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High-Frequency Nonlinear Model Predictive Control of a Manipulator

Sébastien Kleff'2, Avadesh Meduri!, Rohan Budhiraja?, Nicolas Mansard®*, Ludovic Righetti'

Abstract— Model Predictive Control (MPC) promises to en-
dow robots with enough reactivity to perform complex tasks
in dynamic environments by frequently updating their motion
plan based on measurements. Despite its appeal, it has seldom
been deployed on real machines because of scaling constraints.
This paper presents the first hardware implementation of
closed-loop nonlinear MPC on a 7-DoF torque-controlled robot.
Our controller leverages a state-of-the art optimal control
solver, namely Differential Dynamic Programming (DDP), in
order to replan state and control trajectories at real-time rates
(1kHz). In addition to this experimental proof of concept, we
present exhaustive performance analysis on the iconic pick-and-
place task and show that our controller outperforms open-loop
MPC. We also exhibit the importance of a sufficient preview
horizon and full robot dynamics in the controller performance
through comparisons with inverse dynamics and Kkinematic
optimization.

I. INTRODUCTION

In order for robots to perform complex tasks such as col-
laborating with a human or running out in the real world, they
must be able to anticipate and react. Optimal control offers a
convenient framework to endow them with such capabilities
as it characterizes state-dependent control policies from high-
level objectives over a time horizon. Model predictive control
(MPC) [1], [2] approximates the policy online into locally
optimal policies. Although well-known within the robotics
community [1], [3], its hardware deployment is yet to be
achieved when using high dimensional nonlinear dynamic
models, mainly due to scaling issues. In default of sufficient
computation capabilities two main approaches can be found
in the literature.

One approach is to separate planning and control into
offline or low-frequency motion planning and online inverse
dynamics (ID) [4]. Modern planners can generate complex
and dynamic whole-body motions [5], [6] and ID controllers
nowadays enjoy very fast rates thanks to efficient rigid-
body dynamics algorithms [7], [8]. For instance the task
function approach [9] which consists in solving IK/ID as
the optimization of an operational space task metric can be
solved in far less than 1ms [10], [11]. However when these
planners are not fast enough to allow online replanning, it
becomes an issue in face of uncertainty such as external
disturbances or modelling errors. Conversely, ID controllers
are unable to plan because the instantaneous linearization of
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Fig. 1: Pick-and-place task, with high dynamics and preci-
sion thanks to our state-feedback MPC, but keeping high
compliance thanks to the low-level torque control.

the robot dynamics leads to a torque selection based solely
on the next desired state. From an optimal control perspective
ID can be regarded as the singular case of a zero preview
horizon [12]. Yet anticipation at the control level is important
for complex tasks, e.g. capturability-constrained balancing
tasks in locomotion [13] or non-holonomic orientation con-
trol tasks through angular momentum [14], where current
actions affect future states.

Another approach is to reduce the complexity of the MPC
problem by reasoning over simplified models. For example in
legged locomotion the linear inverted pendulum (LIPM) can
be used in a receding horizon controller to generate stable
gaits thanks to its linearity and low dimension [15], [16]. But
the whole-body dynamics plays an important role in dynamic
motions [17], [18] and is difficult to reflect through simplified
descriptions: the LIPM assumes a zero-angular momentum,
which prevents it from discovering highly dynamic behaviors
such as backflips.

Recent progress in trajectory optimization (TO) of-
fers plausible solutions for preview control. The original
continuous-time Optimal Control Problem (OCP) is tran-
scripted into a finite dimensional nonlinear program (NLP)
which can then be solved using parametric optimization
techniques. In particular Differential Dynamic Programming
(DDP) [19] has revealed its potential in whole-body motion
generation [20] [14]. DDP is an iterative method based on
the shooting approach [1], i.e it optimizes over controls while
keeping states implicit, as opposed to collocation methods
[21] which treat states explicitly as decision variables. While



collocation methods can produce impressively realistic be-
haviors such as in [22] thanks to a proper globalization
strategy, they are much slower than shooting methods which
exploit the sparsity of the problem. Recent improvements
based on multiple-shooting [23] such as FDDP [24] mitigate
the poor globalization by allowing unfeasible initialization.

