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Abstract: An alternative approach for the synthesis of styrene butadiene rubber (SBR) copolymer 

latexes was explored in order to obtain low gel fractions and high solid contents. The 

ultra-turrax-assisted miniemulsion stabilized by in situ surfactant generation was adopted as the 

main strategy since this technique can inhibit the eventual presence of secondary nucleation 

producing polybutadiene particles and also control the cross-linking degree. Styrene monomer was 

first miniemulsified using an ultra-turrax and in situ generated surfactant using either hexadecane 

(HD) or octadecyl acrylate (ODA) as the hydrophobe. Dynamic light scattering (DLS) 

measurements of droplet size indicated faster stabilization and the production of smaller droplet 

diameters ca. 190 nm (PdI = 0.08) when employing in situ generated potassium oleate (K-Oleate) in 

comparison to SDS-based miniemulsions. High butadiene-level SBR latexes with ca. 50% solids 

content, a glass transition temperature (Tg) of −52 °C, and a butadiene to styrene weight ratio of 

75:25, were then obtained using the miniemulsion droplets as seeds. Turbiscan and DLS 

measurements revealed a very stable resulting latex with SBR particle diameter of ca. 220 nm and a 

low polydispersity index (PdI). Secondary nucleation was prevented as indicated by the low Np/Nd 

value. Cryo-TEM images showed a narrow distribution of particle size as well as the absence of 

agglomeration. The gel content was below 10% when tert-dodecyl mercaptan (t-DM) was used as 

chain transfer agent (CTA). 

Keywords: SBR; latex; miniemulsion; gel content; high solids content; elastomer 

 

1. Introduction 

Styrene butadiene rubber (SBR) is one of the most widely produced synthetic rubbers, and 

accounts for around 40% of the global synthetic elastomer production [1]. The styrene-to-butadiene 

ratio and its microstructure (1,4-cis, 1,4-trans, and 1,2-vinyl) play important roles in determining the 

final properties of SBR [2,3]. From a commercial point of view, high butadiene-level SBR latexes with 

high cis/trans ratios and low gel contents are targeted since both contribute to increase the SBR’s 

processability.  

The degree of cross-linking is certainly the most widely discussed of SBR properties, since high 

amounts of cross-linking can make it less processable and affect its viscoelastic properties [4–6]. The 

1,2-vinyl addition is elected as the principal responsible for the increase of the level of branching 

and, consequently, the increase of cross-linking. Two main strategies are typically adopted to reduce 

or control the cross-linking degree: (1) using a chain transfer agent (CTA) and (2) stopping the 

reaction at around 70% conversion since from that point, the monomer-to-polymer ratio is low, 

encouraging cross-linking [4]. 
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Classical emulsion polymerization (hot or cold process) is the most widely employed method to 

produce SBR latexes. The hot process takes place between 50–70 °C, and potassium persulfate (KPS) 

is commonly used as initiator. In the cold process (performed at 5 °C), a redox initiator is used, such 

as chelated iron/organic peroxide and sodium formaldehyde sulfoxide (SFS) [7]. The latter route 

produces a yellow-colored SBR as consequence of the presence of redox initiator. Both routes usually 

involve mainly sodium dodecyl sulfate (SDS) as a surfactant [6]. 

The synthesis of SBR latexes by miniemulsion polymerization has also been investigated [4,5]. 

In miniemulsion polymerization, each nanodroplet acts as a nanoreactor and particle nucleation 

takes place inside monomer droplets. In principle, homogenous nucleation of particles can be 

minimized by using a hydrophobic initiator [8]. When coupled with the use of a hydrophobe to 

retard the Ostwald ripening process it is possible to obtain stable miniemulsions. The use of in situ 

generated surfactant instead of a pre-formed one can also contribute to the reduction of secondary 

nucleation, as this strategy leads to less free surfactant since the major part will be formed on the 

surface of the particles when the base in the water phase neutralizes the fatty acid at the oil phase 

interface. Furthermore, compared to classical emulsion polymerization, miniemulsion allows the 

production of polymers with lower degrees of cross-linking (and consequently lower gel contents). 

At high conversions, the miniemulsion technique produces around 70 wt% of gel fraction whereas 

conventional emulsion polymerization results in 90 wt% gel content. This is due to the fact that in 

the earlier stages in miniemulsion, the high monomer-to-polymer ratio inside the nucleated 

miniemulsion droplets is expected to reduce the level of branching comparing to emulsion 

polymerization and delay the formation of gel to higher conversions [4]. 

