 mS cm-

1, [Cl-] = 1.4 g L-1, COD = 136 mg-O2 L-1, 

pH 7.7) 

AO Cathode: stainless steel (41 

cm2) 

Anode: BDD (41 cm2)  

pH, COD and DOC removal, by-

products evolution, energy 

consumption 

(Bagastyo et al., 

2012) 

Electrodialysed RO concentrate from 

tertiary WWTP (Conductivity = 1.4 mS cm-

1, [Cl-] = 0.14 g L-1, COD = 145 mg-O2 L-1, 

pH 6.8) 

AO Cathode: stainless steel 

(projected surface area: 24 

cm2) 

Anode: BDD (41 cm2) and 

Ti/Pt-IrO2, Ti/SnO2-Sb 

(projected surface area: 24 

cm2) 

Anode materials, COD removal, 

salts evolution, by-products 

evolution 

(Bagastyo et al., 

2013) 

RO concentrate from tertiary WWTP 

(Conductivity = 6 mS cm-1, [Cl-] = 1.4 g L-

1, COD = 140 mg-O2 L-1, pH 7.7) 

AO Cathode: BDD (41 cm2) 

Anode: BDD (41 cm2) 

Reactor configuration, COD 

removal, energy consumption, 

by-products, ecotoxicity 

(Bagastyo et al., 

2014) 
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RO concentrate from tertiary WWTP 

(Conductivity = 2.3-5.1 mS cm-1, [Cl-] = 

0.3-0.6 g L-1, DOC = 14-30 mg-C L-1, pH 

7.6-7.9) 

AO Cathode: stainless steel (70 

cm2) 

Anode: BDD (70 cm2) 

Initial RO concentrate matrix, 

Pollutant removal, inorganic and 

organic by-products evolution 

(Pérez et al., 

2010) 

RO concentrate mixed domestic and textile 

WWTP (Conductivity = 4.0 mS cm-1, [Cl-] 

= 0.6 g L-1, COD = 5 mg-O2 L-1, pH 8.2) 

AO Cathode: Ti/RuO2 (60 cm2) 

Anode: BDD (60 cm2) 

COD and inorganic species 

evolution 

(Van Hege et al., 

2002) 

RO concentrate pharmaceuticals WWTP 

(Conductivity = 2.7 mS cm-1, [Cl-] = 0.5-

0.8 g L-1, DOC = 17 mg-C L-1, pH 7.5) 

AO Cathode: stainless steel (70 

cm2) 

Anode: BDD (70 cm2) 

Pollutant removal (Urtiaga et al., 

2013) 

RO concentrate from WWTP spiked with 

pharmaceuticals (Conductivity = 2.6 mS 

cm-1, [Cl-] = 0.15 g L-1, TOC = 17 mg-C L-

1, pH 8.4) 

AO Cathode: Pt 

Anode: BDD (12 cm2) 

Kinetics of degradation and 

mineralization, by-products and 

pathway, ecotoxicity 

(Lütke Eversloh 

et al., 2014) 
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RO concentrate from WWTP (Conductivity 

= 17 mS cm-1, [Cl-] = 1.5 g L-1, DOC = 272 

mg-C L-1, pH 8.3) 

AO Cathode: Ti (150 cm2) 

Anode: Ti/PbO2 (300 cm2) 

COD and inorganic (chloride, 

total nitrogen) removal, e energy 

consumption 

(Wang et al., 

2018) 
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Table 6. Literature review of raw landfill leachate treatment by electrochemical processes. 