Hardware MPC implementations based on DDP can be
found in the literature such as in [25] where the authors pro-
pose online replanning based on a DDP-like algorithm where
an optimal open-loop torque is combined with a closed-loop
PD controller, but sensory feedback is not directly used in
the replanning loop. In [26], the authors use iLQR in a
separate thread to replan with state feedback every 50ms
while the robot is controlled at 5ms. In [27] where the
authors propose to accommodate a low re-planning frequency
(15 — 20H z) with a control frequency of 400H z through
frequency shaping. While the proposed controller exhibits
good performance it only solves kinematic TO and torques
are retrieved through ID. Until the point where the MPC can
be evaluated at the frequency of the motor driver inputs, an
additional layer of control would be necessary and the MPC
would act as a planner.

In this paper we present an MPC controller that computes
torques at 1kH z over a time horizon based on the whole-
body dynamic model. We propose an original optimal-control
formulation of the pick-and-place task, and we use FDDP
[24] to solve the OCP in an MPC fashion with 2 variants:
an open-loop controller similar to [25] computing a feed-
forward torque combined with a joint impedance controller,
and a closed-loop controller updating the feed-forward torque
based on sensory feedback. We show experimentally that
the closed-loop controller outperforms the open-loop one.
We also compare our controller with ID and kinematic TO.
To the best of our knowledge, it is the first experimental
demonstration of nonlinear MPC at 1kH z with pure torque
control on a manipulator without any additional stabilizing
controller. The outcomes are of strong practical interest:
the robot is able to versatily adapt to perturbation during
a dynamic task, reach the target with arbitrary precision and
offer a full compliance when e.g. an operator physically
interacts with it. This paves the road to a new way of
designing controllers of manipulator robots in applicative
contexts. In Section II the OCP is formulated and solved
through DDP-based MPC. In Section II we present our
formulation of the cyclic pick-and-place task, which is then
benchmarked on the real robot in Section IV.

II. DDP-BASED MPC

In this section we formulate the OCP and solve it in
receding horizon fashion using DDP with 2 variants, and
we formulate the pick and place task.

A. OCP formulation

The problem is formulated by the continuous-time OCP

) T
R A L(x(t),u(t), t)dt + Ly(z(T)) (1

z(t) = F(z(t),u(t)) Vvtel0,T]
st S z(0) =g
z(t) € X u(t) el

where © = (q,v) is the robot’s state including position
and velocities, © = 7 is the control torque, F' the robot’s
dynamics, L, Ly the running and terminal costs, X',U{ are
the sets of admissible states and controls.

B. DDP resolution

For more details about the original DDP algorithm we
refer the reader to [20] [19]. The time horizon is divided
into sub-intervals [¢;,t;11) of length § > 0 and the solution
space is restricted to piecewise constant open-loop controls

U = {uyg,...,un—1}. The transcription of (1) reads
N—
1}1(1 Z (i, u;) + v (xzn) )

Zit1 = flxg,u;) Vie{0,..,N—1}

Lo = To
where f the Euler or RK4 integration of F' and [; =
ft’“L z;,u;)dt. DDP solves (2) given an initial guess

(X 0 UY) using linear-quadratic (LQ) approximations of f,!
and Bellman’s recursion by iterating 2 stages

1) Backward pass : a quadratic model of the Hamiltonian
around the current guess is propagated starting from
the terminal node and the corresponding LQRs are
solved recursively for ¢ = N, ..., 0

2) Forward pass : the resulting LQR policy is simulated
and the current guess is updated

