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The statistics of gap ratios between consecutive energy levels is a widely used tool, in particular in
the context of many-body physics, to distinguish between chaotic and integrable systems, described
respectively by Gaussian ensembles of random matrices and Poisson statistics. In this work we
extend the study of the gap ratio distribution P (r) to the case where discrete symmetries are
present. This is important, since in certain situations it may be very impractical, or impossible, to
split the model into symmetry sectors, let alone in cases where the symmetry is not known in the
first place. Starting from the known expressions for surmises in the Gaussian ensembles, we derive
analytical surmises for random matrices comprised of several independent blocks. We check our
formulae against simulations from large random matrices, showing excellent agreement. We then
present a large set of applications in many-body physics, ranging from quantum clock models and
anyonic chains to periodically-driven spin systems. In all these models the existence of a (sometimes
hidden) symmetry can be diagnosed through the study of the spectral gap ratios, and our approach
furnishes an efficient way to characterize the number and size of independent symmetry subspaces.
We finally discuss the relevance of our analysis for existing results in the literature, as well as its
practical usefulness, and point out possible future applications and extensions.

I. INTRODUCTION

Symmetry considerations are an essential part of a
physicist’s toolbox, with countless applications in all
fields of physics, ranging from Noether’s theorem, gauge
theories or the description of phase transitions [1]. An-
other frequent tool is the use of simplified models, which
successfully describe the important features of a physi-
cal phenomenon without having to deal with all micro-
scopic details. In this respect, Random Matrix Theory
(RMT), which was first initiated to understand the statis-
tical properties of energy levels in complex nuclei [2], is an
extremely successful approach which has also impacted
various branches in physics [3, 4]. It then comes as no
surprise that symmetry properties are an integral part of
RMT: one of the best-known examples is the construc-
tion of classical Gaussian ensembles from time-reversal
symmetry considerations. Depending on the underlying
symmetry of the system considered, it is best described
by random matrices belonging to one of the three follow-
ing ensembles: Gaussian Orthogonal Ensemble (GOE),
Gaussian Unitary Ensemble (GUE) and Gaussian Sym-
plectic Ensemble (GSE), whose entries are respectively
real, complex or quaternionic random variables. Con-
venient to the description of Floquet operators are the
circular ensembles introduced by Dyson [5]: circular Or-
thogonal Ensemble (COE), circular Unitary Ensemble
(CUE) and circular Symplectic Ensemble (CSE). These
ensembles have the same asymptotic level spacing distri-
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butions as the Gaussian ensembles [4].

The celebrated conjectures of Berry and Tabor [6] and
Bohigas, Giannoni and Schmit [7] state that RMT de-
scribes the spectral statistics of quantum systems with
a chaotic semiclassical limit, whereas Poisson statistics
provides a description of systems with a classical inte-
grable limit. These two paradigms serve as reference
points to study the transitions between localization and
ergodicity, for instance the Anderson transition as a func-
tion of disorder [8]. Quite crucially, quantum many-body
systems, for which there is in general no semiclassical
limit, also display the same dichotomy: RMT statistics
for chaotic systems and Poisson statistics for quantum
integrable systems, including those showing an emergent
integrability such as many-body localized systems [9, 10].
Numerous examples illustrate the usefulness of a RMT
analysis of quantum many-body spectra [9, 11–14].

A universal tool in this respect is the study of the dis-
tribution p(s) of level spacings, or gaps, defined as the dif-
ferences between consecutive energy levels, si = λi−λi−1,
assuming that the mean level density is fixed to unity,
i.e. 〈s〉 = 1. RMT offers simple, powerful predictions for
the distribution p(s) in terms of three different Wigner
surmises corresponding to the three Gaussian ensembles
mentioned above [2]. These surmises are obtained by a
simple calculation on random 2 × 2 matrices, and turn
out to reproduce most of the features of much larger ran-
dom matrices, with high precision [15]. Normalizing the
level spacing distribution requires the knowledge of the
density of states, which is often not analytically avail-
able. Numerically, one needs to perform an unfolding
of the spectrum, for which there exists different proce-
dures [6, 13, 16]. Unfolding can lead to spurious re-
sults [17], in particular because of finite-size effects; one
may even find instances where different unfolding pro-
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cedures leads to different physical interpretations of the
same data. For many-body systems, the density of states
is generically far from being uniform, which makes the
use of the unfolding procedure rather inaccurate.

A very useful alternative to the study of s has been
proposed by Oganesyan and Huse [14], in terms of the

gap ratio for three consecutive levels, ri = min(si,si+1)
max(si,si+1)

.

The key point is that considering the ratio of gaps rather
than the gaps themselves suppresses the need to know
or estimate the density of states, and thus avoids the
numerical unfolding step. The probability distribution
P (r) of gap ratios is thus well-suited to characterize sta-
tistical properties of many-body spectra. The Poisson
statistics distribution PPoisson(r) = 2/(1 + r)2 can be
easily derived from a Poisson sequence. For the random
matrix spectra, analytical surmises of PGOE(r), PGUE(r)
and PGSE(r) have been obtained by Atas et al. [18] from
the joint eigenvalue distribution of 3 × 3 random matri-
ces, and improved estimates were obtained in [19] based
on 4× 4 matrices.

Because of its computational advantage (no unfold-
ing needed) and the existence of these analytical pre-
dictions, the gap ratio r, in particular its average 〈r〉 and
its distribution P (r), has become one of the most studied
metrics in the field of disordered quantum systems. For
instance, it is often used to characterize the change of
statistics across a many-body localization (MBL) tran-
sition, between an ergodic phase, for which the RMT
predictions for P (r) are expected, and a Many-Body
Localized phase, which displays emergent integrability
and thus PPoisson(r) gap ratio statistics [9, 20, 21]. The
agreement between the RMT-predicted P (r) and the nu-
merical estimate for a given model now routinely di-
agnoses quantum chaotic models. Any discrepancy in
the gap ratio as a function of a model parameter is of-
ten interpreted as a sign of a different physical behavior
(see e.g. [22]). The distribution of gap ratios is also in-
strumental in analyzing the symmetry properties of the
SYK model and variants as a function of the number
of Majorana fermions [23–27]. P (r) has also been mea-
sured experimentally to probe an ergodic to MBL tran-
sition / crossover [28]. Applications of this metrics were
also performed in other fields of study, such as in astro-
physics [29], for statistics of the zeros of the Riemann zeta
function [18], or characterizing entanglement in quantum
circuits [30]. The computation of the gap ratio statistics
has been extended in several ways, such as ratios of gaps
for levels with one or more other levels in-between, or
non-Hermitian matrices [19, 31–37].

What happens to spectral statistics in the situation
where symmetries are present in the original Hamilto-
nian? In a seminal work [38], Rosenzweig and Porter
computed the level spacing distribution P (s) of systems
with several independent random blocks (each being a
random matrix with spacing distribution p(s)). This sit-
uation typically occurs when a physical system displays
discrete symmetries, in which case the number of blocks
remains finite in the thermodynamic limit. For contin-

uous symmetries, the number of blocks grows with the
system size, and ultimately, as many independent spectra
are mixed, one expects a Poisson distribution to emerge
for large enough systems. In an extension of the origi-
nal work [38], Berry and Robnik considered mixed phase
spaces with both ergodic and integrable blocks [39].

In general, one would be inclined to resolve the under-
lying symmetries by treating each block independently
and performing a block diagonalization. This is not al-
ways possible. First, there are cases where a symme-
try not previously known or analyzed is discovered fortu-
itously (e.g. by monitoring the gap ratio and seeing that
it does not converge to its expected value). Second, in
some situations, the block diagonalization is not known,
too complex to implement, or cannot be performed to-
tally. The latter case occurs for instance in systems with
non-Abelian discrete symmetries, where two symmetry
operations that commute with the Hamiltonian do not
commute with each other (see e.g. [40, 41]). Third, there
are cases where the basis transformation leading to a
block structure in the Hamiltonian is known, but results
in a Hamiltonian which is more costly to analyze; this
is for instance the case if a sparse Hamiltonian leads to
non-sparse blocks, inducing a strong decrease in the per-
formances of numerical routines (we will present such an
example in Sec. IV D).

In this work, we extend the Rosenzweig-Porter anal-
ysis to the computation of the gap ratio statistics P (r)
when several independent blocks are present. We do so
by calculating the joint gap distribution P (x, y) for a ma-
trix with several independent random blocks, each being
a random matrix with joint gap distribution p(s, t). We
obtain closed expressions for P (x, y) and P (r) in terms of
p(s, t) and its primitives. These expressions are valid for
an arbitrary number of blocks. In the case of Gaussian
random matrices, we use for p(s, t) a surmise given by
the exact 3× 3 distribution of RMT, which allows us to
obtain expressions for P (r). However our formula applies
for an arbitrary distribution p(s, t). We note that a re-
cent work [42] provides estimates for P (r) and 〈r〉 based
on an surmise obtained from explicit analytical calcula-
tions for small-size matrices; however it does not take
into account all possible level partitions. Our approach
is quite different, as we discuss below.

Our analytical estimates are virtually indistinguishable
from numerical simulations on large random matrices.
Our results explain several deviations for the distribu-
tion P (r) or expectation value 〈r〉 observed in the liter-
ature, as discussed in Sec. V A. They can also be use-
ful in several situations such as those mentioned above
(which we illustrate with various applications taken from
many-body physics in Sec. IV), as well as to estimate
the number of effective ergodic blocks in an incompletely
thermalized system.

The manuscript is organized as follows. We first intro-
duce the problem in Sec. II, setting up the notations and
summarizing the useful literature as well as our own re-
sults. Sec. III contains the derivation of the generic form
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of P (r) when several independent blocks are present. We
then present results for the three Gaussian ensembles.
Sec. III D compares these analytically obtained results
to simulations performed on random matrices, showing
an excellent agreement. Sec. IV contains several realistic
applications of these results in many-body physics, with
a panel of different types of possible symmetries: clock
symmetries, symmetries in disorder realizations, dynam-
ical symmetries in Floquet systems, disordered anyonic
chains with topological symmetries. In Sec. V, we finally
conclude by first discussing existing examples where our
work directly applies, and then suggesting some further
perspectives.

II. THE SETTING

A. Random matrix ensembles

Let us first consider the case of a single Gaussian ran-
dom matrix H of size N , whose distribution is propor-
tional to exp(− 1

2 trH2). We denote by λ1 ≤ . . . ≤ λN
the eigenvalues of such a matrix. The density of eigen-
values is given by the Wigner semicircle law ρ(λ) =
1
πN

√
2N − λ2 [43]. Since there are Nρ(λ)δλ levels in an

interval δλ, the corresponding mean level spacing in the
vicinity of λ = 0 is ∆ = π/

√
2N , which gives a local den-

sity 1/∆ =
√

2N/π. The joint distribution of eigenvalues
is [4]

P (λ1, . . . , λN ) = N
∏
i<j

(λj − λi)βe−a
∑N
i=1 λ

2
i , (1)

β = 1, 2 or 4 is the Dyson index and N and a are nor-
malization constants.

In a region of constant density, the nearest-neighbour
spacing distribution p(s) is well-approximated by the
Wigner surmise [2], corresponding to the exact result ob-
tained from Eq. (1) for 2× 2 matrices,

p(s) = aβs
βe−bβs

2

, (2)

where aβ , bβ are normalization constants, chosen in such
a way that 〈s〉 = 1. In a similar way [18], one can ap-
proximate the joint distribution of consecutive nearest-
neighbour spacings p(s, t) by its exact expression for 3×3
matrices, which can be obtained from Eq. (1) with N = 3
by integrating over one variable. It reads

p(s, t) = Aβs
βtβ(s+ t)βe−Bβ(s2+st+t2) (3)

where the constant Bβ is such that both spacings are
normalized as 〈s〉 = 〈t〉 = 1, and Aβ is the overall nor-
malization factor. From this expression, one can then
obtain the distribution of r = min(t/s, s/t) as

p(r) =

∫ ∞
0

dsdt p(s, t)δ

(
r −min

(
s

t
,
t

s

))
(4)

=

∫ ∞
0

ds s (p(s, rs) + p(rs, s)) . (5)

Since the distribution p(s, t) is symmetric in s and t,
Eq. (4) reduces to

p(r) = 2

∫ ∞
0

ds s p(s, rs). (6)

This approach was carried out in [18], yielding

p(r) =
1

Zβ

(r + r2)β

(1 + r + r2)1+
3
2β
, (7)

with Zβ the normalization constant.
Since Gaussian and circular ensembles have the same

asymptotic level spacing distribution, the same analysis
should equally be valid for circular ensembles, the only
difference being that the mean level spacing is ∆ = 2π/N
and thus the density of states is uniform and proportional
to N , rather than circular and proportional to

√
N . For

finite N , this difference in the shape of the density can
result in small differences between the circular and Gaus-
sian ensembles which are expected to vanish in the large-
matrix limit. For the 3×3 matrices leading to the surmise
Eq. (7), the difference is already very small [44].

