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Abstract
We use time-dependent density functional theory and
a semiclassical model to study second-harmonic gen-
eration in a system comprising a quantum emitter and
a spherical metallic nanoparticle, where the transition
frequency of the quantum emitter is set to be resonant
with the second harmonic of the incident frequency.
The quantum emitter is shown to enable strong second-
harmonic generation, which is otherwise forbidden be-
cause of symmetry constraints. The time-dependent
density functional theory calculations allow one to iden-
tify the main mechanism driving this nonlinear effect,
where the quantum emitter plays the role of an opti-
cal resonator that experiences the nonlinear near fields
generated by the metallic nanoantenna located nearby.
The influence of the intrinsic properties of the quantum
emitter and the nanoantenna, together with the relative
position of both in the coupled system, allows for a high
degree of control of the nonlinear light emission. The
main effects and contributions to this nonlinear process
can be correctly captured by a semiclassical description
developed in this work.

Keywords
second-harmonic generation; plasmonics; quantum
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coupling

The coupling between incident electromagnetic ra-
diation and collective electronic excitations, so-called
surface plasmons, in metallic nanoparticles (MNPs) al-

lows one to localize, enhance, and control the near
fields around the nanoparticles at scales well below
the wavelength of light. The resonant excitation of the
plasmonic modes, along with the intrinsic nonlinearity
of the metals, results in a strong nonlinear optical re-
sponse of plasmonic structures with a great variety of
applications.1,2 In particular, second-harmonic gener-
ation (SHG), whereby two photons at the fundamen-
tal frequency are absorbed to emit one photon at the
second-harmonic frequency is at the focus of very ac-
tive research owing to its practical and fundamental
interest.3–12 For typical plane-wave incidence, the SHG
is forbidden for materials and nanostructures that are
centrosymmetric. This nonlinear response is thus very
sensitive to the geometry of the system and to surface
effects that eventually may break the symmetry con-
straints and lead to the emission of light at the sec-
ond harmonic.2,13–18 In this context, it has been shown
that plasmonic structures resonant at the fundamental
or at the second-harmonic frequency (or at both fre-
quencies) can give rise to manyfold enhancement of
the SHG.8,9,19–31 Recent experiments have also shown
the polarization-resolved probing of the nonlinear near
field distribution of metallic structures by using doubly
resonant plasmonic antennas.32 On the other hand, the
coupling of a quantum emitter (QE), such as an organic
molecule or a quantum dot with a plasmonic nanoan-
tenna has been widely studied in previous works, ana-
lyzing diverse aspects such as surface-enhanced Raman
scattering, single-molecule spectroscopy, strong cou-
pling or the effect of electronic conductivity through
molecules.33–41 Moreover, the capability of the MNP-
QE interaction to modify the second-harmonic emis-
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sion has been demonstrated for plasmonic nanostruc-
tures,42,43 and also the strong nonlinear response of
graphene nanostructures has been proposed as a way to
excite the electronic transitions in atomic or molecular
species.44

Here we study the SHG resulting from a hybrid sys-
tem consisting of a QE placed in the vicinity of a spher-
ical MNP, as scketched in Figure 1a. The small indi-
vidual centrosymmetric nanoparticle does not allow
for second-harmonic emission, but the presence of the
QE lifts this symmetry constraint. When the electronic
transition frequency of the QE is resonant with the sec-
ond harmonic of the incident frequency, the QE plays
the role of an optical resonator, which efficiently cou-
ples to the nonlinear near fields induced around the
nanoparticle, extracting them to the far field and thus
producing SHG.32 This MNP-QE system thus enhances
the frequency conversion and allows for its control. To
calculate the nonlinear response of the coupled sys-
tem and to reveal the physical mechanisms behind the
SHG in this situation, we use a quantum approach
based on the time-dependent density functional the-
ory (TDDFT).45,46 With the insights obtained from the
TDDFT calculation, we develop a semiclassical model.
We show that, for the cases where the quantum calcula-
tions are doable, the semiclassical model reproduces the
TDDFT results. This semiclassical model also allows
for addressing more general and complex situations
beyond the reach of TDDFT, so that it makes possible
a detailed study of the sensitivity of SHG to different
parameters that characterize the system. In particular,
we demonstrate the polarization conversion of the non-
linear signal, as well as the existence of various regimes
of SHG determined by the intrinsic losses of the QE.
The methodology and results obtained in our study can
pave the conceptual road for enhancing and optimiz-
ing second-harmonic generation mediated by quantum
emitters coupled to plasmonic systems.47,48

TDDFT Calculations

Nonlinear Response of an Individ-
ual Metallic Nanoantenna

Prior to the discussion of the MNP-QE system, we
analyze the nonlinear optical response of an individ-
ual spherical MNP calculated within TDDFT. We de-
scribe the electronic structure of the MNP within the
Jellium model, which is well adapted to TDDFT studies
and correctly addresses the quantum many-body dy-
namics of conduction electrons including the response
to strong optical fields.49–53 The ions at the metal lat-
tice sites are represented by a homogeneous positive

background charge of density n+ =
(

4
3 πr3

s

)−1
which

neutralizes the total charge of the MNP. Atomic units
(au) are used throughout this paper unless otherwise

stated. For the Wigner–Seitz radius, rs, we use the typ-
ical value for Na metal rs = 4 a0 (a0 = 0.053 nm is the
Bohr radius). We address a relatively large spherical
nanoparticle that contains 1074 conduction electrons,
with a radius a = 40.96 a0 (≈ 2.2 nm). The linear op-
tical response of the Na nanosphere is characterized
by the well-developed dipolar plasmon resonance at
frequency ωDP = 3.17 eV, close to that of gold nanopar-
ticles and within the range of excitation energies in or-
ganic dyes.54 Despite the simplicity of the model, it has
successfully offered semiquantitative insights as well as
robustly described strong nonlinear effects in plasmon-
ics.55–60 The purpose of the present work is indeed to
use a simple, yet realistic modeling scheme to identify
and control the main processes governing SHG from a
QE coupled to a MNP.

We first perform density functional theory61 (DFT)
calculations of the ground state of the metallic nanopar-
ticle characterized by an electron density n0(r) =
∑j=occ χj|Ψ0

j (r)|
2, where the sum runs over the occu-

pied Kohn–Sham (KS) orbitals Ψ0
j (r), and the statistical

factors χj account for both spin and symmetry degen-
eracy. We then use TDDFT to retrieve the time evolu-
tion of the electron density n(r, t) = ∑j=occ χj|Ψj(r, t)|2,
when the system is subjected to a quasi-monochromatic
external pulse. The time-dependent KS orbitals Ψj(r, t)
are represented on a spatial mesh in spherical coor-
dinates and their time evolution is obtained from the
time-dependent KS equations45,46

i
∂

∂t
Ψj(r, t) = Ĥ[n](r, t)Ψj(r, t), (1)

with the use of a short-time propagation algorithm.62

The initial conditions are given by the ground state of
the system: Ψj(r, t = 0) = Ψ0

j (r). The effective Hamilto-

nian of the system, Ĥ[n](r, t), comprises several terms

Ĥ[n](r, t) = T̂ + VH[n](r, t) + Vxc[n](r, t)︸ ︷︷ ︸
ĤMNP[n](r,t)

+Vext(r, t).

