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Abstract

Owing to traffic and weather conditions, pavement structures may suffer from horizontal and vertical cracks that
shorten the overall lifetime of roadways. In this paper, we focus on the detection of the horizontal subsurface cracks
(debondings) occurring between the first two pavement layers from Stepped-frequency Radar (SFR) data. The pro-
cessing of radar data requires some refined signal analysis to detect constructive interference between overlapping
echoes. It is performed from timely data by a supervised machine learning method namely, Support Vector Machines
(SVM) and compared to the conventional reference method, namely, the amplitude ratio test (ART), which is rou-
tinely performed at the operational level. Besides, the straightforward application of SVM on raw data is compared
to the solution using physical signal features (global and local) that reduces the computational burden. Performance
assessment and comparison of the processing methods are conducted on data collected on a specific test-site with three
different types of artificial debondings.

Keywords: Pavements, thin debondings, amplitude ratio test, supervised machine learning, Support Vector
Machines, Stepped-frequency radar, detection.

1. Introduction

Roadways are one of the most widely spread network
of transportation across the world. As of 2014, in France
alone, roadways stretched over a million kilometers. Most
of these roads are made up of multi-layered bituminous
concrete and were laid over three decades ago. Over time,
traffic and environmental factors may lead to sub-surface
cracks at the interface between the top two stratified lay-
ers. These horizontal cracks are called debondings. Fig. 1
presents a simplified scheme of such a debonding occur-
ring between the first two layers. Since these precarious
defects occur sub-superficially, they tend to go unnoticed
to visual control for a while. However, they may also give
rise to interlayer stripping and/or reflexive cracks (leading
to open cracks at the surface).
This mechanical behavior of the pavement mainly relies
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Figure 1: A representation of debonding occurring in a pavement struc-
ture

on parameters such as the transmission of stress and dis-
placement across different pavement layers [1]. As such,
in case of debonding between the asphalt layers, this
greatly reduces the service life of the structure [2]. Thus,
it is of great importance to conduct early detection of these
defects to avoid worsening of structural pavement condi-
tions with time.
Over the past decades, several methods have been pro-
posed to detect and survey the pavement structures. They
can be broadly categorized into Destructive Testing (DT)
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and Non-destructive Testing (NDT) [3]. In DT, a small
section of the pavement structure is extracted by coring
and analyzed for thicknesses estimation and anomalies
characterization. Although DT readily provides visual in-
formation about the structure, it has obvious limitations
due to its destructive nature. DTs are limited by number
of times they can be performed and are not appropriate
for routine pavement surveys [4]. Moreover, DTs provide
a partial assessment of the pavement structure owing to
the sparse spatial sampling of the coring process.
To overcome these drawbacks, NDT techniques have
been introduced to survey structures and materials with-
out damaging the Material Under Test (MUT) in any way.
They have benefited from broad progress in remote sens-
ing techniques. Due to its non-damaging ability, NDT
is used in numerous applications including (but not re-
stricted to) monitoring in monument degradation [5, 6],
structural integrity tests [7], mechanical equipment test-
ing [8], structural health monitoring and pavement moni-
toring [3].
The NDT methods rely on the capability of waves (me-
chanical, electromagnetic, vibrations) to probe the MUT
for integrity, composition, homogeneity and other prop-
erties. Ground Penetrating Radar (GPR) is a well-known
electromagnetic NDT method to probe dielectric materi-
als. GPR uses radar pulses to obtain sub-surface infor-
mation of a structure by mapping it into an image along
the scanning direction. It uses the frequencies in the mi-
crowave band (wavelength are in order of a few centime-
ters in free space) to measure the reflected signals from
the sub-surface structures. GPR is advantageous for sub-
surface monitoring as it is highly sensitive to the changes
in the material permittivity, porosity and the water con-
tent. [9] reviews a three-decade journey of the GPR appli-
cation in Civil engineering from testing and evaluation to
diagnosing the pavement structures.
In the field of pavement monitoring, GPR has been used
to estimate the thickness of pavements, detect debond-
ings [10, 11, 12] and identify buried objects such as anti-
personnel mines [13, 14], steel bars in concrete [15, 16]
etc. However, as mentioned in [3], each of these applica-
tions require suitable processing methods to help at data
interpretation and decision making (classification, identi-
fication etc.).
Since the past few decades, data-driven processing tech-
niques have been challenging the conventional and model-
based processing techniques. Among the former, machine
learning methods (MLMs) have strongly emerged and are
now widely used in the NDT domain along with GPR
and other NDT methods [17, 18]. The GPR MLMs can
be classified as supervised, semi-supervised and unsuper-
vised methods. Under supervised methods, a part of the
data is used to “learn” and then the remainder of the data
is processed accordingly using the parameters obtained

during “training” phase. Examples for supervised meth-
ods are Support Vector Machines (SVM), Artificial Neu-
ral Networks (ANN) [19], Naïve Bayes’ theorem [20] etc.
Unsupervised methods do not involve a training stage and
the processing is done on the basis of clustering. These
methods infer the results based on a set classification la-
bels for the input data. Some examples of unsupervised
methods are: k-means clustering, hierarchical clustering,
mixture models etc. On the contrary, as mentioned in [21],
the semi-supervised method is a mixture of the traditional
supervised and unsupervised methods.
In this paper, we propose to use two processing methods
namely, Amplitude Ratio test (ART) and Support Vec-
tor Machines (SVM) to detect thin debondings. ART
is a characteristic-based reference method used to detect
delaminations between pavement interfaces at the oper-
ational level. As mentioned in [22, 23, 24], the spatial
variation in the magnitude of the second reflected echo
along the scanning direction is used to detect delamina-
tion. ART is an easy-to-implement method which relies
on only two signal features (i.e. magnitude or amplitude
range). By contrast, SVM is a supervised machine learn-
ing method that may use several signal features for clas-
sification purposes. SVM first “learns” the classification
using a set of labelled data and defines a classification
model. During the testing stage, SVM uses the model and
its parameters to detect debondings in the test data.
SVM sensitivity analysis is performed to observe the ro-
bustness of the method and also to analyze its dependency
on the parameters such as kernel type, signal features,
training data size etc.
This article is organized as follows: Section. 2 presents
the experimental data that are used in this paper. In Sec-
tion. 3, refined signal analysis is performed to character-
ize the debonding and non-debonding signals. We then
present the two methods, ART and SVM in Section. 4.
This section also discusses preprocessing steps for the
proposed methods. Section. 5 compares the detection re-
sults on experimental data. In Section. 5.3, sensitivity
analysis is carried out for SVM. In the final section, con-
clusions are drawn.