B. Compound spectrum: the Rosenzweig-Porter
approach

Let us now consider ensembles of random matrices of
size N which can be decomposed into m independent
blocks of sizes N1, N2 . . . Nm, with

∑
iNi = N . The

ordered eigenvalues λ1 < λ2 < · · · < λN of such a ma-
trix can be obtained by diagonalizing each block sepa-
rately and ordering the eigenvalues, so that the spectra
of the blocks are interlaced. Let N = (N1, N2 . . . Nm) be
a vector of block sizes. The compound spectrum {λi, 1 ≤
i ≤ N} can be characterized by its spacing distribution
PN(s), which is the distribution of gaps si = λi+1 − λi.
It can also be characterized by the gap ratio distribution
PN(r̃), with r̃i = si/si−1, or [45] by the gap ratio distri-
bution PN(r), with ri = min(si/si−1, si−1/si) ∈ [0, 1].

If there is a statistical symmetry between left and
right intervals then the relation PN(r̃) = 1

r̃2PN( 1
r̃ ) holds,

which entails that PN(r) = 2PN(r̃)θ(1− r̃) [18]. In that
case, the distributions of r̃ and r essentially contain the
same information. As we shall see, this is the case for
the distributions considered in this paper, and therefore,
as is often done in numerical simulations, we concentrate
on the distribution PN(r) with r ∈ [0, 1].

If the m blocks are independent Gaussian random ma-
trices given by the Wigner-Dyson ensembles with index

β, then the spectrum of block i, {λ(i)q , 1 ≤ q ≤ Ni}, is
characterized by its mean level spacing around λ = 0,
given by ∆i = π/

√
2Ni, or by its local density ρi =√

2Ni/π. The resulting spectrum obtained by the super-
position of the m spectra has density ρ =

∑
i ρi. In-

troducing the normalized densities µi = ρi/ρ, we have

µi =
√
Ni/N . For the circular ensembles, where densi-

ties are uniform over the unit circle, µi = Ni/N .
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The Rosenzweig-Porter approach, which gives the
nearest-neighbour spacing distribution P (x) associated
with the compound spectrum, consists in assuming that
the compound spectrum is a superposition of indepen-
dent and identically distributed spectra with uniform
density ρi and with nearest-neighbour spacing distribu-
tion given by the surmise Eq. (2). The computation pro-
ceeds by identifying that a gap in the compound spec-
trum can originate either from a gap in one of the spectra
or from a gap between eigenvalues from two distinct spec-
tra. Considering all possibilities and the probabilities
attached to them leads to the spacing distribution P (x).
This approach is detailed in Sec. III A. These results were
extended in [39] by considering a mixed phase space,
which amounts to adding Poisson blocks to a chaotic
Hamiltonian. The work [39] derives an explicit formula
for P (x) for a Poisson block and (N − 1) chaotic blocks
with same density.

C. Summary of our results

In this paper we extend the Rosenzweig-Porter ap-
proach to derive the joint distribution of consecutive
nearest-neighbour spacings P (x, y) of a compound spec-
trum made out of several spectra with arbitrary distribu-
tion. It is given by the very compact expression Eq. (27)–
(28), for which we give a probabilistic interpretation. We
then obtain P (r) from the analog of Eq. (6), namely

P (r) = 2

∫ ∞
0

dx x P (x, rx). (8)

Applying our expressions to the RMT expressions
Eqs. (2) and (3), we obtain a closed general expres-
sion for PN(r). We then apply this general formula to
the case of identical block sizes Ni = N/m, for which
we use the short notation Pm(r). Some of these cal-
culations result in exact closed (albeit complex) forms,
others require a numerical integration. Besides the full
distribution, we will also consider the average gap ra-

tio 〈r〉m =
∫ 1

0
rPm(r)dr and the limiting value for van-

ishing gap ratio Pm(0) = limr→0 Pm(r), as they turn
out to be of great practical use to identify the exis-
tence of a symmetry (P (0) = 0 in the no-symmetry case
m = 1). In Section III E we also consider the quan-

tity I
1/4
m =

∫ 1/4

0
dr P (r), which proves useful to identify

symmetries in an experimental setting where few real-
izations of the spectrum are available. Our results are
summarised in Table I. In the electronic supplementary
material, we provide a Mathematica notebook allowing
to reproduce our calculations.

III. ANALYTICAL RESULTS

We now turn to the detailed proofs of our analytical
formulae. The reader not interested in the details of the

m GOE GUE GSE
〈r〉 [18] 1 0.53590 0.60266 0.67617

〈r〉m

2 0.423415 0.422085 0.411762
3 0.403322 0.399229 0.392786
4 0.396125 0.39253 0.388686
5 0.392712 0.389805 0.387367
6 0.390821 0.388475 0.38684
7 0.389661 0.387745 0.386597
8 0.388898 0.387309 0.386474
9 0.388368 0.387033 0.386407
10 0.387986 0.386849 0.386368
11 0.387701 0.386721 0.386344
12 0.387482 0.38663 0.386329
. . . . . . . . . . . .

∞ (Poisson) 0.386294

Pm(0)

2 1.40805 1.5228 1.63484
3 1.71587 1.80758 1.88322
4 1.83279 1.9023 1.95178
5 1.88972 1.94334 1.97682
6 1.92175 1.96413 1.98765
7 1.94157 1.97582 1.9929
8 1.95469 1.98292 1.99568
9 1.96383 1.98748 1.99724
10 1.97046 1.99055 1.99817
11 1.97541 1.99269 1.99875
12 1.97922 1.99423 1.99912
. . . . . . . . . . . .

∞ (Poisson) 2

TABLE I. Values of averages 〈r〉 and probability at r = 0 for
m blocks, obtained from the surmise approach in Sec. III. The
value for m = 1 is taken from [18]. Values for 〈r〉m obtained
from numerical simulations of random matrices are presented
in Tab. II in Sec. III D.

derivation can directly jump to Sec. III.C for a compar-
ison to random matrix numerics, Sec. III.D for a discus-
sion on how to compare to experimental results or to Sec.
IV for several applications in many-body physics.

A. Nearest-neighbour spacing distribution P (x)

Since the function p(s) in Eq. (2) corresponds to spec-
tra with mean level spacing equal to 1, the spacing dis-
tributions of each spectrum are given by the function
Eq. (2) rescaled by the mean level spacing, i.e. p(ρis).
We introduce the functions

f(s) =

∫ ∞
0

da p(s+ a) (9)

and

g(s) =

∫ ∞
0

da

∫ ∞
0

db p(s+ a+ b). (10)

The function f(s) gives the probability to have λi+1 ≥ s
knowing that λi = 0. The function g(s) gives the proba-
bility to have λi+1 ≥ s knowing that λi ≤ 0, that is, the
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probability to have a spacing at least s. These probabil-
ities are related through the identities

g′ = −f, g′′ = p. (11)

Introducing the rescaled spacing x = ρs we have from
Eq. (11)

g(ρis) = g(µix),

µif(ρis) = −∂xg(µix),

µ2
i p(ρis) = ∂2xg(µix). (12)

Spacings arise as empty intervals ]λ
(i)
q , λ

(j)
q′ [ of length s

with i, j = 1, ...,m. We have to consider the two pos-
sibilities i = j or i 6= j, and calculate the probability
densities associated with each configuration.

Let us first consider the case where m = 2 (we will
later generalize this analysis to more blocks). We have
to consider the two following cases:

1. Configurations giving rise to an empty interval of

type ]λ
(i)
q , λ

(i)
q+1[, which are are such that λ

(j)
q′ <

λ
(i)
q < λ

(i)
q+1 < λ

(j)
q′+1 for some q′. The prob-

ability of such a configuration for i is given by
p(ρis), while the probability for j is g(ρjs) since

λ
(j)
q′ and λ

(j)
q′+1 can be anywhere outside ]λ

(i)
q , λ

(i)
q+1[.

Taking into account the probability µ2
i to have a

level i at both ends of the interval, we get for

the configuration ]λ
(i)
q , λ

(i)
q+1[ a probability density

µ2
i p(ρis)g(ρjs). Using Eq. (12) we can rewrite it as

[∂2xg(µix)]g(µjx).

2. Configurations giving rise to an empty interval of

type ]λ
(i)
q , λ

(j)
q′ [, which are such that λ

(j)
q′−1 < λ

(i)
q <

λ
(j)
q′ < λ

(i)
q+1. The probability of such a spacing

for i is given by f(ρis) since λ
(i)
q+1 can be any-

where in ]λ
(j)
q′ ,∞[, while the probability for j is

f(ρjs) since λ
(j)
q′−1 can be anywhere in ]−∞, λ(i)q [.

The probability of having a level i and a level j
at the ends of the interval is given by µiµj , so that

the probability density of configuration ]λ
(i)
q , λ

(j)
q′ [ is

µiµjf(ρis)f(ρjs). Using Eq. (12) it can be rewrit-
ten as [∂xg(µix)] [∂xg(µjx)].

Summing these probabilities over i, j = 1, 2 we get for
the spacing probability P (x) of the mixed levels

P (x) = g(µ1x)∂2xg(µ2x) + g(µ2x)∂2xg(µ1x)

+ 2 [∂xg(µ1x)] [∂xg(µ2x)] (13)

or equivalently

P (x) = ∂2xG(x), G(x) =

m∏
i=1

g(µix). (14)

The above reasoning proves Eq. (14) for m = 2. In
fact, given the final expression, we can come up with a

much shorter proof of the validity of Eq. (14) for arbi-
trary m. Indeed, the probability of finding an interval
of a given length between two consecutive eigenvalues is
the second derivative of the probability of finding an in-
terval larger or equal to it with no eigenvalue in it (see
Eqs. (10) and (11)). Therefore P (x) must be the second
derivative of the probability of finding an empty inter-
val larger or equal to x. The probability that no level of
type i occurs in an interval of size x is g(µix). Since levels
from different sequences are independent, the probability
that no level of any type occur in an interval of size x is
simply the product of all g(µix), which directly entails
Eq. (14). Incidentally one can check, using Eqs. (9)–(11),
that P (x) in Eq. (14) is properly normalized to 1.

B. Joint consecutive spacing distribution P (x, y)

We now apply the same line of reasoning to the joint
distribution of two consecutive spacings. Our aim is to
obtain the joint distribution P (x, y) in terms of the dis-
tribution p(s, t) for a single spectrum.

