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Abstract

Coxiella burnetii is an obligate intracellular bacterial pathogen responsible for severe
worldwide outbreaks of the zoonosis Q fever. The remarkable resistance to
environmental stress, extremely low infectious dose and ease of dissemination,
contributed to the classification of C. burnetii as a class B biothreat. Unique among
intracellular pathogens, C. burnetii escapes immune surveillance and replicates within
large autophagolysosome-like compartments called Coxiella-containing vacuoles
(CCVs). The biogenesis of these compartments depends on the subversion of several
host signaling pathways. For years, the obligate intracellular nature of C. burnetii
imposed significant experimental obstacles to the study of its pathogenic traits. With
the development of an axenic culture medium in 2009, C. burnetii became genetically
tractable, thus allowing the implementation of mutagenesis tools and screening
approaches to identify its virulence determinants and investigate its complex
interaction with host cells. Here, we review the key advances that have contributed to
our knowledge of C. burnetii pathogenesis, leading to the rise of this once-neglected

pathogen to an exceptional organism to study the intravacuolar lifestyle.



Introducing Coxiella burnetii

Coxiella burnetii is a Gram negative obligate intracellular pathogen, and the
causative agent of Q fever, a worldwide zoonotic disease (Eldin et al., 2017). Animal
coxiellosis is mostly associated with abortion, stillbirths, and weak offspring (Fig. 1).
Desiccation of placental materials, excretions of birthing fluids, urine, feces and milk
from infected animals contribute to shed C. burnetii into the environment (Eldin et al.,
2017). Transmission to humans results from exposure to contaminated aerosols and
dust (Fig. 1). In humans, C. burnetiiinfections are often asymptomatic and self-limiting,
however, 40% of individuals infected with C. burnetii develop an acute disease which
is associated with a flu-like syndrome, pneumonia, hepatitis and chronic fatigue (Eldin
et al., 2017) (Fig. 1). Acute disease may convert into a chronic illness with severe
complications, including endocarditis (Eldin et al., 2017). An important risk factor for Q
fever outbreaks is the multiple zoonotic reservoirs of C. burnetii, which include
domestic livestock and wild animals (mammals, reptiles, birds and ticks) (Eldin et al.,
2017). C. burnetiiis extremely infectious, with 1-to-10 bacteria being sufficient to cause
disease (Brooke et al., 2013). The low infectious dose coupled to remarkable
environmental stability contribute to the significant spreading of C. burnetii infections
well away from the outbreak source and led to the classification of C. burnetii as a
category B biothreat (Madariaga et al., 2003).

C. burnetii is a stealth pathogen that actively escapes innate immune
recognition by inhibiting the NF-xB pathway (Mahapatra et al, 2016) and
inflammasome activation (Cunha et al., 2015). Infected cells are also protected from
apoptosis, thereby preserving the bacterial replicative niche over long periods
(Luhrmann et al., 2017). C. burnetii enters macrophages by phagocytosis through the

interaction with aV3 integrins (Capo et al., 1999). In contrast, in non-phagocytic cells,



internalization is facilitated by the invasin OmpA (Outer membrane protein A) (Martinez
et al., 2014) (Fig. 1). Following internalization, bacteria reside within early endosomal
compartments, also called early CCVs, that passively mature along the endocytic
pathway by successive fusion events with early and late endosomes and lysosomes
(Fig. 1). Maturation is accompanied by the acidification of the CCV lumen (Heinzen et
al., 1996), which is required to activate bacterial metabolism (Hackstadt and Williams,
1981) and the translocation of bacterial effector proteins by a Dot/lcm Type 4b
Secretion System (T4SS) (Newton et al., 2013). Thus, by 48 hours post-infection, cells
display a single, large, mature CCV, where markers of multiple membrane
compartments co-exist (Dragan and Voth, 2019), which is indicative of the capacity of
C. burnetii to hijack multiple host membrane trafficking pathways (Fig. 1). Importantly,
the biogenesis of these remarkable compartments is a two-step process requiring both
cellular and bacterial factors. This review will focus on the recent technological
advances that fostered remarkable progress in our understanding of the complex

host/pathogen interplay that controls the generation of the C. burnetii replicative niche.