2. Experimental data

In this section, we present the experimental data ac-
quired to test the proposed data processing methods. The
data are collected using an SFR at IFSTTAR’s fatigue
carousel, a test-site dedicated to accelerate pavement test-
ing over time and traffic.

2.1. The Fatigue Carousel
IFSTTAR’s fatigue carousel is a 120 m long and 6 m

wide one-off circular outdoor test track set up at the
Nantes facility (Fig. 2). The carousel facilitates various
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loading stages (65 kN on single wheel, twin wheel,
tandem or tridem axles) with various configurations and
speeds (up to 100 km/h) to reproduce the effect of in-use
traffic at accelerated rate.

Figure 2: Fatigue carousel at IFSTTAR [11]

A quarter section of this track, approximately 25 m
long, is dedicated to our experiments. This section of the
pavement consists of a two-layered structure with the top
layer (course layer) of about 5 cm to 6 cm thickness and
the base layer of about 8 cm thickness over a granular
sub-base. Three types of artificial defects are introduced
between the course and the base layers. The rectangular
patches marked [A, a], [B, b] and [C, c] shown in Fig. 3,
represent the defective regions over which the radar data
were collected at the different loading stages. [a], [b] and
[c] are 2 m wide and 0.5 m long patches, and centered on
the radius of 16 m; [A], [B] and [C] are bigger debonded
areas, 2 m wide by 1.5 m long. Other small patches,
50 cm × 50 cm, are located in and outside the wheel
paths.
The three defects are Sand ([A, a]), Geotextile ([B, b])
and Tack-free based ([C, c]) respectively. The Geotextile
based defects are supposed to represent somehow an
ideal case study with the strongest radar signatures. By
contrast, the Tack-free defects closely resemble a realistic
defective pavement structure for which the two successive
layers are not consolidated with some coating anymore.
The relative permittivities (εr,mat) of artificial defects are
related as εr,geo > εr,sand > εr,tf . Permittivities may
be reinforced by water seeping with time, especially for
geotextile because of some water trapped inside. Each
debonding layer is of thicknesses (thmat) between 0.5 cm
to 1 cm, i.e., smaller than λmat/4 (where λmat is the
wavelength in the debonding layer). They are roughly
related as thgeo ≈ thsand > thtf . Finally, the rest of
the carousel section corresponds to an healthy pavement
structure, which is characterized by a perfect coating be-
tween layers and a small dielectric contrast between them.

Figure 3: 25m track with artificial defects [11] before laying the wear-
ing course layer. Areas ‘A,a’, ‘B,b’ and ‘C,c’ indicate Sand, Geotextile
and Tack-free based defects respectively

The measurements for each type of defect are taken at
10 thousand, 50 thousand, 100 thousand, 200 thousand,
250 thousand and 300 thousand cycles of the carousel
(we will, from hereon represent the thousands of cycles
as kcycles). These measurements (at different intervals)
are expected to show some evolution in the signals over
the defective regions due to increased use of traffic over
time.

Figure 4: SFR configuration

2.2. Stepped-frequency Radar data collection

The Stepped-Frequency Radar (SFR) used for the data
collection over the fatigue carousel is an experimental
Ultra Wide-Band (UWB) radar. Data are collected in
frequency domain within the bandwidth 0.8 GHz to
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10.8 GHz using a Vector Network Analyzer (VNA) [25].
Inverse Fourier Transform is conventionally used to
provide radar data in time domain.
The transmitter (Tx) and Receiver (Rx) are air-coupled
exponentially tapered slot antennas (ETSA) [26] posi-
tioned in bi-static configuration with disttr = 20 cm, and
offset at a height hantenna = 40 cm above the pavement
surface. Fig. 4 shows the configuration scheme for SFR
during the experiments.
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Figure 5: Experimental setup for data collection (surrounding blue cones
are dampeners to avoid stray reflections) [27]

In Fig. 5, an automatic bench which is controlled by
a computer can move the Tx and Rx antennas in both X
(scanning direction) and Y axes (elevation). The scanning
direction along the X-axis is about 150 cm at the most.
The bench moves the antennas step-wise every 1 cm to
2 cm to collect data vectors, namely, A-scan profiles over
the pavement. The set of vectors form a 2D B-scan im-
age of the subsurface, as illustrated in Fig. 6. Dampeners
on either sides on the Tx-Rx shield the receiver from the
surrounding stray reflections from the bench.
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Figure 6: B-scan radargram of the subsurface (Experimental data: Tack-
free at 10kcycles loading stage)

For the data collection, raw B-scan images were taken
at each loading stage over each defective patch, each B-
scan having 80 to 160 traces (A-scans) per image. B-

scan images steps over small patches, namely for [a, b, c]
in Fig. 3. By contrast, two successive B-scans are re-
quired to collect the data over the largest patches, namely,
for [A,B,C] in Fig. 3. In the latter case, each B-scan
were straddling between the two areas, namely, healthy vs.
debonding, to ensure a visual control on data for e.g., as
shown in Fig. 6. Finally, the free space antenna response
is subtracted from the raw data to provide the radar signal
to be analyzed and processed in the next section.