Li et al. performed a comparative kinetic study of SBR in miniemulsion and conventional 

emulsion polymerization [4]. They showed that secondary nucleation of butadiene was prevented in 

miniemulsion polymerization, while in conventional emulsion polymerization, nucleation occurred 

both in micelles and homogeneously in the continuous phase. Similarly, Landfester et al. 

investigated the impact of temperature (from 30 °C to 72 °C) on the properties of SBR latexes 

synthesized by miniemulsion polymerization using different hydrophobic initiators [5]. The authors 

concluded that SBR latexes produced by miniemulsion exhibited low gel contents and the molar 

mass could be easily tuned by using a CTA. In addition, they noticed that the microstructure was not 

significantly affected by the temperature or the quantity of CTA. 

A concern in miniemulsion polymerization is maintaining the intrinsic stability of the 

dispersion of droplets during the reaction. The miniemulsification process plays a key role in the 

achievement of stable nanodroplets. Typically, an ultrasound apparatus is used on a laboratory scale 

as shearing device because it is a simple and fast method to generate the nanodroplets. However, the 

homogenization by sonication is limited to small amounts of emulsion and low viscosities, as the 

majority of energy input during the shearing process of highly viscous mixtures is dissipated as 

excessive heat production (due to viscous resistance) [9]. As a consequence of these limitations, this 

method is not practical at commercial scales. On the other hand, the mechanisms behind the 

operation of an ultra-turrax provokes the circulation of fluid throughout the vessel ensuring the 

mixing cycle during the shearing process [10]. 

Associated with the miniemulsification process, the stability is achieved by using a surfactant in 

combination with a hydrophobe, the role of which is to retard Ostwald ripening [11–13]. A 

considerable amount of research has shown the importance of the surfactant and hydrophobe in 

miniemulsion polymerization. An appropriate hydrophobe should have a low molar mass (to 

maximize the hydrophobe-to-monomer molar ratio into the droplets), high monomer solubility (to 

maximize the hydrophobe-monomer interaction parameter), and low water solubility (to ensure 

high level of the hydrophobe into the droplets, limiting the rate of monomer diffusion out of the 

smaller droplets) [11]. Studies involving free-radical polymerization via miniemulsion have often 

used hexadecane (HD) as a hydrophobe [14–17]. As an alternative to HD, reactive hydrophobes such 

as stearyl methacrylate (SMA) as well as highly hydrophobic polymers have been used [16–18].  

Bearing this discussion in mind, the current work focused on the synthesis of high 

butadiene-level SBR latexes with high solids and low gel content via miniemulsion polymerization 
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using rotor-stator as high-shear mixer. The rotor-stator is more suitable for industrial production 

than ultrasound [19]. Furthermore, an in situ generated K-oleate surfactant was used as it could 

stabilize the newly produced droplets more quickly than conventional surfactants, and create stable 

miniemulsions with high solid contents, as reported by El-Jaby et al. [20]. The use of a reactive 

hydrophobe was also considered in order to reduce the levels of volatile organic compounds (VOC). 

2. Experimental  

2.1. Chemicals and Reagents 

The monomers: styrene (99%, Sigma-Aldrich, St. Quentin, Fallavier, France), butadiene (Air 

liquide), the initiator 2,2′-azobis(2-methyl butyronitrile) (VAZO 67, 98% Sigma-Aldrich, St. Quentin, 

Fallavier, France), hexadecane (HD, 98%, Fisher, Illkirch, Strasbourg, France), octadecyl acrylate 

(ODA, 97%, Sigma-Aldrich, St. Quentin, Fallavier, France), oleic acid (90%, Sigma-Aldrich, St. 

Quentin, Fallavier, France), potassium hydroxide (KOH, 85%, Acros Organic, Illkirch, Strasbourg, 

France), and tert-dodecylmercaptan (t-DM, 98,5%, t-DM, Sigma-Aldrich, St. Quentin, Fallavier, 

France) were all used as received. Deionized water (DDI) was used in all polymerization 

experiments. 