(2)
In eq. 2 T̂ is the kinetic energy operator. The Hartree
potential, VH[n](r, t), is calculated by solving Poisson’s
equation,∇2VH[n](r, t) = −4π(n(r, t)− n+), where we
neglect retardation effects due to the small size of the
MNP. The exchange-correlation potential, Vxc[n](r, t), is
described within the adiabatic local density approxima-
tion45,46 (ALDA) using the exchange-correlation kernel
of Gunnarsson and Lundqvist.63 Finally, Vext(r, t) =
rEext(t) is the potential of an electron interacting with
an incident laser pulse described within the dipole ap-
proximation. We consider an incident laser pulse with
Gaussian envelope and an electric field given by

Eext(t) = E0ẑ cos(Ω(t− t0)) e−
(

t−t0
σ

)2

, (3)

where ẑ is the unit vector along the positive direction
of the z-axis. The excitation frequency Ω lies within the
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Figure 1: (a) Sketch of the system under study: the radius of the spherical Na nanoparticle is a = 40.96 a0 (2.2 nm),
and the point-like QE is located at position R, at a distance d from the nanoparticle surface. (b) Nonlinear optical
response of the spherical MNP calculated within TDDFT in the absence of the QE. Results are obtained for an
incident z-polarized Gaussian electromagnetic pulse with Ω = 1.585 eV (half of the frequency of the MNP dipolar
plasmon ωDP = 3.17 eV), and intensity I0 = 108 W cm−2 (dashed blue line) and I0 = 1010 W cm−2 (red line). The top
panel shows the square of the induced dipole moment |pnp(ω)|2, and the bottom panel shows the absolute value of
the spectrum of the electric near field |Eind(ω)| induced at the z-axis at 18 a0 (1 nm) from the MNP surface. (c) Color
maps of the real part of the charge density (left) and of the radial component of the electric near field (right) induced
at the fundamental, second, third and fourth-harmonic frequency by a z-polarized Gaussian electromagnetic pulse
with fundamental frequency Ω = 1.585 eV and intensity I0 = 1010 W cm−2 incident at the individual spherical MNP
in the absence of the QE. Results are rotationally symmetric with respect to the z-axis, and they are shown in the
(x, z)-plane normalized to the unity. The coordinates axes are indicated in panel a, and the coordinate origin is at the
center of the nanoparticle.

infrared–visible range, and the duration of the pulse is
set to σ = 5× 2π/Ω. In our calculations, the arrival
time of the pulse t0 is set to t0 = 5σ.

In order to analyze the nonlinear optical response
of the individual MNP, we calculate the time evo-
lution of the electron density and obtain the time-
dependent electric near field (induced field) created
by the MNP in response to an incident electromagnetic
pulse, Eind(r, t) = ∇VH[n(r, t)]. We also obtain the
induced dipole moment by integrating the differen-
tial charge density δn(r, t) over the entire nanoparti-
cle volume V, as pnp(t) = −

∫
V δn(r, t) r d V, where

δn(r, t) = n(r, t)− n0(r). The frequency-resolved quan-
tities are obtained from the time-to-frequency Fourier
transform,

δn(r, ω) =
∫

dt δn(r, t) eiωt e−
(

t−t0
σ

)2

,

pnp(ω) =
∫

dt pnp(t) eiωt e−
(

t−t0
σ

)2

,

Eind(r, ω) =
∫

dt Eind(r, t) eiωt e−
(

t−t0
σ

)2

.

(4)

The Gaussian filter introduced in eq 4 partially ac-
counts for decay and dephasing processes of the collec-
tive density oscillations that are not included in the
present (ALDA) TDDFT approach,64–66 such as the
electron–phonon scattering and the inelastic many-body
electron–electron scattering. Employing a Gaussian fil-
ter allows one to reach convergent spectral response at
high-harmonic frequencies. This approach is justified
since the fundamental frequency is strongly detuned
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from the MNP dipolar plasmon resonance so that no
electron-density oscillation and high-harmonic gener-
ation is expected when the laser is switched off. To
be consistent, we apply a Gaussian filter given by the
envelope of the incident pulse.

The nonlinear optical response of the spherical MNP
calculated with TDDFT in the absence of the QE is
analyzed in Figure 1b. In the upper panel, we show
the intensity spectrum of the induced dipole moment
|pnp(ω)|2, which is proportional to the power of the
light emitted to the far field. In the lower panel, we
show the spectrum of the induced near field |Eind(ω)| at
the z-axis, at 18 a0 (≈ 1 nm) from the MNP surface. Re-
sults are obtained for an incident Gaussian electromag-
netic pulse with fundamental frequency Ω = 1.585 eV
(half of the frequency of the MNP dipolar plasmon
ωDP = 3.17 eV), and intensity I0 = 108 W cm−2 (E0 =
4.8× 10−5 au, dashed blue line) and I0 = 1010 W cm−2

(E0 = 4.8× 10−4 au, red line), averaged over the du-
ration of the pulse σ. The corresponding energy per
incident pulse is well below the documented dam-
age threshold of small metal nanoparticles.67–69 The
induced dipole moment |pnp(ω)|2 (upper panel of Fig-
ure 1b) exhibits only odd harmonics. Thus, only odd
multiples of the incoming frequency are emitted into the
far field consistent with the inversion symmetry of the
MNP which prevents even-harmonic generation.70,71

In contrast to the far-field response, both odd and
even harmonics are present in the spectrum of the elec-
tric near field induced by the individual MNP (lower
panel of Figure 1b). Indeed, at the metal–vacuum in-
terface the inversion symmetry is locally broken, and
short-range even-harmonic electric fields can be in-
duced close to the metal surface.72–76 Overall, the non-
linear response for I0 = 1010 W cm−2 is several orders
of magnitude larger than that for I0 = 108 W cm−2. This
large increase is in accordance with the Ik/2

0 dependence
of the kth harmonic of the electric fields, expected from
the standard theory of nonlinear optics.70

The color maps of the charge density and of the radial
component of the electric near field induced by the in-
cident z-polarized Gaussian electromagnetic pulse are
shown in Figure 1c for the fundamental, second, third,
and fourth harmonics. The induced charge density
δn(r, ω = kΩ) of the k-th harmonic and the correspond-
ing near field Eind(r, ω = kΩ) are shown in the (x, z)-
plane. Note that because of the symmetry of the config-
uration, the calculated color maps are independent of a
rotation around the z-axis. At odd harmonics (k = 1, 3),
the induced densities are antisymmetric with respect
to the (x, y)-plane, n(x, y, z, kΩ) = −n(x, y,−z, kΩ),
which results in a net dipole moment (see Figure 1b).
In contrast, a quadrupolar-like near field and symmet-
ric charge-density, n(r, kΩ) = n(-r, kΩ), are induced at
even harmonics (k = 2, 4).19,77–82 The dipole moment is
zero in this case, and only a weak multipole emission
into the far field is possible. Thus, despite the second
harmonic being at resonance with the dipolar plasmon

of the MNP, the latter can not be excited because of
the symmetry selection rules. Another consequence of
the symmetry selection rules is that, in the (x, y)-plane
of symmetry, the even-harmonic near field is oriented
perpendicularly to the z-polarized incident pulse.

