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Preemption (or the splitting of activities) is a common practice in many project envi-

ronments, and has been a standard feature of commercial project management software

packages for years. Despite its prevalence in daily practice, preemption has received lit-

tle attention in the project scheduling literature. A possible explanation for this lack of

research interest is the common assumption that preemption only has a limited impact

on the optimal makespan of a project. In this article, however, we show that the benefit

of preemption can be significant, and that it increases with the size and the complexity

of the project network. In addition, we also investigate how activity duration variabil-

ity impacts the benefits of preemption. To this end, we study the preemptive stochastic

resource-constrained project scheduling problem (PSRCPSP), and present an exact solu-

tion procedure. Even though the deterministic preemptive resource-constrained project

scheduling problem (PRCPSP) has received some attention in the literature, we are the

first to study the PSRCPSP. We use hypoexponential distributions to model the activity

durations, and define a new continuous-time Markov chain (CTMC) that drastically re-

duces memory requirements when compared to the well-known CTMC of Kulkarni and

Adlakha (1986) (Operations Research, 34(5), 769–781). In addition, we also propose a

new and efficient approach to structure the state space of the CTMC.

Keywords: Project scheduling; resource constraints; preemption; stochastic durations;

continuous-time Markov chain

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the most widely studied

scheduling problems. A solution to the RCPSP is a precedence- and resource-feasible schedule that

minimizes the makespan of a project. A fundamental assumption of the RCPSP is that ongoing

activities are non-preemptable. The preemptive resource-constrained project scheduling problem

(PRCPSP) relaxes this assumption, and studies the RCPSP when activities are allowed to be

interrupted. The PRCPSP was first investigated by Słowiński (1980), who uses a large-scale linear

program to solve several resource-constrained project scheduling problems. It is important to note

that Słowiński (1980) considers continuous (or rational) preemption, where activities are allowed

to be interrupted at arbitrary points in time. Integer preemption, on the other hand, assumes that
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activities can only be interrupted at integer points in time (see e.g., Kaplan, 1988; Demeulemeester

and Herroelen, 1996). In this article, we focus on the case of continuous preemption. Even though

Słowiński already published his seminal paper in 1980, the PRCPSP with continuous preemption

was only picked up again in 2007, when Damay et al. developed a dedicated branch-and-bound

algorithm that was used to solve all 480 instances of the PSPLIB J30 data set (Kolisch and Sprecher,

1996). They were unable, however, to obtain optimal solutions for the instances of the PSPLIB J60

data set. More recently, Moukrim et al. (2015) used a branch-and-price algorithm to solve all

instances of the PSPLIB J30 data set, and to obtain lower bounds for instances of the PSPLIB

J60, J90, and J120 data sets. An extensive review of the literature on the PRCPSP can be found in

Schwindt and Paetz (2015), who also present a MILP formulation for the PRCPSP with continuous

preemption.

All of the aforementioned studies assume that activity durations are known in advance (i.e.,

they are deterministic). In reality, however, activity durations are often uncertain (Herroelen and

Leus, 2004). The stochastic resource-constrained project scheduling problem (stochastic RCPSP or

SRCPSP) studies the RCPSP when activity durations are stochastic. A solution to the SRCPSP

is a policy that allows to construct a precedence- and resource-feasible schedule that minimizes the

expected makespan of a project. Stork (2001) was the first to present an exact solution procedure

for the SRCPSP, and has solved 179 and 11 of the instances of the PSPLIB J30 and J60 data sets,

respectively. More recently, Creemers (2015) was able to solve up to 303 instances of the PSPLIB

J60 data set. Heuristic procedures have been developed in, among others, Ballest́ın and Leus (2009),

Ashtiani et al. (2011), and Rostami et al. (2018). Most of these procedures adopt simple list policies

(that try to execute activities in the order of a list). In this article, however, we adopt elementary

policies (that allow decisions to be made at the start of the project and at the end of activities).

List policies are a subset of the class of elementary policies, and, in turn, elementary policies are

a subset of the class of all policies (refer to Rostami et al. (2018) for a hierarchy of the different

policy classes, and for an overview of the literature on the SRCPSP).

The preemptive SRCPSP (or PSRCPSP) is an extension of the SRCPSP that allows activities

to be interrupted. In this article, we present an exact procedure for solving the PSRCPSP. Our

procedure uses a backward stochastic dynamic-programming (SDP) recursion to determine the

expected makespan of a project that has preemptable activities and stochastic activity durations.

We use hypoexponential distributions to model activity durations, and match the first two moments

of the “true” activity duration distribution (the hypoexponential distribution is a generalization of

the Erlang distribution; a convolution of exponential distributions where each “phase” has its own

exponential rate). To the best of our knowledge, we are the first to study the PSRCPSP. We are

able to solve all instances of the PSPLIB J30 and J60 data sets with small computational effort.

We also solve 196 (out of 480) instances of the PSPLIB J90 data set, and have even succeeded in

solving 10 instances of the PSPLIB J120 data set.

Most of the literature on stochastic project scheduling deals with Markovian PERT networks

(i.e., PERT networks where the duration of the activities are exponentially distributed). Marko-
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vian PERT networks have first been studied by Kulkarni and Adlakha (1986), who have used a

continuous-time Markov chain (CTMC) to obtain the exact distribution of the earliest completion

time of a project. The CTMC of Kulkarni and Adlakha has been used by, among others, Buss and

Rosenblatt (1997), Sobel et al. (2009), Creemers et al. (2010), Creemers (2015), Creemers et al.