Figure 7: Pavement model showing healthy and defective regions. The
transition zone refers to the section of the pavement whose condition
cannot be determined

3. Debonding characterization

This section focuses on the way to characterize the in-
terface condition between the first two layers of pavement
structures from a material point of view at first and sec-
ondly, for the NDT techniques. Fig. 7 presents the pave-
ment model with the defective zone, the healthy zone and
the transition zone. The defective zone is the section of
the pavement where the debonding is present in contrast
to the healthy zone which is completely defect free due to
the perfect coating between the two pavement layers. The
transition between the two latter pavement structures may
be smooth enough in practice to make difficult the deci-
sion whether a debonding is present or not.
Because pavement material is made of aggregates, the
two sides of the debonding layer present rough interfaces.
With time and wearing, interlayer stripping (erosion from
the two adjacent layers) may occur; the debonding layer
is thus made of a mixture of granular materials (of differ-
ent sizes), air and also water. The permittivity is likely
larger than the one of the two surrounding layers because
of water seepage within the pavement structure. In this
paper, the thickness of the debonding layer is supposed to
be less than λmat/4 (where λmat is the wavelength in the
debonding layer), namely, between a few millimeters to
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one centimeter.
For NDT radar techniques, the healthy pavement structure
gives rise to two reflected echoes: the first echo ψS(t)
is backscattered by the top surface of the pavement and
the second one, ψT (t), from the interface between the
first and the second pavement layers. As the echo am-
plitude depends on the dielectric contrast at the interface,
the first echo is the strongest whereas the second echo can
be 10 times smaller assuming a small dielectric contrast
between the two first layers as shown in Fig. 8.
The debonding pavement areas are assumed to appear as
a thin-bed structure, i.e., a sub-wavelength dielectric layer
embedded between two dielectric layers with very similar
permittivity values. Thin-bed structures have been exten-
sively studied by EM and seismic NDT techniques, e.g.,
[28, 29, 30, 31].
When the EM signal impinges at the thin debonding layer,
a several interference phenomena take place that alter both
the amplitude and the phase of the EM signal [32, 33, 34].
As mentioned in [29], the reflection coefficient (and evi-
dently, the amplitude) has a gradual increase upto λmat/4
limit after which, it decreases until tdeb = λmat/2 (where
the two reflections are completely separated). This in-
crease is due to the constructive interference (i.e, in-phase
interference) between the reflected signal from the upper
interface, the lower interface and the multiple reflection
occurring within the debonding layer. The tdeb = λmat/4
is the maximum value at which the constructive interfer-
ence takes place after which, the signals interfere destruc-
tively (i.e, out-of-phase interference).
According to Fig. 7, in defective zone, three echoes are
expected. The two echoes which are reflected from the
upper and the lower interfaces of the debonding overlap
in time domain and mostly interfere constructively (since
the thickness of the debonding layer is limited to be less
than λmat/4 as mentioned in Section 2.1). The result-
ing composite echo ψT (t) usually shows a larger signal
strength and also a larger peak frequency compared to the
echo over the healthy interface.
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Figure 8: Comparison of A-scans for debonding and non-debonding
cases (from Tack-free defect radargram at 10kcycles Fig. 6)

Fig. 8 presents two radar A-scans respectively for
debonding and non-debonding cases (of Tack-free based
defects at 10kcycles loading stage). The first echo comes
from the top surface of the pavement which is the same
for both cases. The second echo corresponds to the inter-
face to survey. In case of debonding, the second reflection
is characterized by a larger echo amplitude and an over-
all delayed reflection. For comparison, sand and geotex-
tile defects (not shown here) would depict a stronger echo
amplitude.
In the next section, the two data processing methods that
are presented use certain signal characteristics such as the
amplitude, delay and shape of the signal, to detect defec-
tive pavement sections.

4. Debonding detection methods

Different data processing techniques have been used to
approach the subject of debonding. When the debonding
is likely to be present in data, the first processing strategy
would be to separate overlapping echoes by performing
super time resolution processing techniques on the
composite echo. Unfortunately, the best performance of
the latter methods require the numbers echoes/interfaces
to be known a priori [35].
In this section, an alternative processing strategy is used.
Two processing techniques are presented to classify A-
scan radar data into two classes, namely non-debonding
(healthy) and debonding (defective) signal classes. ART
is a conventional (unsupervised) reference method that
uses the amplitude of the second echo as a signal feature
to classify radar data [24]. Whereas SVM, on the other
hand, is a supervised machine learning method which can
use several signal features as input for achieving better
performance [36].

4.1. Amplitude Ratio Test (ART)
ART is a conventional NDT method to detect subsur-

face delamination from GPR data [24, 27]. The ART
method is usually carried out for qualitative diagnosis of
pavement and bridge structures. It allows selecting the ar-
eas where some coring is performed to verify the NDT di-
agnosis. Although routinely used, ART method have not
been extensively assessed from a statistical point of view.
Any delamination/debonding provides additional echoes
which mostly interact constructively with each other. This
results in an increased signal strength of the backscattered
signal that is received compared to the one of the healthy
zone. In practice, the operator then searches for some in-
crease in the interlayer echo magnitude along the radar
scanning direction, namely, the second echo in our case.
Besides, it is seen in [22] that larger amplitude increase
can be achieved over the debonded area with the shorter

5



Tx pulses allowed by UWB stepped-frequency radar.
The ART values are usually computed for each A-scan
data vector from the magnitude of bothψS andψT echoes,
as follows:

ART =
max(|ψT (t)|)
max(|ψS(t)|)

(4.1)

Finally, the following normalized ratio is introduced for
classification purpose:

ARTnorm =
ARTtest
ARTref

(4.2)

where ARTtest is the ART value over the pavement area
to test and ARTref is the one for a reference data set over
the healthy pavement structure. ARTref may be theoreti-
cally computed as in [24] from the prior knowledge of the
permittivity attached to the two first underlying layers, or
experimentally established as in [22, 23]. For classifica-
tion purpose, it comes for noiseless condition:

ARTnorm =

{
= 1⇒ Case Non-debonding (Healthy)
> 1⇒ Case Debonding (Defective)