Hybrid Metal Nanoparticle–Quantum
Emitter System

We consider a QE located in the proximity of the
MNP surface as a transducer between the local even-
harmonic near field created by the individual nanoparti-
cle and the far-field radiation. The transition frequency
of the QE is set such that it is resonant with the sec-
ond harmonic of the fundamental field. The QE plays
the role of an optical resonator, sensitive to the second-
harmonic electric near field.32 We model the QE as a
point-like dipole that represents a structureless two-
level system subjected to weak illumination.83,84 This
two-level system represents a HOMO-LUMO transition
in a molecule or any electronic transition in an atom or
quantum dot. The expectation value of the QE dipole
moment, pQE(t), evolves in time according to85

p̈QE(t) + γQEṗQE(t) + ω2
0pQE(t) = α0Etot(R, t), (5)

where γQE refers to the intrinsic losses of the QE, α0 is
the QE oscillator strength, and ω0 is the QE resonant fre-
quency. As we already stated earlier, we are interested
in the case when ω0 = 2Ω. Thus, the QE is set to be
resonant with the second-harmonic frequency in all our
calculations, so that a variation of Ω implies simultane-
ous variation of ω0. For simplicity, α0 is always taken
as a scalar α0 = 1 au, corresponding to an isotropic QE.
In the TDDFT calculations we consider intrinsic losses
γQE = 0.1 eV.

The total electric field Etot(R, t) acting on the QE is
given by the sum of the incident laser field Eext(t) and
the field Eind(R, t) induced by the MNP at the position
of the QE, Etot(R, t) = Eext(t) + Eind(R, t). Note that
Eind(R, t) includes the reaction of the MNP not only
to the incident pulse, but also to the presence of the
QE. It is thus responsible for the QE self-interaction. To
verify that the transition is not saturated (and thus that
the description of the QE as a classical dipole given by
eq 5 holds), we performed additional calculations where
we explicitly addressed the quantum dynamics of the
two-level system treated in the basis of the ground and
excited states.

The QE dipole acts as an additional radiation source
emitting into the far field as well as affecting the dy-
namics of the conduction electrons of the MNP. Because
of the small size of the system, retardation effects can
be neglected, so that the QE placed at a position R near
the MNP induces an electric potential given by

VQE(r, t) = −pQE(t) ·
r−R
|r−R|3 , (6)
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where the transition charge density of the QE is rep-
resented using the point-dipole approximation. Thus,
the effective Hamiltonian acting on the conduction elec-
trons of the MNP, which includes the QE potential, be-
comes: from eq 2 into

Ĥ[n](r, t) = ĤMNP[n](r, t) + Vext(r, t) + VQE(r, t). (7)

Equations 1, 5, 6, and 7 are solved self-consistently
allowing to obtain the frequency-resolved quantities of
interest such as the dipole moment induced in the MNP
pnp(ω), in the QE pQE(ω), and the total dipole moment
given by the sum of both, p(ω) = pnp(ω) + pQE(ω).

We initially place the QE at the z-axis, correspond-
ing to the direction of polarization of the incident laser
pulse. For this geometry, only z-polarized dipole mo-
ments are induced in the QE and in the MNP. The sys-
tem then possesses cylindrical symmetry with respect
to the z-axis, which greatly reduces the computational
demands.

We use an incident z-polarized Gaussian electromag-
netic pulse with intensity I0 = 1010 W cm−2, and fun-
damental frequency Ω = 1.585 eV such that the second
harmonic is at resonance with the dipolar plasmon of
the MNP. The electric field of the pulse is shown with
dashed black line in Figure 2a. The QE is located at
d = 18 a0 (≈ 1 nm) from the MNP surface. A dipole
moment pQE(t) induced at the QE due to its interaction
with the MNP is shown in Figure 2a by the red line. The
resonant excitation of the QE manifests itself at long
evolution times after the passage of the electromagnetic
pulse where pQE(t) oscillates at the QE transition fre-
quency, ω0 = 2Ω. The excited QE strongly modifies the
nonlinear response of the system.

In contrast with the individual MNP, the hybrid MNP-
QE structure features strong emission at the even har-
monics, as we show in Figure 2b. In this figure the
intensity spectrum of the total induced dipole moment
|p(ω)|2 of the hybrid MNP-QE structure is shown by
the blue line. The reference results obtained for the non-
linear response of the individual MNP (without QE) are
shown by the dashed red line. The even harmonics in
the far field emerge because the QE breaks the reflection
symmetry with respect to the (x, y)-plane, and thus the
total inversion symmetry of the system.18 Note that the
spectra in Figure 2b are artificially broadened because
of the Gaussian filter (see eq 4). In the next section we in-
troduce a semiclassical method that allows to overcome
the difficulty of the (ALDA) TDDFT calculations to de-
scribe relaxation processes induced by the interaction
of excited electrons with phonons and by many-body
inelastic scattering events.64–66

The resonance between the transition frequency of
the QE and the second harmonic of the incident light
greatly enhances the intensity emitted by the system
at 2Ω. To illustrate this resonance effect, in the inset of
Figure 2b, we show the results obtained for a different
situation. The QE transition is set resonant with 4Ω,
and the system is illuminated by a Gaussian pulse with

fundamental frequency Ω such that the fourth harmonic
matches the frequency of the MNP dipolar plasmon,
4Ω = ωDP = 3.17 eV. For this excitation frequency,
|p(ω)|2 at the second harmonic decreases by several
orders of magnitude in favor of the emission at the
fourth harmonic resonant with the QE transition.

Let us now focus on the physical mechanism deter-
mining the nonlinear second-harmonic response of the
hybrid MNP-QE system. The polarization of the QE
mainly oscillates at the fundamental and at the second-
harmonic frequency of the incident pulse. Indeed, the
QE transition is resonant with the second harmonic,
however the field acting on the QE at the fundamental
frequency is orders of magnitude stronger than the near
field induced by the MNP at 2Ω. As a result, the off-
resonant polarization of the QE might be strong. Thus,
two distinct channels might contribute to the second-
harmonic polarization of the coupled MNP-QE sys-
tem: (i) the excitation of the QE at the resonant second-
harmonic frequency and associated QE polarization
induces a second-harmonic dipole moment in the MNP
due to the linear interaction, and (ii) the off-resonant po-
larization of the QE at the fundamental frequency lifts
the symmetry constraint as far as the entire system is
considered and allows for the second-harmonic dipole
moment to be induced via the nonlinear process.