The inequality constraints are not explicitly taken into ac-
count in the solver but implicitly using cost penalization. The
algorithm returns optimal state sequence and control policy
(X*,U*) with feedforward control k* and feedback gains
K*

uwi(z)=ki+ K/ (x—=x}) Vie{0,..N—-1} (3)

The specificity of the FDDP solver we use here is to
accept unfeasible initialization to enhance classical DDP’s
globalization strategy. This is done by using a multiple-
shooting transcription of (2), which forces the discretized
state trajectory to match the shooting nodes. Concretely, the
equality constraint in (2) is changed into x; 11 = f(x;, u;) —
fit1 where f;,; represent the gap between the integrated
state trajectory over [t;,t;+1) and the next shooting node
Tiy1, ie. fixn = f(zs,u;)) — wie1. The forward pass
is modified by using a partial nonlinear rollout and the
backward pass is modified accordingly. Detailed explanations
of the FDDP solver can be found in [24].



C. MPC control schemes

Problem (2) is solved up to an horizon 7, = N
which returns an optimal state trajectory and control policy
(X*,U™*) as described in Eq. (3). For the new initial guess
at the next MPC cycle we use (X%, U?) < (X*,U*) where
x is replaced by the current initial state z.

1) Open-loop MPC: In this scheme, planning and control
are separated and the plan is updated based on the MPC
predictions as shown in Figure 2. The control policy is

w(®) = ug(e1) + PD(a7, 2) @)
ko + K (2] —a5) — Kp(@d—qi) — Kp(0 —])

where & = (§,0) is the measured/estimated state. Since
planning and control are synchronous, x{) is reset to x] at
each cycle so the feedback term vanishes and (4) reduces to

u(z) = ko — Kp(4d—qi) — Kp(v —vy) )
Talsk
T 7 ub uy + PD(z7,2)
°sl MPC ———» PD "+ Robot
L
a - Filter
x q

Fig. 2: Open-loop MPC: replan based on predictions. This
control scheme is representative of MPC controllers found
in the literature such as in [25].

2) Closed-loop MPC: This scheme uses a direct state
feedback in the planning loop as shown in Figure 3, hence

u(@) = ugli] ©6)
= ki + K (& — )

Since the zo = =z is reset to £ at each cycle, the control
law reduces to the sole feedforward gain

u(®) = ko ()

The feedback gain K; compensates small deviations around
x, and can be used to interpolate the control trajectory over
[to, t1) when the planning rate is lower than the control rate.
But as seen from equation (7) the feedback term is not used
when planning and control are synchronous.

III. PICK AND PLACE TASK FORMULATION

We propose here an original formulation of the cyclic pick
and place task. First we introduce an acyclic reaching task.

Task

o) us
MPC » Robot
Z Filter 7

Fig. 3: Closed-loop MPC: direct feedback from sensors. This
control scheme is representative of an “’ideal” MPC.

A. Static pose reaching task

The task is to bring the end-effector position p(z) to a
desired end-effector position p. The running cost is split into
a goal tracking term, regularization terms and a barrier term

Wz, u) = 1Mz) + 12(2) + Bu) + 14 (z) (8)
— wllp(e) - pl? + 27 Qx + uT Ru + B(x)

And the terminal cost is similarly defined as

In(z) = In(z) + 3 (2) + [} (2) 9)
=wy|lp(z) — p||I* + 2" Qnz + Bn(z)

where the weights w,wy > 0 penalize the deviation from
the end-effector goal, the weight matrices Q, R, Qn, Ry > 0
regularize states and controls and B(.), By (.) are weighted
quadratic barriers enforcing the state limits (x, Z) (i.e. joint
position and velocity limits)

0 if z<z<z
B(z) = (x—2)'Bx —2) if z<z (10)
(z—2)'B(z —2) if z>2

Note that the OCP for this acyclic task needs to be defined
only once as the weights are fixed. Typically a high terminal
cost is set on the end-effector goal (wy >> w).