By contrast, the following definition of ART used in this
paper is based on the measurement of the amplitude range
of both ψS and ψT echoes for both healthy and debonded
areas, as follows:

ART =
|max(ψT (t))−min(ψT (t))|
|max(ψS(t))−min(ψS(t))|

(4.3)

Besides, taking advantage of the radar data base collected
on the fatigue carousel, the decision threshold is estab-
lished from the statistical distribution of the ART values
over both healthy and defective areas. The Tack-free area
is selected as the defective pavement structure because it
leads to the smallest ART values compared to sand and
geotextile defects.
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Figure 9: ARTnorm PDF over Tack-free defect and healthy area at
10kcycles loading stage. The dashed vertical line depicts the decision
threshold for debonding detection

For illustration, the Probability Density Function
(PDF) of ARTnorm values is plotted in Fig. 9. The
decision threshold for classification is determined by
finding the point of intersection of the two PDFs; it
is found slightly above 1 owing to noisy conditions.
Another explanation to this behavior could be due to the
over-compaction of the pavement layers due to the traffic
in the initial loading stages [11]. The decision threshold
depends on the dielectric contrast between pavement
layers but also on the interface roughness and the radar
bandwidth.
Although ART is an easy-to-implement method, it only
uses two signal features, i.e., the amplitude range of both
the surface and the interlayer echoes, namely, ψS and ψT .
It is proposed in the next section to introduce a machine
learning method, which uses several signal features as
input instead, for expected better classification results.

4.2. Support Vector Machines (SVM)

Supervised learning is a type of machine learning
where a set of data (training data) is used to produce
model which can be used to map new data (test data)
[37]. This scenario allows the algorithm to determine
the classification for the unknown instances. Support
Vector Machines (SVM) is one such machine learning
algorithm.
The SVM we know today was first introduced by Boser,
Guyon and Vapnik in the early 90s [38]. This was a non-
linear generalization of Vapnik and Lerner’s Generalized
portrait algorithm introduced over fifty years ago [39]
which was later extended by Vapnik for soft-margin and
regression cases [36].

4.2.1. SVM for debonding detection
SVM is a classifier that can be used for binary classi-

fication. The aim of SVM is to find an optimal margin
(also called as hyper-plane) from a set of different planes
(Fig. 10b) that well separates the data-points of the two
classes. The best separation is intuitively achieved with
the hyper-plane which has the largest distance from the
nearest data-points of the two classes (Fig. 10b) i.e. the
hyper-plane that has the maximum margin between the
two classes. Fig. 10a depicts the two classes of data and
all possible hyper-planes separating the two classes while
Fig. 10b shows the optimal hyper-plane.
The detection can be seen as a binary problem where +1
indicates the presence of a debonding layer whereas -1
indicates the absence of any such defects (i.e., healthy
region).
According to the literature, SVM can be formulated from
either raw data samples or some signal features. In this
section, let us define a vector xi ∈ X of length k. Here,
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X is the time domain GPR B-scan under test with N
A-scans and k is the number of features chosen from each
A-scan. We define a vector y ∈ {−1,+1} which is the
identifier vector.

(a) All possible hyper-planes

(b) Optimal hyper-plane for classification

Figure 10: SVM Hyper-planes. x1 and x2 are the the axes of the feature-
planes

The separating hyper-plane is given by: wTx + b = 0.
So, we have the following cases:

wTx + b > 0 if yi = +1
wTx + b < 0 if yi = -1

Hence the decision function D(x) is given by:

D(x) = sgn(wTx + b) (4.4)

where w is the weight vector, x are the selected features
of an A-scan and b is the bias.
The aim is to choose the best values for w and b such that
the distance between the two classes is maximum. This
problem can be written as follows:

minimize
1

2
wTw + C

N∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ...N.

where, ξi is the slack variable introduced to reducing
training errors and C is the regularization parameter. The
decision function can now be written as:

D(x) = sgn(
∑
i

wTαi〈xi,x〉+ b) (4.5)

where αi are the Lagrangian multipliers and 〈., .〉 is the
dot product.
However, in some cases, the data cannot be separated lin-
early. Thus, a kernel trick is used. In such cases, the data
is mapped onto a higher dimensional space H using the
function φ(., .) through dot products 〈., .〉. The solution
for non-linear SVM is thus given by:

D(x) = sgn(
∑
i

wTαiΦ(xi,x) + b) (4.6)

where Φ(. . . ) is the kernel function.
There are several kernel functions in SVM some of which
include polynomial kernel, sigmoid kernel, radial basis
function etc. [40]. In this paper, we use the Radial basis
function (RBF) kernel.

Figure 11: Flowchart depicting the working principle of SVM to detect
debondings

The application of SVM to detect debondings is de-
picted in the flowchart in Fig. 11. Certain signal char-
acteristics are extracted from the raw GPR data in the first
step. Then SVM is performed on said features (local or
global).
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4.2.2. Avoiding overfitting
One of the major problems encountered in machine

learning is the concept of over-fitting. Over-fitting is
generally associated to the oversampling of data. To
avoid this, various methods such as as regularization,
ensembling, early-stopping, leave-out, hold out, cross-
validation etc. have been discussed in the literature.
Indeed, cross validation (CV) can also be used in this
context; to simply identify over-fitting [41]. So, in this
paper, we use CV to do it.
To detect the over-fitting, we use CV constrained by the
root-mean square error of positive identification. The
learning dataset is initially divided into k = 5 equal
folds. Then, the classification method is used with the
optimal hyper-parameters obtained with CV and on
both training and validation databases. The behavior of
the classification method from both databases allow to
determine the presence of over-fitting.