(2015), and Gutin et al. (2015). In the CTMC of Kulkarni and Adlakha, the state of the system

is defined by three sets: the set of idle activities I, the set of ongoing activities O, and the set of

finished activities F . Because activities are either idle, ongoing, or finished, the size of the state

space has upper bound 3n, where n is the number of activities in the project. Most of these states,

however, do not satisfy precedence-and/or-resource constraints, and therefore a strict partitioning

of the state space is required. Most of the recent work on Markovian PERT networks uses uniformly

directed cuts (UDCs) to structure the state space. Although UDCs allow a strict partitioning of

all feasible states, the generation of all UDCs is an NP-hard problem (Shier and Whited, 1986). In

this article, we propose a new CTMC that only keeps track of the set of finished activities F . As a

result, the size of the state space has upper bound 2n. In addition, we no longer use UDCs to struc-

ture the state space. Instead, we use two ordered arrays that not only reduce the computational

effort required to generate/search the state space, but that also reduce the number of states that

are stored in memory at any one time. These improvements allow us to easily outperform existing

exact procedures that schedule Markovian PERT networks. Last but not least, we show that, if

activity durations are exponentially distributed, elementary policies are dominant.

Not only is preemption common in practice (refer to Węglarz et al. (2011) and Schwindt and

Paetz (2015) for an extensive list of applications), it is also a standard feature of most project man-

agement software packages. Even so, preemption has received only little attention in the project

scheduling literature. A possible explanation for this lack of research interest is the common assump-

tion that preemption only has a limited impact on the optimal makespan of a project (see Kaplan,

1988; Demeulemeester and Herroelen, 1996). For instance, Demeulemeester and Herroelen (1996)

report an average reduction of 0.78 % in the optimal makespan of the instances of the Patterson

data set (Patterson, 1984). They conclude that “the introduction of preemption has little effect.”

This conclusion, however, is based solely on the analysis of the instances of the Patterson data set,

and hence, may not hold in general. In addition, Kaplan, as well as Demeulemeester and Herroelen,

consider integer (rather than continuous) preemption, and assume that activity durations are de-

terministic. If we allow for continuous preemption, on the other hand, there are more opportunities

to benefit from preemption. To see this, one only needs to consider a project with three activities

that have unit duration, and that each require a single unit of a resource that has an availability of

two. The minimum project makespan of 1.5 time units can only be attained by suspending the exe-

cution of one activity at time 0.5, and resuming the same activity at time 1. In addition, if activity

durations are stochastic, preemption might make more sense: activities with stochastic durations

can take longer than expected, and may “lock down” a resource that is required to process another,

more critical activity. By interrupting activities, such a “lockdown” may be resolved. To further

investigate the impact of preemption, we perform an elaborate computational experiment.
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Even though we focus on the PSRCPSP, the approach developed in this article is quite general,

and can be used to tackle other scheduling problems as well (e.g., we have also applied it to

maximize the expected net present value of a project without resource constraints, and to solve the

precedence-constrained single machine weighted tardiness problem). Our approach is especially

suitable for studying scheduling problems where the execution of an activity is allowed to be

interrupted. If activities are non-preemptable, on the other hand, our approach can be used to

determine lower bounds (see e.g., Brucker and Knust, 2003).

The contributions of this article can be summarized as follows: (1) we are the first to study

the PSRCPSP, (2) we develop a new, exact procedure that outperforms existing state-of-the-art

exact procedures that schedule Markovian PERT networks, (3) we present a new CTMC that

drastically reduces memory requirements when compared to the well-known CTMC of Kulkarni

and Adlakha (1986), (4) we present a new approach to structure the state space of the CTMC,

and show that it significantly reduces memory requirements when compared to approaches that use

UDCs to structure the state space, and (5) we perform an elaborate computational experiment to

investigate the impact of preemption.

The remainder of this article is structured as follows. Section 2 presents basic definitions, and

gives a brief problem statement. Section 3 defines the new CTMC, and explains how the hypoex-

ponential distribution is used to model activity durations. Section 4 presents the backward SDP

recursion, and outlines the approach that is used to structure the state space of the CTMC. Sec-

tion 5 provides a numerical example, and Section 6 assesses the computational performance of our

procedure. The benefits of preemption are investigated in Section 7. Section 8 concludes.

2 Definitions and problem statement

A project is a network of activities that can be represented by a graph G = (V,E), where V =

{1, 2, . . . , n} is a set of nodes and E = {(i, j)|i, j ∈ V } is a set of arcs. The nodes represent project

activities, and the arcs connecting the nodes represent precedence relationships. Activities 1 and n

are dummy activities that correspond to the start and the completion of the project, respectively.

The duration of an activity i is a random variable p̃i that has expected value µi, and that is

independently distributed. p̃ = {p̃1, p̃2, . . . , p̃n} denotes the vector of the activity duration random

variables, and p = {p1, p2, . . . , pn} is a realization of p̃, where pi is a realization of p̃i. An activity

i can start when all of its predecessors are finished, and if sufficient resources are available. There

are K renewable resource types. The availability of each resource type k is denoted by Rk. Each

activity i requires ri,k units of resource k, where r1,k = rn,k = 0, for all k ∈ R = {1, 2, . . . ,K}.
A solution to the deterministic RCPSP is a schedule S = {S1, S2, . . . , Sn}, where Si is the

starting time of activity i, S1 = 0, and Sn represents the completion time of the project. In

addition, define A (S, t) = {i ∈ V : Si ¬ t ∧ (Si + pi) > t), the set of activities in schedule S that
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are active at time t. A schedule S is feasible if:

Si + pi ¬ Sj ∀(i, j) ∈ E, (1)∑
i∈A (S,t)

ri,k ¬ Rk ∀t ­ 0, ∀k ∈ R, (2)

Si ­ 0 ∀i ∈ V. (3)

An optimal schedule S? minimizes Sn subject to Constraints (1–3).