B. Pick and place task

The pick and place task consists in alternatively reaching
desired end-effector positions p, and p; at predefined times
characterized by the cycle duration T-. The task is enforced
by a cost function similar to Egs. (8),(9), the main difference
being that w becomes an increasing sequence of weights over
each half-cycle and p is modified in order to alternatively
penalize targets p, and p,. As shown in Figures 2 and 3 the
OCP is solved at the control rate (1kH z) while the problem
formulation (2) only allows an update of the cost function
weights at the OCP sampling rate 0. In order to mitigate
discontinuities in the solution, the OCP can be updated at
each control cycle ¢. We also add to ! a term penalizing the
end-effector velocity in order to ensure that the robot comes
to a rest each time p, or p; is reached

Mz, t) = w(t)llp(z) = p O + v@®lp@)* a1



where w(t),v(t),p?®(t) are designed to encode the cyclic
nature of the pick and place task, i.e. the alternation of goals
pe and pp and a zero end-effector velocity at switching times
(every 0.57¢ )

w(t) = w(t) + w’(t) (12)
P = st ) )
v(t) = ew(t) (14)

where w?(t), w’(t) > 0 penalize the distances to p,,p, and
€ > 0 is a scaling factor. Without going into algorithmic de-
tails we explain here how these weights are calculated. Their
time profile is a periodic function h(t) that is monotonically
increasing over each half-cycle

0 atr—p) To Io
h(t) = e Pldr vt e [kT, (k+1)—=] (15)
t

2
where the parameters «,5 > 0 control the slope and
sharpness of the exponential. The weights w?(t),w®(t) are
defined from h(t) such that they are anti-cyclic as shown in
Figure 4

Target pq

Target pp

w () = h(t)

t+1, To

t=0 t t+d 46
]

0.5Tc

node 0 current MPC Horizon

node Nj, — 1

Fig. 4: Weights profile for pick and place task.

IV. EXPERIMENTS

In this section we implement the controllers introduced in
Section II-C on the 7-DoF torque-controlled KUKA LWR
iiwa R820 14 shown in Figure 1 for the pick and place task
described in Section III. We also compare the closed-loop
MPC’s performance with ID and kinematic TO.

A. Setup

The FDDP solver used in our experiments is available
in the Crocoddyl' library [24]. Crocoddyl benefits from
automatic differentiation and analytical rigid-body dynamics
from Pinocchio’® [8] as well as multi-threading options.
Our MPC controllers were implemented in C++ and the
real-time data flow was handled using the Dynamic Graph
library?. The Fast Robot Interface (FRI) extension of the
KUKA Sunrise Workbench (v1.3) was used to interface the
robot controller with Dynamic Graph. We used an Intel(R)

Uhttps://github.com/loco-3d/crocoddyl
Zhttps://github.com/stack-of-tasks/pinocchio
3https://github.com/stack-of-tasks/dynamic-graph

Xeon(R) W-2145 CPU @ 3.70GHz CPU running on RT-
Preempt. The KUKA controller applies gravity compensation
by default, the actual torque sent to the robot was

T =uy — g(z7)

2

The actuator’s rotor inertia was estimated to 0.1kg.m* and

added to the diagonal of the inertia matrix.

B. Open-loop vs closed-loop MPC

The regularization weights QQ were set to 102 for the
joint positions and 10~! for the joint velocities, the control
regularization R to 1072 and the state limit weight B to 50.
The running cost weights are defined according to equation
(15) with To = 2s, a = 40, f = 0.85 and ¢ = 0.02.
The MPC parameters were set to 6 = 30ms and N, = 30
(i.e. we optimize over a 0.9s horizon). Figure 5 shows the
end-effector trajectories and tracking errors between MPC
predictions and measurements for both controllers. We can
see that the open-loop controller generates aggressive desired
trajectories requiring unreasonably high PD gains to be
tracked. Furthermore it is less optimal for the task as the total
running cost was 31934 (against 19978 for the closed-loop
controller). In order to improve the tracking performance, the

--— Targetl

» 0.5 , : f ---- Target 2
= Closed-loop

End-effector position (m)
Py
o
o

0.4

Pz
4
W

3
t(s)
(a) End-effector trajectories (desired in thin dashed line).