In order to obtain the respective weight of the dif-
ferent channels inducing a second-harmonic dipole at
the MNP, we proceed as follows. Using the Fourier
analysis, we split the dipole moment of the QE ob-
tained from the TDDFT calculation into a sum of the
two leading contributions, pQE(t) = pΩ

QE(t) + p2Ω
QE(t),

one oscillating at the fundamental frequency, pΩ
QE(t),

and the other one at the second-harmonic frequency,
p2Ω

QE(t). We then run two different TDDFT simulations,
where the electron density of the MNP evolves (i) solely
under the action of the potential created by the point
dipole oscillating at the second-harmonic frequency,
VQE(r, t) = −p2Ω

QE(t) ·
r−R
|r−R|3 , with no external laser

pulse applied (Vext = 0), and (ii) under the action of
the external laser pulse and the potential created by the
point dipole oscillating at the fundamental frequency,
VQE(r, t) = −pΩ

QE(t) ·
r−R
|r−R|3 . The self-consistency loop

is stopped in both cases, in the sense that the MNP does
not act back on the QE. More details of this procedure
can be found in the Supporting Information.

As shown in Figure 2c, the second-harmonic response
of the MNP obtained in scenario i and shown with
blue line, closely corresponds to the result of the com-
plete self-consistent calculation (black line). The second-
harmonic response obtained under scenario ii is smaller
by more than 2 orders of magnitude (red line). These
results point toward the following main physical mech-
anism underlying the far-field SHG in the present sys-
tem:

• The interaction of the (strong) incident laser
pulse with the conduction electrons of the MNP
generates a second-harmonic near field.
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Figure 2: (a) Time evolution of an incident z-polarized Gaussian electromagnetic pulse Eext(t) with fundamental
frequency Ω = 1.585 eV (dashed black line) and of the dipole moment pQE(t) of the QE located at d = 18 a0 (1 nm)
from the MNP surface (solid red line). Results are normalized to their maximum value. (b) Intensity spectrum of the
total dipole moment |p(ω)|2 of the hybrid MNP-QE system (solid blue line) and of the individual MNP (dashed red
line). Results are obtained for an incident z-polarized Gaussian electromagnetic pulse with fundamental frequency
Ω = 1.585 eV and intensity I0 = 1010 W cm−2. In the inset, the solid blue line corresponds to the same result as in
the main panel, and the dashed black line corresponds to the results obtained for the transition frequency of the QE
resonant with the fourth harmonic of the incident light, ω0 = 4Ω, with Ω = 0.79 eV. (c) Second-harmonic dipole
moment of the MNP when interacting with the QE from a full calculation (black line), when interacting with the QE
oscillating only at 2Ω (blue line), and when interacting with the QE oscillating at Ω (red line, amplified 50 times)
for the same parameters as in panel b. For further details see the main text. (d) Sketch of the main physical process
behind the SHG in the present system. The MNP induces a near field at 2Ω that excites the emitter. Then, the linear
MNP-QE interaction at 2Ω generates the emission into the far field at the second-harmonic frequency.

• The second harmonic of the near field of the
MNP resonantly drives the dipolar polarization
of the QE at 2Ω.

• The resulting QE dipole oscillates at 2Ω and radi-
ates into the far field in the presence of the MNP
antenna.

The physical process revealed by the TDDFT simu-
lations (sketched in Figure 2d) is consistent with the
mechanism considered in previous related work,44 and
it gives rise to a practical semiclassical approach that
can be used to describe more complex situations due to
the intrinsic losses of the QE or its position. We develop
this semiclassical approach in the following section.

Semiclassical Model
The understanding of the physical mechanism behind
the SHG established above with the TDDFT can be used
to develop a semiclassical model capable of reproduc-
ing the role of the QE in the second-harmonic response
of the coupled system. This model goes beyond the
TDDFT because it naturally incorporates the losses and
the plasmon decay, and thus lifts the necessity of using
artificial broadening of the spectral features. Moreover,

it allows one to analyze systems without axial sym-
metry, i.e., situations of arbitrary polarization of the
incident pulse and location of the QE. An analysis of
the latter would be computationally out of reach for the
TDDFT calculations.

In this semiclassical model, the QE is excited by the
incident laser pulse and by the nonlinear electric near
field induced by the MNP. This nonlinear near field is
obtained from the TDDFT calculations of the individ-
ual MNP, i.e., in the absence of the QE. The excited QE
then radiates into the far field in the presence of the
MNP. The last stage of the calculation, which involves
the coupling of the QE with the MNP and the result-
ing light emission to the far field, is treated within a
classical framework. Using the dyadic Green’s function
formalism,84–87 we obtain

pQE(ω) =(
I− αQE(ω)

↔
G(R, R, ω)

)−1
αQE(ω)Etot(R, ω),

pnp(ω) = pTDDFT
np (ω) + αnp(ω)

↔
G0pQE(ω), (8)

where pTDDFT
np (ω) is the dipole moment of the individ-

ual MNP induced by the incident laser pulse, calculated
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with TDDFT in the absence of the QE. This contribu-
tion is zero for even harmonics. The electric field at the
position R of the QE, Etot(R, ω), is given by

Etot(R, ω) = ETDDFT
ind (R, ω) + Eext(ω), (9)

where the field of the external laser pulse Eext(ω) is
added to the electric field ETDDFT

ind (R, ω) created by the
noninteracting MNP. The field ETDDFT

ind (R, ω) is obtained
from the TDDFT calculation for the individual MNP
subjected to a Gaussian laser pulse, and it introduces
all the second-harmonic nonlinearity. The polarizability
of the QE, αQE(ω), and that of the Na nanoparticle of
radius a, αnp(ω), are found from

αQE(ω) =
α0

(ω2
0 −ω2 − iωγQE)

,

αnp(ω) = a3 εm(ω)− 1
εm(ω) + 2

, (10)

where

εm(ω) = 1−
ω2

p

ω2 + iγω
(11)

stands for the metal dielectric function described within
the Drude model, with plasma frequency ωp and intrin-
sic loss rate γ.

Finally, in eq 8
↔
G0 and

↔
G(R, R, ω) are the dyadic

Green’s functions:
↔
G0 provides the electric field at the

center of the MNP produced by a unitary point dipole

placed at position R.85
↔
G(R, R, ω) is the self-interaction

dyadic Green’s function that expresses the electric field
created by the MNP at position R in response to a point
dipole located at the same position. This can be fully
defined by the components perpendicular and parallel
to the MNP surface,88

G⊥(R, R, ω) =
lmax

∑
l=1

εm(ω)− 1
εm(ω) + l+1

l

a2l+1

|R|2l+4 (l + 1)2,

G‖(R, R, ω) =
lmax

∑
l=1

εm(ω)− 1
εm(ω) + l+1

l

a2l+1

|R|2l+4
1
2

l(l + 1),

(12)
where the summation over l represents a multipole ex-
pansion with a formally infinite number of multipoles
(lmax = ∞). In practice, we found that lmax ∼ 15 guar-
antees the convergence of the Green’s function for our
system. The metal dielectric function εm(ω) is given
by eq 11, where the plasma frequency ωp = 5.49 eV
and attenuation γ = 0.218 eV are determined from the
fit to the plasmon resonance in the optical absorption
spectrum of the individual MNP calculated with linear-
response TDDFT. These parameters, fixed prior to the
Green’s function calculation, are used throughout our
work for the Drude description of the metal nanopar-
ticle in the semiclassical model. This parametrization

allows to account for the finite-size effects on the lo-
calized plasmon energy and Landau damping in the
MNP.49,89 For further details we address the reader to
the Supporting Information.