The PRCPSP extends the RCPSP by allowing activities to be interrupted at arbitrary (con-

tinuous preemption) or integer (integer preemption) points in time. If an activity is interrupted,

its execution can be seen as a series of non-consecutive stages. More formally, an activity i may

be split into zi stages that each require ri,k units of resource k, for all k ∈ R. In addition,

let pz,i denote the duration of stage zi of activity i. A solution to the PRCPSP is a schedule

S = {S1,S2,1, . . . ,S2,z2 ,S3,1, . . . ,Sn}, where Si,z is the starting time of stage z : 0 < z ¬ zi

of activity i, S1 = 0, and Sn represents the completion time of the project. In addition, de-

fine, A (S, t) = {i ∈ V : ∃ 0 < z ¬ zi for which Si,z ¬ t and (Si,z + pz,i) > t}, the set of activities

in schedule S that are active at time t. A schedule S is feasible if:

Si,z + pz,i < Si,(z+1) ∀i ∈ V, ∀0 < z < zi, (4)

Si,zi + pzi,i ¬ Sj,1 ∀(i, j) ∈ E, (5)∑
i∈A (S,t)

ri,k ¬ Rk ∀t ­ 0, ∀k ∈ R, (6)

Si,z ­ 0 ∀i ∈ V, ∀0 < z ¬ zi. (7)
zi∑
z=1

pz,i = pi ∀i ∈ V, (8)

pz,i > 0 ∀i ∈ V, ∀0 < z ¬ zi, (9)

zi ∈ Z­0 ∀i ∈ V, (10)

An optimal schedule S? minimizes Sn subject to Constraints (4–10). If integer (rather than contin-

uous) preemption is considered, Constraints (7) and (9) are replaced by:

Si,z ∈ Z­0 ∀i ∈ V, ∀0 < z ¬ zi,

pz,i ∈ Z>0 ∀i ∈ V, ∀0 < z ¬ zi.

The PSRCPSP is an extension of the PRCPSP where activities have stochastic durations.

Because activity durations are no longer known in advance, a solution to the PSRCPSP is a policy

rather than a schedule. A policy Π is a set of decision rules that defines actions at decision times.

Decision times are typically the start of the project and the completion times of activities. An action,

on the other hand, corresponds to the start of a feasible set of activities and/or the interruption
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of a subset of the ongoing activities. In addition, decisions have to respect the non-anticipativity

constraint (i.e., a decision at time t can only use information that has become available before

or at time t). When executing a policy, activity starting times become known gradually (i.e., a

schedule is constructed as time progresses). Consequently, a policy Π may be interpreted as a

function Rn­0 7→ Rn­0 that maps realizations of activity durations p to vectors of feasible starting

times S (p; Π) = {S (p1; Π) , S (p2; Π) , . . . , S (pn; Π)} (see also Igelmund and Radermacher, 1983;

Stork, 2001). For a given realization p and policy Π, Sn (p; Π) denotes the makespan of schedule

S (p; Π). The objective of the PSRCPSP is to minimize E (Sn (p; Π)) over a class of policies, where

E (·) is the expectation operator with respect to p. Optimization over the class of all policies is

computationally intractable. Therefore, we restrict our attention to the class of elementary policies

that allows decisions to be made at the start of the project and at the end of activities. Even

though elementary policies are not dominant if activity durations have arbitrary distributions (see

e.g., Rostami et al., 2018), it is easy to show that there exists at least one dominant policy that is also

an elementary policy if activity durations are exponentially distributed. To see this, imagine that we

want to make a decision (to start/interrupt a set of activities) at a time t that is not the start of the

project nor the end of an activity. Due to the memoryless property of the exponential distribution,

an ongoing activity i at time t has a remaining duration that is exponentially distributed with rate

parameter λi (i.e., the expected remaining time for activity i does not change). As a result, at time

t, no new information has become available that was not already available at time t′, where t′ is the

start of the project or the last completion time of an activity. In other words, any decision taken

at time t could already have been taken at time t′, and therefore decisions taken at the start of the

project/at the end of activities are dominant.

3 A new CTMC

A project network with stochastic activity durations is often referred to as a PERT network, and a

PERT network with independent exponentially-distributed activity durations is called a Markovian

PERT network. Markovian PERT networks were first studied by Kulkarni and Adlakha (1986),

who use a CTMC to determine the exact distribution of the completion time of a project where

activities have exponentially-distributed durations. All existing work on Markovian PERT networks

adopts the CTMC of Kulkarni and Adlakha to develop scheduling procedures (see e.g., Buss and

Rosenblatt, 1997; Sobel et al., 2009; Creemers et al., 2010; Creemers, 2015; Gutin et al., 2015). In

the CTMC of Kulkarni and Adlakha, the state of the system is defined by three sets: the set of idle

activities I, the set of ongoing activities O, and the set of finished activities F .

In this article, we propose a new CTMC that only keeps track of the set of finished activities

F . In other words, our CTMC does not keep track of the set of ongoing activities. We can use the

set of finished activities, however, to determine the set of activities that are potentially ongoing.

From this set of potentially ongoing activities, a policy then selects the activities that are ongoing

in each state of the system. This implies that the execution of an activity i can be interrupted
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(i.e., whereas activity i can be selected as a member of the set of ongoing activities at time t, it is

not necessarily selected as a member at time t + ∆). Note that, due to the memoryless property

of the exponential distribution, the remaining work of an activity i is exponentially distributed

with rate parameter λi at any time instance t during which activity i is ongoing. As a result, we

do not have to keep track of the amount of work that has already been done when interrupting

the execution of an activity. These properties make our CTMC especially suitable for scheduling

problems that allow the execution of activities to be interrupted. In addition, our CTMC is also

suitable for solving the preemptive-repeat problem, in which the work done on an activity is lost if

the activity is interrupted (see e.g., Cai et al., 2009).

More formally, let F (t) denote the set of all activities in V that are finished at time t, and let

H(t) denote the set of activities that are potentially ongoing at time t. An activity i is potentially

ongoing at time t if: (1) i 6∈ F (t) and (2) j ∈ F (t) for all j for which (j, i) ∈ E. The starting

and finishing conditions of the project are F (0) = {1} and F (t) = V for all t ­ τ , where τ is the

completion time of the project. Without loss of generality, we omit index t when referring to sets

F (t) and H(t).

The state of the system can be represented by the set of finished activities (F ). Upon entry of

state (F ) : F 6= V , policy Π determines the non-empty set of ongoing activities O ⊆ H. Of course,

O has to be a resource-feasible set of activities: Rk ­
∑
i∈O ri,k for all k ∈ R. An optimal policy

Π? selects the set of ongoing activities O? from H such that G(Π?, F ) is minimized, where G(Π, F )

is the value function that returns the expected time until completion of the project upon entry of

state (F ) if policy Π is adopted.

