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SUMMARY

Hepatitis C virus (HCV) infection remains a major cause of
end-stage liver disease. Here, we show the efficacy and
safety of a novel biotherapeutic targeting a HCV glyco-
biomarker in a mouse model, providing a foundation for a
new anti-HCV strategy.

BACKGROUND & AIMS: Infection with hepatitis C virus (HCV)
remains a major cause of morbidity and mortality worldwide
despite the recent advent of highly effective direct-acting an-
tivirals. The envelope glycoproteins of HCV are heavily glyco-
sylated with a high proportion of high-mannose glycans
(HMGs), which serve as a shield against neutralizing antibodies
and assist in the interaction with cell-entry receptors. However,
there is no approved therapeutic targeting this potentially
druggable biomarker.

METHODS: The anti-HCV activity of Avaren-Fc (AvFc) was
evaluated through the use of in vitro neutralization assays as
well as an in vivo challenge in the PXB chimeric human liver
mouse model. Drug toxicity was assessed by histopathology,
serum alanine aminotransferase, and mouse body weights.

RESULTS: AvFc was capable of neutralizing cell
culture–derived HCV in a genotype-independent manner, with
FLA 5.6.0 DTD � JCMGH662 proof � 14
50% inhibitory concentration values in the low nanomolar
range. Systemic administration of AvFc in a histidine-based
buffer was well tolerated; after 11 doses every other day at
25 mg/kg there were no significant changes in body or liver
weights or in blood human albumin or serum alanine amino-
transferase activity. Gross necropsy and liver pathology
confirmed the lack of toxicity. This regimen successfully pre-
vented genotype 1a HCV infection in all animals, although an
AvFc mutant lacking HMG binding activity failed.

CONCLUSIONS: These results suggest that targeting envelope
HMGs is a promising therapeutic approach against HCV infec-
tion, and AvFc may provide a safe and efficacious means to
prevent recurrent infection upon liver transplantation in HCV-
related end-stage liver disease patients. (Cell Mol Gastroenterol
Hepatol 2020;-:-–-; https://doi.org/10.1016/
j.jcmgh.2020.08.009)

Keywords: Hepatitis C Virus; Entry Inhibitor; Plant-Made
Pharmaceutical; High-Mannose Glycan; Antiviral Therapy.

Q
Q

epatitis C virus (HCV) is an enveloped monopartite
Q
Hpositive-sense single-strand RNA virus in the fam-

ily Flaviviridae and the causative agent of hepatitis C dis-
ease. Its genome encodes 3 structural (core, E1, E2) and 7
nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A,
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Abbreviations used in this paper: ALT, alanine aminotransferase; AvFc,
Avaren-Fc; DAA, direct-acting antiviral; h-Alb, human albumin; HCV,
hepatitis C virus; HCVcc, cell-culture-derived hepatitis C virus; HCVpp,
hepatitis C virus pseudovirus; HIV, human immunodeficiency virus;
HMG, high-mannose glycans; JFH, ______; PBS, phosphate-buffered
saline; RT-PCR, reverse-transcription polymerase chain reaction;
uPA/SCID, urokinase plasminogen activator/severe combined
immunodeficiency.
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and NS5B).1 HCV is highly heterogenous and distributed
globally, consisting of 7 genotypes, each subdivided further
into multiple subtypes. Genotypes 1 and 2 are the pre-
dominant genotypes worldwide and are particularly
concentrated in high-income and upper-middle-income
countries, whereas genotypes 3 and 4 are more common
in lower-middle and low-income countries.2 In the United
States, injection drug use represents the primary risk factor
for contracting HCV infection.3,4 Approximately 15%–25%
of people acutely infected with HCV will clear the virus,
while the remainder will develop chronic infection that can
persist largely unnoticed for decades. Indeed, many HCV
carriers discover their chronic infection after they have
developed cirrhosis.5 Chronic HCV infection also is associ-
ated with the development of hepatocellular carcinoma, and
patients with the disease are more likely to develop cry-
oglobulinemia and non-Hodgkin’s lymphoma.6

There is no vaccine currently available for HCV. Before
2011, the standard chronic HCV treatment was a nonspecific
antiviral medication using ribavirin combined with pegy-
lated interferon-a, which was associated with significant
toxicity and limited treatment efficacy.7 In 2011, the US
Food and Drug Administration approved the first-
generation of direct-acting antivirals (DAAs) for HCV:
boceprevir and telaprevir, both of which inhibit the viral
protease (NS3/4A), but required co-treatment with riba-
virin and peginterferon.8,9 Further approval of more potent
DAAs, such as NS3/4A, NS5B, and NS5A inhibitors, led to the
development of oral ribavirin/peginterferon-free regimens.5

Multi-DAA regimens achieve sustained virologic response
(defined as a period of time with no viral RNA detection)
rates as high as 100%, and are less toxic and more tolerable
than their predecessors.10–13 Although the cure rates are
remarkable, populations of patients exist who may not
benefit from DAA therapy,14 especially patients with
decompensated cirrhosis resulting from chronic HCV infec-
tion, for whom liver transplantation may be a last resort.15

Moreover, recurrent infection occurs universally and rapidly
after liver transplantation,16,17 which increases the risk of
accelerated cirrhosis, graft failure, and death.18 DAAs, by
their nature, cannot prevent recurrent infection. Therefore,
alternative or complementary therapies to DAAs that can
block viral entry to target cells, such as antibodies or other
molecules acting alike, may need to be considered in these
circumstances.18,19 However, there is currently no entry
inhibitor approved for HCV treatment.