As reported in the literature,90,91 the induced charges
are generally not located exactly at the geometrical sur-
face, but they are instead shifted inward or outward,
depending on the actual band structure of the material.
Therefore, to account for this effect, we introduce a dis-
tance shift ∆d in the semiclassical model. In practice,
for the QE located at a distance d from the geometrical
surface of the MNP the semiclassical model calcula-
tions are performed for a reduced “effective” separation
deff = d− ∆d, where ∆d = 1.5 a0. The TDDFT results
naturally include the spill-out effect and are not a sub-
ject to the distance shift. As a result, e.g., the TDDFT
data obtained for the QE located at d = 18 a0 from the
MNP surface has to be compared with semiclassical
model results obtained for deff = 16.5 a0.

Results and Discussion

TDDFT vs Semiclassical Model
Results

A detailed comparison between the TDDFT and semi-
classical model calculations is shown in Figure 3. Along
with the overall good agreement, which establishes the
validity of the semiclassical model, the results of the
quantum and semiclassical approaches reveal some dif-
ferences. Below we discuss the similarities and differ-
ences observed.

In Figure 3a, we start with the comparison between
the Green’s function G⊥(R, R, ω) obtained from the clas-
sical expression in eq 12 and the corresponding result
from the TDDFT calculations. Within the TDDFT, we
apply the standard linear-response procedure, where
the MNP is excited by an impulsive perturbation given
by the potential of a small z-oriented dipole ζ located at
R = (0, 0, a + d), Vext(r, t) = −ẑ · r−R

|r−R|3 ζδ(t). Here δ(t)
is the Dirac delta function. From the time-dependent
electron density n(r, t) we obtain the z-component of
the time-dependent field induced at the dipole position
F (R, t). Finally, the time-to-frequency Fourier trans-
form yields the frequency-resolved quantity 1

ζF (R, ω),
which can be directly compared with classical result
G⊥(R, R, ω).

In general, in Figure 3a, both the semiclassical model
(dashed lines) and quantum (solid lines) results show
good agreement in the range ω = 2 − 3.4 eV, with
a dipolar plasmon resonance of similar strength at
ωDP = 3.17 eV. However, two clear differences between
the two approaches can be observed: First, for the quan-
tum description of the MNP, along with the collective
plasmon features, intense single particle electron–hole
pair excitations appear at low energies (ω ∼ 1− 2 eV)
because of the finite size of the system. This quantum
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Figure 3: Comparison between the TDDFT and semi-
classical model results for the QE placed at the z-axis
in front of the MNP. (a) Real (blue) and imaginary (red)
part of the frequency-dependent self-interaction dyadic,
G⊥(R, R, ω), for a z-polarized point dipole located at
distance d = 26 a0 (1.3 nm) from the MNP surface.
Dashed lines: eq 12 with lmax = 15. Solid lines: TDDFT.
Results obtained with lmax = 2 (i.e., including only
the two lowest-order collective excitations of the MNP)
are compared with the TDDFT data in the inset. (b)
Intensity spectrum of the induced total dipole |p(ω)|2
obtained from the TDDFT calculations (blue line) and
from the semiclassical model (red line). Results are
shown as a function of the frequency measured in units
of the fundamental frequency Ω = 1.585 eV of the
incident laser pulse. The QE is located at d = 18 a0
(1 nm) from the MNP surface. (c) Second-harmonic
dipole |p(ω = 2Ω)|2 calculated using the semiclassical
model (dashed lines) and TDDFT (solid lines). Results
are shown as a function of the MNP-QE distance d for
three different fundamental frequencies 2Ω = 2.4 eV,
2Ω = 3.17 eV, and 2Ω = 3.4 eV. In panels b and c a z-
polarized Gaussian pulse of intensity I0 = 1010 W cm−2

is used.

effect is absent in the semiclassical model based on the
Drude dielectric function of the free-electron gas. As
a second difference, the higher-order multipole plas-

monic resonances at ω ∼ 3.5 eV are less developed
in the quantum response as compared to the semiclas-
sical one. This is connected to the diffused nature of
the surface-charge density in the quantum description
due to dynamical nonlocal screening, which does not al-
low higher-order pasmon modes to be formed in small
nanoparticles. A larger MNP would be needed to obtain
well-defined multipolar plasmon modes. To illustrate
the effect of the multipolar excitations, we performed an
additional calculation of G⊥(R, R, ω) by only consider-
ing the lowest dipolar and quadrupolar terms (lmax = 2)
in the multipole expansion given by eq 12. Much better
agreement with the TDDFT results is obtained in this
case at energies near 3.5 eV as shown by the inset of
Figure 3a. We checked that the agreement between the
TDDFT and the semiclassical model improves when
increasing the MNP-QE separation d, consistent with
the decrease of the relative contribution of the high-
order multipoles with increasing d (see eq.12 where
|R| = a + d).

We further validate the semiclassical approach by
comparing the TDDFT and semiclassical results for
the nonlinear response of the hybrid MNP-QE system
excited by a z-polarized Gaussian pulse with funda-
mental frequency Ω = 1.585 eV and intensity I0 =
1010 W cm−2. In Figure 3b we show the intensity
spectrum of the total dipole |p(ω)|2 obtained with the
TDDFT (solid blue line) and the semiclassical model
(dashed red line) calculations. An excellent agreement
between the two approaches is obtained for the nonlin-
ear polarization at the second harmonic, which is at the
focus of the present work.

For higher-order harmonics, in particular the higher-
order even harmonics that can be generated only owing
to the interaction with the QE, the agreement strongly
worsens. This indicates that other nonlinear processes
beyond the scope of the present model become impor-
tant for such low intensity emission. It is worth noting
that for the sake of comparison between the two ap-
proaches, the Gaussian filters employed in the Fourier
analysis of the time-dependent quantities in the TDDFT
are also accounted for in the semiclassical model calcu-
lations shown in panels b and c of Figure 3, as we detail
in the Supporting Information.