Matrix Process Electrode materials Main parameters tested Reference 

Landfill leachate (pH = 8.3, conductivity = 

41.3 mS cm-1, COD = 7.2 g-O2 L-1, 

BOD5/COD = 0.03, [Cl-] = 6 g L-1, Fe = 0.07 

g L-1) 

EF Cathode: graphite (25 cm2) 

Anode: Ti/TiO2 (25 cm2) 

Aeration, catalyst reusability, COD 

removal 

(Baiju et al., 

2018) 

Landfill leachate (pH = 8.2, TDS = 9.5 g L-

1, COD = 6.2 g-O2 L-1, BOD5/COD = 0.03) 

EF Cathode: graphite 

Anode: graphite 

Voltage, pH, catalyst reusability, COD 

removal 

(Sruthi et al., 

2018) 

Landfill leachate (pH = 8.3, conductivity = 

12 mS cm-1, COD = 1.2 g-O2 L-1, [Cl-] = 1.6 

g L-1, [NH3] = 0.38 g L-1) 

AO Cathode: steel 

Anode: Ti/SnO2, Ti/PbO2 

(24 cm2) 

pH, COD and ammonium evolution (Cossu et al., 

1998) 

Landfill leachate (pH = 5.8-6.8, COD = 53.3 

g-O2 L-1, [Cl-] = 2.6-4.5 g L-1, [SO4
2-] = 0.4-

0.74 g L-1, [NH3] = 0.9-1.3 g L-1) 

AO Cathode: stainless steel (1.5 

m2) 

Anode: Ti/Pt (0.85 m2) 

pH, COD and ions (ammonia, nitrate, 

phosphorus, calcium) evolution, by 

products formation, energy 

consumption 

(Vlyssides et 

al., 2001) 
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Landfill leachate (pH = 8.2, conductivity = 

9.8 mS cm-1, COD = 0.8 g-O2 L-1, 

BOD5/COD < 0.1, [Cl-] = 1.8 g L-1) 

AO Cathode: stainless steel 

Anode: Ti/PbO2 (48 cm2) 

pH, current density, COD removal, 

energy consumption 

(Panizza et al., 

2010) 

Landfill leachate (pH = 8.3, conductivity = 

12.8 mS cm-1, COD = 4.4 g-O2 L-1, 

BOD5/COD = 0.14, [Cl-] = 3.2 g L-1, [SO4
2-] 

= 0.04 g L-1, [NH3] = 1.9 g L-1) 

AO Cathode: stainless steel (70 

cm2) 

Anode: BDD (70 cm2) 

COD and ammonium removal (Cabeza, 

Urtiaga, & 

Ortiz, 2007) 

Landfill leachate (pH = 7.8, conductivity = 

27.6 mS cm-1, COD = 4.2 g-O2 L-1, 

BOD5/COD = 0.09, [Cl-] = 3.2 g L-1, [SO4
2-] 

= 1.9 g L-1, [NH3] = 2.3 g L-1) 

AO Cathode: Ta (10 cm2) 

Anode: BDD (10 cm2) 

Current density, pH, COD, 

biodegradability, ammonia and nitrate 

evolution, energy consumption 

(Fudala-

Ksiazek et al., 

2018) 

Landfill leachate (pH = 7.9, COD = 0.75 g-

O2 L-1, [Cl-] = 1.2 g L-1, [SO4
2-] = 0.25 g L-

1, [NH3] = 0.22 g L-1) 

AO Cathode: graphite (30 cm2) 

Anode: graphite/PbO2 (30 

cm2) 

COD and DOC removal, inorganic 

evolution (sulfate, chloride, nitrate, 

bicarbonate) 

(Mandal et al., 

2020) 
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Landfill leachate (pH = 8.0, COD = 2.7 g-

O2 L-1, [Cl-] = 2.9 g L-1, [NH3] = 2.8 g L-1, 

Fe = 0.005 g L-1) 

EF/AO Cathode: Ti (projected 

surface area: 15 × 10 cm2) 

Anode: Ti/RuO2-IrO2-SnO2-

TiO2 (projected surface area: 

15 × 10 cm2) 

pH, Hydraulic retention time, inter-

electrode gap, COD removal, by-

products evolution 

(Zhang et al., 

2012) 