2.2. Preparation of SBR Latex by Miniemulsion Polymerization  

First of all, a pre-formed styrene miniemulsion (recipe described in Table 1) was added to a 450 

mL Parr reactor and cooled to 5 °C. The system was kept under stirring (100 rpm) for fifteen minutes 

to reach thermal equilibrium. Then, liquid butadiene (65 g or 102 mL) (density of butadiene is given 

in Table 2) was added via a high-pressure pump and kept for thirty minutes for homogenization 

under mechanical stirring (200 rpm). Finally, the reactor was heated to 70 °C ± 2, the agitation was 

increased to 350 rpm and the polymerization conducted overnight. The increase of temperature to 70 

°C was accompanied by the increase of the pressure to around 8 bar. The scheme in Figure 1 

illustrates the general experimental procedure. 

 

Figure 1. Scheme of production of styrene butadiene rubber (SBR) latexes by seeded miniemulsion 

polymerization. 

Table 1. Styrene miniemulsion formulation. 

Chemicals m (g) wt% Based on Styrene 

Styrene 30 - 

Deionized water 100 - 

Hexadecane or Octadecylacrylate 1.2 4 

Oleic Acid 0.9 3 

Potassium hydroxide a 0.3 - 

tert-Dodecylmercaptan 1.2 4 

a Oleic acid to potassium hydroxide molar ratio = 2:3.[20] 

2° Step: Loading the reactor
with liquid butadiene

1° Step: Preparation of a 
styrene miniemulsion

3° Step: Heating to 70 °C
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Table 2. Seeded SBR miniemulsion formulation. 

Chemicals Weight (g) wt% Based on Organic Phase  

Styrene 30 - 

Butadiene a 65 - 

Deionized water 100 - 

Hexadecane or Octadecylacrylate b 1.2 1.2 

tert-Dodecylmercaptan c 3.8 4 

VAZO 67 1.9 2 

Oleic Acid b 0.9 1 

Potassium hydroxide d 0.3 - 

a  (butadiene) at 5°C = 0.64 g cm−3. b The amounts of the hydrophobe and oleic acid (based on 

styrene) were 4 wt% and, 3 wt%, respectively. c In some specific cases, 2 and 3 wt% of 

tert-Dodecylmercaptan were used to evaluate the gel content formation. d Oleic acid to potassium 

hydroxide molar ration = 2:3.[20] 

In order to determine the solids content of the latex, gravimetric analyses of each sample were 

performed three times. Approximately 1 g of the latex was weighed in a previously weighed 

aluminum pan and kept in an oven at 100 °C for 24 h. 

2.3. Characterizations  

The SBR samples were named HD-SBR, ODA-SBR, NCo-SBR for SBR synthesized using HD, 

ODA, and in absence of the hydrophobe, respectively. As the recipes were subjected to 

reproducibility reactions, #01, #02, and #03 were attributed to samples made in triplicate. 

2.3.1. Dynamic Light Scattering (DLS) 

Hydrodynamic diameters (Dh) were determined by dynamic light scattering (DLS) in a Malvern 

Zeta-Sizer Nano-ZS. Note that this apparatus gives an average of the intensity of the diameters 

present in the sample. Samples were diluted in DDI water prior to the analysis. For each sample, 

three measurements of twelve runs each were performed at 25 °C to obtain the Dh and the size 

dispersity (PdI). The PdI is a value provided by the Malvern instrument and it is used to describe the 

width of the particle size distribution around a central value. A value of less than 0.1 indicates a very 

narrow size distribution. 

2.3.2. Cryo-Transmission Electronic Microscopic (cryo-TEM) 

The particle size and morphology were determined by cryogenic transmission electron 

microscopy (cryo-TEM) using a Philips CM120 transmission electron microscope from the Centre 

Technologique des Microstructures (CTμ), platform of the Université Claude Bernard Lyon 1, in 

Villeurbanne, France. For cryo-TEM analysis, a drop of the latex was deposited without dilution 

onto 300 mesh holey carbon films (Quantifoil R2/1) and quench-frozen into liquid ethane, using a 

cryo-plunge workstation (made at LPS Orsay). The specimens were then mounted on a precooled 

Gatan 626 specimen holder, and observations were made at an accelerating voltage of 120 kV. 

Statistical analyses of particle size were performed on approximately 500 particles from cryo-TEM 

micrographs. The number and weight average particle diameters (Dn and Dw, respectively) and the 

polydispersity index (Dw/Dn) were calculated using Dn = ΣniDi/Σni and Dw = ΣniDi4/ΣniDi3, where ni is 

the number of particles with diameter Di. 