The HCV envelope proteins E1 and E2 are heavily gly-
cosylated and, similar to glycoproteins of other enveloped
viruses (eg, human immunodeficiency virus [HIV] and the
coronaviruses), have a high proportion of high-mannose-
type N-glycans (HMGs) on their surface.20–22 These gly-
cans typically are processed to hybrid and complex forms on
glycoproteins secreted by healthy cells.23 Thus, the HMGs on
the surface of HCV may be considered a druggable target.
We previously described the development of an HMG-
targeting lectin-Fc fusion protein, or lectibody, called
Avaren-Fc (AvFc), which was shown to bind with high af-
finity to clusters of HMGs on the HIV envelope protein
glycoprotein (gp)120 and effectively neutralize multiple HIV
FLA 5.6.0 DTD � JCMGH662 proof � 14
clades and groups including HIV-2 and simian immunode-
ficiency virus.24 Further analysis indicated that AvFc can
bind to HCV E2 protein.24 Therefore, in this study, we aim to
investigate the anti-HCV therapeutic potential of AvFc in
in vitro neutralization assays and an in vivo HCV challenge
study using PXB Qmice, a chimeric urokinase plasminogen
activator/severe combined immunodeficiency (uPA/SCID)
mouse model transplanted with human hepatocytes
(reviewed by Tateno and Kojima25).

Results
AvFc Shows Broad Anti-HCV Activity In Vitro

Building on our previous observation that AvFc has af-
finity to a recombinant HCV E2 envelope protein,24 we first
examined whether AvFc inhibits HCV infection in vitro using
multiple genotypes of cell culture-produced virus (HCVcc)
or pseudotyped virus (HCVpp). AvFc significantly blocked
the infection of the human liver cell line Huh-7 Qby HCVcc
from genotypes 1a, 2a, 4a, 5a, and 6a, with 50% inhibitory
concentration values in the low nanomolar range (Table 1
and Figure 1A). Compared with Avaren monomer, AvFc
overall showed approximately 2-log higher activity,
although no inhibitory effect was observed for the plant-
produced anti-HIV broadly neutralizing antibody VRC01,
which shares the same human IgG1 Fc region with AvFc.26

In addition, Avaren and AvFc, but not VRC01, effectively
neutralized HCVpp harboring a murine leukemia virus
backbone, suggesting that the lectin and the lectibody act as
an entry inhibitor (Figure 1B).
Formulation of AvFc Into a Biocompatible Buffer
for In Vivo Studies

Previously, we found that AvFc has limited solubility in
phosphate-buffered saline (PBS) at concentrations greater
than 1 mg/mL (unpublished observation). To facilitate
in vivo studies, we screened for an optimal liquid formula-
tion for systemic administration that can impart improved
stability and solubility to AvFc at higher concentrations.
Initial buffer screening showed that AvFc is prone to
degradation at and below a pH of 6.5, suggesting that AvFc
is not stable in acidic pH conditions (Figure 2, Table 2).
Further preformulation studies led us to identify an optimal
buffer composed of 30 mmol/L histidine, pH 7.0, 100 mmol/
L sucrose, and 100 mmol/L NaCl. Although AvFc showed
comparable melting temperature in the histidine buffer and
PBS in differential scanning fluorimetry (62.49�C ± 0.13�C
September 2020 � 12:23 pm � ce DVC
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Table 1. IC50 Values for AvFc and Avaren Against HCVcc

Virus Genotype Avaren IC50, nmol/L AvFc IC50, nmol/L

JFH1/H77 1a 529.28 ± 158.78 1.69 ± 0.39

JFH1 2a 484.62 ± 109.16 1.69 ± 0.78

JFH1/ED43 4a 204.27 ± 1.65 2.85 ± 0.91

JFH1/SA13 5a 148.86 ± 2.48 2.33 ± 0.13

JFH1/HK6a 6a 114.95 ± 52.93 1.95 ± 0.78

Average 269.39 ± 65.00 2.10 ± 0.60

IC50, 50% inhibitory concentration.
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vs 62.68�C ± 0.25�C) (Figure 3A), sodium dodecyl
sulfate–polyacrylamide gel electrophoresis analysis showed
that the lectibody holds superior stability in the histidine
buffer upon accelerated stability testing via overnight in-
cubation at 55�C (Figure 3B). When concentrated to
approximately 10 mg/mL, AvFc remained stable in solution
in the histidine buffer over 72 hours at 4�C and room
temperature, while showed a significant concentration
decrease concomitant with increasing turbidity in PBS
(Figure 3C), further showing the histidine buffer’s superi-
ority for AvFc formulation.
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Pharmacologic and Toxicologic Analysis of AvFc
in Mice