Given a set of ongoing activities O, the time until the first completion of an activity i : i ∈ O is

exponentially distributed with expected value (
∑
i∈O λi)

−1. The probability that activity i : i ∈ O
finishes first equals λi(

∑
j∈O λj)

−1. Therefore, if policy Π is adopted, the time until completion of

the project upon entry of state (F ) equals:

G(Π, F ) =

(
1 +

∑
i∈O

λiG (Π, F ∪ {i})
)
×
(∑
i∈O

λi

)−1
. (11)

The optimal subset of ongoing activities is given by:

O? = arg min
O⊆H

(
1 +

∑
i∈O

λiG (Π, F ∪ {i})
)
×
(∑
i∈O

λi

)−1
.

The problem of selecting O? from H may be defined as a multidimensional 0 − 1 knapsack
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problem:

(MKP)



max
∑
i∈H

xivi.

Subject to:∑
i∈H

xiri,k ¬ Rk ∀t ­ 0,∀k ∈ R,

xi ∈ {0, 1} ∀i ∈ H,

where vi is the value of selecting activity i, xi = 1 if activity i is selected, and xi = 0 otherwise.

The value of selecting activity i depends on the selection that is made, and selecting activity i

also impacts the value of other selected activities j : j ∈ H \ {i} ∧ xj = 1. Even without such a

dependency, finding the optimal solution to (MKP) is NP-hard (Gens and Levner, 1980; Korte and

Schrader, 1981). A brute-force approach that enumerates/evaluates all resource-feasible subsets of

H is a straightforward means to obtain O?. In a preemptive context, however, non-delay schedules

(see e.g., Sprecher et al., 1995) are dominant, and therefore we only need to consider maximal

resource-feasible antichains of ongoing activities (i.e., it suffices to consider all precedence- and

resource-feasible sets of ongoing activities that are not a subset of any other precedence- and

resource-feasible set of ongoing activities).

Most of the literature on stochastic project scheduling deals with Markovian PERT networks.

The assumption of exponentially-distributed activity durations, however, is not always valid, and

therefore several researchers have resorted to the use of phase-type (PH) distributions to model

activity durations (see e.g., Sobel et al., 2009; Creemers et al., 2010; Creemers, 2015; Creemers et

al., 2015). PH distributions are a general class of distributions that use exponential distributions

as building blocks (i.e., “phases”). Popular examples of PH distributions include the Erlang distri-

bution, the hyperexponential distribution, and the exponential distribution. Because the phases of

a PH distribution have exponentially-distributed durations, a project network with PH-distributed

activity durations can be transformed into a Markovian PERT network (for further details, refer

to Creemers, 2015). PH distributions are particularly useful because they can be used to match

any positive-valued distribution with arbitrary precision (Neuts, 1981). In general, however, the

number of phases (i.e., the complexity of the PH distribution) increases with the level of precision

that is required. In order to minimize the number of required phases, we use continuous-time PH

distributions to match the first two moments of the duration distribution of an activity. Although

it is possible to match more than two moments (see e.g., Altiok, 1985; Osogami and Harchol-

Balter, 2006), matching only two moments: (1) limits the size of the resulting Markovian PERT

network, and (2) makes practical sense because the “true” duration distribution of an activity is

often unknown (i.e., in practice, we often only know the mean and the variance of the duration of

an activity).

More formally, let νi = σ2i µ
−2
i denote the squared coefficient of variation (SCV) of the duration of

activity i, where σ2i is the variance of the duration of activity i. We define three cases: (1) νi = 1, (2)

νi < 1, and (3) νi > 1. In the first case, a single phase suffices, and the activity duration distribution
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can be approximated by means of an exponential distribution with rate parameter λi = µ−1i . In

the second case, a hypoexponential distribution is used to model the duration distribution. The

hypoexponential distribution can be seen as a series of exponentially-distributed phases whose rate

parameters are allowed to differ (i.e., the hypoexponential distribution is a generalization of the

Erlang distribution). The SCV of the activity duration determines the number of phases that are

required to approximate the duration distribution:

zi = dν−1i e.

For the sake of simplicity, we assume that the first zi−1 phases of the hypoexponential distribution

have i.i.d. exponential distributions with rate parameter:

λi,1 = λi,2 = · · · = λi,zi−1 =
(zi − 1)−

√
(zi − 1)(ziνi − 1)

µi(1− νi)
.

The last phase is exponentially distributed with rate parameter:

λi,zi =
1 +

√
(zi − 1)(ziνi − 1)

µi(1− ziνi + νi)
.

In the third case, a two-phase Coxian distribution can be used to model the duration distribution

of an activity. In this article, however, we only consider the first two cases, as an SCV larger than

1 is considered to be extremely variable. In fact, in the literature on stochastic project scheduling,

the exponential distribution (with an SCV equal to 1) is often used as the most variable duration

distribution (see e.g., Ballest́ın and Leus, 2009; Ashtiani et al., 2011; Rostami et al., 2018).

4 State-space structure and SDP-recursion

Most of the recent work on Markovian PERT networks uses UDCs to structure the state space

of the CTMC of Kulkarni and Adlakha (1986) (see e.g., Creemers et al., 2010; Creemers, 2015;

Gutin et al., 2015). Each state of the CTMC is assigned to a single UDC, and a UDC network is

constructed (where a UDC is a predecessor of another UDC if it is possible to make a transition

from one of its states to one of the states of the other UDC). UDCs are processed one at a time using

a backward recursion. As soon as a UDC is no longer needed (i.e., if all its predecessor UDCs have

been processed), the UDC and its associated states are removed from memory. Although UDCs

allow a strict partitioning of the state space, generating all UDCs is an NP-hard problem (Shier

and Whited, 1986).