2.3.3. Nuclear Magnetic Resonance (1H NMR and 13C NMR) 

Samples were characterized by liquid 1H NMR and 13C NMR spectroscopy (300 MHz Bruker) in 

deuterated CDCl3 at room temperature. Both methods were used to identify the SBR composition as 

well as its microstructure in terms of 1,4-trans, 1,4-cis, and 1,2-vinyl addition. 
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2.3.4. Differential Scanning Calorimetry (DSC) 

The glass transition temperature (Tg) of the copolymers was determined by DSC using a DSC 3 

from Mettler Toledo. The analysis of approximately 10 mg of each sample was performed in the 

temperature range of −90 to 120 °C, with a heating rate of 10 °C min−1 and a N2 flow of 30 mL min−1. 

2.3.5. Size Exclusion Chromatography (SEC) 

SEC measurements were conducted in THF at 40 °C with a flow rate of 1 mL min-1. The 

separation was carried out on three columns from PSS Instruments (PSS SDV analytical (8 × 300 

mm)). The device (Viscotek TDA305) was equipped with an RI detector (λ = 670 nm) and the average 

molar masses and molar mass distributions were derived from the RI signal using a polystyrene 

calibration curve.  

2.3.6. Swelling experiments 

The gel content was determined by extraction with toluene at 50 °C for 24 h. In a typical 

experiment, approximately 100 mg of sample were weighed and dissolved in 20 mL of toluene. The 

mixture was stirred for 24 h at 50 °C, and filtered through a 100-m-pore-size filter. Finally, the 

soluble fraction was determined by gravimetric analysis as follows: 

   
  
  
       (1) 

where w0 is the mass of the sample before swelling, and wd the mass of dried sample after filtration. 

2.3.7. Turbiscan® Measurements 

Measurements of sedimentation formation were conducted using the Turbiscan Lab® 

(Formulaction). Approximately 15 g of each sample (latex) was kept in a specific glass flask and was 

analyzed using the scanning mode continuously for three days. Scans were recorded every 

seventeen minutes. 

3. Results and Discussion 

3.1. Stability of Styrene Miniemulsions 

A key initial step to producing a stable SBR latex by miniemulsion polymerization is to be able 

to form stable styrene miniemulsion droplets. The styrene mixture indicated in Table 1 was 

miniemulsified by using 2 miniemulsification devices: (1) a VMI Rayneri TURBOTEST rotor stator 

mixer with a rotational speed range of 50 to 3300 rpm with a stator head equipped with 4 blades 

angled at 90° and measuring 5.5 cm in diameter; and (2) an ultra-turrax LABOMODERNE DHX 

350D with a rotational speed range between 4000 and 33,000 rpm equipped with a 30 mm-stator 

head model DHX 30C. Different surfactants were tested and the droplet diameters were monitored 

by DLS. The resulting DLS measurements were plotted over time as depicted in Figures 2 and 3. 
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Figure 2. Progress of dynamic light scattering (DLS) droplet diameter over time for styrene 

miniemulsions obtained using the rotor–stator mixer operating at a rotational speed of 3000 rpm 

with different surfactants: (a) 1.5 wt% of SDS and (b) 1.5 wt% of in situ generated K-oleate, using HD 

as the hydrophobe. 

As seen in Figure 2, in both cases, the droplets made with the rotor stator mixer reached a 

minimum size after approximately 20 min. The limiting size for the system with the in situ generated 

K-oleate was around 420 nm, meanwhile using pre-formed SDS, it was about 1200 nm. The energy 

provided by this device was not sufficient to produce droplets small enough to continue with SBR 

polymerization using SDS as surfactant.  

As shown in Figure 3, replacing the rotor-stator operating at 3000 rpm with ultra-turrax 

operating at 20,000 rpm, but keeping everything else the same, allowed us to reduce the droplet 

diameter from 1200 to 460 nm (compare Figure 3a and Figure 2a). Increasing the SDS level to 3 wt% 

led to a further reduction in the droplet size down to around 290 nm. In case of using 3 wt% of the in 

situ K-oleate, the droplet diameter was smaller than 200 nm. In addition to being available to 

promptly stabilize the newly produced droplets, the high stabilization capacity of in situ generated 

surfactant can also be attributed to the chain length of oleic acid (18C) compared to SDS (12C). These 

observations are in agreement with those of El Jaby et al. [20] confirming the ability of in situ 

generated K-oleate to create stable miniemulsions when associated to the ultra-turrax device. 