To determine an optimal dosing regimen for an HCV
challenge experiment, a pharmacokinetic analysis of AvFc
was conducted in C57bl/6 mice. After a single
Figure 1. In vitro HCV inhibition assays. (A) Avaren and AvF
incubated with Avaren, AvFc, or the control antibody VRC01 for
hours after infection, infected cells were quantified by indirect im
expressed as a percentage of infection compared with a contr
SEM values from at least 3 independent experiments. (B) Avare
HCV envelope glycoproteins of the JFH1 virus (HCVpp) were pr
for 30 minutes at 37�C before incubation with Huh-7 cells. At 48
activity. Results are expressed as the percentage of infection com
Error bars indicate SEM values from at least 3 independent exp

FLA 5.6.0 DTD � JCMGH662 proof � 14
intraperitoneal injection of AvFc at a dose of 25 mg/kg, a
peak drug concentration was observed between 2 and 4
hours, with a half-life of 24.5 hours in male animals and 18.5
hours in female animals (Figure 4). After 48 hours, in both
male and female animals, the plasma concentration of AvFc
remained above a target trough concentration of 130 nmol/
L (10 mg/mL), at which time AvFc showed more than 90%
neutralization effects against HCV (Figure 1). Consequently,
these results suggested that administration of the drug
every other day might be sufficient to keep the virus under
control in a murine HCV challenge model.

We then assessed the safety of every-other-day admin-
istration of AvFc in PXB mice. To effectively discern poten-
tial toxicity associated with AvFc HMG-binding activity, we
included an AvFc variant lacking HMG-binding activity as a
control (AvFclec-) (Figure 5A and B). PXB mice received
either the vehicle (the histidine buffer described earlier)
every other day for 11 total doses, AvFc at 25 mg/kg every
c inhibit cell–culture derived HCV. The JFH1 virus was pre-
30 minutes at 37�C before incubation with Huh-7 Q34cells. At 48
munofluorescence with an HCV-specific antibody. Results are
ol infection in the absence of compound. Error bars indicate
n and AvFc inhibit HCV entry. Retroviral pseudotypes bearing
eincubated with Avaren, AvFc, or the control antibody VRC01
hours after infection, cells were lysed to quantify the luciferase
pared with the control infection in the absence of compound.
eriments.
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Figure 2. Stability of AvFc in various buffers. The initial buffer screening was performed by incubating 1 mg/mL of AvFc at
37�C for 2 weeks in various buffers without any excipient (listed in Table 2), followed by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis analysis. The image shows a Coomassie Brilliant Blue–stained gel resolving 10 mg
of AvFc from respective buffers, including glutamate at pH 4.5 (lane 1) and 5.0 (lane 2); acetate at pH 4.5 (lane 3) and 5.5 (lane
4); citrate at pH 5.0 (lane 5) and 6.0 (lane 6); succinate at pH 5.5 (lane 7) and 6.5 (lane 8); histidine at pH 6.0 (lane 9) and 7.0 (lane
10); phosphate at pH 6.5 (lane 11), 7.0 (lane 12), and 7.5 (lane 13); Tris at pH 7.5 (lane 14); and PBS (lane 15). At pH 6.0 and less
(buffers 1–9), AvFc showed significant degradation after 2 weeks at 37�C. AvFc did not significantly degrade in buffers 10–15,
and therefore these were chosen for further preformulation analysis. MW, molecular weight marker; S, standard AvFc control.
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other day for a total of 8 or 11 doses, or AvFclec- at 25 mg/kg
every other day for 11 total doses. As shown in Figure 6A–C,
no significant differences in either body weights, blood h-
Alb levels, or serum alanine aminotransferase (ALT) activity
were observed. In addition, no significant differences in
relative liver weight were seen (Figure 6D). These results
indicate that AvFc, formulated in the histidine buffer, was
well tolerated in the immunocompromised mice engrafted
with human hepatocytes.

Histopathology was performed to evaluate any potential
toxicity to the human liver grafts resulting from AvFc
administration (Table 3 and Figure 7). In the human hepa-
tocyte area, a slight to moderate (scores of 2–3 in Table 2)
macrovesicular fatty change, a characteristic change of
Table 2.Buffers Used in the Initial Screening of AvFc Preformu

Number Form

1 30 mmol/L glutamate (5.61 g/L NaOOCCH2C

2 30 mmol/L glutamate (5.61 g/L NaOOCCH2C

3 30 mmol/L acetate (2.46 g/L CH3COONa)a

4 30 mmol/L acetate (2.46 g/L CH3COONa)a

5 30 mmol/L citrate (350 mL 0.1 mol/L C6H8O7

6 30 mmol/L citrate (115 mL 0.1 mol/L C6H8O7

7 30 mmol/L succinate (4.86 g/L NaOOCCH2C

8 30 mmol/L succinate (4.86 g/L NaOOCCH2C

9 30 mmol/L histidine (4.65 g/L C6H9N3O2)
a

10 30 mmol/L histidine (4.65 g/L C6H9N3O2)
a

11 30 mmol/L phosphate (2.89 g/L NaH2PO4 �
12 30 mmol/L phosphate (1.75 g/L NaH2PO4 �
13 30 mmol/L phosphate (0.78 g/L NaH2PO4 �
14 30 mmol/L Tris (3.63 g/L NH2C(CH2OH)3)

a

15 PBS (0.144 g/L KH2PO4, 9 g/L NaCl, 0.795 g

apH was adjusted with 1 mol/L NaOH or 1 mol/L HCl.