Starting with the function p(s, t) in Eq. (3), we intro-
duce the function

p̂(s) =

∫ ∞
0

da p(s, a), (15)

which is the marginal distribution of p(s, t). Since p(s, t)
defined in Eq. (3) is symmetric in the exchange of s and
t, the marginal distribution can be equivalently taken by
integrating over the first variable. Note that this expres-
sion differs from the one in Eq. (2), which corresponds
to the result for 2× 2 matrices while p(s, t) was obtained
for 3 × 3 matrices. Functions f and g can then be de-
fined from p̂ as in Eq. (9)–(10). In terms of p(s, t), their
explicit form is

f(s) =

∫ ∞
0

da

∫ ∞
0

db p(s+ a, b) (16)

and

g(s) =

∫ ∞
0

da

∫ ∞
0

db

∫ ∞
0

dc p(s+ a+ b, c). (17)

We also define the two-variable functions

e1(s, t) =

∫ ∞
0

da p(s+a, t), e2(s, t) =

∫ ∞
0

da p(s, t+a),

(18)
and

h(s, t) =

∫ ∞
0

da

∫ ∞
0

db p(s+ a, t+ b). (19)

These functions are related through the identities

∂s∂th = p, ∂sh = −e2, ∂th = −e1, g′ = −f, g′′ = p̂.
(20)
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λ
(i)
q

λ
(j)

q′

λ
(k)

q′′

FIG. 1. The four configurations of consecutive spacings con-
sidered in Sec. III B. Different colours correspond to distinct
spectra. The three central levels are the ones from which the
ratios are calculated; the outer levels are at the same height
to indicate that their relative position is irrelevant.

The analogs of Eqs. (12) are

g(ρis) = g(µix), µif(ρis) = −∂xg(µix), (21)

µ2
i p(ρis, ρit) = ∂x∂yh(µix, µiy) (22)

∂xh(µix, µiy) = −µie2(ρis, ρit) (23)

∂yh(µix, µiy) = −µie1(ρis, ρit). (24)

A sequence of two consecutive spacings arises as a se-

quence of two empty intervals ]λ
(i)
q , λ

(j)
q′ [ and ]λ

(j)
q′ , λ

(k)
q′′ , [

with i, j, k = 1, ...,m. We have to consider all possi-
bilities for i, j, k and calculate the probability densities
associated with each configuration.

Once again, let us consider the simplest case m = 3,
that we will later generalize. We only need to examine
four cases, corresponding to patterns iii, iij, iji and ijk
and depicted in Fig. 1 :

1. Configurations λ
(i)
q < λ

(i)
q+1 < λ

(i)
q+2, which arise

whenever λ
(j)
q′ < λ

(i)
q < λ

(i)
q+1 < λ

(i)
q+2 < λ

(j)
q′+1 for

some q′ and λ
(k)
q′′ < λ

(i)
q < λ

(i)
q+1 < λ

(i)
q+2 < λ

(k)
q′′+1 for

some q′′. The probability of such a configuration
for i is given by p(ρis, ρit); the probability for j is

g(ρj(s + t)) since λ
(j)
q′ and λ

(j)
q′+1 can be anywhere

outside ]λ
(i)
q , λ

(i)
q+2[; and the same goes for k. Taking

into account the probability µ3
i to have three levels

i at the ends of the intervals, we get for this config-
uration a probability density µ3

i p(ρis, ρit)g(ρj(s +
t))g(ρk(s+t)). Using Eqs. (21)–(24) we can rewrite
it as µi[∂x∂yh(µix, µiy)]g(µj(x+ y))g(µk(x+ y)).

2. Configurations λ
(i)
q < λ

(i)
q+1 < λ

(j)
q′ , which arise

whenever λ
(j)
q′−1 < λ

(i)
q < λ

(i)
q+1 < λ

(j)
q′ < λ

(i)
q+2 and

λ
(k)
q′′ < λ

(i)
q < λ

(i)
q+1 < λ

(j)
q′ < λ

(k)
q′′+1 for some q′′.

The probability for i is e2(ρis, ρit), the probability
for j is f(ρj(s + t)), while the probability for k is
g(ρk(s+ t)). We get for this configuration a prob-
ability density µ2

iµje2(ρis, ρit)f(ρj(s+ t))g(ρk(s+
t)) = µi[∂xh(µix, µiy)][∂yg(µj(x+ y)]g(µk(x+ y)).
We used the fact that ∂yg(x+ y) = g′(x+ y).

3. Configurations λ
(i)
q < λ

(j)
q′ < λ

(i)
q+1 which arise

whenever λ
(j)
q′−1 < λ

(i)
q < λ

(j)
q′ < λ

(i)
q+1 < λ

(j)
q′+1 and

λ
(k)
q′′ < λ

(i)
q < λ

(j)
q′ < λ

(i)
q+1 < λ

(k)
q′′+1 for some q′′.

The probability for i is p̂(ρi(s + t)), the probabil-
ity for j is h(ρjs, ρjt), and the probability for k is
g(ρk(s+ t)). We get for this configuration a prob-
ability density µ2

iµj p̂(ρi(s + t))h(ρjs, ρjt)g(ρk(s +
t)) = µj [∂x∂yg(µi(x+ y))]h(µjx, µjy)g(µk(x+ y)).
We used the fact that ∂x∂yg(x+ y) = g′′(x+ y).

4. Finally, configurations λ
(i)
q < λ

(j)
q′ < λ

(k)
q′′ , which

arise whenever λ
(j)
q′−1 < λ

(i)
q < λ

(j)
q′ < λ

(k)
q′′ < λ

(j)
q′+1

and λ
(k)
q′′−1 < λ

(i)
q < λ

(j)
q′ < λ

(k)
q′′ < λ

(i)
q+1. The prob-

ability for i is f(ρi(s + t)), the probability for j is
h(ρjs, ρjt), and the probability for k is f(ρk(s+t)).
We get for this configuration a probability den-
sity µiµjµkf(ρi(s + t))h(ρjs, ρjt)f(ρk(s + t)) =
µj [∂xg(µi(x+ y))]h(µjx, µjy)[∂yg(µk(x+ y))].

We can now sum all contributions over i, j, k = 1, 2, 3.
There are 27 terms, which can be put under the compact
form

P (x, y) = ∂x∂y[µ1h(µ1x, µ1y)g(µ2(x+ y))g(µ3(x+ y))

+ µ2g(µ1(x+ y))h(µ2x, µ2y)g(µ3(x+ y))

+ µ3g(µ1(x+ y))g(µ2(x+ y))h(µ3x, µ3y)]. (25)

Equation (25) has a simple probabilistic interpretation.
Let us define a function H as

H(x, y) =

∫ ∞
0

da

∫ ∞
0

db P (x+ a, y + b), (26)

by analogy with Eq. (19). Thus H(x, y) gives the prob-
ability of having a triplet (λq−1, λq, λq+1) of levels of
the mixed spectrum such that λq−1 < λq − x and
λq + y < λq+1. That is, H(x, y) is the probability that

some level λ
(i)
q is such that all other levels λ

(j)
q′ verify

either λ
(j)
q′ < λ

(i)
q − x or λ

(i)
q + x < λ

(j)
q′ (including the

case i = j, in which case of course q′ 6= q). At fixed i,
the probability of such a configuration is h(µix, µiy) for
spectrum i, and g(µj(x+y)) for all j 6= i. Summing over
all i (and taking into account the probability µi to have
a level i in the middle), we get for H(x, y) the expression
under the derivation symbols in Eq. (25).

In fact, this reasoning provides a proof of the general
case with arbitrary number m of spectra. We thus have
in the general case

P (x, y) = ∂x∂yH(x, y) (27)

with

H(x, y) =

m∑
i=1

µih(µix, µiy)
∏
j 6=i

g(µj(x+ y)). (28)

One can check, using Eqs. (20)–(24), that P (x, y) in
Eq. (27) is properly normalized to 1. Note that, although
in what follows we will apply Eqs. (27)–(28) to the ran-
dom matrix case, these equations are valid for an arbi-
trary initial distribution p(s, t) of individual spectra.
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C. Ratio distribution P (r)

In order to obtain P (r), one first needs to evaluate
functions g and h to obtain H(x, y) using Eq. (28), then
take its derivative with respect to x and y, and finally
perform the integration in Eq. (8). In the GUE and GSE
case, there is no closed-form expressions for the function
h, so that we are left with a double integral (one in the
definition of h, one corresponding to the final integration
in Eq. (8)). In the GOE case however, we obtain explicit
expressions for g and h, as we will show below, and thus
we get a closed-form expression for P (x, y). The remain-
ing integral Eq. (8) is doable analytically only in the case
of a mixture of m = 2 spectra.

1. GOE case

In the GOE case, the joint distribution p(s, t) reads

p(s, t) =
37

25π3
st(s+ t)e−

9
4π (s2+st+t2). (29)

Starting from Eq. (29) for p(s, t) and calculating explic-
itly the functions g and h given in Eqs. (17) and (19) we
get

g(s) = U1(s)− s

2
U2(s)− s

2
U3(s) (30)

with

U1(s) = e−
9
4π s

2

,

U2(s) = Erfc

(
3s

2
√
π

)
,

U3(s) = e−
27
16π s

2

Erfc

(
3s

4
√
π

)
, (31)

and

h(s, t) =
9(s+ t)

4π
V1(s, t)

+
8π − 27s2

16π
V2(s, t) +

8π − 27t2

16π
V3(s, t) (32)

with

V1(s, t) = e−
9
4π (s

2+st+t2),

V2(s, t) = e−
27s2

16π Erfc

(
3(s+ 2t)

4
√
π

)
,

V3(s, t) = e−
27t2

16π Erfc

(
3(2s+ t)

4
√
π

)
. (33)

One can then rewrite Eq. (28) as

H(x, y) =

m∑
i=1

3∑
a1=1

· · ·
3∑

am=1

H(i)
a1...amVai(µix, µiy)

∏
j 6=i

Uaj (µj(x+ y))

(34)

with H
(i)
a1...am some polynomials of x, y and the µi, which

can be obtained explicitly from Eqs. (30) and (32).
Functions Ui have the property that they transform

into each other under derivation. Namely, the derivative
of any function

∑
i ciUi (with ci polynomial in s) is of

the form
∑
i c̃iUi (with c̃i polynomial in s). The same

property holds for the Vi upon derivation with respect
to s or t. Therefore, using Eq. (27) and the expansion
Eq. (34), we obtain

P (x, y) =

m∑
i=1

3∑
a1=1

· · ·
3∑

am=1

P (i)
a1...amVai(µix, µiy)

∏
j 6=i

Uaj (µj(x+ y))

(35)

where P
(i)
a1...am are polynomials of x, y and the µi. Given

the definition of the functions Ui and Vi, Eq. (8) can be
expanded as a linear combination (with real coefficients
dependent on the µi) of integrals of the form∫ ∞

0

dx xke−λx
2
m∏
i=1

Erfc(aix), (36)

with λ and the ai depending on the µi and on r (and
possibly ai = 0). It appears that in general such an
integral does not have a closed form. However in the
case m = 2 we have the identity∫ ∞

0

dx xe−λx
2

Erfc(ux) Erfc(vx) =

1

2λ
−
u tan−1

(√
λ+u2

v

)
πλ
√
λ+ u2

−
v tan−1

(√
λ+v2

u

)
πλ
√
λ+ v2

, (37)

from which one can deduce Eq. (36) for all odd values of
k by deriving with respect to λ, and for all even values
of k by first integrating by parts and then deriving with
respect to λ. This yields a (rather lengthy) closed-form
expression for P (r) in the case m = 2 (which is given in
full in the electronic Supplementary Material). To give
an idea of this expression, we only give P (0) in the case
of two blocks of the same size:

P (0) =
1

168

(
408− 144

√
2 + 7

√
6π

+14
√

6 tan−1
(

1

4
√

3

)
− 28

√
6 tan−1

(
1√
6

))
' 1.40805. (38)

For m blocks of the same size, we get P (0) = 1.71587
for m = 3 and P (0) = 1.83279 for m = 4, as reported in
Tab. I.

In practice, the fastest way of obtaining P (r) for GOE
in the general case is to calculate H(x, y) and P (x, y)
analytically from the explicit expressions for h and g,
using Eq. (27)–(28), and perform the last integral nu-
merically. The Mathematica notebook in the electronic
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Supplementary Material implements the two possibilities
to obtain P (r). From the exact equation, numerical in-
tegration over [0, 1] yields the mean ratio. For instance
for m blocks of equal size, we get

〈r〉GOE,m blocks = 0.423415, 0.403322, 0.396125
(39)

for m = 2, 3 and 4 blocks respectively, again reported in
Tab. I.