4.3. Signal features selection

Most GPR data are very large containing thousands of
time samples. From this huge data set, it is possible that a
part of the data is redundant and presents negligible or no
information at all. In the machine learning classification
problems, the first step is then to perform data reduction
by identifying and selecting the data subset that provides
maximum information.
Feature extraction refers to obtaining such relevant
information that can be useful to classify the data [42].
As mentioned in [43], features should be able to distin-
guish between the two classes, efficient in computations,
limited in number and also insensitive to the changes in
the data. The advantages of using features is that they
reduce the computational time, possible increase in the
accuracy [44] and also avoid using redundant data [45].
For our application, we broadly classify the signal
features as either temporal (time-domain) features or
spectral (frequency domain) features. Temporal features
of the signal are selected in this paper as they are easy to
implement and require no transformation.
Additionally, the temporal features are sub-categorized
into local and global features. Local features are defined
as the characteristics extracted from the second echo
of the raw GPR A-scan. Global features on the other
hand are defined as the signal characteristics that are
obtained from the complete raw GPR A-scan. Global
features are advantageous as they are easier extract and
require minimal preprocessing and a priori information,
as opposed to the local features. In case of GPR data,
global features are usually dominated by the surface
clutter and are therefore supposed to be less sensitive to
the debonding. Whereas local features are expected to
provide more sensitive information about the interface
between the first two pavement layers and the debonding

that may occur therein.
The two next subsections introduce both local and global
temporal features of the signal which have been used for
performing SVM classification. The feature selection
presented later in Section. 4.3.3 relies on the prior
knowledge about the fatigue carousel data base.

4.3.1. Local features
Local features are expected to provide more sensi-

tive information about the interlayer pavement conditions.
They are defined as the signal characteristics of the orig-
inal raw GPR A-scan over a short time window, whose
center and duration are computed from the data for each
A-scan. The window is centered on the second echo
(which is supposed to be related to the debonding inter-
face) from time picking of the magnitude, and its time
duration WinTG (in samples) is given as:

WTG = fsamp × twidth (4.7)
WinTG = 2×WTG (4.8)

where fsamp is the sampling frequency (in Hz) and twidth

is the emitted ricker pulse width (in seconds), which is
related to the central pulse frequency.
A Tukey cosine-tapering window [46] with a taper ratio
of 25% is used to select the time-gated samples attached
to the interlayer echo, as shown in Fig. 12. The taper
ratio is fixed in such a way that the unwanted noise and
parasitic signal around the second echo is avoided and at
the same time the important information is preserved.
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Figure 12: Example of the time-gating window for an experiment GPR
trace (Debonding Tack-free defects at 10kcycles)

Three kinds of local feature subsets have been selected
from the literature, namely, Statistical, Morphological and
PQRST features. As in [47, 48, 49], local statistical fea-
tures used here are: Standard deviation, Mean absolute
deviation (MAD), Kurtosis and Skewness. Morphologi-
cal features have been introduced to account for the shape
of the echo; Inter-quartile range and Root-mean square
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(RMS) of the local signal are then also used [50].
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Additionally, specific Electrocardiography (ECG)
signal features have been used due to the similarity
between the GPR A-scan and an ECG signal, namely the
PQRST features discussed in [51, 52]. Fig. 13 shows
the PQRST data-points in a GPR signal for debonding
and non-debonding for the second echo. The selected
PQRST features in our application are the slope QR and
the amplitude at points P and T. Fig. 14a and 14b depict
some of these features.
The constructive interference of the reflections within the

debonding layer results in an observable increase in the
characteristics of the second reflection such as amplitude
range. Fig. 15 shows an example of the difference
between the reflections of debonding and non-debonding
case. Thus, amplitude range and magnitude of the second
echo are used as local features. These are grouped under
the Morphological feature subset.
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Figure 15: Comparison of amplitude range for debonding and non-
debonding cases (from 1D simulated model)

4.3.2. Global features
Global signal features are defined as the signal char-

acteristics that are obtained from the raw GPR A-scan.
These features are relatively easier to extract compared to
the local features as they use the complete A-scan. Ad-
ditionally, these features do not require any information a
priori as is the case for local features.
In this paper, the global statistical features of MAD, Stan-
dard deviation, Skewness and kurtosis are used. Addi-
tional features such as RMS of a signal and the Inter-
quartile range are also used. Table. 1 sums up the local
and global features that will be used in this paper.

4.3.3. Feature selection process
The performance of a machine learning method de-

pends on the hyper-parameters, kernel function and also
the choice of its input data [53]. As such, a lot of effort
is required to design the preprocessing steps for data
transformation and feature extraction [53]. This initial
process is called Feature engineering.
Methods such as Principal Component Analysis [54],
feature weighting [55] and Recursive Feature Elimination
[56] have been studied in the literature that perform au-
tomatic selection of signal features. These methods tend
to limit either interacting or redundant signal features to
represent data.
As opposed to the latter, we take advantage of the
ground truth associated to the data base (see Section. 4.4
hereafter) to perform the feature selection. The ground
truth categorizes the A-scans into two classes, namely
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Time domain signal features
1. Local features:

• Statistical features: MAD, Std. deviation, Skewness, Kurtosis

• Morphological features: RMS of the signal, Inter-quartile range, Amplitude and Magnitude of second echo

• PQRST features: Amplitudes P and T, Slope QR

2. Global features:

• Statistical features: MAD, Std. deviation, Skewness, Kurtosis

• Morphological features: RMS of the signal, Inter-quartile range

Table 1: Concise list of the local and global features used.

debonding and non-debonding cases. The probability
density function (PDF) of the features (listed in Table. 1)
is computed over each class to determine those which are
sensitive enough to the pavement conditions.
Initially, a known B-scan with debonding and non-
debonding regions is taken. PDFs are traced for each
feature listed in Table. 1 for debonding and non-
debonding cases. Fig. 16 and Fig. 17 present some
of the features to indicate how each feature is able to
distinguish between debonding and non-debonding cases.
For representation only, a curve-smoothing technique
using moving average is applied to the PDFs in Fig. 16
and Fig. 17.
The separation between the two curves is used to choose
the best features for our application. For example, the
mean of the signal (represented in Fig. 16a, Fig. 17a)
show minimal/no PDF separation whereas standard devi-
ation (Fig. 16c, Fig. 17c), Kurtosis (Fig. 16d, Fig. 17d)
and Skewness (Fig. 16e, Fig. 17e) provide well-separated
PDFs. Thus the mean is rejected whilst the other features
are used.