FLA 5.6.0 DTD � JCMGH662 proof � 14
human hepatocytes in the PXB mouse, was observed in all
mice, including the vehicle-treated group (Figure 7A–C).
Minimal inflammatory cell infiltration around vacuolated
hepatocytes (score, 1) was seen in 1 mouse each from the
11-dose AvFc and AvFclec- groups (Figure 7D and E); how-
ever, this was unlikely treatment-related because a similar
change is seen occasionally in PXB mice (PhoenixBio, New
York, NY) (unpublished observation). No AvFc treatment-
specific change was observed, except for an incidental
build-up of pigmentation found in the Glisson’s sheath in the
liver of 1 mouse (Figure 7F). Collectively, it was concluded
that there was no treatment-related adverse effect in the
liver tissue. The full pathology report may be found in the
Supplementary Information Q.
lation Analysis

ulation pH

H2CH(NH2)COOH � H2O)a 4.5

H2CH(NH2)COOH � H2O)a 5.0

4.5

5.5

� H2O, 650 mL 0.1 mol/L C6H5O7Na3 � 2 H2O) 5.0

� H2O, 885 mL 0.1 mol/L C6H5O7Na3 � 2 H2O) 6.0

H2COONa)a 5.5

H2COONa)a 6.5

6.0

7.0

H2O, 2.42 g Na2HPO4 � 7 H2O) 6.5

H2O, 4.64 g Na2HPO4 � 7 H2O) 7.0

H2O, 6.53 g Na2HPO4 � 7 H2O) 7.5

7.5

/L Na2HPO4) 7.2
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Figure 3. Liquid formulation development for AvFc. (A) Differential scanning fluorimetry for melting temperature measure-
ment. AvFc was prepared in 30 mmol/L histidine buffer, 100 mmol/L NaCl, 100 mmol/L sucrose (histidine, black line), or PBS
(grey line) at a concentration of 1 mg/mL and analyzed in triplicate in the presence (solid line) or absence (dashed line) of the
fluorescent dye SYPRO Q35Orange. Melting temperature values were 62.49�C ± 0.13�C in the histidine buffer and 62.68�C ±
0.25�C in PBS, as determined by the vertex of the first derivative of the relative fluorescence unit values. (B) Accelerated
stability testing of AvFc in the histidine buffer and PBS. AvFc, prepared at 1 mg/mL in the histidine buffer or PBS were
incubated overnight at 55�C, and 10 mg of the protein from each formulation was analyzed by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis under nonreducing conditions. A representative Coomassie-stained gel image is
shown. The band at around 75 kilodaltons corresponds to AvFc. Note that after overnight incubation, PBS shows less band
intensity for AvFc and more large-size aggregate bands than the histidine buffer. (C) Time course of concentration change and
the turbidity of AvFc solution in the histidine buffer and PBS. AvFc was formulated at 10 mg/mL in respective buffers and
incubated at 4�C or room temperature (RT). After 16 and 72 hours, the concentration was measured using a theoretical
extinction coefficient at 280 nm of 1.6493 (mg/mL)-1 cm-1, whereas turbidity was assessed by absorbance at 600 nm.
Representative data are shown for samples analyzed in triplicate.
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AvFc Protects Against HCV Infection In Vivo
Lastly, we assessed the protective efficacy of AvFc

against HCV infection in vivo using the treatment regimen
described earlier. PXB mice were inoculated intraperitone-
ally with a genotype 1a virus along with initial treatment
with 25 mg/kg of AvFc or AvFclec- on day 0. As shown in
Figure 8A, AvFclec--treated mice showed high serum HCV
RNA levels from day 7 after challenge through the end of the
study on day 35. In sharp contrast, animals treated with
both 8 and 11 doses of AvFc did not show any quantifiable
level (4.0 � 104 copies/mL) of HCV RNA in sera, indicating
that the lectibody prevented the infection of human liver
grafts by the virus. Similar to the results in Figure 3, overall
no major toxicity signal was noted in body weights, human
albumin (h-Alb), or h-ALT levels between the test groups,
although there was a temporal decrease in body weight and
FLA 5.6.0 DTD � JCMGH662 proof � 14
h-Alb in 1 of the AvFc-treated groups at an early time point,
indicating that the liver grafts remained functional over the
course of the study (Figure 8B–D).
Discussion
In this study we showed that the HMG-binding lectibody

AvFc shows broad genotype-independent anti-HCV activity.
In addition, systemic administration of AvFc effectively
protected chimeric human-mouse liver mice from infection
with a genotype 1a virus without apparent toxicity,
providing in Qvivo proof-of-concept for the lectibody’s anti-
viral potential.