Landfill leachate (pH = 8.0-9.0, TOC = 1.6-

3.1 g-C L-1, [Cl-] = 5-6.2 g L-1, [SO4
2-] = 

0.06-0.24 g L-1, [NH3] = 1.9-3.2 g L-1) 

EF/AO Cathode: carbon felt (140 

cm2) 

Anode: Pt, BDD (24 cm2) 

Current density, TOC removal 

efficiency 

(Oturan et al., 

2015) 

Landfill leachate (pH = 7.8, COD = 1.0 g-

O2 L-1, [Cl-] = 21 g L-1, [NH3] = 0.44 g L-1) 

EF/AO Cathode: hydrothermal 

carbonization biochar 

Anode: iron filings in the 3D 

Fe/C granules electrode 

system 

Voltage, COD and TOC removal, 

ammonia evolution, reusability of 

electrode 

(Yu et al., 

2020) 
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Landfill leachate (pH = 8.5, conductivity = 

17.8 mS cm-1, COD = 1.8 g-O2 L-1, [Cl-] = 

2.4 g L-1, [NH3] = 1.7 g L-1) 

EC/AO Cathode: graphite 

Anode: Ti/RuO2-IrO2, 

Ti/RuO2-IrO2-mZVI 

(macroscale zero-valent 

iron) (15 cm2) 

Anode material, voltage, TOC and 

COD removal, ammonia evolution,  

(Sun et al., 

2020) 

  



 
107

Table 7. Literature review of acid mine drainage treatment by electrochemical processes. 

Matrix Process Electrode materials Main parameters tested  Reference 

Acid mine drainage solution EC Cathode: sulphide/graphide 

block 

Anode: Fe 

pH, redox potential, metal 

elements concentrations 

(Shelp et al., 

1996a) 

Acid mine drainage solution (pH = 3.2, [SO4
2-] = 

0.45 g L-1) 

EC Cathode: sulphide/graphide 

block 

Anode: Al, Zn 

Anode materials, pH, redox 

potential, metal elements 

concentrations 

(Shelp et al., 

1996b) 

Acid mine drainage solution (pH = 2.6, [SO4
2-] = 

12 g L-1, [Fe] = 0.61 g L-1) 

EC Cathode: Fe followed by Al 

Anode: sacrificial Fe 

followed by Al 

Color, turbidity and 

inorganic removal 

(Orescanin & 

Kollar, 2012) 

Acid mine drainage solution (pH = 2.7, [SO4
2-] = 

11 g L-1, [Fe] = 0.92 g L-1) 

EC Cathode: Fe followed by Al 

Anode: sacrificial Fe 

followed by Al 

Color, turbidity and 

inorganic removal, toxicity 

evolution 

(Radić et al., 

2014) 
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Acid mine drainage solution (pH = 2.9) EC Cathode: stainless steel (7 × 

5 cm2) 

Anode: Fe, Al (7 × 5 cm2) 

Anode materials, current 

density, Cd removal 

(Nariyan et al., 

2016) 

Acid mine drainage solution (pH = 2.7, [SO4
2-] = 

13 g L-1, [Fe] = 0.77 g L-1) 

EC Cathode: stainless steel (7 × 

5 cm2) 

Anode: Fe, Al (7 × 5 cm2) 

Anode materials, current 

density, inorganic (metals 

and sulfate) removal 

(Nariyan et al., 

2017) 

Acid mine drainage solution (pH = 2.7, [SO4
2-] = 

13 g L-1, [Fe] = 0.77 g L-1) 

EC Cathode: stainless steel (7 × 

5 cm2) 

Anode: Fe, Al (7 × 5 cm2) 

Anode materials, current 

density, electrode connection 

configuration (mono-/bi-

polar), energy consumption 

(Nariyan et al., 

2018) 

Sulfate/nitrate/chloride/copper/ nickel/zinc/ 

ammonia in acid mine drainage model solution 

([SO4
2-] = 3 g L-1) 