4.4. Pseudo-ground truth estimation
The performance of the data processing methods

in Section. 5 relies on a reference benchmark dataset,
which is detailed in this section. The latter benchmark
dataset is called Ground Truth (GT) when the operator
has full information about the spatial distribution of
debondings. Otherwise, Pseudo Ground Truth (PGT) is
used instead when the operator infers the spatial location
of debondings from in situ measurements. The generated
PGT is a binary vector consisting of ‘1’ (to indicate
debonding) and ‘0’ (to indicate non-debonding).
For the experiment data collected using SFR at the
carousel, the operator manually creates the PGT vector
from radar B-scan images, for which debonding and
non-debonding are labeled by ‘1’ and ‘0’, respectively.
The debonding area is visually easy to locate owing to

the larger magnitude of the second echo, as illustrated in
Fig. 18. The stationary properties of the B-scan images
in both the time and the frequency domains helps the
operator to divide the GPR images into 3 parts: the
defective zone, the healthy (non-debonding) zone and the
transition zone. The transition zone corresponds to the
edge effect which is induced by the implementation of
pavement materials; the stratified structure is then not so
steady defined compared to the two zones apart. The data
processing methods ignore the transition zone within the
GPR image during the detection process. Fig. 18 presents
an example of the PGT associated to the B-can recorded
over the tack-free area. In this PGT, the labels ‘1’ and ‘0’
respectively represent debonding and non-debonding.
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Figure 18: PGT proposed by the operator for a GPR image: Tack-free
defects at 10kcycles loading stage. PGT is not estimated for the Transi-
tion zone

4.5. Performance evaluation

For each B-scan image, the classification result is com-
pared to the PGT. There are four possible outcomes
namely, False positive (FP or false alarm), False negative
(FN or undetected debondings), True positive (TP or good
detection) and True negatives (TN or no debonding), as
shown in Fig. 19.
The three first categories, i.e., TP, FP and FN, are used to
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Figure 16: Physical representation of global features for experiment data
(computed from Tack-free defect radargram at 10kcycles Fig. 6). ’O’
indicate debonding and ’+’ indicate non-debonding values
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Figure 17: Physical representation of local features for experiment data
(computed from Tack-free defect radargram at 10kcycles Fig. 6). ’O’
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compute the Precision (P ) and the Sensitivity (S or Re-
call) which indicates the rates of false alarm and the rate
of undetected debondings, respectively. Finally, the har-
monic mean of P and S coefficients [10] is used to evalu-
ate the performance of the detection methods; it is called
the Dice coefficient (DSC) or the F1-score, equivalently
[57]. The DSC can be written as:

DSC =

(
1

2

{
1

P
+

1

S

})−1

(4.9)

where P and S are respectively given by [10]:

P =
TP

TP + FP
(4.10)

S =
TP

TP + FN
(4.11)

Figure 19: Confusion matrix for debonding detection

In practice, the three criteria are 1 if the two classifi-
cation results are perfectly matched to each other, and 0
if there is no superposition. A large difference between
the S and P coefficients strongly impacts the DSC rate.
Within the image processing community, the classifica-
tion result is usually considered as good enough for DSC
values ≥ 0.7 [57].

5. Results

The classification results obtained by the conventional
reference method (ART) and Supervised machine learn-
ing method (SVM) are presented in Sections. 5.1 and 5.2,
respectively and compared to each other as mentioned in
Fig. 20. ART is a conventional debonding detection ap-
proach that was developed in MATLAB R©. SVM was im-
plemented using the well-known LIBSVM [40] library in
MATLAB R©.
The selected strategy has been to optimize the methods
for each type of defects separately, namely, tack-free, sand
and geotextile. The two formulations of the SVM method
shown in Fig. 20, i.e., from raw data samples and from
either global or local signal features, are used to perform
sensitivity analysis of SVM later in Section. 5.3.

The performance of methods are evaluated using DSC
similarity index, S and P rates as mentioned in Sec-
tion. 4.5.

Figure 20: Overview of debonding detection approach by ART and SVM

5.1. ART detection results

For ART, the 10kcycles loading stage has been selected
as training data. The ratio ARTnorm is calculated and
a threshold is chosen for each type of defect at 10kcy-
cles. The obtained values are respectively ηgeo = 1.9,
ηsand = 1.49 and ηtf = 1.34 for Geotextile, Sand
and Tack-free. These threshold values are then used to
classify the defective zones for the remaining loading
stages (i.e. 50k, 100k and 200k, 250k and 300kcycles).
Fig. 21a presents the DSC score for ART at each loading
stage for Geotextile, Sand and Tack-free based defects. It
can be seen that the detection is consistent for Sand and
Geotextile defects due to the good PDF separation. How-
ever for Tack-free, false detection reduce the detection
rate. These false detection could be attributed to the fact
that PDFs over Tack-free and healthy areas shows a larger
overlapping compared to the Sand and Geotextile areas.
However, it should be noted that, in real-time scenarios,
the type of defect is not always known. Hence, using
a defect-independent global threshold (ηglobal) is more
practically suitable. Thus, the global threshold to be
selected to this aim is the smallest one among the three
defect types at 10kcycles loading stage, ηglobal = 1.34
for Tack-free. This threshold is used over the subsequent
data (each defect type over various loading stages) to
detect debondings. Fig. 22 compares the DSC score for
the three defects obtained using ηglobal and the individual
thresholds (i.e. ηgeo, ηsand and ηtf ). It can be observed
that the false detection in Geotextile and Sand based
defects increase due to the difference in the thresholds.
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(a) ART using ARTnorm as signal feature

(b) SVM using the time-gated raw GPR signal

Figure 21: DSC score for all defect types at all loading stages. For ART,
10kcycles (reference) is used to obtain the threshold for each defect type;
for SVM, 10kcycles is used as learning data for each defect type

Figure 22: Comparison ofDSC score for all defects at 100kcycles using
ηgeo = 1.9, ηsand = 1.49, ηtf = 1.34 vs. ηglobal = ηtf = 1.34

5.2. SVM detection results

This subsection presents the classification results of
the straightforward application of SVM on raw GPR
B-scan data, as mentioned in Fig. 20. As in [10], the
RBF kernel is used with hyper-parameters C and γ. The
optimal values for C and γ are obtained by grid-search

cross validation as described in [58]. For Geotextile,
sand and tack-free defects, the hyper-parameters are
presented in Table. 2. Here, the 10kcycles loading stage
is used as training data to generate a classification model.
This model is then used to classify the test data (i.e. the
subsequent loading stages).