The mechanism of HCV neutralization by AvFc likely is
through binding to HMGs on the E1/E2 envelope protein
dimer, which blocks their interaction with host cell
September 2020 � 12:23 pm � ce DVC
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Figure 4. Pharmacokinetics of AvFc in mice. AvFc phar-
macokinetics were evaluated in C57bl/6 mice after a single
intraperitoneal injection of 25 mg/kg with blood sampled at
various time points. Data are expressed as means ± SEM
from 4 mice per group. The average half-life was 24.5 and
18.5 hours in male and female mice, respectively, as deter-
mined by the PKSolver Microsoft Excel Add-on. The peak
concentration occurred between 2 and 4 hours after admin-
istration. The target trough concentration of 130 nmol/L
(corresponding to 10 mg/mL) is indicated by a dashed line.
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receptors and viral entry. Unlike HIV envelope glycopro-
teins, whose glycan content can vary widely between
strains, the number and position of glycosylation sites on
E1/E2 are highly conserved, indicating their critical role in
HCV’s infectious processes.27 The notion that AvFc functions
as an entry inhibitor is supported by the fact that the lec-
tibody has affinity to the E2 protein24 and that other
mannose-binding lectins, such as Griffithsin or Cyanovirin-
N, inhibit entry in this manner.28,29 AvFc inhibited multi-
ple genotypes of HCV with average 50% inhibitory con-
centrations more than 100-fold lower than that of the
monomer Avaren lectin (Table 1), indicating that the
multivalent recognition of HMGs on the surface of the virus,
brought about by the dimerization of Avaren via Fc fusion,
led to greater entry inhibition. Unlike other antiviral lectins,
however, the inclusion of the human IgG1 Fc region impli-
cates the possibility of Fc-mediated effector functions, such
as antibody-dependent cell-mediated cytotoxicity, against
infected cells. In fact, Fc-mediated effector functions greatly
contributed to the antiviral potency of AvFc against HIV, as
determined by a primary cell-based inhibition assay and an
antibody-dependent cell-mediated viral inhibition assay.24

Accordingly, the remarkable efficacy seen in the present
in vivo HCV challenge study may be partially Fc-mediated.
Further investigations are necessary to address this
possibility.

The present study also showed that AvFc therapy is well
tolerated in mice and human hepatocytes because every-
other-day intraperitoneal administration of 25 mg/kg
AvFc, of up to 11 doses, did not show any obvious toxicity in
PXB mice by gross necropsy or histopathology of engrafted
human hepatocytes, and it did not result in significant
changes in body weight, h-Alb level, or ALT level (Figures 6
FLA 5.6.0 DTD � JCMGH662 proof � 14
and 7). This corroborates our previous observation that
AvFc administration, both intraperitoneally and intrave-
nously, was well tolerated and produced no toxicity in mice,
rats, or rhesus macaques.24 We hypothesize that the lack of
any significant toxicity is attributable to the unique HMG-
binding mechanism of AvFc, whereby it requires multiva-
lent interaction with several HMGs in proximity to show
high-affinity binding to a glycoprotein target. In line with
this hypothesis, Hoque et al30 showed that the 3 binding
pockets of the parent lectin actinohivin can bind up to 3
independent HMGs, providing high-affinity binding when
the HMGs are in relatively close proximity. This implies that
AvFc may not interact effectively with healthy normal cells
and tissues that do not usually show clusters of HMGs on
their surfaces. In contrast, glycoproteins of many enveloped
viruses show a high proportion of these immature forms of
N-glycans.20–22 Although HCV E2 has fewer N-glycosylation
sites (approximately 11) than the HIV gp120 (which has
between 20 and 30, depending on the strain), E2 likely is
present on the surface of HCV at a higher density and thus
provides higher local concentrations of HMGs.31 Further
studies are necessary to show a threshold HMG concentra-
tion that enables efficient interaction between AvFc and the
surfaces of cells or viruses.

Although alcoholic liver disease has now surpassed HCV
infection as the number one indication for liver trans-
plantation in the United States, a large number of proced-
ures will continue to be performed for the foreseeable
future in patients with HCV-related decompensated
cirrhosis.32 A major outstanding issue is the lack of effective
treatment protecting the allograft liver from recurrent
infection by the virus that remained circulating in the pe-
riphery at the time of transplant. As a consequence, re-
infection of donor livers occurs universally, as early as in
the first 90 minutes of reperfusion,17 and can result in
accelerated fibrosis and increased risk of graft failure,
cirrhosis, and hepatocellular carcinoma.33 In fact, allograft
failure resulting from re-infection is the leading cause of
secondary transplants and death in HCV-infected patients
who have received a liver transplant.34 Patients cured of
HCV with DAAs after liver transplantation still have a
higher-than-normal risk of hepatocellular carcinoma,35 and
the high cost of the drugs represents a significant barrier to
their widespread use. Furthermore, emergent drug resis-
tance, even in DAA combination therapies, although rare,
represents a particular challenge for further treatment.36

Unlike DAAs, entry inhibitors neutralize circulating viruses
and physically block the viral infection of target cells. The
use of entry inhibitors perioperatively upon liver trans-
plantation, either alone or in combination with DAAs, may
improve treatment outcomes significantly.34,37 Thus,
although the effectiveness of DAAs is not in question, there
still are unmet needs that may be addressed through the use
of entry inhibitors.