2. GUE case

In the GUE case, the joint distribution p(s, t) reads

p(s, t) =
323
√

3

226π5
s2t2(s+ t)2e−

243
64π (s2+st+t2). (40)

The calculation of g and h for GOE was made possible by
the fact that either s or t is of degree 1 in the polynomial
in front of the exponential in Eq. (29). This is no longer
the case for GUE and GSE. However, g as well as the first
derivative of h can be obtained analytically. We find

g(x) = −729
√

3x3

1024π2
e−

243x2

64π − Erfc

(
9

8

√
3

π
x

)

+e−
729x2

256π

(
243

(
243x4 + 128πx2

)
49152π2

+ 2

)
Erfc

(
9

16

√
3

π
x

)

− 3

2
x

(
Erfc

(
27x

16
√
π

)
− 4T

(
27x

8
√

2π
,

1√
3

))
(41)

where T (x, a) is Owen’s T -function, defined as

T (x, a) =
1

2π

∫ a

0

dt
1

1 + t2
e−x

2(1+t2)/2. (42)

For h we have h(x, y) =
∫∞
0
e2(x+ a, y)da, with

e2(x, y) =

∫ ∞
0

db p(x, y + b)

=
314
√

3x2e−
243(x2+xy+y2)

64π (x+ 2y)

224π4

×
(
128π − 81

(
x2 − 4xy − 4y2

))
+

312e−
729x2

256π x2 Erfc
(

9
16

√
3
π (x+ 2y)

)
228π4

×
(
19683x4 − 20736πx2 + 16384π2

)
(43)

and e1(x, y) = e2(y, x). Using the identities in Eq. (20),
the expression of P (x, y) reads

P (x, y) =

m∑
i=1

µih(µix, µiy)∂x∂y

∏
j 6=i

g(µj(x+ y))


−

m∑
i=1

µ2
i e2(µix, µiy)∂y

∏
j 6=i

g(µj(x+ y))


−

m∑
i=1

µ2
i e1(µix, µiy)∂x

∏
j 6=i

g(µj(x+ y))


+

m∑
i=1

µ3
i p(µix, µiy)

∏
j 6=i

g(µj(x+ y)), (44)

in which only the first sum involves the function h for
which no closed form is available. The ith term in that
sum is µih(µix, µiy)qi(x+y), with qi an explicitly known
function involving only products of derivatives of g. For
this term the integral Eq. (8) yields a contribution

2µi

∫ ∞
0

dx x h(µix, µirx) qi((1 + r)x)

= 2µi

∫ ∞
0

dx

∫ ∞
0

da x e2(µix+ a, µirx)qi((1 + r)x).

(45)

We perform numerically the twofold integrals Eq. (45)
and the single integrals over x for all the other terms.
For m blocks of equal size, we obtain:

P (0) = 1.5228, 1.80758, 1.9023 (46)

and

〈r〉GUE,m blocks = 0.422085, 0.399229, 0.39253 (47)

for m = 2, 3, 4 respectively.

3. GSE case

For GSE the joint distribution p(s, t) reads

p(s, t) =
381
√

3

275515π8
s4t4(s+ t)4e−

311

21052π
(s2+st+t2). (48)

The function g reads

g(x) = −3

2
x

(
Erfc

(
729x

320
√
π

)
− 4T

(
729x

160
√

2π
,

1√
3

))
− Erfc

(
243

160

√
3

π
x

)

+
e−

531441x2

102400π Erfc
(

243
320

√
3
πx
)

10368
Q1(x)

− 531441
√

3e−
177147x2

25600π x3

262144000π2
Q2(x) (49)
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with Q1, Q2 the polynomials

Q1(x) =
523347633027360537213511521x10

10995116277760000000000π5

+
8862938119652501095929x8

214748364800000000π4

+
16677181699666569x6

167772160000π3

+
2792914305201x4

81920000π2
+

14703201x2

400π
+ 20736 (50)

and

Q2(x) =
16677181699666569x6

16777216000000π3

+
94143178827x4

163840000π2
+

531441x2

256π
− 32. (51)

It can be checked that the second derivative of g is indeed
the marginal probability p̂, and that g(0) = 1. Similarly
as in the GUE case, h is not calculable in closed form,
but we have h(x, y) =

∫∞
0
e2(x+ a, y)da with

e2(x, y) =
333x4

279514π7
e−

177147(x2+xy+y2)
25600π

(
R1(x, y)

+R2(x, y)e
177147(x+2y)2

102400π Erf

(
243

320

√
3

π
(x+ 2y)

))
,

(52)

where R1(x, y) and R2(x, y) are polynomials given by

R1(x, y) = 77760
√

3(x+ 2y)×(
− 773967052800000π2

(
5x2 − 28xy − 28y2

)
+

535570083993600π
(
5x4 − 24x3y + 88x2y2 + 224xy3 + 112y4

)
− 1853020188851841

(
x6 − 4x5y + 12x4y2 − 32x3y3

−176x2y4 − 192xy5 − 64y6
)

+4697620480000000π3

)
(53)

and

R2(x, y) = 328256967394537077627x8

− 379498534676857036800πx6

+ 493581389408501760000π2x4

− 475525357240320000000π3x2

+ 240518168576000000000π4. (54)

The computation is then the same as for GUE. Using
Eqs. (44) and (45) we get, for m = 2, 3, 4 blocks of equal
size,

P (0) = 1.63484, 1.88322, 1.95178 (55)

and

〈r〉GSE,m blocks = 0.411762, 0.392786, 0.388686.
(56)

We finally mention that the Mathematica notebook in
the electronic Supplementary Material allows to repro-
duce these computations, as well as to consider different
cases (other values of m, unequal sizes of the m blocks).

4. Poisson (m→∞) limit

One can easily check that in the case of a mixture
of m spectra of the same size, one recovers the Poisson
distribution in the m → ∞ limit. Indeed, in that case
the function H reads

H(x, y) = h
( x
m
,
y

m

)
g

(
(1 + r)x

m

)m−1
(57)

and thus

P (r) = 2

∫ ∞
0

dx x gm−1
[
∂x∂yh

m2
+
m− 1

m2
(∂xh+ ∂yh)

g′

g

+h
m− 1

m2

(
(m− 2)

g′2

g2
+
g′′

g

)]
,

(58)

with functions h and g evaluated at
(
x
m ,

rx
m

)
and (1+r)x

m ,
respectively. In the limit m → ∞, these arguments
go to 0. From the explicit expressions for g and h,
the only term in the square brackets that survives is

h (m−1)(m−2)
m2

g′2

g2 , which goes to 1. Using the fact that

g(x) = 1− x+O(x3) close to 0, we get

P (r) ' 2

∫ ∞
0

dx x

(
1− (1 + r)x

m

)m−1
→m→∞ 2

∫ ∞
0

dx x e−(1+r)x =
2

(1 + r)2
, (59)

which is indeed the Poisson result.

D. Comparison with numerics

We now compare the gap ratio distribution Pm(r) and
the mean value 〈r〉m obtained through the analytical ap-
proach of Sec. III to direct numerical computations on
large random matrices. Numerical RMT spectra are com-
puted using the matrix models of [46], based on tridiag-
onal matrices. These models are numerically faster to
diagonalize, but otherwise equivalent to the dense ones.
By construction, the spectrum of a single RMT block of
linear size N has support in [−2

√
N, 2
√
N ]. The sup-

ports of a collection of blocks therefore overlap in the
[−2
√
Nmin, 2

√
Nmin] region, where Nmin = minj Nj is the

linear size of the smallest block in the collection. In order
to avoid boundary effects, we restrict the numerical com-
putation of the level statistics to the central quarter of
this overlap region. The normalized densities µi in that

region are given by µi =
√

Ni
Ntot

with Ntot =
∑
j Nj the



10

0

1

P
(r

)

GOE

m = 1
m = 2

m = 3
m = 4

0

1

P
(r

)

GUE

0.0 0.2 0.4 0.6 0.8 1.0
r

0

1

P
(r

)

GSE

FIG. 2. Distribution of the ratio of consecutive level spacings
P (r) for (from top to bottom) GOE, GUE and GSE ensembles
and m = 1 to m = 4 blocks (from bottom to top at r = 0).
Full lines are the surmises obtained from Sec. III, except the
m = 1 case, for which the corresponding surmise Eq. (7) is
taken from [18]. Points are numerical results from random
matrices of size at least Ntot = 2000, averaged over 3.6× 105

histograms.

total linear size. In all numerical computations presented
here, Ntot is at least 2 × 103, and 3.6 × 105 samples are
used.

Figure 2 displays the results of this comparison for
m = 2, 3, 4 (as well as the surmise of [18] for m = 1)
and all Gaussian ensembles. The comparison is excel-
lent and within the scale of this figure, there is no visible
difference between the analytically obtained Pm(r) and
the numerical results P num

m (r). More precisely, we found
that the relative error |Pm(r)−P num

m (r)|/Pm(r) is always
less than 0.01. This translates into also an almost perfect
agreement (with no difference within error bars) between
〈r〉m (from Tab. I) and the numerical estimates reported
in Tab. II.

We also compare analytical and numerical results for
the specific case of m = 2 GOE blocks of different sizes.
In Fig. 3 we present results for the probability distribu-

m GOE GUE GSE
〈r〉 [18] 1 0.5307(1) 0.5996(1) 0.6744(1)

〈r〉m
2 0.4235(5) 0.4220(5) 0.4116(5)
3 0.4035(5) 0.3992(5) 0.3927(5)
4 0.3963(5) 0.3924(5) 0.3886(5)

TABLE II. Values of averages 〈r〉 for m blocks, as obtained
from simulations on random matrices. The value for m = 1
is taken from [18]. Notice the excellent agreement with the
surmise results reported in Tab. I.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.5

1.0

1.5

P
(r

)

α = 0.0
α = 0.1
α = 0.2
α = αφ

α = 0.3
α = 0.4
α = 0.5

0.0 0.1 0.2 0.3 0.4 0.5
α

0.425
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0.475

0.500

0.525

〈r
〉G

O
E

2

〈r〉GOE
2,α

〈r〉RMT
2,α

FIG. 3. Top: PGOE
2 (r), for various density ratios α (see text).

αφ = 1/(1 + φ2) (in golden color in both plots) is the value
that corresponds to the anyonic chain application discussed in
Sec. IV D. Bottom: 〈r〉GOE

2 as a function of α. In both plots,
full lines are predictions from the surmises of Sec. III, and
points are numerical results obtained on random matrices of
size at least Ntot = 2000, averaged over 3.6×105 realizations.

tion P (r) for different values of α = µ1

µ1+µ2
(top panel) as

well as for the expectation value 〈r〉2,α as a function of α
(bottom panel). Here again the agreement between ana-
lytical and numerical results is striking. More precisely,
we found that the relative error |Pm(r)−P num

m (r)|/Pm(r)
was always less than 0.01 for block ratios α ≥ 0.2. For
α < 0.2, the relative error increases, but remains below
0.05. The seemingly crossing point in Fig. 3 is in fact not
a crossing point, as one can convince oneself by using the
exact expression for PGOE

2 (r) and calculating its value
with enough precision in the vicinity of that point.
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We conclude this comparison section by discussing [42],
which provides an analytical estimate for P (r) for m = 2,
derived from a 4 × 4 surmise which is forced to contain
two levels of each of the m = 2 blocks. This does not
contain all possible patterns considered in Sec. III B. The
estimated value for 〈r〉 obtained from this approach is
approximately close to the one presented in Table I for
the GOE, GUE but strongly differs for the GSE, while
our results in this latter case agree with the numerical
estimates in Table II.

E. Symmetry detection in an experimental context

The numerical comparisons in the previous subsection
are done for matrix sizes N ∼ 2000 and histograms are
obtained from many random realizations. This allows to
compare to the analytical results, obtained in the thermo-
dynamic limit, with small enough statistical error bars.
In the context of numerical simulations, the quantities
〈r〉m and Pm(0) given in Table I provide a signature
allowing to identify the presence of a symmetry. This
generalizes the existing results for 〈r〉 which is a quan-
tity routinely used in numerical studies (see discussion in
Sec. I) to identify the chaotic nature of a spectrum.