The results shown so far were obtained for the sec-
ond harmonic at resonance with the dipolar plasmon
of the MNP. One would expect that under these con-
ditions the SHG is very efficient. Indeed, the emission
of the QE resonantly excited by the 2Ω near field of
the MNP is further enhanced by the dipolar resonance
of the MNP playing the role of a nanoantenna.8,9,26–32

On the other hand, the second-harmonic near field of
the MNP that drives the QE, ETDDFT

ind (R, ω = 2Ω), has a
quadrupolar character19,77–82,92 (see Figure 1c). There-
fore, it should be stronger when the second-harmonic
frequency matches the quadrupolar plasmon resonance
of the MNP92 (2Ω = ωQP = 3.4 eV, see Supporting
Information). This, in turn, should also lead to an effi-
cient excitation of the QE and thus increase the emitted
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second-harmonic signal.
In order to find the optimal conditions for the SHG,

we use the TDDFT and the semiclassical method to
study how the second-harmonic radiation into the far
field depends on the fundamental frequency. In Fig-
ure 3c, the intensity spectrum |p(ω = 2Ω)|2 is shown
as a function of the distance d of the QE from the MNP
surface for three different frequencies Ω of the inci-
dent Gaussian laser pulse. First, the values of Ω are
set such that the second harmonic matches the dipolar
(2Ω = 3.17 eV, dipole resonant) and the quadrupolar
(2Ω = 3.4 eV, quadrupole resonant) plasmonic reso-
nances of the MNP. We consider as well the reference
case where both the fundamental frequency and the
second harmonic are out of resonance with any of the
plasmonic modes of the MNP (2Ω = 2.4 eV, off res-
onant). We recall that the transition frequency of the
QE is always set resonant with the second harmonic,
ω0 = 2Ω.

As a first observation from the results shown in Fig-
ure 3c, we would like to emphasize that the semiclas-
sical model does an excellent job in reproducing the
TDDFT results. Both approaches show the strongest
SHG when the second-harmonic frequency matches
the dipolar plasmon resonance of the MNP, while the
off-resonant conditions lead to the smallest SHG. Fur-
thermore, for all three excitation frequencies the power
emitted to the far field at the second harmonic mono-
tonically decreases with increasing distance d. This
behavior reflects the decrease of the nonlinear near field
created by the MNP. However, as we show using the
semiclassical model in the next section, the frequency
and distance dependence of the SHG is strongly depen-
dent on the intrinsic losses of the QE. This aspect of the
problem cannot be addressed within the present TDDFT
because it lacks the description of the decay and dephas-
ing processes,64,65 forcing an artificial broadening of the
spectral features with, e.g., the Gaussian filters applied
to connect the time-resolved and the frequency-resolved
quantities. As a consequence, reliable information can
only be obtained from TDDFT for the cases when the
QE has large intrinsic losses.

Influence of the Losses and Posi-
tion of the QE in the SHG

The semiclassical model established in the previous sec-
tion can be used for a detailed study of the SHG from
the hybrid MNP-QE structure in response to incident
plane-wave illumination. In particular, the analysis of
the dependence of the SHG on experimentally relevant
parameters, which was not computationally possible
with TDDFT, becomes within reach. Namely, we are
interested in the dependence of the SHG on the funda-
mental frequency, on the intrinsic QE losses, and on the
relative position of the QE.

The relationship between the second-harmonic dipole
~P2Ω induced by an incident plane wave with average in-

tensity I0 and previous results of the frequency-resolved
dipole p(ω) induced by an electromagnetic Gaussian
pulse (eq 3) is given by

~P2Ω =
8
√

2π I0

σcE2
0

p(ω = 2Ω), (13)

where c is the speed of light in vacuum, and σ and E0
are the duration and the amplitude of the electromag-
netic Gaussian pulse used in the TDDFT simulations,
respectively (see details in the Supporting Information).
p(ω = 2Ω) is calculated using the semiclassical model
(eq 8).

The color maps in Figure 4 show the second-harmonic
response |~P2Ω|2 of the coupled MNP-QE structure sub-
jected to an incident z-polarized plane wave with fre-
quency Ω and average intensity I0 = 1010 W cm−2 for
different locations of the QE, defined by the distance d
from the nanoparticle surface and the polar angle θQE
(see insets in Figure 1a and Figure 4a for the geometry
of the system). The range of distances d = 1− 5 nm
covered in our study is set such that retardation effects
can be neglected. The results are axially symmetric with
respect to the z-axis, and without loss of generality, we
consider that the QE is placed in the (x, z)-plane.

Figure 4 shows the dependence of the SHG on the QE
position different fundamental frequencies, Ω, and in-
trinsic losses of the QE, γQE. Specifically, we performed
calculations for (i) high QE losses (γQE = 0.1 eV), which
often occur in experiments at room temperature, (ii) in-
termediate losses (γQE = 10−3 eV), and (iii) low losses
(γQE = 10−7eV), close to the spontaneous decay rate
of the QE. Similar to the discussion in Figure 3c, we
consider the fundamental frequencies corresponding
to three different situations: (i) second harmonic is at
resonance with the dipolar plasmon of the MNP (dipole
resonant); (ii) second harmonic is at resonance with the
quadrupolar plasmon of the MNP (quadrupole reso-
nant); (iii) the second harmonic and the fundamental
frequency are off-resonance with any plasmon mode of
the MNP (off resonant).

Some common features can be pointed out in Figure 4.
First, the symmetry with respect to the position of the
emitter given by the angle θQE = π/2, which reflects
the symmetry of the system with respect to the (x, y)-
plane. Second, the SHG is generally stronger for the
QE placed around the z-axis (θQE ≈ 0 and π), the re-
gion where the near field excited at 2Ω is more intense
(due to its quadrupolar spatial profile, see Figure 1c).
Indeed, the near field resonantly excites the QE and
partially imprints its spatial distribution into the depen-
dence of the second-harmonic signal on the position
of the QE. As another result common for large and in-
termediate QE losses: the strongest SHG is obtained
for the second-harmonic frequency at resonance with
the dipolar plasmon of the metal nanoparticle, which
corroborates the TDDFT results discussed in the pre-
vious section. The maximum second-order nonlinear
hyperpolarizability α

(2)
m̂ (2Ω; Ω, Ω) (which relates the
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Figure 4: Second-harmonic response |~P2Ω|2 of the coupled MNP-QE system illuminated with an incident z-
polarized plane wave with frequency Ω and average intensity I0 = 1010 W cm−2 for different positions of the QE in
the (x, y)-plane. The distance is measured from the surface of the MNP, and the QE is placed at a point given by
(d, θQE). The polar angle θQE is measured with respect to the symmetry z-axis parallel to the electric field vector
of the incident electromagnetic plane wave. For a sketch of the geometry, see Figure 1 and panel (a) of the present
figure. The panels of the figure correspond to the results obtained for different values of the fundamental frequency
Ω (rows) and intrinsic QE losses γQE (columns). We set Ω such that (i) the second harmonic is at resonance with
the quadrupolar plasmon of the MNP (2Ω = 3.4 eV, quadrupole resonant, top row); (ii) the second harmonic is at
resonance with the dipolar plasmon of the MNP (2Ω = 3.17 eV, dipole resonant, middle row); (iii) the fundamental
frequency and the second harmonic are off-resonance with any mode of the MNP (2Ω = 2.4 eV, off resonant,
bottom row). The choice of γQE illustrates the situations with high (γQE = 10−1 eV, left column), intermediate
(γQE = 10−3 eV, center column), and low (γQE = 10−7 eV, right column) QE losses. For the values used at each
panel, see also the labels in the figure.

m-polarized second-harmonic dipole ~P2Ω induced in
the total system with the intensity I0 of the incident
plane wave) is |α(2)m̂ (2Ω; Ω, Ω)| = 5.1 × 105 au and

|α(2)m̂ (2Ω; Ω, Ω)| = 2.3× 106 au for high and intermedi-
ate losses, respectively (see details in Supporting Infor-
mation).