EC Cathode: Fe (168 cm2) 

Anode: Fe (168 cm2) 

pH, current density, sulfate 

removal, flow mode 

(batch/continuous) 

(Mamelkina et 

al., 2017) 
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Sulfate/nitrate/chloride/copper/ 

nickel/zinc/ammonia in acid mine drainage model 

solution ([SO4
2-] = 3 g L-1) 

EC Cathode: Fe (168 cm2) 

Anode: Fe (168 cm2) 

pH, flow mode 

(batch/continuous), inorganic 

(ammonia, nitrate, copper, 

nickel, zinc, sulfate) removal 

(Mamelkina et 

al., 2018) 

Sulfate/nitrate/chloride/copper/ 

nickel/zinc/ammonia in acid mine drainage model 

solution ([SO4
2-] = 1-3 g L-1) 

EC Cathode: Fe (168 cm2) 

Anode: Fe, Al (168 cm2) 

current density, pH, electrode 

materials, sulfate removal, 

(Mamelkina, 

Tuunila, et al., 

2019) 

Iron in acid mine drainage model solution ([Fe] = 

0.5 g L-1) 

EC Cathode: Fe, Al (26 cm2) 

Anode: Fe, Al (26 cm2) 

Current density, electrode 

materials, iron removal, 

energy consumption 

(Foudhaili et al., 

2019) 

Real acid mine drainage solutions (pH = 6.9-7.5, 

[SO4
2-] = 1.3-2.9 g L-1) 

EC Cathode: Fe (26 cm2) 

Anode: Fe (26 cm2) 

Toxicity assays (Foudhaili, Jaidi, 

et al., 2020) 

Iron in acid mine drainage model solution (pH = 

2.4-2.6, [Fe] = 0.47-0.52 g L-1, [SO4
2-] = 1.3-4.9 g 

L-1) and real acid mine drainage solution (pH = 2.4-

EC Cathode: Fe (11 × 11 cm2) 

Anode: Fe (11 × 11 cm2) 

Current density, Sulfate 

concentration 

(Foudhaili, 

Lefebvre, et al., 

2020) 



 
110

2.6, [Fe] = 0.04-0.07 mg L-1, [SO4
2-] = 1.3-2.9 g L-

1) 

Acid mine drainage solution (pH = 3.0, [SO4
2-] = 

1.9 g L-1, [Fe] = 0.45 g L-1) 

Sono-

EC 

Cathode: stainless steel 

Anode: Mg 

Iron and copper removal (Morgan et al., 

2017) 

Acid mine drainage solution (pH = 3.0-3.9, [Fe] = 

1.7-2.3 t yr-1) 

Sono-

EC 

Cathode: stainless steel 

Anode: Mg 

Reactor design, flow rate, 

inorganic removal, energy 

consumption 

(Rose et al., 

2019) 

Acid mine drainage solution AO Cathode: platinum, copper, 

graphite and carbon felt, 

with areas of 4.5, 6.4, 6.8 

and 6.9 cm2, respectively 

Anode: Ti/IrO2 (7.2 cm2) 

pH, current (Bunce et al., 

2001) 

Iron/Sulfate in acid mine drainage model solution 

(pH = 1.9, [FeSO4] = 0.56 g L-1) 

AO Cathode: reticulated 

vitreous carbon 

Anode: Ti/IrO2 (7.2 cm2) 

Current density (Chartrand & 

Bunce, 2003) 
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Iron/Arsenite spiked in acid mine drainage model 

solution (pH = 2.0-2.1, Fe(III) = 0.26 g L-1, Fe(II) 

= 0.30 g L-1) 

AO Cathode: stainless steel (10 

cm2) 

Anode: Ti/IrO2 (7 cm2) 

Reactor design (Wang et al., 

2003) 

Acid mine drainage solution (pH = 2.4, [SO4
2-] = 

1.3 g L-1, [Fe] = 0.23 g L-1) 