—— Closed-loop
= Open-loop

5.

Tracking error norm

0 1 4 5

3
t(s)

(b) 2-norm of the tracking error & — x] and average (thin dashed)

Fig. 5: The closed-loop controller generates smooth profiles
that are well tracked (in green) while the open-loop controller
generates abrupt switches that are impossible to track (in
red). High PD gains render the robot stiff and the controller
close to instability.

cost function weights can be reduced and the MPC horizon
increased for the open-loop controller but this results in



a poor goal tracking precision and the MPC solving time
exceeding 1ms. As a result we had to modify the task
and trade-off a significant part of the task precision against
compliance in order to improve the tracking, as shown in
Figure 6. In conclusion the trade-off between MPC tracking

0.6 F==—==—===—fF======c-—--—-—=—e==S-=-==oooo—d-e———=====
---- Target1
05 ---- Target 2
- —— Closed-loop
E 0.4+ —— Open-loop g
5
S 04
w
8
5 3 0.2
S
>
GJ
b= 0.0
@
2 os
w | — N = -
Q 0.4

3 4 5
t(s)

Fig. 6: Reducing the cost weights by setting o = 20, g =
0.8, the open-loop MPC (red) results in a smaller tracking
error (average norm 0.7 vs 1.6 in Figure 5) but a loss in
the end-effector precision, as seen by comparison with the
original closed-loop MPC trajectory (green) duplicated from
Figure 5.

and task fulfillment appears challenging to arbitrate with the
open-loop controller since it leads either to a high gains
control loop close to instability, or to a poor task performance
with a longer solving time. This experimental data shows
that the open-loop control scheme is not suited for online
use as the predictions do not match the actual capabilities of
the robot. This confirms that the state feedback is crucial
to generate online smooth and realistic trajectories. The
attached video shows the disturbance rejection performance
of each controller. The stiff open-loop MPC compensates
poorly an external push whereas the closed-loop controller
exhibits a more compliant, yet effective, response.

C. Comparison with ID

When the horizon of an OCP collapses, the trajectories
consists in a single point optimized under the instantaneous
dynamics constraints and it is equivalent to ID, as shown
in Appendix . As a consequence we expect to observe a
reduced anticipation ability of the closed-loop controller as
T, — 0. In order to exhibit this phenomena and emphasize
the importance of the horizon length to anticipate constraints,
we look at the joint velocity constraint saturation in the pick
and place task. For the same task as in the first experiment,
Figure 7 shows joint velocities obtained for 7;, = 900ms and
Ty, = 360ms as well as the velocity constraints saturation
and Figure 8 shows the average saturation over all joints as
a function of T}. As expected when T, — 0, the velocity
constraint saturation increases which confirms that short
horizons are less able to anticipate constraints. This resulted
in a higher running cost (14182 against 10048) so the shorter
horizon is less optimal for the task. This experimental data
shows that a sufficiently long horizon in control schemes is
important to avoid myopic behaviors.
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(b) Joint velocities saturation (desired in thin dashed line)

Fig. 7: The velocity constraint saturation peaks more signifi-
cantly at each half-cycle when the horizon is smaller: short-
sighted controllers are less able to anticipate constraints.
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Fig. 8: Average constraint saturation over all joints as a
function of the time horizon. Shorter horizon controllers hit
the constraint more often.