The most prominent feature revealed by the results in
Figure 4 is however the key role played by the intrinsic
QE losses in the efficiency of the SHG and its depen-
dence on the QE position. In general, lower intrinsic
losses allow to reach significantly larger SHG. Remark-
ably, with γQE ranging from high (10−1 eV) to interme-
diate (10−3 eV) and low (10−7 eV) losses, the character
of the distance d-dependence of the SHG (within the
studied distances) changes completely. While |~P2Ω|2
is monotonously decreasing for large QE losses in
the range of distances considered, it is maximized

at d ∼ 1.5 − 2 nm for intermediate losses, and at
d ∼ 15− 20 nm for low losses (this last result is not
shown in the figure because it falls outside the valid-
ity limit of the nonretarded approximation used in our
calculations). As a further striking result, for low intrin-
sic QE losses, the resonant condition with the dipolar
plasmon 2Ω = ωDP leads not to the largest but to the
smallest SHG. The maximum SHG is obtained in this
case for the QE resonant with the quadrupolar plas-
mon mode of the MNP and for off-resonant conditions,
reaching a maximum second-order hyperpolarizabil-
ity |α(2)m̂ (2Ω; Ω, Ω)| = 1.4× 107 au. Our results show
that this second-order nonlinear hyperpolarizability can
be 3 orders of magnitude stronger than that of a typi-
cal highly nonlinear material such as BaTiO3 of similar
geometry and size (see Supporting Information). How-
ever, we note that the scaling of the SHG with the size of
the nanoparticles may be different for the two systems.
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In order to understand these results, it is useful to
consider the respective weights of the contributions to
the total second-harmonic dipole from the QE, ~PQE

2Ω ,
and from the MNP, Pnp

2Ω, where ~P2Ω = ~PQE
2Ω + ~Pnp

2Ω.
For simplicity, we discuss the case of the QE located at
the z-axis, but the same arguments are valid for other
geometries. From eq 8 one obtains

|~PQE
2Ω |
|~P2Ω|

=
1

|1 + αnp(2Ω) ẑ
↔
G0(R) ẑ|

,

|~Pnp
2Ω|

|~P2Ω|
=

|αnp(2Ω)ẑ
↔
G0(R)ẑ|

|1 + αnp(2Ω)ẑ
↔
G0(R)ẑ|

. (14)

These expressions are very useful since they do not
depend on the characteristics of the QE. As shown in
Figure 5a for the three excitation frequencies, at large
distance d the SHG is dominated by the dipole moment
induced by the QE (dashed lines), while at short separa-
tion distances the dipole moment of the MNP provides
the leading contribution (solid lines). Note that given
the scaling of the MNP polarizability with the particle
radius, αnp ∼ a3, and the dependence on the separation
distance of the projection of the Green’s dyadic in the

near field, ẑ
↔
G0 ẑ ∼ 1/|a + d|3, the crossover region

would move to larger distances d with increasing MNP
radius.

Along with the relative contributions of the nonlinear
polarizations of the QE and of the MNP to the SHG, the
response of the QE (probing the 2Ω near field) is an im-
portant characteristic of the system. The self-interaction
due to the presence of the MNP modifies the total decay
rate of the QE, therefore once we have discussed the
relative contribution of the QE and of the MNP to the
SHG, it is useful to discuss how the decay rate of the
QE changes due to this self-interaction with the MNP.
The “effective” broadening (or, equivalently, total decay
rate) of the QE resonance (Purcell effect) can be found
from eq 8 and eq 10,

γ′QE = γQE + α0Im{ẑ
↔
G(R, R, 2Ω) ẑ}/2Ω, (15)

where ẑ
↔
G ẑ ∼ 1/|R|6 = 1/(a + d)6 in first approxima-

tion (l = 1 in eq 12). We show the self-interaction contri-
bution to γ′QE (last term in eq 15) in Figure 5b. Because
of the frequency dependence of the MNP polarizabil-
ity, this is largest when the second-harmonic frequency
is resonant with the dipolar plasmon of the MNP and
smallest for the off-resonance conditions. Importantly,
the broadening γ′QE of the QE transition determines the
maximum nonlinear polarization of the QE that can be
reached at resonance with the second-harmonic near
field of the MNP, ω0 = 2Ω.

We are now in a position to explain the main trends
observed in Figure 4. Let us consider first the case of
large intrinsic losses γQE = 10−1 eV dominating the
decay of the QE over the extra losses introduced by the

Figure 5: (a) Relative contributions of the MNP:
|~Pnp

2Ω|/|~P2Ω| (solid lines), and of the QE: |~PQE
2Ω |/|~P2Ω|

(dashed lines) to the total nonlinear dipole of the system
at the second-harmonic frequency. Results are shown as
a function of the MNP-QE distance d. The QE is located
at the z-axis (θQE = 0). (b) Additional broadening of the
QE transition because of the interaction with the MNP.

The quantity α0Im{ẑ
↔
G(R, R, 2Ω)ẑ}/2Ω is shown as a

function of the MNP-QE distance d. (c) Dependence of
the polarization direction of the total emitting dipole
φP on the angular position θQE of the QE. The QE dis-
tance from the MNP surface is fixed to d = 2 nm, and
γQE = 10−3 eV. θQE = 0 corresponds to the QE located
at the z-axis, and θQE = π/2 corresponds to the QE
located at the x-axis (see inset). In all the panels of the
figure we consider three different excitation frequencies
corresponding to Ω = 1.7 eV (second harmonic at reso-
nance with the quadrupole plasmon of the MNP, blue
lines), Ω = 1.585 eV (second harmonic at resonance
with the dipolar plasmon of the MNP, red lines), and
Ω = 1.2 eV (off-resonant conditions, green lines).

self-interaction, so that the “effective” broadening re-
mains unchanged, γ′QE ' γQE (see Figure 5b). The QE
dipole at the second-harmonic frequency can then be
estimated from ~PQE

2Ω ∝ ETDDFT
ind (R, 2Ω)/γQE. The near

field at the second-harmonic frequency induced by the
MNP in response to the incident field is of quadrupolar
character so that ETDDFT

ind ∼ 1/|R|4, and correspond-
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ingly ~PQE
2Ω ∝ 1/|R|4. Further, the second-harmonic

dipole of the MNP resulting from the interaction with
the QE can be obtained from eq 8. This is given by
~Pnp

2Ω = αnp(2Ω)
↔
G0~PQE

2Ω , which results in the following
dependence of the second-harmonic dipole with the QE
position: ~Pnp

2Ω ∝ 1/|R|7. Therefore, the maximum total
nonlinear dipole ~P2Ω is reached for small d (the MNP
dominating regime), and it is monotonically decreasing
with increasing d as a consequence of the drop-off of
both the second-harmonic near field and the MNP-QE
interaction. Since the emission is maximum for short
distances where it is dominated by the nonlinear dipole
moment of the MNP, the power emitted to the far field
is enhanced when the second-harmonic matches the
dipolar plasmon, i.e., when the MNP polarizability is
largest.