The long and winding road (to genetic manipulation)

Together with its high infectivity, the obligate intracellular nature of C. burnetii
has imposed severe constraints on the study of its pathogenesis. An important step
towards the development of tools to investigate C. burnetii infection was the isolation
of a Phase Il variant (NMII) of the Nine Mile Phase | strain (NMI), presenting a single
deletion of 21 genes involved in lipopolysaccharide biosynthesis and displaying loss-
of-virulence phenotype in animal models (Moos and Hackstadt, 1987; Hoover et al.,
2002). Thus, NMIl was allowed for manipulation in biosafety level-2 (BSL-2)

environments (Fig. 2D), as opposed to other C. burnetii strains that require



manipulation in biosafety level-3 (BSL-3) confinement. Importantly, loss-of-virulence of
NMII has no impact either on intracellular growth kinetics or development of CCVs in
cultured cells, making NMIl a relevant model to study host-pathogen interactions
(Howe et al., 2010).

Nevertheless, bacterial amplification of C. burnetii in embryonated eggs and/or
cultured cells represented a real obstacle for its genetic manipulation. Indeed,
transposon mutagenesis allowed the generation of C. burnetii mutants (Beare et al.,
2009); however, amplification and isolation of these from infected cells ruled out the
possibility of isolating mutations in virulence genes. Thus, until 2011, ftsZ was the only
C. burnetii gene characterized using Himar1 transposon mutagenesis (Beare et al.,
2009) (Fig. 2F).

Whole-genome sequencing of C. burnetii NMI RSA493 in 2003 allowed the
identification of typical features, including a Dot/lcm secretion system, which is highly
homologous to that of L. pneumophila (Seshadri et al., 2003) (Fig. 2C). This finding
was pivotal to develop bioinformatics-based approaches to predict effector proteins-
coding genes. These revealed that similar to L. pneumophila, effector proteins
translocated by C. burnetii encode a C-terminal secretion signal called the E-block
motif and are mostly under the control of a PmrA response regulator (Zusman et al.,
2007). Due to the genetic intractability of C. burnetii at that time, candidate effector
proteins were tested for secretion using L. pneumophila as a surrogate model,
exploiting the homologies between the Dot/lcm secretion systems of the two
pathogens. This approach allowed the Roy laboratory to validate the translocation of
four C. burnetii effector proteins encoding ankyrin repeat homology domains (ARHDSs)

(Pan et al., 2008) (Fig. 2E). Later work from the Samuel laboratory reported the first



large-scale, bioinformatics-based identification of C. burnetii effector proteins and used
the L. pneumophila system to validate the secretion of 32 new T4SS substrates (Chen
et al., 2010) (Fig. 2H). Moreover, using a shuttle plasmid system for the expression of
recombinant proteins in C. burnetii, Chen and colleagues also demonstrated that the
functionality of the Dot/lcm secretion system (Chen et al., 2010).

One year later, a genetic screen of C. burnetii proteins carrying C-terminal
secretion signals led to the identification of additional effector proteins (Carey et al.,
2011) (Fig. 2I). For this study, wild type (wt) L. pneumophila or the T4SS-
defective AdotA mutant were transformed with a library containing adenylate cyclase
enzyme (CyaA)-tagged random fragments of C. burnetii genome, leading to the
validation of 7 additional C. burnetii effectors (Carey et al., 2011). These were further
tested for their intracellular localization and function, which indicated a possible
implication in the manipulation of host membrane trafficking. Of note, this is the first
study to report a replication phenotype associated with a transposon insertion in the
C. burnetii Dot/lcm gene icmL (icmL::Tn), thus demonstrating the importance of
C. burnetii effector protein translocation for infection (Carey et al., 2011) (Fig. 2I).
Today, the development of tailored bioinformatics algorithms for the identification of
T4SS effector proteins led to the identification of over 140 candidate C. burnetii T4SS
effectors (Voth et al., 2009; Chen et al., 2010; Carey et al., 2011; Maturana et al., 2013;
Weber et al., 2013). Recent genome comparison of the C. burnetii strains NMII
RSA493, Henzerling RSA331, G Q212, K Q154 and Dugway 5J108-111, revealed that
many genes encoding candidate effector proteins are either pseudogenized or missing
altogether, leaving only 44 out of the 143 identified effector protein-coding genes intact

across all strains (Larson et al., 2016). Despite these significant advances, functional



analysis of C. burnetii genes involved in virulence was still limited by the genetic
intractability of this pathogen.

A game-changer in the study of C. burnetiiinfections has been the development
of a synthetic medium (ACCM for Acidified Citrate Cysteine Medium), followed by the
development of ACCM-2, allowing the extracellular culture of this obligate intracellular
bacterium (Omsland et al., 2009; Omsland et al, 2011) (Fig. 2G). ACCM-2
development stems from metabolic requirement studies using microarrays, genomic
reconstruction of metabolic pathways and metabolite typing (Omsland et al., 2009;
Omsland et al., 2011). These studies highlighted that C. burnetii requires acid
activation buffer (pH 4.75), to reproduce the CCV microenvironment (Heinzen et al.,
1996) and increase its metabolic potential as well as low oxygen levels (2.5%) to
facilitate the bacterial micro-aerophilic respiration (Omsland et al., 2009; Omsland et
al., 2011). This scientific milestone finally enabled genetic manipulation of C. burnetii,

leading to a new era in our understanding of its pathogenesis (Fig. 2).