Data type Raw GPR data

Geotextile C = 500, γ = 0.2

Sand C = 840, γ = 0.025

Tack-free C = 600, γ = 0.025

Table 2: List of optimal input parameters used in LIBSVM for RBF
kernel on raw GPR data
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Figure 23: ART and SVM detection for Tack-free defects. SVM results
are obtained using the time-gated raw GPR signal (i.e. no signal features
used)

Fig. 23a and Fig. 23b compare the detection by ART
and SVM for Tack-free defects at 50k and 100kcycles
loading stages.
Fig. 21b presents the DSC score SVM at each loading
stage. It is observed that SVM provided an improved de-
tection rate over the conventional ART method with ex-
cellent detection in case of Geotextile defects while very
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few false detection in case of Sand and Tack-free defects.
As mentioned in Section. 4.3, the use of suitable signal
features could possibly improve the results. Thus, in the
next section, the detection results using SVM are pre-
sented where we analyze the performance of SVM w.r.t.
various sensitivity parameters.

5.3. SVM Sensitivity analysis

Various sensitivity analysis (SA) of SVM have been
discussed in the literature, e.g., [44, 59, 60, 61]. Within
the scope of the application, the objective of SA is
twofold. This is first, to identify the formulation of SVM,
which achieves the best efficiency and robustness. The
second objective aims at identifying the parameters that
control the performance of the methods.
In this section, we broadly classify SA into the two fol-
lowing parts. Parameter-based SA refers to the analysis
based on the input parameters (i.e. the signal features
etc.). On the other hand, model-based SA is the analy-
sis of SVM behavior w.r.t. the model parameters (such as
kernel parameters, training to test ratio etc.).

5.3.1. Parameter-based sensitivity analysis
The time-domain global and local signal features

introduced in Section. 4.3 are selected to perform SVM
on GPR data. The classification results are compared
to each other and to the results shown on Fig. 21b. In
addition to that, the results are compared to a well-known
automatic feature extraction method namely, principal
component analysis (PCA). PCA has been used with
SVM to classify Electroencephalography (EEG) signals
[62], ECG signals [63] and pattern identification [64].
In this paper, PCA is performed separately on local and
global feature sets. It was observed that, at first, the whole
set of PCA features (i.e. at 100% PC inertia) allows us to
achieve the same performance as for the original feature
set. The inertia was brought down to 90% and similar
performance levels were observed. However at 90% PC
inertia, the use of PCA is unnecessary for both, the scope
of the application and the feature set as since there is
hardly any data reduction.
On further reducing the PC inertia, it was observed that
the DSC score drastically drops for a PC inertia below
80% (DSC < 0.5). This is illustrated later in Fig. 25. In
this section, an inertia of 80% (which results in 8 and
5 principal components for local and global features,
respectively), is used.
As done in Section. 5.2, the Gaussian RBF kernel is used
along with cross-validation during the training stage.
The hyper-parameters are obtained by cross-validation
and grid-search. Table. 3 presents the various hyper-
parameters obtained using CV-Grid search for each
feature subset and were used on Test data.

Figure 24: DSC score vs. Loading stage for Global and local feature sets
for Sand based defects

Data type Optimal hyper-parameters

Local features C = 900, γ = 0.08

Global features C = 840, γ = 0.025

PCA (Local features) C = 500, γ = 0.2

PCA (Global features) C = 800, γ = 0.02

Table 3: List of optimal input parameters used in LIBSVM for RBF
kernel on various feature sets for Tack-free defects

As discussed in Section 4.3.1, the local features are
expected to provide better classification results than
global features since they are more sensitive to the
interface under survey.This was further verified by the
authors on various simulated data models (Fresnel-based
analytic model and FDTD-based numerical model).
Experimentally, the Sand based-defects and Geotextile-
based defects support the claim. For convenience, this is
only illustrated in Fig. 24) over the sand-based defect.
However, this behavior is not fully verified for Tack-free
data, for which the debonding echo presents the weakest
SNR. The best classification results for tack-free defects
were achieved with global features over the debonding
area (as presented in Fig. 25).
For this case, the classification results is assumed to be
more sensitive to the “quality” of the reference data over
the debonding area. And indeed, the quality of the echo
is not as good as expected since the SNR of the echo
over the non-debonding area is very small and disturbed
by various wave scattering phenomena (including the
interface roughness).
As a result, the back-scattered echo does not look like as
the expected attenuated and delayed copy of the surface
echo but as the sum of small echoes scattered over a
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larger time interval.