AO Cathode: Ti 

Anode: Ti, graphite, BDD 

Anode materials, current 

density 

(Park et al., 

2015) 

Sulfate/nitrate/chloride/cyanide in acid mine 

drainage model solution ([SO4
2-] = 1 g L-1) 

EC, AO, 

EC/AO 

Cathode: Fe, Al, C, Ti 

Anode: Fe, Al, C, Ti 

Electrode materials, pH, 

current density, inorganic 

(cyanide, sulfate, nitrate) 

removal 

(Mamelkina, 

Vehmaanpera, et 

al., 2019) 
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Table 8. Literature review of WWTP sludge treatment by electrochemical processes (TS: total solids; DS: dry sludge; MLSS: mixed liquid 

suspension solids; MPN: most probable number). 

Matrix Process Electrode 

materials 

Main parameters tested  Reference 

Activated sludge from municipal 

WWTP (pH 7.0, soluble COD = 0.09 g-

O2 L-1, TS = 15.9 g L-1) 

EC Cathode: Fe (11.5 × 

6 cm2) 

Anode: Fe (11.5 × 6 

cm2) 

pH, current density, electrolyte 

concentration, COD and TOC removal, 

sludge disintegration 

(Sari Erkan & 

Onkal Engin, 

2020) 

Anaerobic sludge from conventional 

WWTP (pH 6.8, COD = 22.5 g-O2 L-1, 

DS = 23.3 g L-1, Total coliforms = 7.9 × 

106 MPN) 

Fered-Fenton Cathode: graphite 

(10 × 6 cm2) 

Anode: graphite (10 

× 6 cm2) 

Voltage, COD and total coliforms 

removal, zeta potential, 

dewaterability/filterability 

(Masihi & 

Gholikandi, 

2018) 

Anaerobic sludge from poultry farm 

(pH 7.8-8.2, COD = 26.2 g-O2 L-1, TSS 

Electrochemical 

peroxidation/EF 

Cathode: steel (5 × 

6.5 cm2) 

Current density, pH, TSS & COD & 

TOC removal, inorganic evolution, cost 

evaluation 

(Olvera-Vargas 

et al., 2019) 
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= 31.3 g L-1, TDS = 9.4 g L-1, Total 

coliforms = 2.4 × 103 CFU mL-1) 

Anode: steel (5 × 

6.5 cm2) 

Activated sludge from municipal 

WWTP (pH 6.7-7.0, COD = 17.4-19.0 

g-O2 L-1, TS = 8-18.2 g L-1) 

AO Cathode: Ti/RuO2 

(70 cm2) 

Anode: Ti/RuO2 (70 

cm2) 

Current density, pH, type of salt, cost 

evaluation 

(Song et al., 

2010) 

Municipal wastewater sludge AO Cathode: Ti (908 

cm2) 

Anode: Ti/RuO2 

(504 cm2) 

Current density, electrolyte 

concentration 

(Bureau et al., 

2012) 

Activated sludge from paper mill 

WWTP (pH 7.8-8.2, COD = 0.55 g-O2 L-

1, TS = 16.3 mg L-1, Total coliforms = 

2.8 × 105 CFU g-DS-1) 

AO Cathode: Ti (908 

cm2) 

Anode: Ti/RuO2 

(504 cm2) 

Dewaterability, coliforms removal, 

evolution of organics and inorganics, 

cost evaluation 

(Drogui et al., 

2013) 
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Anaerobic sludge from municipal 

WWTP (pH 7.2-7.4, TS = 2.9-3.2%) 

AO Cathode: stainless 

steel 

Anode: Ti 

Electro-migration of organic matter and 

metals, dewaterability 

(Tuan & 

Sillanpaa, 2010) 

Anaerobic sludge from municipal 

WWTP (pH 7.2-7.4, TS = 2.9-3.2%) 