To date, no entry inhibitor has been approved for the
treatment or prevention of HCV. Two major drug candi-
dates, Civacir Qand MBL-HCV1, have shown some promise in
clinical trials (NCT01804829 and NCT01532908).38,39

Although larger studies are needed, it appears that entry
September 2020 � 12:23 pm � ce DVC



Figure 5. Characterization of the non–sugar-binding mutant AvFclec-. A variant of AvFc that does not bind to HMGs was
generated by mutating a tyrosine residue in each of the 3 binding pockets of Avaren (Dent et al, unpublished data). (A) Sodium
dodecyl sulfate–polyacrylamide gel electrophoresis showing purified AvFc and AvFclec- under reducing (R) and nonreducing
(NR) conditions. Under R conditions, AvFc monomer is seen at 38.5 kilodaltons; under NR conditions, AvFc dimer (via
interpolypeptide disulfide bonds in the Fc region) appears at 77 kilodaltons. (B) Surface plasmon resonance analysis of HCV
E2-binding affinity of AvFc and AvFclec-. A recombinant E2 protein (Immune Q36Technology Corp) was immobilized to a CM5 chip
using amine coupling to a surface density of approximately 200 response units (RU Q37). AvFc or AvFclec- then was injected over
the chip surface at a rate of 30 mL/min for 120 seconds, followed by a 600-second dissociation period, with concentrations
ranging from 10 to 0.625 mmol/L. Binding affinity was calculated using steady-state analysis and was determined to be 2.34 ±
0.18 � 10-6 mol/L (2.34 ± 0.18 mmol/L) for AvFc. Binding affinity could not be determined for AvFclec- because of the lack of
measurable binding.
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inhibitors in combination with DAAs may represent a new
treatment paradigm for HCV patients receiving a liver
transplant. Despite both MBL-HCV1 and Civacir being
capable of neutralizing a broad range of HCV genotypes,
viral resistance still can develop through mutations in the
envelope proteins E1/E2, in particular through shifting
glycan positions.40,41 In this regard, AvFc in its own right
could be less susceptible to amino acid mutations because it
targets the glycan shield of the virus rather than a specific
epitope. Deletions of glycans, even if occurring after pro-
longed exposure to a carbohydrate-binding agent such as
AvFc, may result in a significant decrease in viral fitness by
decreasing E1/E2 incorporation into HCV particles or
increased susceptibility to humoral immunity resulting from
a breach in the glycan shield.27,42 Our results provide a
foundation to test the earlier-described hypotheses and
FLA 5.6.0 DTD � JCMGH662 proof � 14
feasibility of the HMG-targeting anti-HCV strategy. Of note, a
unique advantage of AvFc over the 2 antibody-based entry
inhibitor candidates described earlier is that the lectibody
has the capacity to neutralize both HIV24 and HCV (present
study). Accordingly, AvFc may provide an effective means
(eg, pre-exposure prophylaxis) to protect high-risk pop-
ulations against HIV/HCV co-infection, such as health care
workers and injection drug users.43,44

In conclusion, the present study provides an important
proof of concept for the therapeutic potential of AvFc
against HCV infection via targeting envelope HMGs. In
particular, the lectibody may provide a safe and effica-
cious means to prevent recurrent infection on liver
transplantation in HCV-related end-stage liver disease
patients. Other potential utilities of AvFc may be found in
pre-exposure prophylaxis against HIV/HCV co-infection in
September 2020 � 12:23 pm � ce DVC



Figure 6. Toxicologic
analysis of systemically
administered AvFc in the
PXB human liver
chimeric mouse model.
PXB mice were adminis-
tered AvFc or AvFclec-

intraperitoneally at 25 mg/
kg (n ¼ 4 each), or the
histidine buffer vehicle
control (n ¼ 3) every 2 days
and monitored for body
weight, blood h-Alb level,
and serum alanine ALT
level over 42 days. (A)
Percentage change of
body weights from the
initial day of dosing (day 0).
(B) Blood h-Alb levels. (C)
Serum ALT levels. (D) Ratio
of liver weight to body
weight of individual mice at
necropsy. (A–C) Each data
point represents means ±
SEM and (D) individual
data with means ± SEM in
each group. No significant
changes in any of the
safety end points were
noted between the groups
(A–C, 2-way analysis of
variance; D, 1-way analysis
of variance).
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high-risk populations, as well as in the context of trans-
plantation of organs from HCV-infected donors to HCV-
negative recipients, which may help alleviate the severe
shortage of donor organs available for transplantation.45,46

Further studies are warranted to determine a dose-
response relationship, therapeutic window, and feasi-
bility of intravenous or subcutaneous dosing routes, as
well as to assess the efficacy of AvFc against established
infection.
Table 3.Histopathology of Chimeric Mouse Liver Tissue

Vehicle

101 102 103 201

Mouse hepatocytes 0 0 0 0

Human hepatocytes
Fatty change, macrovesicular

2 3 3 3

Infiltrate, inflammatory cell, around
vacuolated hepatocyte

0 0 0 0

Portal canal and others
Hepatocellular carcinoma, trabecular,

with extramedullary hematopoiesis
P 0 0 0

Metaplasia, osseous 0 2 0 0
Pigmentation, brown, histiocyte, Glisson

sheath, focal
0 0 0 0

NOTE. Numbers shown are the severity score on a scale of 0–
P, present.