 

Figure 3. Evolution of droplet diameter as a function of time for styrene miniemulsions prepared 

using the ultra-turrax (rotational speed at 20,000 rpm) as emulsification device and hexadecane (HD) 

as the hydrophobe. (a) 1.5 wt.% of SDS (b) 3 wt% of SDS, and (c) 3 wt% of in situ generated K-oleate. 

0

0,1

0,2

0,3

0,4

0,5

0

400

800

1200

1600

2000

0 10 20 30 40 50

P
d

I

D
h

d
ro

p
le

t
(n

m
)

Time (min)

(a)

.

.

.

.

.

0

0,1

0,2

0,3

0,4

0,5

0

200

400

600

800

1000

1200

0 10 20 30 40 50

P
d

I

D
h

d
ro

p
le

t
(n

m
)

Time (min)

(b)

.

.

.

.

.

0

0,05

0,1

0,15

0,2

0

200

400

600

800

0 10 20 30 40 50 60

P
d

I

D
h

d
ro

p
le

t
(n

m
)

Time (min)

460

(a)

.

.

.

.

0

0,05

0,1

0,15

0,2

0

200

400

600

0 20 40 60 80 100

P
d
I

D
h

d
ro

p
le

t
(n

m
)

Time (min)

293

(b)
.

.

.

.

0

0,04

0,08

0,12

0,16

0

50

100

150

200

250

0 20 40 60 80 100

P
d
I

D
h

d
ro

p
le

t
(n

m
)

Time (min)

177

(c)
.

.

.

.



Polymers 2020, 12, x FOR PEER REVIEW 7 of 15 

 

In order to have further information about the stability of the styrene miniemulsion, the 

shelf-life was monitored by DLS as depicted in Table 3. 

Table 3. Evolution of the droplet diameter with time for a styrene miniemulsion prepared using the 

rotor-stator mixer and the recipe in Table 1 with HD as the hydrophobe. 

Time (days) Dh (nm) a PdI a 

0 177 0.08 

1 174 0.09 

2 177 0.08 

3 171 0.09 

4 174 0.07 

7 184 0.08 

a Determined by DLS. 

The results shown in Table 3 reveal that the coalescence and diffusional degradation were 

successfully inhibited with the use of in-situ generated K-oleate providing an efficient long-term 

stability to the styrene droplets. This behavior is valuable from a commercial point of view as it 

suggests that the miniemulsions can be prepared and stored for several days before use. Several 

studies have described the formation of miniemulsions using in situ generation surfactant [21–23]. In 

all cases, the authors state that they obtained stable miniemulsions, but did not investigate the 

long-term stability of the products. 

3.2. Synthesis of High Solids Content SBR Latexes 

The SBR latexes were synthesized after loading the pre-formed styrene miniemulsion with 

liquid butadiene following the recipe in Table 2. The polymerization reaction was carried-out 

overnight for total conversion. An SBR latex was first synthesized by using in situ generated 

K-oleate and HD as surfactant and hydrophobe, respectively (sample HD-SBR#01). The pH of the 

SBR latexes was around 11.2 due to the presence of KOH excess. 

DLS was used to characterize the size and size dispersity of the SBR latex particles. The SBR 

latex had an average particle diameter of the order of 218 nm, and a PdI = 0.04, which can be 

considered very low (conventionally a PdI < 0.1 is taken to be indicative of a narrow particle size 

distribution). The cryo-TEM images of Figure 4 support this conclusion and show the formation of 

monodisperse particles with a diameter of ca. 220 nm, in agreement with DLS analysis, and a very 

narrow size distribution (Dw/Dn = 1.01). There is no visual evidence of small particle typically 

associated with homogeneous nucleation, nor do the DLS analyses reveal any small particles (see 

Figure S3 in the Supplementary Materials). The increase of particle size when compared to the 

droplet diameter (from 177 nm to 218 nm) can, in large part, be attributed to the incorporation of the 

butadiene in the initial drops. In addition, considering that a nearly one to one copy of droplets to 

particles was obtained (Np/Nd = 1.3) (for equations see Supplementary Materials), it can be assumed 

that nucleation occurred preferentially in the droplets and that homogeneous nucleation was 

minimized or absent.  
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Figure 4. Cryo-TEM images and corresponding size distribution histogram of HD-SBR#01. 