AO Cathode: stainless 

steel 

Anode: Ti 

Pressure, voltage, electro-migration of 

organic matter and metals, 

dewaterability 

(Tuan & 

Sillanpaa, 2020) 

Sludge from municipal WWTP (pH 6.4-

6.6, TS = 32.5-34.3 g L-1) 

AO Cathode: Ti/PbO2 

(10 × 10 cm2) 

Anode: Ti/PbO2 (10 

× 10 cm2) 

Supporting electrolyte, NaCl dosage, 

dewaterability, cost evaluation 

(Xiao et al., 

2019) 

Activated sludge from municipal 

WWTP (pH 6.8-6.9, soluble COD = 

0.15-0.33 g-O2 L-1, TS = 9.1-13.7 g L-1) 

AO Cathode: Ti/RuO2 

(44 cm2) 

Anode: Ti/RuO2 (44 

cm2) 

pH, current density (Heng & Isa, 

2014) 
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Activated sludge from municipal 

WWTP (pH 6.7, soluble COD = 0.10 g-

O2 L-1, TSS = 6.3 g L-1) 

AO Cathode: Ti/RuO2 

(10 × 7 cm2) 

Anode: Ti/RuO2 (10 

× 7 cm2) 

Voltage, dewaterability (Zhen et al., 

2013) 

Activated sludge from municipal 

WWTP 

AO/EC Cathode: Ti/RuO2 

and Al and Fe (180 

cm2) 

Anode: Ti/RuO2 

and Al and Fe (180 

cm2) 

Voltage, COD removal, dewaterability (Gharibi et al., 

2013) 

Activated sludge from municipal 

WWTP (pH 6.7-6.8, TSS = 16-37 g L-1) 

AO/EC Cathode: Ti (12 × 6 

cm2) and Fe (16 

cm2) 

Anode: 

Ti/RuO2IrO2 (12 × 6 

Voltage, dewaterability (Li et al., 2016) 
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cm2) and Fe (16 

cm2) 

Activated sludge from municipal 

WWTP (pH 7.0, soluble COD = 0.14 g-

O2 L-1, MLSS = 2.5 g L-1, VSS/TSS = 

0.68) 

AO/Fered-Fenton Cathode: Ti (10 × 

10 cm2) 

Anode: Ti/RuO2-

IrO2 (10 × 10 cm2) 

pH, current density, 

dewaterability/filterability, cost 

evaluation 

(Cai et al., 

2019) 

Sludge from thickening tank in 

municipal WWTP (pH 6.7-6.9, TOC = 

2.7 g g-DS-1, VSS/TSS = 0.46-0.52) 

AO, AO/EF Cathode: Ti (8 × 7 

cm2) 

Anode: Ti/RuO2-

IrO2 (8 × 7 cm2) 

Voltage, TOC removal, 

dewaterability/filterability, cost 

evaluation 

(Hu et al., 2018) 

Activated sludge from municipal 

WWTP (pH 6.8, soluble COD = 0.14 g-

O2 L-1, TSS = 24 g L-1) 

AO, AO/EF Cathode: Ti, active 

carbon fiber (10 × 7 

cm2) 

Anode: Ti/RuO2 (10 

× 7 cm2) 

Current density, pH, dewaterability  (Chen et al., 

2019) 
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Table 9. Literature review of soil washing/flushing solutions treatment by electrochemical processes (BCD: beta-cyclodextrin; DSA: 

dimensionally stable anode; HPCD: hydroxypropyl-beta-cyclodextrin; SDS: sodium dodecyl sulfate; Tween 80: polyoxyethylene (20) sorbitan 

monooleate; MMO: metal mixed-oxide). 