From genes to function: characterization of C. burnetii effectors involved in
vacuole biogenesis

With the development of axenic culture, targeted deletion of C. burnetii was
formally achievable (albeit remaining extremely challenging), and the role of C. burnetii
effector proteins in infection could be tested directly. The Heinzen laboratory first
exploited axenic culture with the generation of a dotA deletion mutant (Beare et al.,
2012) (Fig. 2J) and with the identification and characterization of CvpA (for Coxiella
vacuolar protein A). This effector protein localizes at CCVs and reroutes recycling
endosomes to this compartment by interacting with the clathrin adaptor protein AP2

(Larson et al., 2013) (Fig. 1). In a follow-up study, the Heinzen laboratory identified four



additional members of what constitutes today the Cvp sub-class of C. burnetii effector
proteins (CvpA, CvpB/Cig2, and CvpC-to-E, Fig. 1) (Larson et al., 2015). Accordingly,
targeted deletion of C. burnetii vacuolar proteins severely affects the biogenesis of
CCVs (Larson et al., 2013; Larson et al., 2015).

If targeted deletion of C. burnetii genes remains challenging, Himar1-based
transposon mutagenesis has been extensively applied to the generation of libraries of
C. burnetii mutants. Thus, by 2013, the Samuel laboratory reported the first study that
combined bioinformatics-mediated identification of candidate effector proteins with
transposon mutagenesis (Weber et al., 2013) (Fig. 2N). Searching the C. burnetii
genome for T4SS features (PmrA consensus sequences, E-block motifs, and
homologies with known effectors), led to the identification of 234 genes encoding
putative C. burnetii effector proteins. p-lactamase translocation assay in
L. pneumophila validated 53 T4SS substrates, most of which were never reported
before. Transposon mutagenesis showed that ten effector proteins were involved in
the biogenesis of CCVs and bacterial replication (Weber et al., 2013) (Fig. 2N).

The following year, two independent studies reported the large-scale
identification of C. burnetii virulence determinants based on the generation of two
libraries of C. burnetii transposon mutants (Martinez et al., 2014; Newton et al., 2014)
(Fig. 20, R). The Bonazzi library consisted of 3000 GFP-tagged mutants, among which
over 1000 were sequenced, annotated, and screened using quantitative,
multiparametric image analysis to identify bacterial factors involved in host cell
invasion, intracellular replication and persistence (Martinez et al., 2014; Martinez et al.,
2015). This approach allowed to validate the function of 16 out of the 22 genes
constituting the C. burnetii Dot/lcm secretion system, characterize the phenotype

associated with transposon insertions in 31 genes encoding effector proteins and



identify the first C. burnetii invasin OmpA (for Outer membrane protein A), which is
necessary and sufficient to trigger internalization by non-phagocytic cells (Martinez et
al., 2014) (Fig. 1 & 2P). This study was also the first to report the use of the insect
model Galleria mellonella to investigate C. burnetii virulence in vivo (Martinez et al.,
2014).

The Roy laboratory used a modified-Himar1 expressing mCherry fluorescent
protein to generate over 3200 mutants. These were visually screened in HelLa cells to
identify genes important in the biogenesis of CCVs and bacterial replication using the
lysosomal marker LAMP-1 to visualize the membranes of the C. burnetii replicative
compartment (Newton et al., 2014) (Fig. 20). This approach allowed the isolation of
mutants characterized by different intracellular phenotypes, including defects in
intracellular replication and homotypic fusion of independent CCVs or the appearance
of filamentous bacteria. Of note, mutants carrying a transposon insertion in gene
encoding CBU1751 (cig57) displayed a severe vacuole biogenesis defect (Newton et
al., 2014). The Newton laboratory has further characterized the role of this effector
protein in the development of CCVs and intracellular replication, showing that Cig57
subverts clathrin-mediated traffic by interacting with FCHOZ2, an accessory protein of
clathrin-coated pits (Latomanski et al., 2016) (Fig. 1). More recently, CTLC (clathrin
heavy chain) has been observed at CCVs, where it plays an essential role in vacuole
expansion (Latomanski and Newton, 2018). Importantly, CTLC recruitment to the CCV
is related to autophagy, and conversely, the fusion of autophagosomes with CCVs is
dependent on CTLC (Latomanski and Newton, 2018). The Roy visual screen also
highlighted a multivacuolar phenotype associated with transposon insertions in the
gene CBUO0021 (cig2), identical to that previously observed following the knockdown