An estimated overall conversion of 95% and a solids content of 46% were obtained by 

gravimetric analysis. The conversion was calculated by taking into account the experimental and 

theoretical solids content. It should be emphasized that butadiene is a gas at the reaction 

temperature and cannot thus considered in the solids content. 

The composition and microstructure of the SBR latex were determined by 1H NMR and 13C 

NMR, as reported in the literature [24–26]. The results are shown in Table 4. 

Table 4. Results of SBR composition and microstructure of HD-SBR#01 obtained from 1H and 13C 

NMR. 

Poly(butadiene-co-styrene) 

Butadiene (%) Styrene (%) 

87.2 

12.8 

1,4-cis/1,4-trans (%) 1,2-vinyl (%) 

71.4 

15.8 1,4-cis (%) 1,4-trans (%) 

15 56.4 

 

As expected, the resulting SBR latex exhibited high content of butadiene as shown in Table 4. 

Furthermore, the 13C NMR results indicated a rich trans/cis SBR microstructure. The low amount of 

1,2-vinyl addition contributed to the low gel content of the SBR latex. The literature reports that a 

SBR with similar composition and microstructure shows a Tg of around −50 °C [5]. 

By DSC measurements, a single glass transition temperature (Tg) attributed to the SBR 

copolymer was identified at around −52 °C (Figure S1, Supplementary Materials). The presence of 

only one Tg indicates the synthesis of a homogeneous statistical copolymer. In addition, taking into 

account the composition obtained by 1H NMR, the experimental Tg was in agreement with the 

calculated Tg estimated by the Fox equation [27] (Tg (calculated) −48 °C) according to: 
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 (2) 

where ωi is fraction of monomer i, and Tg,i is the glass transition temperature of the homopolymer 

produced from monomer i. 

 

The slight difference between the experimental and calculated Tg can be attributed to the 

cis/trans and vinyl ratio. Indeed, the Fox equation does not take into account the microstructure, and 

the Tg can be influenced by this ratio, and it is at best a rough approximation of the real Tg. In 

addition, the co-stabilizer can also act as a plasticizer leading to a decrease of the experimental Tg.  

To complete the characterization of the resultant SBR latex, SEC measurements and swelling 

tests were performed. The SEC chromatogram of the soluble fraction of HD-SBR#01 using 4 wt% of 

t-DM as CTA is shown in Figure 5 while the results of the insoluble gel content (replicate 

polymerizations) are given in Table 5. 

 

Figure 5. Molar mass distribution of the HD-SBR#01 with 4 wt.% of tert-dodecyl mercaptan (t-DM). 

The molar mass of SBR was around 2.8 × 10 4 g mol-1 (Ð = 4.1) (Figure 5). The low resulting molar 

mass was likely the consequence of the high amount of CTA used to control the gel content, which 

induced the deactivation of macroradicals. Thiol-based compounds are indeed known to be very 

efficient chain transfer agents [28]. Another point that might have influenced the decrease of the 

molar mass was the significant amount of initiator (2 wt%, see Table 2) used in the process. SEC 

curves comparing the molar mass of SBRs synthesized with different amounts of CTAs are depicted 

in Figure S2 and Table S2. As expected, the chromatograms revealed a diminution of both the molar 

mass and Ð with increasing the CTA amount. 

Table 5. Insoluble (gel) and soluble fractions of the SBR latex synthesized through seeded 

miniemulsion polymerization using in-situ generated surfactant and HD as the hydrophobe. 

Entry Insoluble Fraction (%) Soluble Fraction (%) 

HD-SBR#01 5.3 94.7 

HD-SBR#02 5.8 94.2 

HD-SBR#03 5.3 94.7 

Average 5.5 94.5 

 

As shown in Table 5, the extractions resulted in an average of insoluble amounts of 5.5%. 

Considering the amount of t-DM employed in the reaction (4 wt%), this result is completely 

reasonable since, according to the literature, the CTA controls the molar mass of the polymer as well 

as the gel content [28]. As reported by Moustafa and co-authors, the cross-linking in SBR is mainly 

caused by 1,2-vinyl additions which are responsible for introducing reactive pendant double bonds 

which in turn can easily react with active radicals [17]. In addition, Charmot and Guillot observed a 

decrease of SBR gel content with increasing CTA amounts due to deactivation of macroradicals 

interrupting polymer chain growth [6]. The impact of the CTA is confirmed for runs with a 
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concentration of 2 wt%, where the gel content was found to be around 22% as shown in Table S1 

(Supplementary Materials). 