While most of the applications of gap ratio statistics
have indeed been so far used inputs of numerical spec-
tra of many-body systems, it is worth discussing appli-
cations to experimental spectroscopies, which typically
involve less statistics (less realizations of disorder) and
(sometimes) smaller spectra. For instance, the experi-
mental measurement of P (r) in Ref. [28] were performed
in a system with N = 45 energy levels, and using 4 re-
alizations of disorder. Other typical experiments prob-
ing disordered many-body quantum systems (often in the
context of many-body localization) in various experimen-
tal platforms (cold atoms, trapped ions, superconducting
qbits) average experimental results over 6 [47–51], 12 [52],
20 [53], 24 [54], 30 [55], 50 [56, 57], and up to 197 [58, 59]
realizations of disorder. Most of these platforms work
on quantum systems with a minimum of tens of qbits
or atoms with corresponding many-body spectra of at
least N = 1000 energy levels. In a different physical con-
text, spectroscopy experiments on nuclei allow to resolve
a quite large number of energy levels (often by combining
results from different experimental techniques), typically
from hundreds to thousands [60, 61].

Interestingly, already at sizes achievable experimen-
tally our approach provides a signature of symmetries.
As can be seen in Table I, differences between values of
〈r〉m are quite small. Having experimental investigations
in mind, we therefore propose to consider instead the
quantity

I1/4m =

∫ 1/4

0

Pm(r)dr, (60)

which is simply the integral of the distribution of r up
to a point chosen at r = 1/4; this upper bound is arbi-

0,25 0,3 0,35 0,4 0,45

I
m

1/4
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P
(I
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1
/4

)

m=2 m=3

FIG. 4. Probability distribution of I
1/4
m for N/m GOE blocks

with m = 2 (black) and m = 3 (red). Histograms are ob-
tained from 20000 values, each of which is calculated from 40
realizations of matrices of size N = 180 (solid lines) and from
120 realizations for size N = 48 (dashed lines). Vertical black
and red lines indicate the theoretical predictions for m = 2

and 3 respectively; blue line is the mid-value 1
2
(I

1/4
2 + I

1/4
3 ).

trary, but it is close to the crossing point r ≈ 0.288 of
PGOE
m=2 (r) and PGOE

m=3 (r). One can easily obtain a numer-

ical estimate of I
1/4
m from an experimental spectrum by

counting the number of ratios less than 1/4. From the
analytical side, theoretical expressions can be obtained
from our exact formulas and are given in Table III E.

To illustrate this approach, we give an example of a
‘numerical experiment‘ where one would like to distin-
guish between the cases m = 2 and m = 3 in a case
where the total number N of available levels is small
and realizations are scarce. In Fig. 4 we display proba-

bility distributions for the quantity I
1/4
m when data are

collected from spectra of size N = 180 and when 40 re-
alizations of the experiment are available (solid lines in
Fig.4). In such a case, the number of available levels is
very small since each block has size N/m (90 for m = 2
or 60 for m = 3). The two histograms associated with
m = 2 and m = 3 are clearly distinguishable. In the
case of an even smaller size N = 48, one needs about 120
realizations to get a comparable width of the histograms.
These values of N and number of realizations of disorder
are comparable to the experimental situations discussed
above.

More interesting is the probability of correct identi-
fication of the symmetry. If m = 2, the experimentally

measured value would be smaller than 1
2 (I

1/4
2 +I

1/4
3 ) (the

value which is equidistant from the m = 2 and m = 3

cases) in 89.2% of cases. The criterion I
1/4
m thus provides

an additional tool, more suited to experimental situations
where the number of realizations is scarce.
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m GOE GUE GSE

I
1/4
m

2 0.338171 0.250851 0.298583
3 0.37145 0.335806 0.363505
4 0.383474 0.361911 0.377903
5 0.389196 0.372592 0.382539
6 0.392374 0.3778 0.384388
7 0.394325 0.380654 0.385237
8 0.39561 0.382353 0.385667
9 0.396502 0.383429 0.385903
10 0.397146 0.384146 0.386039
11 0.397627 0.384641 0.386122
12 0.397996 0.384994 0.386175
. . . . . . . . . . . .

∞ (Poisson) 0.4

TABLE III. Value of I
1/4
m defined by Eq. (60) obtained from

the surmise approach in Sec. III.

IV. ILLUSTRATIONS IN QUANTUM
MANY-BODY PHYSICS

We now illustrate the usefulness of the above results
by comparing them with simulations on realistic spec-
tra obtained from quantum many-body problems. Most
of our examples are taken from one-dimensional lattice
models, mostly for computational convenience. In the
following, the lattice will thus be a one-dimensional chain
with L sites. Except otherwise mentioned, we will explic-
itly break translation symmetry, as well as possibly other
lattice symmetries (such as reflection around the center
of the chain) to concentrate on the existence of a few
blocks. The existence of translation symmetry would re-
sult in the existence of L blocks (labeled by the L recipro-
cal wave-numbers), which would result, as discussed ear-
lier, in an (effective) Poisson distribution for level spac-
ings and gap ratios in the thermodynamic limit. The
translation symmetry will be broken by using disorder
characterized by a disorder strength ε. In all the simula-
tions presented below, we take ε not too small (in order
to avoid the proximity to the translation-invariant case,
which would cause stronger finite-size effects) as well as
not too large, to avoid for instance a possible many-body
localized phase (which would also result in Poisson spec-
tral statistics). In all Hamiltonian systems we examine,
we consider mid-spectrum eigenstates, obtained either by
full diagonalization (for the smaller Hilbert space sizes)
or by the shift-invert subset diagonalization method [62]
for larger systems.

A. Quantum clock models

The first example deals with Q-states quantum clock
models, which are natural ZQ-symmetric generaliza-
tions of the Ising quantum chain with Q-states quan-
tum “spins” on each site [63, 64]. These exhibit a rich
ground state phase diagram including ordered and disor-
dered phases as well as critical lines, and have attracted

a lot of attention in the recent years due to their rela-
tion with parafermions, a ZQ generalization of Majorana
fermions [65], as well as with topological phases [66].
They are furthermore related to cornerstone models of
statistical mechanics, including the Potts model (where
the ZQ symmetry is promoted to a larger, SQ symmetry)
and the chiral Potts model [67, 68].

On each site, we define a spin taking Q possibles values
(0 . . . Q − 1), as well as two operators σ and τ , which
generalize the Pauli matrices σz and σx of the Ising chain:
σ measures the orientation of the spin, while τ rotates it
by one unit “around the clock”, and as a result these
fulfill the following algebraic rules: σQ = τQ = 1, σ† =
σQ−1, τ † = τQ−1 and στ = ωτσ with ω = exp(2iπ/Q),
a Qth root of unity.

Simple matrix representations are obtained in the basis
where σ is diagonal (the “{σ}-basis”):

σ =


1
ω

. . .

ωQ−1

 , τ =


0 1

. . .
. . .

. . . 1
1 0

 .

(61)

In the basis where τ instead is diagonal (the “{τ}-basis”),
the matrices are exchanged.

The standard Hamiltonian for quantum clock mod-
els is written as a linear combination of (τj)

a, a =

1, . . . , Q−1 on each site j and exchange terms (σ†jσj+1)a,
a = 1, . . . , Q−1. It is invariant under a ZQ “clock” sym-
metry σj → ωσj , and the associated conserved charge
Z =

∏
j τj has eigenvalues 1, ω, . . . ωQ−1. For Q ≥ 3

the original model has two other important symmetries:

charge conjugation, which acts as τj → τ †j , σj → σ†j , and

time-reversal, which is anti-unitary (and therefore sends
any constant to its complex conjugate) and sends σj to

σ†j while leaving τj invariant.
The model we consider in the following breaks all sym-

metries, but ZQ :

HQ = −
∑
j

Jjσ
†
jσj+1 + Γτj + ig(τj − τ †j )σjσ

†
j+1 + h.c.,

(62)
where the sum runs over the L sites of the 1d lat-
tice. For practical computations we restrict ourselves to
Q = 2, 3, 4. The coupling constants Jj are independent
random numbers uniformly taken from a box distribution
[J − ε, J + ε]. Since they are a priori different on each
site, they break invariance under translation or spatial
reflection. The last term breaks both time-reversal and
charge conjugation symmetry (this breaking could also
have been achieved by perturbing with the U(1) charge
Sz introduced in [69]).

We first consider results of simulations performed in
the {σ} basis, with a full Hilbert space of size QL. In
the top panel of Fig. 5 we present the average gap ra-
tio for different chain sizes. We clearly observe gap ra-
tios which do not tend to their GOE value 〈r〉GOE, but
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FIG. 5. Q-states clock model — Top: Average gap ratio 〈r〉
for the model of Eq. (62) for different values ofQ, as a function
of Hilbert space size |H|. Open symbols denote simulations
where the ZQ symmetry is resolved, in which case the Hilbert
space size is the block size QL−1 (we averaged data over all
Q equivalent blocks). Filled symbols denote results for the
full Hilbert space of size QL. The dashed lines represent the
values of 〈r〉GOE

m obtained in Sec. III (taken from Table II),
while 〈r〉GOE is the numerical estimate for the GOE distri-
bution taken from [18]. The precision of our numerics allows
us to clearly distinguish the case m = 4 blocks with 〈r〉GOE

m=4

from the Poisson value 〈r〉Poisson also represented in the plot.
Simulations parameters are ε = 0.5, J = 1, Γ = 0.8, g = 0.5.
For Q = 2, instead of the time-reversal and charge conjuga-
tion breaking term in Eq. (62) which vanishes when Q = 2,
we add a next-nearest neighbor interaction g2

∑
j σjσj+2 in

order to break the mapping to a free-fermion model (we take
g2 = 0.5). Statistics are obtained by focusing on 200Q eigen-
states in the middle of the full spectrum, except for the smaller
sizes where ∼ 20Q eigenstates where considered. Results are
averaged over more than 4000 realizations of disorder, ex-
cept for the largest size where 1000 realizations were used.
For Q = 2, 3, 4, we obtained results on chains of sizes up to
L = 17, 11, 9 respectively. Bottom: Probability distribution
of the gap ratio P (r), as obtained from simulations of chains
of sizes L = 16, 10, 8 for Q = 2, 3, 4 respectively. Simula-
tion parameters are the same as in top panel. The solid lines
represent the surmises PGOE

m (r) obtained from the analytical
computations in Sec. III.

rather to their 〈r〉GOE
m=Q value as the size of the Hilbert

space is increased. This is expected, as the Hamiltonian
possesses Q sectors of identical size QL−1 labeled with
the different eigenvalues of the charge Z. Note however
that working in the {σ} basis does not allow to simply
construct the Hamiltonian blocks, as Z is off-diagonal in
that case. Furthermore, the Hamiltonian is complex in
this basis, and without any further indication on the ex-
istence of the ZQ symmetry, it would not be clear why
GUE statistics should not show up.

When switching to the {τ} basis, Z is now diagonal
and the blocks are easily constructed. Furthermore the
Hamiltonian becomes real. Computing the average gap
ratio in each block leads to an asymptotic 〈r〉GOE value
for each block, showing that each block is indeed inde-
pendent and no further symmetry has been missed.

We further confirm these results by showing the full
distribution P (r) in the bottom panel of Fig. 5 for
Q = 2, 3, 4. When the full spectrum is taken, the distri-
bution obtained numerically for the largest system size
is in excellent agreement with the surmises PGOE

m=Q(r) ob-
tained from Sec. III.

Note the importance of the time-reversal symmetry
breaking term g 6= 0 in Eq. (62) in this analysis. In
the presence of time-reversal symmetry (at g = 0), the
blocks with Z and Z∗ are identical, leading to exact de-
generacies. These additional values at r = 0 would result
in effective values of 〈r〉 lower than their Poisson values
for finite-size systems.