D. Comparison with kinematic TO

Taking into account the full dynamics in the preview
horizon is important in order to generate dynamically con-
sistent motions. This can be verified by reducing the control
regularization: when R — 0, the optimizer should neglect the
dynamics and return kinematically optimized trajectories that
are dynamically not relevant. Indeed, for a fixed-based ma-
nipulator, any desired accelerations can be realized through
ID at the cost of potentially very high torques. Figure 9 shows
the end-effector positions, joint velocities and torque profiles
obtained for R = 1072 and R = 10~%. As expected when the



control is less penalized, the MPC generates abrupt torque
and velocity switches that are not consistent with the robot’s
mechanical capabilities.

--------------- Target 1
---- Target 2
2

—— Ureg=1le"

= — Ug=1le*

End-effector position (m)
Py
o o o
° N IS
g
1
)
1
|
1
é
1

t(s)

(a) End-effector trajectories and reference (thin dashed line).
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(b) Estimated joint velocities and reference (thin dashed line)
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(c) Filtered joint torques and reference (thin dashed line)

Fig. 9: When the control regularization term decreases, the
trajectories are less relevant: the velocity tends toward a
square signal and the torque exhibits sharp peaks

V. CONCLUSION

We introduced the first whole-body torque MPC controller
running at 15 H z on a real robot. We showed experimentally
that this controller is able to achieve with good performance
dynamic cyclic tasks while ensuring a compliant response
to external disturbances. It outperforms state-of-the art MPC
schemes that lead to stiff behaviors and less accurate goal
tracking. We also exhibited the importance of the preview
horizon and full dynamics in the performance and thereby
its superiority against kinematic optimization and ID which is
merely a singular case of MPC with a collapsed horizon. As

future work we would like to improve our controller’s effi-
ciency in order to increase the preview horizon and achieve
more dynamic tasks, and to extend this approach to more
complex scenarios involving contacts with the environment,
with the ultimate objective of applying it to multi-contact
locomotion.

APPENDIX

We show here that ID is equivalent to an OCP of which
the horizon collapses. Task-Space Inverse Dynamics (TSID)
consists in computing the joint torques achieving a desired
task-space impedance and can be written as a QP

min aul|J(q)a + PDy(p(q), p(v)]’

+azlla+ PDa(g,v)|* + as| 7|
st.a= M"Yt —b)

(16)

where ¢,v,a are the joint positions, velocities and accel-
erations, p(q) is the end-effector position, J = g—g(q)
is the Jacobian, PD:, PD, are task-space and joint-space
impedances, b = b(g,v) summarizes Coriolis, gravity and
centrifugal effects. Consider the OCP (2) when its horizon
collapses (N = 1)
min
U,%0,21

lo(wo, uo) + 11 (x1) (17

St {I] = f(:EOa UO)
o = Xo
Selecting a cost function encoding a task-space objective
with joint-space regularization, e.g.
lo(z,u) = Ip(@)|I* + | Jol* + llg — @ll* + [[o]|* + [|u]?
(18)
L(z) = [Ip(@)l” + [v]1 + llg — all* + [v]?

where ¢ is a reference posture. Since DDP uses the shooting
approach, the state is not an explicit decision variable so the
singular-horizon OCP (17) is equivalent to

min uo|* + [Ip(g0)|I* + [ Jor|* + llgn — al|* + [Jon |
(19)
s.t. ap = M~ (qo)(T — blqo, vo))
The Euler 2"?-order integration with step § << 1 leads to
p(q1) ~ p(go) + Jvod + Ja, 6 (20)
Jui >~ Jvgd + Ja1d

and using (20) in (19), it can be shown that the collapsed
OCP can be written under the form

min S| Ja + Kip(q) + KaJvl|? @D
+ Bolla + K3(g — §) + Kavl|?
st.a=M"'(1—b) (22)

where (K7, Ks), (K3, K4), 1,2 are task-space PD gains,
joint-space PD gains, and weights all depending on § (and
the OCP cost weights if any). This problem is equivalent
to (16), which concludes the proof that TSID is merely the
particular case of an OCP with a singular horizon.
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