of autophagy-related genes (McDonough et al., 2013), suggesting a functional link



between a bacterial effector protein and the manipulation of a specific host cell function
(Fig. 20). This hypothesis was further investigated, demonstrating that Cig2
contributes to the recruitment of the autophagy machinery to CCVs (Fig. 1), thus
facilitating their homotypic fusion and contributing to an enhanced bacterial virulence

in the Galleria mellonella infection model (Kohler et al., 2016).

It takes two to tango: role of host cell pathways in C. burnetii vacuole biogenesis

If on one hand effector proteins translocation is critical for pathogenesis, host
cell proteins, lipids, and membrane trafficking pathways also play a significant role in
C. burnetii infections. As mentioned above, the maturation of CCVs along the
endocytic pathway is a pre-requisite for effector proteins translocation (Newton et al.,
2013)(Fig. 2L); thus, Rab GTPases of the endocytic pathway play a key role in
C. burnetii intracellular replication (Fig. 1) (Beron et al., 2002; Romano et al., 2007,
Campoy et al., 2011). Indeed, silencing of either Rab5 or Rab7 correlates with effector
protein translocation defects (Newton et al., 2016) (Fig. 2R).

A comprehensive characterization of the host cell components required for the
biogenesis of CCVs was provided for the first time by a genome-wide screen using
siRNA targeting eukaryotic genes in C. burnetii-infected HeLa cells (McDonough et al.,
2013) (Fig. 2M). Host determinants required for C. burnetii infection were identified by
the analysis of the number and size of CCVs, revealing the importance of several
eukaryotic pathways in critical infection events. As expected, the silencing of genes
encoding pH-regulating proteins CLN3 and CLCN5, as well as components of the
vacuolar ATPase resulted in a defect in the biogenesis of CCVs (McDonough et al.,
2013). Besides, the depletion of the retromer cargo complex VPS26-VPS29-VPS35

leads to defective in bacterial replication, revealing a role for retrograde membrane
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trafficking in C. burnetii infections (McDonough et al., 2013). Interestingly, seminal
work from the Colombo laboratory in the past decade demonstrated that the induction
of autophagy favors the biogenesis of CCVs and that C. burnetii actively manipulates
autophagy during infections (Gutierrez et al., 2005; Romano et al., 2007). However,
the precise role of autophagy in CCVs’ development remained to be characterized.
The genome-wide screening approach of the Roy laboratory revealed that knockdown
of autophagy proteins syntaxin-17, ATG5 and ATG12 results in the formation of
multiple CCVs of smaller size as compared to control cells (McDonough et al., 2013).
It was later demonstrated that this multivacuolar phenotype is the result of the defective
homotypic fusion of CCVs (Newton et al., 2014; Martinez et al., 2016).

The Voth and Heinzen laboratories have further explored the complex interplay
between C. burnetii and autophagy by. The autophagy-associated cargo receptor p62
is actively recruited at CCVs, independently of LC3-interacting domains (Winchell et
al., 2018). Interestingly, C. burnetii infections seem to preserve p62 from degradation
upon induction of autophagy (Winchell et al., 2018). Accordingly, C. burnetii infections
inhibit mMTORC1, a master regulator of autophagy, by a non-canonical mechanism that
does not result in accelerated autophagy, nor a block of the autophagic flux (Larson et
al., 2019). Finally, autophagy is also involved in repairing the membranes of CCVs
during expansion, which are subject to transitory damage and loss-of-acidification
(Mansilla Pareja et al., 2017) (Fig. 2T).

Besides host cell proteins, lipids also play a significant role in the development
of CCVs, which are rich in sterols (Gilk et al., 2010). Indeed, cholesterol homeostasis
regulates CCVs biogenesis and intracellular survival of C. burnetii (Gilk et al., 2013;
Mulye et al., 2017) (Fig. 2K). Accordingly, C. burnetii actively manipulates cholesterol

metabolism via a eukaryotic-like A24 sterol reductase (Gilk et al., 2010). Furthermore,
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an image-based supervised machine learning approach led to the identification of
CvpB/Cig2 as the first C. burnetii effector protein to bind phosphoinositides and
manipulate their metabolism (Martinez et al., 2016) (Fig. 2S). Indeed, CvpB/Cig2 binds
phosphatidylinositol-3-phosphate (PI(3)P) and phosphatidylserine (PS) and perturbs
the activity of the PI3-kinase PIKFYVE. This inhibition results in an enrichment of
PI(3)P at CCVs, which is essential for their homotypic fusion (Martinez et al., 2016).
Importantly, despite the apparent defect in the biogenesis of CCVs, cvpB transposon
mutants were unaffected in their capacity of replicating within infected cells. However,
cvpB mutants are attenuated in the in vivo models Galleria mellonella (Martinez et al.,
2016) and SCID mice (van Schaik et al., 2017), demonstrating that the biogenesis of