In this article, we no longer use UDCs to structure the state space. Instead, we use two ordered

arrays that not only reduce the computational effort required to generate/search the state space, but

that also reduce the number of states that are stored in memory at any one time. A backward SDP-

recursion is then used to determine the minimum expected makespan of a project. The recursion

starts in state (F ) = V , and completes upon reaching state (F ) = {1}. The minimum expected
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makespan equals G(Π?, {1}) = E (Sn (p; Π?)). In addition, define Xi = {(F ) : |F | = i}, the array

of states (F ) for which i activities are finished, for all i : 1 ¬ i ¬ n. For each state (F ), we keep

track of value function G(Π?, F ).

In continuous time, at most one activity can finish at a given point in time, and therefore

transitions can only be made from states in Xi towards states in Xi+1. As such, in order to

determine the value function of a state (F ) ∈ Xi, we only need the value functions of all states in

Xi+1. In other words, at most two arrays of states (i.e., Xi and Xi+1) have to be kept in memory

at any one time. This results in a significant reduction of memory requirements when compared

to scheduling procedures that rely on UDCs to structure the state space. In addition, our new

approach is less impacted by the size of the network/is better suited for analyzing large projects

(i.e., no matter the size of n, we only need to keep track of two arrays).

We use Eq. (11) to determine the value function of a state (F ) ∈ Xi, and use binary search

to quickly look up the value function of those states in Xi+1 in which we end up after completion

of one of the ongoing activities in O?, where O? has been obtained by enumerating all maximal

resource-feasible antichains of ongoing activities. In order to use binary search: (1) we need to be

able to identify states by means of some sort of lookup value, and (2) states need to be ordered

based on this lookup value. Whereas Creemers et al. (2010) use tertiary numbers to serve as lookup

values, we use binary numbers (i.e., each state (F ) can be represented by a binary number where

bit i reflects whether or not activity i is finished). States in Xi+1 are ordered from small binary

number to large binary number, and new states (in Xi) are generated in the same order. More

specifically, for each state (F ) in Xi+1, we generate a new state (F \ {j}) ∈ Xi for each activity

j : j ∈ F that has no successors in (F ). Activities with a high index are used first in order to ensure

that new states with small binary number are generated first. In addition, if the new state has a

binary number that is smaller than/equal to the largest binary number of the already generated

states, that new state already exists. Hence, in comparison with scheduling procedures that use

UDCs to structure the state space, we significantly improve computational performance because:

(1) we no longer have to search the set of already generated states to find out whether or not a

newly generated state already exists, and (2) we no longer need to generate all UDCs, which in

itself is an NP-hard problem.

After all value functions of all states (F ) in Xi have been determined, the memory used by

the states in array Xi+1 is allocated to store the value functions of all states in array Xi−1. As a

result, at most two arrays are kept in memory at any one time. Eventually, we obtain G(Π?, {1}),
the value function of state (F ) = {1}, and have determined the minimum expected makespan of

the project.

5 Example

We use an example to illustrate the dynamics of our procedure as well as the difference between

the RCPSP, the SRCPSP, the PRCPSP, and the PSRCPSP. The data of the example project is

10



i µi ri,1

1 0 0
2 3 3
3 2 2
4 2 5
5 1 2
6 0 0

R1 5

Table 1: Data for the example project

2

3 4

1 6

5

Figure 1: Example project network

summarized in Table 1. Fig. 1 visualizes the example project network. We assume there is a single

resource (i.e., K = 1) that has an availability of 5 resource units (i.e., R1 = 5). There are four

non-dummy activities, and activity 2 can be executed in parallel with activities 3, 4, and 5.

First, we observe what happens if the execution of an activity is not allowed to be interrupted.

In this case, the optimal deterministic schedule has a makespan of 6 time units. If activity durations

are exponentially distributed, however, the optimal expected makespan is 6.8 time units. Fig. 2 and

Fig. 3 illustrate the optimal deterministic schedule and the optimal stochastic policy, respectively.

The optimal stochastic policy starts activities 2 and 3 at the start of the project. We expect either

activity 2 (with probability 0.4) or activity 3 (with probability 0.6) to finish after 1.2 time units.

If activity 2 finishes first, activities 3, 4, and 5 are executed in series. If activity 3 finished first, on

the other hand, activities 2, 4, and 5 are executed in series.

Next, we observe what happens if the execution of an activity is allowed to be interrupted. In

this case, the optimal deterministic makespan can be reduced to 5 time units. If activity durations

are exponentially distributed, the optimal expected makespan can be reduced to 6.35 time units.

Fig. 4 and Fig. 5 illustrate the optimal deterministic schedule and the optimal stochastic policy,

respectively. The optimal stochastic policy starts activities 2 and 3 at the start of the project. If

activity 2 finishes first, activities 3, 4, and 5 are executed in series. If, on the other hand, activity 3

finishes first, the execution of activity 2 is interrupted, and activity 4 is started. After completion

of activity 4, activity 2 is resumed and is executed in parallel with activity 5. In other words, the

optimal policy tries to save time by executing activity 2 in parallel with activities 3 and/or 5.
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Figure 2: Optimal schedule if activities have deterministic durations and their execution cannot be
interrupted
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Figure 4: Optimal schedule if activities have deterministic durations and their execution can be
interrupted
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Figure 5: Optimal policy if activities have exponential durations and their execution can be inter-
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We can also use the example project to illustrate how new states are generated/structured

using our approach. First, array X6 = {(F6,1)} is initialized, where (F6,1) = V = {1, 2, 3, 4, 5, 6}.
Only the dummy-end activity is without successors in (F6,1), and therefore X5 = {(F5,1)}, with

(F5,1) = {1, 2, 3, 4, 5}. In (F5,1) activities 2 and 5 are without successor. As a result, we first

remove activity 5 (the activity with the highest index) to generate (F4,1) = {1, 2, 3, 4}. Next,

we remove activity 2, and generate (F4,2) = {1, 3, 4, 5}. States (F4,1) and (F4,2) correspond to

binary numbers 30 and 58, respectively, and they are ordered from small to large. To generate

the states in X3, we first observe (F4,1). In (F4,1), activities 2 and 4 are without successor, and

we generate (F3,1) = {1, 2, 3} and (F3,2) = {1, 3, 4} with corresponding binary numbers 14 and