B. Discrete symmetries in disorder distributions

In this section, we consider the Heisenberg spin chain
in the presence of a random external field hj :

HHeisenberg =
1

2

L∑
j=1

σj · σj+1 −
L∑
j=1

hjσ
z
j , (63)

where σx,y,z are the standard Pauli matrices, and we
use periodic boundary conditions. In general, this sys-
tem hosts a many-body localized phase at large enough
disorder: in particular, the model with box disorder
has become the standard model of MBL in one dimen-
sion [9, 21]. When disorder is reduced, the system un-
dergoes a transition towards a thermal phase, a signature
of which is an RMT-like spectral statistics. Since uncor-
related disorder explicitly breaks all spatial symmetries,
we expect the spectral statistics in the thermal phase to
be of GOE type.

However, in the specific case of binary disorder, i.e.
taking on discrete values hj = ±h, visible deviations
from the GOE gap ratio distribution were observed in
the bulk of the thermal phase [70]. The authors of [70]
explained that this phenomenon was due to the pecu-
liarities of discrete disorder distributions. Indeed, while
on a finite-size system a typical disorder configuration
will break all spatial symmetries, with discrete disorder
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distributions such as the binary one, there is a non-zero
probability that one or several of them are preserved,
specially when considering periodic boundary conditions.
For example, out of the 24 = 16 possible binary disorder
configurations on L = 4 sites, 4 are reflection symmet-
ric: (+h,+h,+h,+h), (+h,−h,−h,+h), . . . (actually, all
disorder configurations on L = 4 sites have a spatial
symmetry: reflection, translation, inversion – exchang-
ing h↔ −h, or a combination of them). Of course, when
L is increased, the probability of drawing a spatially sym-
metric configuration decreases exponentially fast; but for
the largest system sizes within reach of exact diagonaliza-
tion techniques, the fraction of symmetric disorder con-
figurations is still large enough to significantly alter the
level statistics if disorder averaging is done “naively”,
that is, by uniformly sampling over disorder. A possible
workaround put forward in [70] is to discard the spatially
symmetric disorder configurations. If one insists on using
all samples, another possibility to is to explicitly resolve
the symmetry block structure of the Hamiltonian, when-
ever the disorder configuration happens to be symmetric.
This is cumbersome, especially given the number of pos-
sible symmetries that must be taken into account.
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FIG. 6. Probability distribution of the gap ratio from the
Heisenberg model of Eq. (63) with L = 18 spins, with pe-
riodic boundary conditions. Data is averaged over all re-
alizations of the binary transverse field hj = ±1/2 (218 in
total, 3914 of which are nonequivalent up to symmetries),
and over 150 eigenstates around infinite temperature energy
E = (Emin + Emax)/2. The red solid line represents the
analytical prediction Eq. (64): a linear combination of sur-
mises PGOE

m (r) obtained from the analytical computations
in Sec. III. For comparison, the green solid line shows the
predicted distribution when two blocks contributions are not
taken into account. Inset: Difference δP (r) between the nu-
merical data and these surmises.

In that context, using the surmise for several GOE
blocks proves useful. Indeed, the gap ratio in the ther-
mal phase of the model can be written as a sum over
symmetry sectors:

P (r) =
∑
m

wmP
GOE
m (r), (64)

where wm is the weight of the symmetry sector of m
blocks. In the thermodynamic limit L → ∞, w1 → 1,
while wm>1 decays exponentially fast to zero. Note that
for samples with two blocks (m = 2) the two blocks are
always of the same size, whereas for samples with more
than 2 blocks, m > 2, blocks are not necessarily of equal
size. While the expressions in the previous section allow
us to compute the surmise for these non-homogeneous
samples, we can to a good degree of approximation ne-
glect their contribution to the gap ratio distribution. In-
deed, we find using simple combinatorics, that the total
weight

∑
m>2 wm coming from samples with more than

two blocks is more than halved when L→ L+ 2, and for
L = 18, it already represents less than 0.2% of the total
weight. We will therefore make the approximation that
P (r) = w1P

GOE
1 (r) + w2P

GOE
2 (r).

In Fig. 6, we show the gap ratio distribution for the
Hamiltonian Eq. (63) for L = 18. We find w1 =
243936/218 ' 0.93, w2 = 17640/218 ' 0.07. This sys-
tem size is of the order of what is achievable using state-
of-the-art exact diagonalization techniques targeting the
middle of the energy spectrum [62]. However, it is not
large enough for w2 to be negligible compared to w1.
Indeed, as shown in Fig. 6, incorporating the m = 2 con-
tribution visibly improves the agreement with numeri-
cal data. Note the clear difference at r = 0 between
Eq. (64) (for which P (0) 6= 0, as in the numerical simula-
tions of Eq. (63)) and PGOE(r) which vanishes at r = 0
due to level repulsion. Accordingly, the predicted aver-
age gap ratio using the m = 2 surmise 〈r〉 = w1〈r〉1 +
w2〈r〉2 ' 0.527 is closer to the numerically computed
value 〈r〉 − 〈r〉Heisenberg ' 0.004 than the “naive” predic-
tion involving only m = 1: 〈r〉m=1−〈r〉Heisenberg ' 0.013.

C. Floquet spin chain model

We next consider both a static and a Floquet spin 1/2-
chain model. Floquet systems have attracted a great
deal of interest, because while they are amongst the sim-
plest non-equilibrium Hamiltonian systems, they exhibit
new non-trivial properties, that are not observed in their
static cousins. In particular, single-particle Floquet sys-
tems can host topological phases that have no static
equivalent [71]. Interacting many-body Floquet systems
a priori exhibit no such interesting phases of matter, since
the combination of interaction and driving is expected to
heat up the system to an infinite-temperature, feature-
less state [72–74]. However, it has been shown [75–78]
that the addition of disorder, hindering energy propaga-
tion throughout the system via a MBL mechanism, can
prevent heating and give rise to new interacting Floquet
phases, such as discrete time crystals [79, 80]. Here, we
study an interacting Floquet system, along with its static
counterpart, for comparison. We show in the following
that the Floquet system exhibits an extra symmetry, that
can be associated to Floquet topological modes. In order
to detect the symmetry, we adjust the system parame-
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ters so as to be in the thermal phase of the model. Then,
level statistics is expected to follow RMT predictions, en-
abling us to employ our surmises to detect the Floquet
symmetry.

We work with the following spin 1/2 Hamiltonians:

Hx =

L∑
j=1

gσxj

Hz =

L∑
j=1

Jσzjσ
z
j+1 +

L/2−1∑
k=0

h2k+1σ
z
2k+1, (65)

again with periodic boundary conditions, which we com-
bine to form a time-independent Hstatic = Hx +Hz and
a time-dependent model:

Hdriven(t) =

{
2Hz if 0 ≤ t mod τ < τ/2

2Hx if τ/2 ≤ t mod τ < τ
. (66)

Because the drive is periodic Hdriven(t+ τ) = Hdriven(t),
such a model is indeed a Floquet system.

In the Floquet setting, energy is not conserved. It is
replaced by quasi-energy, which is defined up to arbitrary
shifts by 2π/τ . More specifically, let us introduce the Flo-
quet operator UF = exp(−iτHx) exp(−iτHz), which is
the evolution operator over one drive period. To the uni-
tary Floquet operator we can associate a Floquet Hamil-
tonian HF , defined as UF = exp(−iτHF ), whose eigen-
values εα and associated eigenvectors are respectively the
quasi-energies and the Floquet eigenstates, which hold
information about the dynamics and steady-state prop-
erties of the system [81]. In practice, when computing
level statistics, we will therefore use the quasi-energies
εα exactly like energies in the static case.

Going back to the system Eq. (65), remark that the
random longitudinal fields hj 6= 0 break both the Ising
and the translation symmetries. Our model differs from
the most commonly used one in that hj = 0 on even sites.
This does not change the physics of the model, but can
induce an extra symmetry in the driven case, as we dis-
cuss below. Finally note that driving the system does not
break its time-reversal symmetry. We therefore expect
a GOE (respectively COE) level statistics in the time-
independent (respectively driven) case [44, 73, 74, 82].
Since the COE and GOE ensembles are asymptotically
described by the same statistics, we will compare sim-
ulations in the driven case to the corresponding GOE
statistics.

We choose the parameter set g = Γ× 0.9045, h2k+1 =
0.809 + 0.9045 ×

√
1− Γ2εk, Γ = 0.9, τ = π/4, where

the εk are uniformly distributed random number of zero
mean and unit variance. This choice of parameters has
been shown [83–85] to give good agreement with COE
level statistics on the accessible system sizes, for the re-
lated model where the longitudinal field is also non-zero
on the even sites: h2k 6= 0. This is indeed the case for
the time-independent system, as can be seen in Fig. 7.

However, the top panel of Fig. 7 shows that there is a
dip in the average gap ratio 〈r〉 around J = 1 for the
driven system. The numerical estimate for 〈r〉 at this
special point appears to coincide with the surmise value
for two GOE blocks of equal size given in Table I. The
level statistics (bottom panel of Fig. 7) is also compatible
with the gap ratio statistics PGOE

m=2 (r). Driving the other-
wise fully GOE system therefore appears to give rise to
a new Z2 dynamical symmetry at the J = 1 point.
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FIG. 7. Top: Average gap ratio as a function of J in the
time-independent and driven spin-1/2 chain model Eq. (65).
Bottom: Gap ratio distributions at J = 1 for the time-
independent and driven case (points), and comparison with
the surmise distribution for m = 1 and m = 2 GOE blocks
(full lines). In the time-independent case, average is per-
formed over 2000 disorder realizations (except at the J = 1
point where 5000 realizations are used), and 100 eigenstates
around infinite temperature energy E = (Emin +Emax)/2, for
the system of size L = 14, while in the driven case, average is
performed over 2000 disorder realizations and all eigenstates
of the system of size L = 12.

We now rationalize the emergence of this symmetry.
We find that the associated conserved operator is

X =

L/2−1∏
k=0

σx2k+1. (67)

Indeed, while this operator acts in general non-trivially
on the Hz Hamiltonian, we have at the special point J =
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1,

XeiHzXe−iHz =

L∏
j=1

iσzjσ
z
j+1 = (−1)L/2, (68)

and thus X commutes with the Floquet operator, up to a
global phase factor which can be absorbed in the defini-
tion of UF . This indicates the existence of 2 COE blocks
of identical sizes in the Floquet Hamiltonian, and hence
explains the agreement with the analytically-obtained
gap probability distribution PGOE

2 (r). Note that setting
hj = 0 on odd (or even) sites is necessary for this ex-
tra symmetry to exist. Remark that when open bound-
ary conditions are used, the above commutator Eq. (68)
becomes proportional to σz1σ

z
L, a non-trivial boundary

term. We can interpret this boundary term as creating a
pair of excitations [86]. If the model were brought to the
MBL regime (e.g. by increasing the strength of the dis-
order term hj), these excitations would become localized
at both ends of the chain, signalling the topological na-
ture of the observed Z2 symmetry. However, in that case
the level statistics would become Poisson, and we would
not be able to detect the symmetry using our RMT ap-
proach. Finally, we note that the argument carries over

when we add a third contribution Hy =
∑L/2−1
k=0 hyσ

y
2k+1.

It breaks the time-reversal symmetry, turning the 2-block
COE structure of the J = 1 point into a 2-block CUE
structure.

D. Anyonic Chain

Our final application deals with chains of interacting
anyons, which are exotic particles interpolating between
bosonic and fermionic statistics. They are predicted to
occur in some two-dimensional systems such as fractional
quantum Hall states [87, 88], and offer exciting perspec-
tives for topological quantum computation [89]. More
precisely, we will consider a disordered version of the
“golden chain” model of Fibonacci anyons [90]. As more
technical background is needed to introduce the model
and its various representations, we first give a summary
of our results. When periodic boundary conditions are
imposed on the chain of anyons, there is a non-trivial
topological symmetry that decomposes the Hamiltonian
into two blocks of unequal size. Resolving this symmetry
is not easy, but it can in principle be done at the price
of turning the Hamiltonian into a dense matrix, render-
ing numerical simulations on large systems difficult. Our
results instead allow to use a representation simpler for
numerics (with sparse, real symmetric matrices) which
can nevertheless be confronted to RMT predictions, and
hence probe ergodic physics. This can be seen in Fig. 8
where the results for 〈r〉 and P (r) allow to characterize
the spectral statistics of the model with the two inter-
laced sectors. At an extra numerical cost, and with the
further requirement to study different representations of
the model, we can identify the states in each of these two

sectors and check that they follow regular single-block
GOE statistics (squares and triangles in the top panel of
Fig. 8). In the following, we present in detail the differ-
ent representations of the model of disordered Fibonacci
anyons, which allow us to draw these conclusions.