FLA 5.6.0 DTD � JCMGH662 proof � 14
Materials and Methods
Animal Care

The use of animals was approved by the University of
Louisville’s Institutional Animal Care and Use Committee
and the Animal Ethics Committee of PhoenixBio Company,
Ltd (resolution 2281). All animals were given a standard
diet and water ad libitum and were housed in a tempera-
ture- and humidity-controlled facility with a 12-hour day/
night cycle.
AvFclec- AvFc, 11 doses AvFc, 8 doses

202 203 204 301 302 303 304 401 402 403 404

0 0 0 0 0 0 0 0 0 0 0

3 3 3 3 3 3 3 3 3 3 3

1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
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Figure 7. Histopathologic examination of PXB mouse liver tissues. Representative H&E-stained liver tissue section images
corresponding to histopathologic findings in Table 2 are shown. Liver tissues are from the toxicologic study in Figure 4. (A) A
4� image from an animal in the vehicle control group (mouse ID: 103 in Table 2) showing low magnification of vacuolated
hepatocytes. (B) A 10� image from a portion of panel A, containing many human hepatocytes with a large, well-defined,
rounded vacuole. (C) Higher magnification (40�) of panel B. (D) A 10� image from an animal in the AvFclec- group (ID: 202
in Table 2), showing small foci of inflammatory cell inflammation in the human hepatocyte area. (E) Higher magnification (40�)
of panel D. Inflammatory cells appear to surround vacuolated hepatocytes. (F) A 20� image from an animal in the AvFc group
(8 total doses; ID: 401 in Table 2). Histiocytic brown pigmentation in the Glisson sheath was noted only in this mouse.
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Production of AvFc and Non–HMG-Binding AvFc
Variant

AvFc and AvFclec- were produced by agroinfiltration with
magnICON vectors in Nicotiana benthamiana plants as
previously described.24 AvFc was purified from plants after
a 7-day incubation period using protein A and ceramic hy-
droxyapatite chromatography.
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HCV Neutralization Assays
Huh-7 cells47 and HEK-293T cells (American Type

Culture Collection, Manassas, VA) were cultured in Dul-
becco’s modified Eagle medium supplemented with 10%
heat-inactivated fetal calf serum and 1% penicillin/strep-
tomycin. To produce HCVcc, we used a modified version of
the plasmid encoding JFH1 genome (genotype 2a), pro-
vided by T. Wakita (National Institute of Infectious Dis-
eases, Tokyo, Japan).48,49 The H77/JFH1 chimera, which
expresses the core-NS2 segment of the genotype 1a poly-
protein within a genotype 2a background, has been
described previously.50 The genotype 4a ED43/JFH1,51

genotype 5a SA13/JFH1,52 and genotype 6a HK6a/JFH153

infectious HCV recombinants were provided by J. Bukh
(University of Copenhagen, Copenhagen, Denmark). Retro-
viral pseudotypes bearing HCV envelope glycoproteins of
JFH1 virus (HCVpp) expressing the Firefly luciferase re-
porter gene were produced in HEK-293T as previously
FLA 5.6.0 DTD � JCMGH662 proof � 14
described.54 Inhibitory effects were determined by quan-
tifying infectivity by indirect immunofluorescence with the
anti-E1 monoclonal antibody A455 or an anti-NS5A poly-
clonal antibody kindly provided by M. Harris (University of
Leeds, Leeds, UK).
Formulation Buffer Optimization
Initial buffer screening was performed in 30 mmol/L

glutamate, acetate, citrate, succinate, histidine, and phos-
phate buffers at pH 4.5–7.5 (Table 2). All the buffer agents
were purchased from MilliporeSigma Q. AvFc was diafiltrated
and adjusted to 1 mg/mL (or 62.5 mmol/L) in respective
buffers. Stability was evaluated by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis after incubation
for 2 weeks at 37�C. The melting temperatures of AvFc were
determined by differential scanning fluorimetry performed
on an Applied Biosystems StepOnePlus reverse-
transcription polymerase chain reaction (RT-PCR) system
as described previously.24 Briefly, AvFc formulated in
various buffers at a concentration of 50 mmol/L was mixed
with a final concentration of 50� SYPRO Orange (S6651;
ThermoFisher Scientific) in a 96-well template. The melting
temperature was determined by the vertex of the first de-
rivative of the relative fluorescence unit values in the melt
curves. AvFc formulated into the optimized histidine buffer
or PBS then was concentrated to 10 mg/mL and incubated
September 2020 � 12:23 pm � ce DVC