Pollutant Extracting agent Process Electrode 

materials 

Main parameters tested  Reference 

Trinitrotoluene (TNT) (0.2 

mM) 

BCD (1 mM) Soil washing/EF Cathode: carbon 

felt (60 cm2) 

Anode: Pt grid (3 

cm diameter, 4.5 

cm height) 

Current density (Murati et al., 

2009) 

Phenanthrene (17 mg L-1) Tween 80 (0.75 g 

L-1) and HPCD 

(10 g L-1) 

Soil washing/EF Cathode: carbon 

felt (150 cm2) 

Anode: Pt grid (3 

cm diameter, 5 cm 

height) 

[Fe2+], current density, 

biodegradability and 

toxicity of solution 

(Mousset et al., 

2014a) 
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Phenanthrene (16 mg L-1) HPCD (9 g L-1) Soil washing/EF Cathode: carbon 

felt (10 cm2) 

Anode: Pt grid (3 

cm diameter, 5 cm 

height), Ti/RuO2-

IrO2 (40 cm2), 

BDD (40 cm2) 

Anode materials, current 

density, biodegradability 

and toxicity of solution 

(Mousset et al., 

2014b) 

Pentachlorophenol (PCP) 

(0.77 mM) 

HPCD (5 mM) Soil washing/EF Cathode: carbon 

felt (10 cm2) 

Anode: Pt sheet (1 

cm2) 

Current density, toxicity of 

solution 

(Hanna et al., 

2005) 

16 polycyclic aromatic 

hydrocabons (PAHs) (1090 

mg kg-1) 

Tween 80 (7.5 g 

L-1) or HPCD (7.5 

g L-1) 

Soil washing/EF Cathode: carbon 

felt (150 cm2) 

Number of SW cycles, pH, 

Soil respirometry 

(Mousset et 

al., 2016) 
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Anode: Pt grid (3 

cm diameter, 5 cm 

height) 

Total petroleum hydrocarbons 

(TPH) (3900-6100 mg kg-1) 

Tween 80 (11 g L-

1) 

Soil flushing/EF Cathode: carbon 

felt (150 cm2) 

Anode: BDD (40 

cm2) 

pH, biodegradability and 

toxicity of solution 

(Huguenot et 

al., 2015) 

Phenanthrene (500 mg kg-1) SDS or Tween 80 

(1 g L-1) 

Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: DSA (78 

cm2), BDD (78 

cm2) 

anode materials, pH, 

conductivity 

(Sáez et al., 

2010) 

Oxyfluorfen (100 mg kg-1) SDS (0.1-5 g L-1) Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Concentration of extracting 

agent, turbidity, zeta 

(dos Santos et 

al., 2016) 
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Anode: DSA (78 

cm2), BDD (78 

cm2) 

potential, mean particle size, 

ions evolution 

Oxyfluorfen (100 mg kg-1) SDS (0.1-5 g L-1) Soil 

washing/Ultrasound

-AO 

Cathode: stainless 

steel (70 cm2) 

Anode: BDD (70 

cm2) 

Concentration of extracting 

agent, turbidity, zeta 

potential, mean particle size, 

ions evolution 

(Vieira Dos 

Santos et al., 

2017) 

Petroleum (COD: 487 and 

2943 mg-O2 L-1; TOC 359 and 

1298 mg-C L-1) 

SDS (0.1-5 g L-1) Soil 

washing/(Ultrasoun

d/UV)-AO 

Cathode: stainless 

steel (78 cm2) 

Anode: BDD (78 

cm2) 

initial organic load, 

concentration of extracting 

agent, turbidity, zeta 

potential, mean particle size, 

ions evolution 

(dos Santos et 

al., 2017) 

Phenanthrene (25 mg L-1) and 

humic acid (10 mg L-1) 

Tween 80 (1.31 g 

L-1) 

Soil washing/AO Cathode: stainless 

steel (24 cm2) 

current density, supporting 

electrolyte 

(Trellu et al., 

2017) 
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Anode: BDD (24 

cm2) 

Phenanthrene (25 mg L-1) and 

humic acid (10 mg L-1) 

Tween 80 (1.31 g 

L-1) 

Soil washing/AO Cathode: stainless 

steel (28 cm2) 

Anode: BDD (28 

cm2) 