The statistics of anyons [91] are generally encoded in
a set of fusion rules analogous to the composition rules
for angular momenta, as well as transformation rules re-
lating the different possible ways to fuse together three
or more particles (the so-called “F-symbols”) [92]. In
the case of Fibonacci anyons there are only two types of
particles, the trivial particle, labeled by 1, and the Fi-
bonacci anyon, labeled by τ . They are characterized by
the fusion rule τ × τ = 1 + τ , that is, bringing together
two Fibonacci anyons yields either the trivial particle or
another Fibonacci anyon. This is analogous to the sit-
uation where two spin- 12 particles brought together can
be decomposed into a spin-0 and a spin-1 particle. In
addition the trivial fusion rules 1× 1 = 1, and 1× τ = τ
hold [90].

Suppose now we have a chain of L indistinguishable
Fibonacci anyons. A pair of adjacent anyons may be
fused together, yielding either 1 or τ . Performing recur-
sively all possible fusions, we end up with a single anyon,
again either 1 or τ . The different ways by which the L
particles pair up and fuse to yield a single particle has
the structure of a Hilbert space and is called the fusion
space. In contrast with the case of spins, this Hilbert
space does not have a tensor product structure. In order
to construct a basis for this Hilbert space it is convenient
to consider the different “fusion paths” which describe
the outcome of each fusion, starting from the leftmost
pair (particle 1 with particle 2, then the resulting par-
ticle with particle 3, and so on). Each fusion path can
be written as a sequence |x1x2 . . . xL〉, where for each i,
xi ∈ {1, τ}, and xi+1 is the outcome of the fusion of xi
with τ (x1 being the outcome of the fusion of the first
two particles). Since the fusion of 1 with τ always yields
τ , no two consecutive 1s are allowed in the sequence of
xi. In fact, the basis is given by all strings which do not
contain any pair of consecutive 1s.

In the case of periodic boundary conditions, xL+1 =
x1, and the number of basis states |H| is related to the
Fibonacci sequence, |H(L)| = FL−1 + FL+1, where FL
is the Lth Fibonacci number with F0 = 0 and F1 = 1.
It is well known that the ratio of consecutive Fibonacci
numbers goes to limi→∞ Fi+1/Fi = φ with φ = 1+

√
5

2 the
golden mean, hence the name golden chain. A pedagog-
ical introduction to the Hilbert space and Hamiltonian
construction of the golden chain model can be found in
[93].

Following the seminal work [90], a Hamiltonian can
then be constructed by assigning a different energy for
each possible outcome of the fusion of two nearest neigh-
bors at sites j and j + 1. Assigning a zero energy to an
outcome 1 and −Jj to an outcome τ , the Hamiltonian
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takes the form

H = −
∑
j

JjΠj,j+1 , (69)

where Πj,j+1 is the projector into the trivial particle of
two τ particles located at sites j and j + 1. This is the
analog of the Heisenberg coupling for SU(2) spins 1/2,
which assigns a different energy to the fusion channels
of pairs of neighboring spins. The projector Πj,j+1 acts
on a basis state |x1x2 . . . xL〉 by changing xj to a su-
perposition of 1 and τ in a way depending on xj−1 and
xj+1; an explicit expression can be found in [90]. The
coupling constants Jj are taken from a random distribu-

tion P (J) = ε−1J−1+1/εθ(J)θ(1 − J) with θ the Heavi-
side step function (ε ∈ [0,∞] characterizes the disorder
strength and J ∈ [0, 1]). Once again, the main interest
for using a disordered coupling constant is to break lat-
tice symmetries in the chain. We use periodic boundary
conditions in the following.

A practical representation for numerical simulations is
to recast the above fusion paths in terms of sequences
of heights |h1h2 . . . hL〉, where hi ∈ {1, 2, 3, 4} and |hi −
hi+1| = 1, through the mapping 1, τ → 1, 3 for i odd,
1, τ → 4, 2 for i even. This defines a “restricted solid-
on-solid” (RSOS) model, namely the p = 4 case of the
Ap (also known as SU(2)p−1) family, where for generic p
the heights are allowed to run between 1 and p [94, 95].
In this formulation the projectors Πj,j+1 of Eq. (69) can
be re-expressed in terms of operators ej , whose action is
defined as

ej |h1 . . . hj−1hjhj+1 . . . hL〉 =

δhj−1,hj+1

∑
h′j

√
sin(

πhj
p+1 ) sin(

πh′j
p+1 )

sin(
πhj+1

p+1 )
| . . . hj−1h

′
jhj+1 . . .〉 .

(70)

The operators ej form a representation of the Temperley-
Lieb (TL) algebra [96], namely e2j =

√
Qej , ejej±1ej =

ej , and eiej = ejei for |i− j| ≥ 2, where we have defined√
Q = 2 cos π

p+1 . In the present case p = 4, and one

indeed checks that Πj,j+1 = 1√
Q
ej . Up to the irrelevant

1/
√
Q proportionality factor, the Hamiltonian Eq. (69)

is therefore re-expressed in the RSOS representation as

HRSOS = −
∑
j

Jjej . (71)

A subtlety to keep in mind is that the RSOS formulation
acts separately on two equivalent sectors, which corre-
spond to putting even or odd heights on even sites re-
spectively. For periodic boundary conditions, hL+1 = h1,
each of these sectors has size FL+1 + FL−1, and yields a
copy of the original anyonic chain. The spectrum of the
original Hamiltonian Eq. (69) is therefore obtained by
restricting to a single of these sectors (which is what we
do in the following).

The Hamiltonian Eq. (71) is real, a reason for which
this representation is often used in numerics. We present
in Fig. 8 (blue circles) the results for the average gap
ratio 〈r〉 and its distribution P (r) for Eq. (71), for differ-
ent chain sizes (and thus Hilbert space sizes |H(L)|) and
weak disorder ε = 0.2, for states located in the middle of
the spectrum and corresponding to the sector with even
heights on even sites. For this small value of disorder,
we do expect a random matrix theory behavior, but the
value of 〈r〉 is clearly different from the GOE statistics for
a single block. The size of the Hilbert space, which is the
sum of two Fibonacci numbers, may suggest the existence
of two blocks of different sizes (denoted N1 and N2 in the
following). A first simple test is to compare the expecta-
tion value 〈r〉RSOS ' 0.452 to the values obtained for two
GOE blocks of different sizes (Fig. 3 in Sec. III D). This
leads to a possible value around α = N1

N1+N2
∈ [0.27, 0.3],

corresponding to a size ratio N1/N2 ∈ [0.37, 0.43], close

to φ−2 = limL→∞
FL−1

FL+1
' 0.382. This strongly suggests

that the spectrum of the periodic RSOS chain is com-
posed of two independent GOE blocks of size N1 = FL−1
and N2 = FL+1. In the top panel of Fig. 8, we also rep-
resent the predicted value 〈r〉m=2,α=1/(1+φ2) = 0.453186,
to which the numerical data indeed appear to tend. This
is further confirmed by the numerical distribution of P (r)
(bottom panel of Fig. 8) which is an excellent match with
the one obtained from the surmise (see Sec. III) of two
GOE blocks with ratio φ−2.

We can in fact trace back this decomposition to the ex-
istence of a “hidden” symmetry of a topological nature
[90, 97–99], namely an operator Y corresponding to an
extra τ particle circling around the system, and whose
matrix elements in the basis of fusion paths may be writ-
ten as

〈x′1 . . . x′L|Y |x1 . . . xL〉 =

L∏
i=1

(
F
x′i+1
τxiτ

)x′i
xi−1

, (72)

where the F-symbols
(
F
x′i+1
τxiτ

)x′i
xi+1

can be found for in-

stance in [90]. The operator Y has two distinct eigen-

values 1
2 (1 ±

√
5), and commutes with the Hamiltonian

Eq. (69), therefore defining two symmetry subspaces. A
subtlety arises in the RSOS representation, which as dis-
cussed above has two independent sectors and where the
action of Y maps one onto the other. We can overcome
this difficulty by computing the action of Y 2, which acts
separately in the odd and even sectors: this allows to
define in each sector two orthogonal subspaces of dimen-
sions FL+1 and FL−1 respectively, which precisely repro-
duces the numerical observations made above [100].

Now, it is important to remark that the action of Y is
highly non-local, and its matrix expression in the RSOS
representation is not sparse. Therefore while we know
in principle how to decompose the Hamiltonian into two
GOE blocks, it is not possible to our best knowledge to do
so while keeping it sparse and real. One may ask whether
other representations of our model might help with this
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FIG. 8. RSOS model — Top: Average gap ratio 〈r〉 for the
RSOS model Eq. (71), as a function of Hilbert space size.
Blue circles are the results for the full spectrum of the Hamil-

tonian (69); squares and triangles are those in the Y = 1±
√
5

2
sectors. The dashed lines represent the results for the (single-
block) GOE distribution of [18] and from the surmise com-
putations in Sec. III for m = 2 GOE blocks with size ratio

φ−2. Data in the Y = 1+
√
5

2
sector were obtained by com-

paring energy spectrum in the loop representation (with non-
contractible loop weight 2 cosπ/5) and RSOS representation.

Data in the Y = 1−
√

5
2

were obtained by considering the rest
of the states in the RSOS representation. We focus on mid-
spectrum eigenstates of the RSOS spectrum, obtaining ∼ 300
eigenstates for every disorder realization. Results are aver-
aged over between 300 and 1000 realizations of disorder of
strength ε = 0.2. Bottom: Probability distribution of the gap
ratio P (r), as obtained from simulations of a RSOS chain of
size L = 22. The solid line is the surmise PGOE

m=2,α=1/(1+φ2)(r)
obtained from the analytical computations in Sec. III.

problem. There are indeed other ways to represent the
TL algebra, from which the spectrum of Eq. (69) can be
recovered. Below we consider two such representations,
the loop representation and the spin chain representa-
tion. These representations allow us to tell apart which
subspace each eigenvalue corresponds to.

Loop representation In the loop representation [96],
the Hilbert space is spanned by the configurations of
non-crossing valence bonds between L vertical strands,

and the TL generator ei acts by contracting together the
strands at site i and i+ 1. The composition rules of the
TL algebra express the fact that lines can be continu-
ously deformed without crossing, and that closed loops
contribute a weight

√
Q. From there, one can recover

the eigenvalues of the anyon chain corresponding to each
symmetry sector by assigning a special weight to non-
contractible loops which close around the cylinder [101],
respectively 2 cos π5 and 2 cos 2π

5 , which is nothing but the
corresponding eigenvalue of Y . However, the loop model
contains significantly more states than the anyonic chain,
as the loops carry additional non-local information which
is absent in the RSOS representation. This brings several
difficulties, the first being that the maximum size L that
can be reached using exact diagonalization techniques is
lower, the second being that it is not obvious at all how
to extract from the loop model spectrum the set of eigen-
values which are present in the RSOS one [102]. Further-
more, the loop representation leads to a non-Hermitian
matrix representation of the Hamiltonian, which also de-
creases the efficiency of simulations.
Spin chain representation Another representation is

in terms of a spin 1/2 chain, with Hilbert space (C2)⊗L,
on which the TL generators act as [103]

ei = −
(
ei
ϕ
Lσ+

i σ
−
i+1 + e−i

ϕ
Lσ−i σ

+
i+1 +

cos γ

2
(σzi σ

z
i+1 − 1)

− i sin γ

2
(σzi − σzi+1)

)
. (73)

Here the matrices σx,y,zi act as Pauli matrices on the
ith spin, and as identity elsewhere, and γ is defined by√
Q = 2 cos γ. The role of the twist parameter ϕ is analog

to that of the weights of non-contractible loops in the geo-
metrical representation. More precisely, the Hamiltonian
built out of Eq. (73) commutes with the global magne-
tization Sz =

∑
i σ

z
i , and the eigenvalues of the RSOS

model are recovered in the Sz = 0 sector upon setting
ϕ = π

5 and ϕ = 2π
5 , respectively. As for the loop case,

the Sz = 0 sector however contains more states than the
RSOS ones, leading to the difficulties mentioned above
(see [104–106] for other occurrences in related models).
Moreover this Hamiltonian is complex in the σz basis,
which also leads to a decreased numerical efficiency.