3.3. Effect of the Nature of the Hydrophobe 

As discussed previously, an SBR latex was initially synthesized using HD as the hydrophobe 

(see recipe in Table 2). The experiment was performed in triplicate and the results are summarized in 

Table 6. Three replicate polymerizations were run under the same conditions but using ODA as the 

hydrophobe. The results of these runs are compared to the HD runs in Table 6. 

Table 6. Properties of SBR latexes synthesized using HD and octadecyl acrylate (ODA) as the 

hydrophobe. 

Sample 
Tg 

(°C) 

Molar mass Gel 

Content 

(%) 

Composition (mol %) 

Mw 

(g mol−1) 

Mn  

(g mol−1) 
Ð Styrene 

1.2-Vi

nyl 

1.4-ci

s 

1.4-tran

s 

HD-SBR#01 −52 30,382 8040 3.8 5.3 11.9 15.7 14.5 57.9 

HD-SBR#02 −56 31,664 6980 4.5 5.8 12.8 15.8 15 56.4 

HD-SBR#03 −56 27,458 6177 4.4 5.3 13.0 16.2 15.2 55.6 

ODA-SBR#01 −50 45,877 10,164 4.5 4.6 13.5 15.0 15.3 56.2 

ODA-SBR#02 −50 47,992 10,369 4.6 3.2 13.2 15.5 15.5 55.8 

ODA-SBR#03 −53 46,514 8288 5.2 3.8 12.9 14.9 15.3 56.9 

As observed in Table 6, the properties of HD-SBR were similar in all cases which suggests a 

very reproducible system. Since the miniemulsion technique allowed us to reproducibly make an 

SBR latex with the desired properties, the next challenge was to replace HD which is a volatile 

organic compound by octadecyl acrylate (ODA) (a reactive hydrophobe).  

In the case of ODA-SBR, the reactions were again very reproducible and presented similar Tg, 

gel content, composition and microstructure as the ones using HD (see Table 6). The average particle 

size at the end of the polymerization was also similar for both sets of runs, where the average Dh of 

the particles made with HD was 218 nm (PdI = 0.03) and the average Dh of the particles made using 

ODA was 218 nm (PdI = 0.01). Both latexes had a low size dispersity as indicated by the very low PdI 

values, and confirmed by cryo-TEM (Figures S3, S4, 4 and 6). Furthermore, the droplet diameter for 

ODA-SBR was around 168 nm with a PdI value of 0.015 (Np/Nd = 1.2) compared to HD-SBR (Dh 

droplets ~ 180 nm, PdI = 0.01). In addition, the weight average molar mass for the soluble ODA-SBR 

was about 4.7 × 104 g mol−1, instead of 3 × 104 g mol−1 for HD-SBR. It is possible that this difference is 

due to the slightly lower gel content for ODA-based polymers. 
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Figure 6. Cryo-TEM images of SBR latexes produced by miniemulsion using ODA as the 

hydrophobe. 

Another possibility explored was to test whether or not the CTA was an adequate hydrophobe 

since it is itself a very hydrophobic compound and was present in high concentration. However it 

was found that the polymerization was not reproducible enough and the latex showed macroscopic 

coagulation during the reaction. The instability was clearly evident in the cryo-TEM images (Figure 

S7) that showed the presence of big particles likely formed by diffusional degradation as a result of 

the absence of the hydrophobe. Thus, it appears that DM alone is not a suitable hydrophobe, at least 

for the current system. The macroscopic aspects of the SBR latexes obtained by using different 

hydrophobes are shown in Figure 7. 

 

Figure 7. Macroscopic aspects of the SBR latexes synthesized based on the recipe in Table 2, using 

HD or ODA as the hydrophobe or without hydrophobe. 

The samples are highly viscous due to the presence of high solids content and the low Tg of the 

polymer. One sample prepared without co-stabilizer showed a presence of clots corroborating 

previous results, as evidenced in Figure 7. It is important to note that these samples showed 

viscosities compatible with a commercial SBR latex with similar properties (solids content, Tg, and 

gel content). 

HD-SBR without
hydrophobe

ODA-SBR
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Finally, the stability and shelf life of the HD-SBR and ODA-SBR latexes were monitored by 

Turbiscan® measurements over 2 days, and the results are displayed in Figures 8 and 9. 