Figure 8. The protective effect of AvFc against HCV challenge in PXB mice. (A) Study design. PXB mice were challenged
intraperitoneally with a HCV genotype 1a virus on day 0, simultaneously with an initial treatment intraperitoneally with either 25
mg/kg of AvFc or AvFclec-. Treatment was continued every other day for a total of 8 or 11 doses for AvFc and 11 doses for
AvFclec- (n ¼ 5 each). The general conditions and body weights of the animals were monitored every other day, while serum
HCV RNA and blood h-Alb levels were measured every 7 days. (B) Serum HCV RNA levels. AvFc treatment (both 8 and 11
doses) showed no detectable HCV RNA at any time point. The gray line indicates the lower limit of quantification, which was
4 � 104 copies/mL in this assay. **P < .01, ***P < .001 Q38(AvFclec- vs both AvFc 8 and 11 doses); 2-way analysis of variance with
the Tukey multiple comparison test. Inset: The graph shows the same data with the y-axis on a linear scale. (C–E) Time course
of body weight change from day 0 (C), blood h-Alb levels (D), and serum h-Alt concentrations (E). Each data point represents
means ± SEM in each group. *P < 0.05 (C, AvFclec- vs AvFc 8 doses; D, AvFclec- vs AvFc 11 doses; 2-way analysis of variance
with the Tukey multiple comparison test. (E) No significant difference between groups at any time point was noted.
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at 4�C or room temperature. Absorbance at 280 nm and 600
nm was measured immediately after concentration and then
again after 16 and 72 hours. A280 was measured after
centrifugation of precipitate.
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Pharmacokinetic Analysis
A pharmacokinetic profile for AvFc was generated after a

single 25-mg/kg intraperitoneal injection in C57bl/6 mice
(The Jackson Laboratory, Bar Harbor, ME) (8-week-old
males and females; n ¼ 4 per time point) and sampling
blood at 0.5, 1, 2, 4, 8, 12, 24, and 48 hours after injection.
FLA 5.6.0 DTD � JCMGH662 proof � 14
The concentration of AvFc then was measured using an HIV
gp120-coated enzyme-linked immunosorbent assay. Briefly,
a recombinant gp120 (HIV CM235; AIDS Reagent Program;
National Institutes of Health, Bethesda, MD) was coated
overnight at 0.3 mg/mL followed by blocking with 5% dry
milk-PBST Q. Serum samples at varying dilutions were incu-
bated for 2 hours, followed by detection by a goat anti-
human Fc–horseradish-peroxidase secondary antibody
(ThermoFisher Scientific). The plasma concentration of
AvFc was calculated by interpolating from a standard curve.
PK parameters were calculated using the PKSolver Micro-
soft QExcel add-on.56
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Toxicologic Analysis and HCV Challenge Study in
PXB Mice

The mouse model of toxicologic analysis and HCV
infection and toxicologic analysis was performed in PXB
mice (complementary DNA–uPAwild/þ/SCID, complemen-
tary DNA–uPAwild/þ: B6; 129SvEv-Plau, SCID: C.B-17/Icr-
scid/scid Jcl; reviewed by Tateno and Kojima25). These mice
contain transplanted human hepatocytes with a replace-
ment index of greater than 70% as determined by blood h-
Alb measurements before virus inoculation.57 Blood h-Alb
levels indicate the level and integrity of human hepatocyte
engraftment in the mouse liver. Mice were separated into
the following 3 treatment groups: AvFclec- (25 mg/kg, n ¼ 5)
for 11 doses, or AvFc (25 mg/kg, n ¼ 5 each) for 8 or 11
doses. The initial treatment was co-administered intraperi-
toneally with virus inoculation (5 � 105 copies/kg) on day
0 with a genotype 1a strain (PBC002), and treatment
continued every other day thereafter. The general condi-
tions and body weights of the animals were monitored
every other day, while serum HCV RNA and blood h-Alb
were measured every 7 days by RT-PCR or latex aggluti-
nation immunonephelometry (LZ Test Eiken U-ALB; Eiken
Chemical Co, Ltd), respectively. The HCV RNA RT-PCR assay
was developed based on the method described by Takeuchi
et al58 with modifications, and validated by PhoenixBio for
use in this animal model. The lower limit of quantification
was determined to be 4.0 � 104 copies/mL. Serum ALT 1
levels were determined either using a Fujifilm DRI-CHEM
NX500sV clinical chemistry instrument or by enzyme-
linked immunosorbent assay (Institute of Immunology Co,
Ltd, Tokyo, Japan). At study termination on day 35, animals
were killed and subject to gross necropsy and general
health. Blood also was drawn via cardiac puncture and used
for ALT, HCV RNA, and h-Alb analyses.

Histopathologic Analysis of Liver Tissues
H&E-stained liver sections from 3 to 4 mice per group

were generated by Nara Pathology Research Institute Co,
Ltd (Nara, Japan) and evaluated by pathologists at SkyPatho,
LLC. All slides were examined by a blinded, board-certified
veterinary pathologist under a light microscope (BX43;
Olympus Corporation, Tokyo, Japan). The tissues were
assigned a severity score for a number of characteristics
based on the 5-point scoring system of the CDISC SEND
Controlled Terminology, as follows: 0, unremarkable; 1,
minimal; 2, mild; 3, moderate; 4, marked; 5, severe; and P,
present.

Statistical Analyses and Data Analysis
Statistical significance was analyzed by GraphPad Prism

6 software (La Jolla, CA). Mouse body weights, albumin, ALT,
and HCV RNA levels were compared using a repeated-
measures 2-way analysis of variance with the
Geisser–Greenhouse correction. Multiple comparisons be-
tween groups at each time point were conducted and cor-
rected using the Tukey method with the threshold of
significance set at P ¼ .05. Liver:body-weight ratios were
compared using 1-way analysis of variance. All authors had
FLA 5.6.0 DTD � JCMGH662 proof � 14
access to the study data, and reviewed and approved the
final manuscript.
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