Let us consider now the case of low intrinsic losses
γQE = 10−7 eV such that the decay of the QE polariza-
tion is determined by the self-interaction for all the dis-

tances in the figures: γ′QE ' α0Im{ẑ
↔
G(R, R, 2Ω) ẑ}/2Ω

(plotted in Figure 5b). The nonlinear dipole of the QE at
the second-harmonic frequency can then be estimated
from ~PQE

2Ω ∝ ETDDFT
ind (R, 2Ω)/γ′QE. The dependence

of ~PQE
2Ω on the separation distance d is thus governed

by that of the self interaction γ′QE ∼ 1/|R|6 and that
of the quadrupole near field at the second harmonic
ETDDFT

ind ∼ 1/|R|4. As a result, ~PQE
2Ω ∝ |R|2, while

~Pnp
2Ω ∝ 1/|R|. The largest nonlinear dipole can finally be

reached at large |R| owing to the polarization of the QE.
The system is in the regime where the emission from
the QE dominates and the SHG intensity increases as

∼ |R|4. Additionally, since Im{ẑ
↔
G(R, R, ω)ẑ} is maxi-

mum at resonance with the dipolar plasmon of the MNP,
setting 2Ω = ωDP leads to a larger width of the QE reso-
nance (larger losses) and thus to smaller SHG. Thus, the
largest nonlinear signal is obtained in this regime for
the second harmonic in resonance with the quadrupo-
lar mode of the MNP and for off-resonance condi-
tions. Apart from the losses introduced by the MNP,
the second-harmonic near field ETDDFT

ind (R, ω = 2Ω) in-
duced by the individual MNP is stronger for the sec-
ond harmonic matching the quadrupolar plasmon reso-
nance of the MNP,92 2Ω = ωQP = 3.4 eV, which finally
results in the largest SHG as shown in Figure 4g. Inter-
estingly, the reduction of the second-harmonic signal at
small |R| because of the self-interaction terms observed
here has a similar physical origins as the well-known
effect of the QE luminescence quenching in the linear
case.84,87

For intermediate losses γQE = 10−3 eV, the “effective”
broadening of the QE is given by the self-interaction at
small distances d from the surface and saturates to the
intrinsic value γQE at larger distances (see Figure 5b).
As a consequence, by increasing d the induced QE po-
larization at the second harmonic changes its distance
dependence from ~PQE

2Ω ∝ |R|2 to ~PQE
2Ω ∝ 1/|R|4 lead-

ing to a maximum of the SGH for the d = 1.5− 2 nm
distance range.

To close this section it is worthwhile to point out an
attractive possibility to control the polarization of the
light emitted at the second-harmonic frequency, owing
to the quadrupolar character of the second-harmonic
near field of the MNP induced by the plane-wave ex-
citation. In Figure 5c we analyze the direction of po-
larization of the total second-harmonic dipole of the
system for different positions of the QE. The direction
of polarization of the nonlinear dipole is defined by the
angle φP , measured between ~P2Ω and the positive di-
rection of the z-axis. The position of the QE is given
by the corresponding angle θQE (see inset). The QE is
placed at different θQE while keeping a fixed distance
d = 2 nm from the MNP surface. The calculations
are performed considering intermediate intrinsic losses
γQE = 10−3 eV, but the same qualitative behavior is
found for other cases.

When the QE is located at θQE = 0 or θQE = π, cor-
responding to the polarization direction of the exter-
nal laser field, the total emitting dipole is z-polarized
(φP = 0), i.e., it is parallel to the excitation laser. In con-
trast, when the QE is placed at θQE = π/2 the induced
dipole is x-polarized (φP = π/2). This implies a full po-
larization conversion of the second-harmonic radiation
with respect to the fundamental wave. This result is a
robust consequence of the symmetry of the system, as
discussed in previous sections. When the QE is located
at the z-axis, the system has a rotation symmetry with
respect to the z-axis, thus no x- or y-polarized SHG can
be produced. In a similar way, when the QE is located
at the x-axis, the system is symmetric with respect to
the (x, y)-plane, and therefore the z-polarized SHG is
forbidden.

Summary and Conclusions
We have studied how the coupling of a QE with a cen-
trosymmetric MNP alters the nonlinear response of
this compound system and enables otherwise forbid-
den SHG. Using TDDFT simulations we have shown
that when the second harmonic of the fundamental fre-
quency is resonant with the transition frequency of the
quantum emitter, the latter plays the role of an optical
resonator that scatters the local second-harmonic near
field created by the MNP into the far field.

For the present model, the TDDFT calculations reveal
the following three-step scenario of the SHG process:
first, the MNP generates a second-harmonic near field
in response to the incident radiation, second, the QE is
resonantly excited at 2Ω by this near field, and finally,
the QE emits in the presence of the MNP. We would
like to stress however that the generalization of this
mechanism to other systems has to be done carefully
considering the relevant characteristics of the QE and
the plasmonic nanoobject. In particular, the polarization
of the QE at the fundamental frequency can also lead to
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an appreciable nonlinear response of the MNP as would
be, for instance, the case of a small MNP and a strongly
polarizable QE.

The insights provided by the TDDFT calculations al-
lowed to develop a semiclassical model of the second-
harmonic response of the MNP-QE system. Using the
semiclassical model, we have demonstrated that the
efficiency of the SHG, its dependence on the position of
the QE, and its dependence on the frequency match be-
tween the plasmon modes of the MNP and the QE tran-
sition is determined by the relative importance of the
intrinsic losses of the QE and the broadening of the QE
transition due to the self-interaction via the MNP. We
have shown that it is possible to obtain orders of mag-
nitude stronger SHG by reducing the intrinsic losses of
the QE. Owing to the large SHG obtained in the present
system, we believe that the effect of the QE will persist
in a practical experimental situation where the MNP
geometry imperfections and the substrate may produce
a ‘background’ SHG.

Finally, we have demonstrated the possibility to con-
trol the polarization of the light emitted at the second
harmonic. We have shown that the polarization of the
total second-harmonic dipole of the MNP-QE system
depends on the position of the QE with respect to the
axis defined by the polarization of the incident light.
In particular, this allows to obtain a full polarization
conversion where the dipole emitting at the second har-
monic is perpendicular to the illuminating field.

Although the results shown in this work are obtained
for a model spherical nanoparticle and a structureless
QE, the qualitative conclusions driven here stem from
the robust phenomenon of generation of even-harmonic
signal in the near field close to the MNP surface, from
general symmetry constraints, and from the physics of
optical resonators interacting with plasmonic nanopar-
ticles. It thus appears from our findings that the hybrid
MNP-QE structure can be a promising platform for en-
hancing second-harmonic generation and probing the
nonlinear near fields of metallic nanostructures.
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