CCVs can modulate C. burnetii virulence, independently of bacterial replication.

To infinity and beyond (conclusions)

As of today, C. burnetii stands as the sole example of an obligate intracellular
bacterial pathogen for which a specific axenic culture medium has been developed.
Consequently, research on this dangerous and complex pathogen has bloomed during
this decade, with the development of genetic tools and phenotypic screening
approaches to better understand the complex interactions established between
C. burnetii and its host. The generation of libraries of C. burnetii transposon mutants
combined with the development of multi-parametric screening approaches have
allowed the rapid and unbiased identification of microbial genes involved in specific
steps of the infectious process. This has been facilitated by the fact that the majority
of C. burnetii transposon mutants isolated to date display a significant phenotype
during infection (Martinez et al., 2014), suggesting a milder functional gene

redundancy as compared to the closely related pathogen L. pneumophila. Accordingly,
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bioinformatics predicted ~ 150 effector proteins compared to the 300 translocated by
Legionella.

Nevertheless, understanding how these newly identified virulence determinants
manipulate host cell functions remains exceptionally challenging. Probably due to the
complex nature of this compartment, a large proportion of the C. burnetii effector
proteins identified and characterized to date are involved in the biogenesis of the CCV;
however, proteins involved in the manipulation of other signaling pathways including
apoptosis and inflammation have been identified and partially characterized. With the
development of advanced bioinformatics approaches such as unsupervised machine
learning, hierarchical clustering and Bayesian network analysis, we can now compare
microbial-targeted and host-targeted phenotypic screens, to identify sets of bacterial
and eukaryotic genes predicted to be involved in the same biological process during
infection.

Despite the giant leaps taken since the development of axenic culture, many
technical barriers still exist today. Directed mutagenesis remains challenging, limiting
our studies to the mutants available in the transposon libraries hosted in the
laboratories that undertook this endeavor. Nevertheless, our knowledge of this once-
neglected pathogen is ever increasing. This will allow, in the near future, to address
burning questions on C. burnetii pathogenesis, including a characterization of the
strategies used to evade immune recognition, cell-to-cell spread, and, consequently,
dissemination to distant organs (heart and liver) following infection of alveolar

macrophages.
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Figure legends

Figure 1. Overview of C. burnetii infections. C. burnetii is an obligate intracellular
pathogen which infects wild and farm animals. Bacteria are shed in the environment
with birth products and excretions leading to the contamination of hay and dust. Human
infection occurs 2-3 weeks after the inhalation of contaminated particles, followed by
the internalization of C. burnetii by alveolar macrophages. Human Q fever remain
asymptomatic in 60% of infected individuals, whereas 40% develop an acute, febrile
disease, which can turn into a chronic disease with more severe symptoms including
endocarditis. C. burnetii invades eukaryotic cell through phagocytosis, which is
facilitated by the bacterial invasin OmpA. Early CCVs mature along the endocytic
pathway by successive fusion events with early endosomes (EEs), late endosomes
(LEs) and lysosomes. Acidification of the CCV activates bacterial metabolism and the
translocation of bacterial effector proteins (purple circles and ovals) by the Dot/lcm
secretion system. Several effector proteins are collectively beneficial for the biogenesis
of the mature CCV where bacterial replication occurs. These include the Cvp family
(for Coxiella vacuolar proteins) of effectors that localize at CCV membranes and
manipulate host membrane trafficking pathways. CvpA interacts with the clathrin
adaptor AP2 at recycling endosomes (REs), re-routing these compartments to the
forming CCV. CvpB binds PI(3)P at early endosomes and enriches this phospholipid
at CCVs. This is required to favor the autophagy-mediated homotypic fusion between
CCVs. Although not a Cvp, Cig57 interacts with the clathrin adaptor FCHOZ2 at clathrin-

coated pits and re-routes clathrin-mediated membrane traffic to the CCV.
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Figure 2. Milestone discoveries that have contributed to the knowledge of

C. burnetii pathogenesis.
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