26, respectively. Next, we observe (F4,2), and see that only activity 5 is without successor. As

such, we can generate state (1, 3, 4) with binary number 26. Binary number 26, however, is smaller

than/equal to the largest binary number of the states that were already generated (i.e., binary

number 26 corresponding to state (F3,2)). As a result, state (1, 3, 4) already exists, and all states

in X3 have been identified. The same logic can be used to identify X2 = {(F2,1), (F2,2)}, and

X1 = {(F1,1)}, where (F2,1) = {1, 2}, (F2,2) = {1, 3}, and (F1,1) = {1}.
In our approach, the CTMC has 9 states that are listed in Table 2. For each state, Table 2 also

reports the optimal set of ongoing activities and the corresponding value function. For instance,

in state (F2,2) it is optimal to start activity 4 (no matter whether or not activity 2 is ongoing; if

activity 2 was ongoing, it should be interrupted). If, on the other hand, the CTMC of Kulkarni and

Adlakha (1986) is used, the state space can be structured in 5 UDCs: UDC1 = {1}, UDC2 = {2, 3},
UDC3 = {2, 4}, UDC4 = {2, 5}, and UDC5 = {6}. The UDCs and their states are listed in Table 3,

that also reports the optimal set of ongoing activities and the corresponding value function. For

instance, in UDC3, we observe activities 2 and 4 (i.e., we assume that activities 1 and 3 are finished,

and that activities 5 and 6 are idle/not yet available). We end up in UDC3 if activity 3 finishes in

any of the states of UDC2. We leave UDC3 as soon as activity 3 completes. From Table 3, we can

see that, in UDC3, it is optimal to start activity 4 no matter whether activity 2 is idle, ongoing,

or finished. In total, the CTMC of Kulkarni and Adlakha has 24 states of which at most 13 states

need to be kept in memory at any one time (versus 4 states in our approach).

6 Computational performance

Although we are the first to study the PSRCPSP, we can compare the computational performance of

our approach with the performance of the procedures of Creemers (2015) and Moukrim et al. (2015):

the current state-of-the-art procedures for solving the SRCPSP and the PRCPSP, respectively. In

what follows, we first compare the performance of our procedure and the procedure of Creemers

(2015). In contrast to the procedure of Creemers (2015), our procedure: (1) allows for preemption,

(2) does not use the CTMC of Kulkarni and Adlakha (1986), (3) does not rely on UDCs to structure

the state space, and (4) can exploit the fact that non-delay schedules are dominant if preemption is

allowed. As explained in Section 3, if non-delay schedules are dominant, the optimal set of ongoing
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Array State F O? G(Π?, F )

X6 F6,1 {1, 2, 3, 4, 5, 6} ∅ 0

X5 F5,1 {1, 2, 3, 4, 5} {6} 0

X4 F4,1 {1, 2, 3, 4} {5} 1
X4 F4,2 {1, 3, 4, 5} {2} 3

X3 F3,1 {1, 2, 3} {4} 3
X3 F3,2 {1, 3, 4} {2, 5} 3.25

X2 F2,1 {1, 2} {3} 5
X2 F2,2 {1, 3} {4} 5.25

X1 F1,1 {1} {2, 3} 6.35

Table 2: State space and optimal policy of the example project if we use our new CTMC and our
new approach to structure the state space

activities can be found by enumerating all maximal resource-feasible antichains (rather than using

a “brute-force” approach that enumerates all feasible sets of ongoing activities). If preemption is

not allowed, however, non-delay schedules are not necessarily optimal, and hence, the procedure

of Creemers (2015) cannot exploit this dominance rule. In order to make a fair comparison, we

therefore first assess the performance of our procedure without exploiting the dominance rule (i.e.,

we enumerate all feasible sets of ongoing activities; we use a “brute-force” approach). The impact

of the dominance property itself is assessed afterwards, when we compare the performance of our

procedure and the procedure of Moukrim et al. (2015). To allow for a fair comparison, we perform

all tests on the same system: an Intel I5 3.3 GHz personal computer with 32 GB of RAM.

Table 4 reports on the difference in performance between our procedure and the procedure of

Creemers (2015) for the instances of the PSPLIB data set. Note that, due to insufficient memory,

the procedure of Creemers (2015) is unable to solve 177 (out of 480) instances of the J60 data set.

Therefore, we can only compare the 303 instances that could be solved. From Table 4, however,

it is clear that our procedure significantly outperforms the procedure of Creemers (2015). In fact,

on average, we improve computational efficiency by a factor of 20.18, and memory efficiency by a

factor of 205 (i.e., on average, our CTMC has 205 times less states than the CTMC of Kulkarni

and Adlakha). In addition, Table 4 also reports the average maximum percentage of states that

are stored in memory at any one time (i.e., the maximum proportion of the state space kept in

memory, averaged over all instances). In contrast to the procedure of Creemers (2015), we no longer

use UDCs, and as a result, the maximum percentage of states that have to be stored in memory

has dropped significantly. If our new approach is used to structure the state space, we also observe

that an increase in n results in a decrease of the percentage of states that are stored in memory.

The aforementioned results assume that activity durations are exponentially distributed. If, on

the other hand, activity durations have a SCV smaller than 1, a hypoexponential distribution is
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UDC Members F O I O? G(Π?, F,O, I)

UDC5 {6} {6} ∅ ∅ ∅ 0
∅ {6} ∅ {6} 0
∅ ∅ {6} {6} 0

UDC4 {2, 5} {5} {2} ∅ {2} 3
{5} ∅ {2} {2} 3
{2} {5} ∅ {5} 1
{2} ∅ {5} {5} 1
∅ {2, 5} ∅ {2, 5} 3.25
∅ {5} {2} {2, 5} 3.25
∅ {2} {5} {2, 5} 3.25
∅ ∅ {2, 5} {2, 5} 3.25