We use simulations both in the loop and spin chain rep-
resentations and checked on small systems (up to L = 18)
that all states in the RSOS representation can indeed be
found in the loop representation (using non-contractible
loop weight taking either 2 cos π5 or 2 cos 2π

5 values) or the
spin chain representation (using a twist taking either π/5
or 2π/5 values). The simulations in the loop model with
non-contractible loop weight 2 cos π5 are simpler (as all
loops have the same weight) and we could reach larger
systems. This allowed us to identify all states in the

Y = 1+
√
5

2 sector for chains of size up to L = 24 (see
Fig. 8).

Besides allowing to identify this two-block structure
in HRSOS chains with periodic boundary conditions, the
actual value of 〈r〉 and distribution P (r) for N1/N2 =
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φ−2 will be useful as a marker of an ETH/ergodic phase
when increasing the value of disorder. Indeed, it has
been proposed [107] that disordered SU(2)3 chains could
lead to a new form of non-ergodic, critical, phase which
behavior is different from a many-body localized phase.
This putative new critical phase could be identified by
the departure of spectral statistics from the references
values displayed above.

V. SUMMARY, RELATION TO PREVIOUS
WORKS AND PERSPECTIVES

In summary, we analyzed and computed the statistics
of the gap ratio r, an essential tool in diagnosing many-
body quantum chaos, when the existence of symmetries
results in a block structure of the matrix under considera-
tion. The analytical results we obtain, based on an exten-
sion of a seminal work of Rosenzweig and Porter [38], are
virtually indistinguishable from numerical simulations on
large random matrices. While a closed form can only
be obtained in limited cases, our formulation, based on
Eqs. (27),(28) and (8)), is compact and generic enough to
be implemented easily for all cases of interest. Through
several examples of applications, we showed the validity
and usefulness of our results to identify or probe symme-
tries in many-body quantum physics. In this final part of
this manuscript, we relate our findings to previous works
(including a re-interpretation of results available in the
literature) and provide leads for possible extensions.

A. Relation to, and re-interpretation of previous
results

We now relate our findings to others obtained in stud-
ies of spectral statistics in various contexts. Some at-
tempts have been made to count the number of sym-
metries in chaotic systems [34, 35, 108]. In Appendix
A, we provide a comparison between our results and the
techniques proposed to detect symmetries in Ref. [108].
Our results allow to indirectly discover symmetries in a
many-body chaotic system, or to bypass them when they
are too complex/costly to implement numerically. There
have been several cases of unusual values of P (r) or 〈r〉
reported in previous literature which our work directly
elucidates. For instance, it applies to the spectral statis-
tics of the Hamiltonian of the fractional quantum Hall
effect when orbital inversion is not resolved in the numer-
ics [109]. Our analysis also explains the results obtained
on the 2d square lattice quantum Ising model [110] in
momentum sectors k = (0, 0) and k = (π, π) where not
all symmetries were resolved. The value P (r = 0) '
1.4 strongly suggests an unresolved Z2 symmetry there.
Our analysis also accounts for the results in the one-
dimensional t−t′−V clean fermionic model of [111] when
the inversion symmetry-breaking field is small, for spec-
tral statistics of the Bose-Hubbard chain [112] when the

reflection around the center of the chain is not resolved,
as well as of quasiperiodic tilings [113] when phase and
parity symmetries are not considered. Another context
where our work is relevant is the bosonic SYK model with
two-body interactions [26] where the gap ratio distribu-
tion (see Fig. 6 in [26]) appears to be close to PGUE

m=2 (r),
suggesting a two-block GUE structure (for instance due
to a particle-hole symmetry), instead of an integrability
signature as originally suggested in [26]. For some values
of the number of Majorana fermions, the bipartite SYK
model introduced in Ref. [114] displays the average gap
ratio value 〈r〉2 that we derive for the GOE ensemble.

In another direction, our analysis could be useful to
discover fracton models [115–119] where the Hamilto-
nian decomposes in several different Krylov independent
blocks (and this not necessarily based on an unresolved
symmetry), which necessarily implies a non-adherence to
the single-block gap ratio statistics [18]. A related case
is the excellent description of level statistics in an effec-
tive quantum ice model [120] with the use of PGOE

m=4 (r),
accounting for the existing four topological sectors.

B. Perspectives

Our work can be extended in several directions. In a
straightforward way, it is possible to extend the analysis
to several blocks with different spectral statistics, for in-
stance, the coexistence of GOE and GUE blocks in the
same spectrum. This applies to the quantum Hall work
of [109] where different momentum sectors have different
spectral statistics. Also, it is possible to see the effect
of combining integrable and chaotic blocks, in the spirit
of the work of [39] on mixed phase spaces. This would
apply to models with integrable “Krylov” subspaces co-
existing with ergodic blocks [116–118], or to the effective
model of the MBL transition proposed in [121] with one
ergodic block and random independent energies.

Our approach is general enough that it should apply
mutatis mutandis to other RMT ensembles or other joint
distributions p(s, t). Here we considered the Wigner en-
sembles with quadratic potential in Eq. (1). More gener-
ally, β-ensembles with different potentials can be treated
in the same way. For instance, β-Laguerre ensembles,
with logarithmic potential, are connected with Wishart
matrices and are relevant to characterize entanglement
spectra (for a review see e.g. [122]). Entanglement spec-
tra can also exhibit block structure inherited from the
symmetry of the underlying quantum state from which
they are formed. Other natural extensions include replac-
ing Eq. (3), which is our starting point, by the equivalent
expression for matrices of larger sizes: indeed [19] ob-
tains, from the exact expression of the joint spacing dis-
tribution for 4×4 matrices, an expression for P (r) which
is more accurate than Eq. (7) by an order of magnitude.
Another possible direction is to study the non-Hermitian
situation [37] with symmetries.

A natural generalization would be to consider higher-
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order spacing ratios: as was shown numerically in [34, 35]
higher-order ratios of random matrices with m-fold sym-
metry can be related with ratios of random matrices with
Dyson exponentm, allowing to detect underlying symme-
tries. An extension to our work could provide analytical
grounds to these observations.

Finally, it would be interesting to analyze the case of
weak symmetry breakings (with small matrix elements
between different blocks), using a perturbative approach
to estimate P (r) in the same vein as the computation
performed for the level spacing distribution in [123].
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Appendix A: Comparison with other techniques
proposed to detect symmetries in chaotic systems

In view of a practical use of different available meth-
ods, we provide in this Appendix elements for a compar-
ison between the approach presented in our work with
the methods suggested in Ref. [108] for quantum chaotic
systems.

In Ref. [108] (in particular in its Section VI), two indi-
cators of chaos (the correlation hole and the distribu-
tion of off-diagonal elements of local observables) are
highlighted to detect chaos without spectrum unfold-
ing and even in presence of symmetries. Such indica-
tors were introduced and considered in earlier works (see
e.g. Refs. [130–135] and references therein).

We first discuss the correlation hole technique,
which refers to the existence and detection of a dip
in the average survival probability |〈Ψ(0)|Ψ(t)〉|2 =
|〈Ψ(0)| exp(−iHt)|Ψ(0)〉|2 after a quench from an initial
state |Ψ(0)〉. Results of Ref. [134] indicate that the dip
appears after the Thouless time and before the Heisen-
berg time, which both scale exponentially with system
size for many-body systems. The correlation hole is
a useful method to detect quantum chaos, and it ap-
pears to detect chaos even in the presence of symme-

tries [132, 135]. However, this goal is different from the
one of the current manuscript, which focuses on posi-
tively detecting symmetries using the gap ratio method
(and this without the assumption of chaos, as we high-
lighted). Furthermore, the two approaches do not have
the same computational practicality: the correlation hole
method requires to compute the time evolution of the
system up to very long times, which in practice means
computing all eigenstates and all eigenvalues of H. This
limits this approach to small systems accessible to full di-
agonalization. Iterative methods, e.g. using Krylov space
techniques, allow to compute the survival probability on
larger systems but cannot reach the exponential times re-
quired to probe the existence of the correlation hole. On
the other hand, the gap ratio method advocated in the
present work requires only some eigenvalues in the middle
of the spectrum and no eigenstates. It is thus amenable
to subset methods such as the shift-invert technique [62],
which allows to treat much larger systems (e.g. matrices
of sizes up to 107 in Ref. [62]).

The second technique discussed in Ref. [108] deals
with the distribution of off-diagonal elements of local
observables, and consists in computing the ratio R =

|〈α|O|β〉|2/|〈α|O|β〉|2 between second and first moments
of the distribution of off-diagonal elements O between
two different eigenstates |α〉, |β〉. Section VI of Ref. [108]
suggests (albeit not making any definitive claim) that R
can detect symmetries by taking the value mπ/2 when
m sectors (of the same size) are present (the value π/2
comes from the Gaussian distribution of off-diagonal ma-
trix elements in chaotic systems [130]). Contrary to the
correlation hole method, the R method does not require
the full set of eigenstates but only some, and is thus in
principle amenable to typically the same system sizes as
the gap ratio method. It however suffers from an im-
portant drawback: to be useful for symmetry detection,
this method requires the observable O to commute with
the symmetry generators, which means that one needs to
know the symmetries in advance. One could imagine per-
forming trial-and-error by testing different observables in
the hope that one of them commutes with the symme-
try generators. But this is clearly not error-prone, as we
now show by performing computations on the same ex-
ample as in Ref. [108]: depending on the observable O
we choose, we obtain different results, leading to different
conclusions on the number of symmetries/sectors.

We consider the following one-dimensional S = 1 spin
model

HS1 =

L−1∑
i=1

(Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1)

+

L−1∑
i=1

(Sxi S
x
i+1)2 + (Syi S

y
i+1)2 + (Szi S

z
i+1)2

+ ε1S
x
1 (A1)

(Eq. 3 in Ref. [108]). The last term is a boundary ran-
dom magnetic field (ε1 taken uniformly in a box [−ε, ε]
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with ε = 0.05) which is added to avoid spatial reflection
symmetry, as in Sec. VI of Ref. [108]. We first consider
the same observable O = SzL/2 as in Ref. [108]. In that

case, as we show in Fig. 9, we obtain for the ratio R the
same flat curves as observed in Fig. 3d in Ref. [108], with
a plateau around R = π. According to the reasoning
of Ref. [108], this could suggest that there are two inde-
pendent sectors. If we now compute R for another local
observable O = SxL/2, the data for the corresponding R

in Fig. 9 now appear much closer to 2π, pointing to-
wards 4 symmetry sectors. The conclusion thus depends
on the observable chosen. On the contrary, computing
the average gap ratio (inset of Fig. 9, here with ε = 1
so that the spatial reflection symmetry is strongly sup-
pressed but not changing any symmetry in the model),
we obtain 〈r〉 ' 0.396, which according to the results in
Tab. I of our manuscript (GOE results since Eq. A1 has
real matrix elements) indicates four sectors. A more thor-
ough analysis of the symmetries in the model (A1) [136]
confirms that there are indeed four symmetry sectors of
identical size.
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FIG. 9. R(O) for O = SzL/2 (bottom data) and O = SxL/2 (top
data) for the spin-1 model Eq. A1, as a function of energy
difference ω = |Eα − Eβ | between eigenstates |α〉 and |β〉.
Inset: Average gap ratio 〈r〉 as a function of system size (here
ε = 1).
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