Figure 25: DSC score for SVM SA with various input feature sets
(Tack-free defects): PCA features (local and global), Local features
(Section. 4.3.1) and Global features (Section. 4.3.2); SVM results us-
ing raw data samples are shown in Fig. 21b

The second parameter based SA is a derivative of
the one-at-a-time (OAT) [65] approach. This refers to
the performance analysis of a method by using just one
feature at a time. Here we perform the OAT approach
for the local features due to the diverse nature of feature
subsets under local features (Table. 1). [66] monitors
the performance of SVM by varying the number of
features in the training dataset. However, in the feature
subset-OAT, we analyze the performance of SVM w.r.t.
each subset.
As mentioned in Section. 4.3, two feature types namely
local and global time domain features are used in this
article. Under local features, we have the statistical,
PQRST and Morphological feature subsets (as indi-
cated in Table. 1). The OAT SA will be carried out on
these local feature subsets in an attempt to improve the
detection rate using local features (if possible). The
performance with each subset presents the ‘weight’ the
subset carries for efficient detection. If a subset presents
improved results, the said subset has a greater impact on
the performance. As done in Section. 5.2, the SVM RBF
kernel with cross-validation is used. Table. 4 presents the
various hyper-parameters obtained using CV-Grid search
and were used on Test data.
Fig. 26 shows the variation in DSC score for each local
feature subset. The figure presents the DSC score for
Tack-free defects as these defects are difficult to detect
and are the closest to the realistic pavement defects. It
is seen that the individual feature subsets have a better
performance compared to the complete local feature
set (i.e. combination of statistical, morphological and
PQSRT subsets). The Morphological feature subset
presented the best results. Additionally, no change in the

Data type Optimal hyper-parameters

Local features C = 900, γ = 0.08

Statistical features C = 500, γ = 0.2

PQRST features C = 615, γ = 0.6

Morphological features C = 2148, γ = 0.815

Table 4: List of optimal input parameters used in LIBSVM for OAT
approach using RBF kernel for Tack-free defects

detection rate was observed to the order of the feature
subset.

Figure 26: DSC score for SVM SA by Feature OAT subset approach for
Tack-free defects at all loading stages using local signal features (Sec-
tion. 4.3.1)

5.3.2. Model-based sensitivity analysis
For classification applications, SVM can use various

mathematical functions called ‘kernels’. As discussed in
Section. 4.2, a linear kernel is used for linearly separable
data whereas for non-linearly separable data, there are
various kernels. Some of the non-linear SVM kernels
include: Gaussian RBF, Sigmoid, Polynomial kernel,
etc. Each kernel is implemented using the LIBSVM [40]
library.
Here, we analyze the SVM performance for various
kernels (as done in [67] for classification of Landsat and
QuickBird datasets and [68] for diagnosis of respiratory
diseases). Each iteration implements a kernel type for
the local feature set (defined in Section. 4.3.1). Fig. 27
shows the SVM performance with each of the kernels
for Tack-free defects. The training to test ratio used
was 50% : 50%. It is seen that for Tack-free defect
type, the Gaussian RBF kernel presented an overall
improved performance over other kernels. The optimal
hyper-parameters used for each kernel function are as
mentioned in Table. 5.
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Figure 27: DSC score for SVM SA with linear, RBF, sigmoid and poly-
nomial kernels at all loading stages for Tack-free defects using local fea-
tures (Section. 4.3.1)

Data type Optimal hyper-parameters

Linear C = 840

RBF C = 900, γ = 0.08

Sigmoid C = 900, γ = 0.08, coef0 = 0

Polynomial C = 900, γ = 0.08, degree = 3

Table 5: List of optimal input parameters used in LIBSVM [40] for ker-
nel Sensitivity analysis for Tack-free defects

Since SVM uses a small part of the data for training,
their sensitivity to space dimensionality is very low [44].
However, the overall detection efficiency is susceptible
to the number of training samples [69]. By using very
few training samples, there may be the problem of
under-fitting leading to a low performance rate. On the
other hand, a very large number of training samples
may lead to over-training which once again reduces the
performance. Hence it is necessary to utilize an optimal
training to testing samples ratio.
We therefore analyze the SVM sensitivity w.r.t. various
training dataset sizes. The ratio of Training data w.r.t.
Test data is varied and the performance is evaluated. The
global feature set (discussed in Section. 4.3.2) along with
a Gaussian RBF kernel is used here.
Fig. 28b plots the variation in DSC score w.r.t. the
training dataset size at 50k, 100k and 300k cycles loading
stages for Tack-free based defects using the global feature
set (discussed in Section. 4.3.2). From Fig. 28b and
Fig. 28a, it can be seen that for small training data sets,
the debonding detection rate is low. Additionally, for
these datasets, if the training data set is too large, the
performance is once again reduced. An optimum data

set size for training step is as indicated in Fig. 28b and
Fig. 28a (i.e. between ≈ 50% to ≈ 80%) for both local
and global feature sets. These results are in accordance
with the conclusions of mtrain ≈ 66% (as in [70]),
mtrain = 70% (as in [71, 72]), mtrain = 75% (as in
[73]) and mtrain = 75% (as in [74]), all where mtrain is
the percentage of training data set w.r.t. test data set.
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Figure 28: DSC score at various Training sizes for SVM SA for Tack-
free defects at 50k, 100k and 300kcycles loading stages. The vertical
dashed line indicates the optimum ratio to obtain the best detection rate

Fig. 28a plots the variation in DSC score w.r.t. the
training dataset size at 50k, 100k and 300k cycles loading
stages for Tack-free based defects using the local feature
set (discussed in Section. 4.3.1). In both cases, the RBF
kernel is used.

6. Conclusions and Perspectives

The objectives of this paper was to detect the presence
of horizontally stratified debondings between the top two
layers of the pavement structure and monitor their growth
over time. To do so, two methods namely, ART and SVM
were used. Each method was used to monitor the pave-
ment degradation over time by detecting debondings over
various loading stages for various defect types. ART was
implemented using a single signal characteristic whereas
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SVM implemented several different features in time do-
main.
From the initial results, it was observed that SVM was
highly efficient to detect debondings. To observe the ro-
bustness of SVM, sensitivity analysis was carried out by
various Parameter and Model-based approaches. It was
observed that SVM was successfully able to detect both
strong (Geotextile) and weak (Tack-free) debondings with
greater accuracy. These results showed the robustness of
SVM method and its effectiveness in the detection pro-
cess.
In this article, we concentrated on the use of certain tem-
poral features. In perspective, this work can be further
extended to include other temporal features and spectral
features to further augment the results. Additionally, the
research can be extended to detect the type of defect. We
also look forward to measure the thickness of debond-
ings.
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