Ecotoxicity, 

biodegradability, carboxylic 

acids 

(Trellu et al., 

2016) 

Phenanthrene (456 mg kg-1) HPCD (10-40 g L-

1) 

Soil washing/AO Cathode: graphite 

(52 cm2) 

Anode: graphite 

(52 cm2) 

concentration of extracting 

agent 

(Gómez et al., 

2010) 

Atrazine (100 mg kg-1) SDS (0.1 g L-1) Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: BDD (78 

cm2) 

COD and TOC removal, 

intermediates evolution, 

mean particle size, zeta 

potential 

(dos Santos et 

al. 2015a) (elec 

comm) 
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Atrazine (100 mg kg-1) SDS (0.1-5 g L-1) Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: BDD (78 

cm2) 

COD and TOC removal, 

sulfate and intermediates 

evolution, mean particle 

size, zeta potential 

(dos Santos et 

al. 2015b) 

(JHM) 

Lindane (100 mg kg-1) SDS (0.1-20 g L-1) Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: BDD (78 

cm2) 

COD and TOC removal, 

sulfate evolution, mean 

particle size 

(Munoz-

Morales et al. 

2017) 

Clopyralid (100 mg kg-1) Deionized water Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: BDD (78 

cm2) 

Clopyralid removal, 

intermediates evolution 

(Rodriguez et 

al. 2018) 

Pendimethalin (100 mg kg-1) SDS (5-50 g L-1) Soil washing/AO Cathode: stainless 

steel (78 cm2) 

TOC removal, sulfate 

evolution, mean particle size 

(Almazan-

Sanchez et al. 

2017) 
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Anode: BDD (78 

cm2) 

Clopyralid (100 mg kg-1) Synthetic 

wastewater 

Soil washing/AO Cathode: BDD (78 

cm2) 

Anode: BDD (78 

cm2) 

TOC removal, intermediate 

evolution, energy 

consumption 

(Cotillas et al. 

2017) 

Lontrel® (commercial 

herbicide based on 72% w/w 

of clopyralid) (1000 mg kg-1) 

Deionized water Soil washing/AO Cathode: stainless 

steel (78 cm2) 

Anode: BDD, Ru-

MMO, Ir-MMO, 

carbon felt (78 

cm2) 

TOC removal, intermediates 

evolution, toxicity and 

biodegradability evolution 

(Carboneras et 

al. 2018) 
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Figure 1. Classification of the electrode materials used in AO. 

 

Figure 2. Main steps involved in the selection of the most suitable treatment strategy. 
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Figure 3. CFD simulation for a) the turbulent intensity distribution in a vertical-flow 

tubular electrochemical reactor (I) and a concentric tubular electrochemical reactor (II) 

for AO of phenol wastewater, b) normalized current density distribution in a rotating 

cylinder electrode (RCE) reactor for EC, I) RCE surface and II) working electrode 

plates and c) concentration profile of Fe2+ around the cathode during EF process at (I) t 

= 0 s and (II) t = 400 s. 

 [Adapted with permission from: (Wang, Li et al. 2015) (Villalobos-Lara et al., 2020) 

and (Reza, Masoud et al. 2015)]. Copyright Elsevier. Copyright De Gruyter. 
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Figure 4. Reactor designs for EAOPs, a)Filter press reactor, b) fluidized bed reactor, c) 

Rotating electrode reactor and d) fixed bed reactor (Adapted with permission from: 

(Naje et al., 2016; Olvera-Vargas et al., 2015; Shen et al., 2017; Tezcan Un & Aytac, 

2013)). Copyright Elsevier. 
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Figure 5. Schematic representation of two different ways of •OH oxidative degradation 

of hydrophobic organic pollutant in the presence of (a) surfactant (Tween 80) or (b) 

cyclodextrin (HPCD) in aqueous solution. Adapted with permission from (Mousset et 

al., 2014a). Copyright Elsevier. 
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