 

Figure 8. Turbiscan® measurements of the HD-SBR#01 latex. 

 

Figure 9. Turbiscan® measurements of ODA-SBR#01 latex. 

The very slight shift in the backscattering signal over time (2 days) for both latexes ODA-SBR or 

HD-SBR shows that they are both stable for a period of days. There is no visible coalescence, nor 

measurable settling of the final latexes.  

3.4. Scaling Up of SBR Miniemulsion Polymerization 

Scaling up experiments were run in order to evaluate possible large-scale production of SBR 

latexes through the polymerization of miniemulsions produced using the ultra-turrax as high-shear 

mixer. The properties as well as stability of up-scaled SBR latexes (total weight = 3 kg) were 

investigated and the data is shown in the Supplementary Materials (Figures S5 and S6). The scaling 

up reactions were performed using HD or ODA as the hydrophobes. Both hydrophobes resulted in 

stable SBR latexes with around 45% solids content and the same properties as those obtained on the 

lab scale. 

4. Conclusions 

The assisted-ultra-turrax miniemulsion stabilized by in situ generated surfactant used in this 

work successfully resulted in stable SBR latexes with high solids content and low crosslinking 
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degree. The Np/Nd and the narrow particle size distribution indicated the efficient droplet nucleation 

as well as there is no evidence of fine particles being formed which suggest the minor presence or 

absence of homogeneous nucleation. 

Stable SBR latexes with around 50% solids content, particle diameter of 220 nm, Tg of −52 °C, 

high butadiene content (butadiene-to-styrene ratio = 75/25), and low insoluble gel fractions (ca. 4 

wt%) were synthesized by miniemulsion polymerization. Thanks to in situ generated K-oleate, small 

droplet diameters could be obtained using ultra-turrax as shearing device enabling the production 

of SBR latex by miniemulsion on a commercial scale. DLS measurements revealed a droplet diameter 

of ca. 180 nm with low PdI. The miniemulsions were shown to be stable over a period of several 

days. The use of t-DM as CTA enabled to successfully control the insoluble gel amount and also the 

molar mass. The low gel amount provides good processability to SBR, which is very important to the 

industrial process. The estimated overall conversion based on solids content was 95%. 

The replacement of HD by ODA as the hydrophobe also resulted in a stable SBR latex with 

similar properties. In the latter case, the molar mass increased due to the slightly lower gel content 

for ODA-based polymers. 

Scaling up experiments were performed resulting in SBR latexes with similar properties as the 

ones produced on the lab scale, regardless of the nature of the hydrophobe (either HD or ODA). 

These results showed that it was possible to achieve stable SBR latexes in a commercial scale with 

desired properties and avoid using a VOC as the hydrophobe. The obtained SBR latexes were again 

very stable and the polymerization highly reproducible and, consequently, this strategy can be 

considered as an alternative approach to produce SBR latexes on a commercial scale. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: DSC 

analysis of the SBR latex obtained by seeded miniemulsion polymerization using in-situ generated surfactant 

and HD as the hydrophobe (HD-SBR#01), Figure S2: Effect of the t-DM content (wt% based on total monomer) 

on the molar mass and molar mass distribution of the HD-SBR latexes, Figure S3: DLS analysis of HD-SBR#01. 

(a) styrene miniemulsion droplets before polymerization and (b) final SBR particle diameter, Figure S4: DLS 

analysis of ODA-SBR#01. (a) styrene miniemulsion droplet before polymerization and (b) final SBR particle 

diameter, Figure S5: Droplet diameter, particle diameter and main characteristics of the HD-SBR latex obtained 

by scaling-up the recipe of Table 2 (total weight = 3 kg), Figure S6: Droplet diameter, particle diameter and main 

properties of up-scaled ODA-SBR latex (total weight = 3 kg), Figure S7. Cryo-TEM images of a SBR latex 

produced by miniemulsion polymerization using 2 wt% of VAZO 67, 3 wt% of in situ generated k-oleate and 4 

wt% of t-DM as CTA, in the absence of co-stabilizer, Table S1: Insoluble (gel) and soluble fractions of the 

HD-SBR latex synthesized by seeded miniemulsion polymerization using 2 wt% of t-DM as CTA, and 

Equations used to calculate the number of droplets (Nd) and the number of particles (Np). 
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