UDC3 {2, 4} {2} {4} ∅ {4} 3
{2} ∅ {4} {4} 3
∅ {4} {2} {4} 5.25
∅ {2} {4} {4} 5.25
∅ ∅ {2, 4} {4} 5.25

UDC2 {2, 3} {2} {3} ∅ {3} 5
{2} ∅ {3} {3} 5
∅ {2, 3} ∅ {2, 3} 6.35
∅ {3} {2} {2, 3} 6.35
∅ {2} {3} {2, 3} 6.35
∅ ∅ {2, 3} {2, 3} 6.35

UDC1 {1} ∅ {1} ∅ {1} 6.35
∅ ∅ {1} {1} 6.35

Table 3: State space and optimal policy of the example project if we use the CTMC of Kulkarni
and Adlakha (1986) and UDCs to structure the state space
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Data set J30 J60
Approach SRCPSP PSRCPSP SRCPSP PSRCPSP

Instances in set 480 480
Instances solved/compared 480 303
# activities 32 62
Avg CPU time (s) 0.485 0.025 1,592 78.87
Max CPU time (s) 14.02 0.393 31,838 1,061
Min CPU time (s) 0.000 0.002 1.903 0.203
CPU improvement factor 19.52 20.18

Avg state-space size 0.539 0.010 822.7 4.002
Max state-space size 11.38 0.072 4,257 32.85
Min state-space size 0.006 0.001 3.762 0.082
Memory improvement factor 53.60 205.6

Avg max % in memory 28.60 17.11 42.04 11.18

Table 4: Comparison of computational performance with the procedure of Creemers (2015) if ac-
tivity durations are exponentially distributed (state-space sizes are expressed in millions of states)

used to model the duration distributions. Table 5 reports the computational performance of our

procedure for the J30 data set for different levels of SCV. From Table 5, it is clear that computational

requirements increase with the number of phases. When compared to the procedure of Creemers

(2015), however, we see that our approach can cope with much lower levels of variability, and is

still able to solve all instances of the J30 data set, even if the activity duration distributions have

3 or 4 phases.

We conclude that our procedure significantly outperforms the procedure of Creemers (2015),

even if a brute-force approach is used to determine the optimal set of ongoing activities. If preemp-

tion is allowed, however, non-delay schedules are optimal, and we only need to consider maximal

resource-feasible antichains of ongoing activities. Table 6 reports on the performance of our proce-

dure depending on whether or not a brute-force approach was used to determine the optimal set of

ongoing activities. From Table 6 it is clear that the dominance rule has a significant impact on the

performance of the procedure. On average, computation times have reduced by a factor of 7.6, and

the number of sets of ongoing activities that were evaluated has reduced by a factor of 4.6. Note,

however, that there is no impact on the size of the state space. Table 6 and Fig. 6 also show that

we can solve networks of up to 62 activities with small computational effort. We are able to solve

196 instances of the J90 data set, and have solved 10 instances of the J120 data set. Because only

a few instances of the J120 data set could be solved, we do not include them in the discussion of

our results. Whereas memory is the main bottleneck of procedures that use the CTMC of Kulkarni

and Adlakha (1986), the bottleneck of our approach is CPU time: an average of 17.6 hours to solve

one instance of the J90 data set can hardly be called practical (note that no CPU time limit was

imposed).
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Activity duration SCV 1/2 1/3 1/4
Number of phases 2 3 4
# activities 62 92 122

Instances solved (PSRCPSP) 480 480 480
Instances solved (SRCPSP) 480 421 358
Avg CPU time (s) 4.704 182.96 4,571
Max CPU time (s) 199.9 11,660 470e3
Min CPU time (s) 0.013 0.0620 0.234
Avg state-space size 0.761 16.671 222.4
Max state-space size 11.50 382.79 6,222
Min state-space size 0.007 0.0327 0.103

Table 5: Computational performance for different values of SCV when solving the J30 instances of
the PSPLIB data set (state-space sizes are expressed in millions of states)

The procedure of Moukrim et al. (2015) is the current state-of-the-art for solving the PRCPSP.

Moukrim et al. (2015) solve all instances of PSPLIB J30 (with an average CPU requirement of 1.75

seconds), and report solutions for 383 (out of 480) instances of the PSPLIB J60 data set when a

time limit of 3 hours is imposed. For J90 and J120, they are able to solve 299 (out of 480) and 21

(out of 600) instances within said time limit. They use both CPLEX and SCIP, and run their tests

on an Intel Xeon 2.4 GHz computer. We conclude that our procedure outperforms the procedure

of Moukrim et al. (2015) for small-to medium-sized projects (our procedure takes 0.013 seconds for

solving an instance of the J30 data set, and can solve up to 449 instances of the J60 data set when

a time limit of 3 hours is imposed). For larger projects, however, the procedure of Moukrim et al.

(2015) still has the edge.

7 Benefit of preemption

To assess the benefit of preemption, we perform an elaborate experiment. We use RanGen (De-

meulemeester et al., 2003) to generate 30 projects for each combination of:

• Project size (n ∈ {12, 22, 32, 42, 52, 62}).

• Order strength (OS ∈ {0.4, 0.6, 0.8}).

• Resource constrainedness (RC ∈ {0.25, 0.5, 0.75}).

In addition, we consider three settings:

• No variability in activity durations (we compare the RCPSP and the PSRCPSP).

• Average variability in activity durations (we compare the SRCPSP and the PSRCPSP when

activity durations follow a hypoexponential distribution with a SCV of 0.5).
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Figure 6: Computational performance on the PSPLIB data set if activity durations are exponentially
distributed
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Data set J30 J60 J90
Brute-force approach Yes No Yes No Yes No

Instances in set 480 480 480
Instances solved 480 480 196
# activities 32 62 92
Avg CPU time (s) 0.025 0.013 8.630e3 2.586e3 178.8e3 63, 359
Max CPU time (s) 0.393 0.087 251.9e3 88.32e3 3, 947e3 0.868e3
Min CPU time (s) 0.002 0.002 0.203 0.118 242.8 99.90
Improvement factor 1.934 3.338 8.022

Avg state-space size 0.010 0.010 71.69 71.69 516.5 516.5
Max state-space size 0.072 0.072 962.2 962.2 4, 245 4, 245
Min state-space size 0.001 0.001 0.082 0.082 21.68 21.68
Improvement factor NA NA NA

Avg # sets of ongoing activities 0.521e6 0.117e6 0.194e12 0.036e12 3.779e12 0.845e12
Max # sets of ongoing activities 11.31e6 1.245e6 5.708e12 1.276e12 86.63e12 12.10e12
Min # sets of ongoing activities 0.005e6 0.001e6 3.680e6 0.618e6 3.555e9 837.7e6
Improvement factor 4.459 5.371 4.470

Avg max % in memory 17.11 12.55 12.81

Table 6: Comparison of computational performance depending on the approach that was used to
find the optimal set of ongoing activities (state-space sizes are expressed in millions of states)

• High variability in activity durations (we compare the SRCPSP and the PSRCPSP when

activity durations are exponentially distributed).

For solving the RCPSP, we implemented the branch-and-bound algorithm of Demeulemeester and

Herroelen (1997). For solving the PRCPSP with continuous preemption, we use the model of

Moukrim et al. (2015), who provided us with a copy of their code. For solving the SRCPSP, we use

the procedure of Creemers (2015).

Table 7 summarizes the results of the experiment. For each setting and for each combination of

parameters, Table 7 reports the average gap in optimal makespan when preemption is allowed. The

number between brackets next to the percentage gap indicates the number of instances (out of 30)

that could not be solved. In contrast to popular belief, Table 7 shows that the benefit of preemption

can be significant, regardless of the variability of the activity durations. We report average gaps

of up to 5.46 %, and observe that the benefit of preemption increases with the complexity of

the network (i.e., the order strength; a measure of the density of the project network) and the

constrainedness of the resources (i.e., the ratio of the average requirement of a resource over its

availability). In general, preemption was beneficial for 486, 793, and 776 instances (out of 1,437

instances that could be solved by all models) if the activity durations were deterministic, had a SCV

of 0.5, and were exponentially distributed, respectively. On average, the benefit is largest if activity

durations are deterministic (1.04 % gap) or had a SCV of 0.5 (0.93 % gap). If activity durations
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SCV = 0 (RCPSP versus PRCPSP)

OS 0.4 0.6 0.8
RC 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
n = 12 3.55 0 0 0.42 0 0 0.41 0 0
n = 22 3.91 0.24 0 2.15 0.16 0 0.96 0.11 0
n = 32 4.78 0.48 0 2.84 0.53 0 1.71 0.31 0
n = 42 4.07 0.46 0 4.29 0.53 0 2.53 0.26 0
n = 52 NA 0.19 0 3.89 0.23 0 3.22 0.14 0
n = 62 NA 0.40 0 3.87(2) 0.35 0 3.34 0.30 0

SCV = 0.5 (SRCPSP versus PSRCPSP)

OS 0.4 0.6 0.8
RC 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
n = 12 1.08 0.01 0 0.21 0.02 0 0.08 0 0
n = 22 2.63 0.38 0 1.21 0.20 0 0.23 0.21 0
n = 32 4.29 0.68 0 2.35 0.69 0 0.92 0.24 0
n = 42 5.46(1) 0.95 0.01 3.71 0.82 0 1.13 0.42 0
n = 52 NA NA NA 4.67 0.70 0 1.84 0.47 0
n = 62 NA NA NA 5.23 1.07 0 2.63 0.58 0

SCV = 1 (SRCPSP versus PSRCPSP)

OS 0.4 0.6 0.8
RC 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
n = 12 0.48 0.02 0 0.11 0.04 0 0.01 0 0
n = 22 1.36 0.4 0 0.66 0.24 0 0.11 0.21 0
n = 32 2.57 0.75 0 1.38 0.73 0 0.49 0.26 0
n = 42 3.76 1.03 0.01 2.24 0.92 0 0.61 0.47 0
n = 52 4.57 1.18 0 3.15 0.8 0 1.04 0.55 0
n = 62 5.15(3) 1.36 0 3.63 1.23 0 1.57 0.64 0

Table 7: Percentage gap in optimal makespan if preemption is allowed (the number of missing
observations is indicated between brackets)

are exponentially distributed, the gap was only 0.65 % on average. As such, preemption is more

often beneficial if activity durations are variable, however, the benefit itself is less outspoken.

8 Conclusion

In this article, we tackled the PSRCPSP; an extension of the SRCPSP where activities are allowed

to be interrupted. We are the first to study the PSRCPSP, and use a backward SDP recursion

to determine the optimal expected makespan of a resource-constrained project that has preempt-

able activities and stochastic activity durations. We develop a new CTMC that, compared to the

well-known CTMC of Kulkarni and Adlakha (1986), drastically reduces memory requirements. In

addition, we propose a new and efficient approach to structure the state space of the CTMC. These
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improvements allow us to easily outperform state-of-the-art exact procedures that schedule Marko-

vian PERT networks (i.e., PERT networks where the duration of the activities are exponentially

distributed). We are able to solve all instances of the PSPLIB J30 and J60 data sets with small

computational effort. We also solve 196 (out of 480) instances of the PSPLIB J90 data set, and

have even succeeded in solving 10 instances of the PSPLIB J120 data set. In addition, we show

that our solutions are optimal.

Even though preemption (or the splitting of activities) has many applications in real-life project

environments, it has received only little attention in the project scheduling literature. A possible

explanation for this lack of research interest is the common assumption that preemption only

has limited impact on the optimal makespan of a project. To further investigate this claim, we

perform an elaborate computational experiment. In contrast to popular belief, the experiment has

shown that the benefit of preemption can be significant (up to 5.46% on average), especially for

projects that have a complex network structure, and whose resources are heavily constrained. The

experiment also reveals that preemption can be beneficial regardless the variability of the activity

durations. In fact, on average, the benefit of preemption is largest when activity durations are

deterministic.

Even though we focus on the PSRCPSP, the approach developed in this article is quite general,

and can be applied to other scheduling problems as well. Our approach is especially suitable for

studying scheduling problems where the execution of an activity is allowed to be interrupted. If

activities are non-preemptable, on the other hand, our approach can be used to determine lower

bounds.
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