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Abstract

The paper deals with the identification of multiple unknown time-dependent
point sources occurring in 3D dispersion-advection-reaction equations. Based on
developed appropriate adjoint functions, we establish a constructive identifiability
result depending on the flow nature that yields guidelines leading to a quasi-direct
Detection-Identification method. In practice, assuming to be available within a
monitored domain some interfaces subdividing it into suspected sections, the devel-
oped method goes throughout the entire domain to detect the presence of all active
sources. If an activity is detected within a suspected section, the method identifies
the total amount discharged in this section and determines whether it is done by
a single or multiple unknown occurring sources. Moreover, it localizes the sought
position of a detected source as the unique root of a Dispersion-Current vector func-
tion defined from the developed adjoint functions. Application to different types of
flow and some numerical experiments on surface water pollution are presented.

Keywords: Nonlinear inverse source problems; Dispersion-Current adjoint functions;
Data assimilation; 3D Advection-Dispersion-Reaction equations; Surface water pollution.

1 Introduction

Inverse source problems are usually tasked with identifying unknown/hidden sources that
drived the solution of an associated mathematical model to the measured response. Since
the achievement of such task leads to illuminate the unknown causes of certain observed
effects, we have seen over the last few decades inverse source problems covering a wide
range of applications in science and engineering: In medicine, for example, inverse source
problems are used to detect and localize a tumour as well as to identify some biological
parameters, like the chemotaxis, that lead to simulate numerically the growth of a tumour
in order to predict the adapted treatement to heal the patient [5, 6, 7, 14]. For environ-
mental monitoring, inverse source problems are employed to identify pollution sources in
surface water [2, 3, 4, 18], in groundwater [11, 22] and in atmosphere [3]. Some important
applications include earthquake source localization [23, 24, 25], source identification in
electromagnetics [10] and acoustics [21], among many others.

1



As far as the identifiability of unknown time-dependent point sources is concerned, in the
case of one dimensional transport equations, the authors in [13] proved that for a single
unknown occurring source, its position and its time-dependent intensity are determined
in a unique way from time records of the generated state and of its flux taken at two
positions framing the source region. This identifiability result has been improved in [15]
to hold using only state time records then, extended firstly in [17] to treat the case of
transport equations with spatially varying coefficients and secondly in [16] to address the
case of two coupled transport equations. In [4], the author proved the identifiability of a
moving time-dependent point source. Besides, regarding two/three dimensional transport
equations, authors in [2, 3, 20] established identifiability results for multiple unknown
time-dependent point sources. These results based on the unique continuation theorem
say that the unknown elements defining all finite number of occurring time-dependent
point sources are uniquely determined from state/flux time records taken on whatever non-
empty part of the boundary. In our view, these results yield an ideal theoretical framework
which in practice does neither take into account the flow nature i.e., transport/dispersion
dominance in selecting the appropriate measuring part of the boundary nor gives visibility
on how to proceed for determining the unknown elements defining the occurring sources.

This study is motivated by the following two points: 1. We present in section 8 of this
paper a Baby Example showing that for the one dimensional transport equation, it is not
possible to uniquely identify multiple unknown point sources using measurements taken
only upstream and/or downstream all occurring point sources. To ensure identifiability,
all two distinct point sources should be separated by either two state measuring points
or by one state and flux measuring point 2. The identification method proposed in [3]
that consists of minimizing two objective functions (Least squares and Kohn-Vogelius)
defined using measurements taken on the whole boundary, encountered serious difficulties
starting from the case of two occurring sources: The least squares approach doesn’t enable
to identify more than one active source whereas the Kohn-Vogelius approach identifies
two sources only if they are well separated and the diffusion coefficient is very small
in order to avoid rapid intermixing. Otherwise, the authors reported in [3] that sources
effects become quickly indistinguishable. The originality of the results established in the
present paper lies in the developement of direct mathematical techniques to determine
the unknown elements defining the occurring sources. Indeed, we develop appropriate
adjoint functions that lead to establish a constructive identifiability result depending on
the flow nature and transforming the localization of an unknown source position into
determining the unique root of a Dispersion-Current vector function defined from the
developed adjoint functions. Comparing to the minimization of objective functions, the
identification approach established in this paper is expected to improve the accuracy of
the identified results as well as to reduce the total identification cost since we do not have
to solve two PDEs (State and adjoint state) for each optimization iteration and also do
neither face the problem of local minimizers nor of adding regularization terms.

The paper is organized as follows: In section 2, we present the problem statement and
introduce some assumptions defining the framework of this study. Section 3 is reserved
to develop appropriate adjoint functions and to prove some of their properties for later
use. In section 4, we establish a constructive identifibility result based on the developed
adjoint functions. Section 5 is devoted to follow the guidelines given by the established
identifiability result to develop a Detection-Identification method. Applications, Baby
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Example on the non-identifiability in the one dimensional case and numerical experiments
on the surface water BOD pollution model are presented in the remaining sections.

2 Mathematical modelling and problem statement

Let T > 0 be a final monitoring time and Ω be a bounded and connected open subset of
IR3 with a sufficiently smooth boundary ∂Ω := Γin ∪ ΓFS ∪ ΓFA ∪ Γout, where Γin is the
inflow boundary, Γout is the outflow boundary, ΓFS regroups the Fluid-Solid boundaries
and ΓFA is the Fluid-Air boundary. For example, in surface water pollution, the BOD
concentration u within a portion Ω of a river is governed by [8, 9, 12, 30]:

L[u](x, t) = F (x, t) in Ω× (0, T ), (1)

where F represents the set of all occurring pollution sources and L is the second-order
linear partial differential operator defined as follows:

L[u](x, t) := ∂tu(x, t)− div
(
D(x)∇u(x, t)

)
+ V (x) · ∇u(x, t) +Ru(x, t). (2)

The dot product designates the inner product in IR3, D is the hydrodynamic dispersion

tensor, V =
(
V1, V2, V3

)>
is the flow velocity field and R is a real number that represents

the reaction coefficient. The tensor D is a 3× 3 real matrix symmetric, uniformly elliptic
and uniformly bounded in Ω. Moreover, D and V satisfy

div(V ) = 0 in Ω, V = ~0 on ΓFS and V · ν = 0 on ΓFA. (3)

ν is the unit outward vector normal to ∂Ω. In (3), the first condition stands for the
incompressibility of water whereas the second one is the so-called no-slip condition [26].

Besides, for appending boundary and initial conditions to (1)-(2), we use [3, 18]:
u(·, 0) = 0 in Ω,

u = 0 on
∑

in = Γin × (0, T ),

D∇u · ν = 0 on
∑

FS ∪
∑

FA ∪
∑

out,

(4)

where
∑

FS = ΓFS × (0, T ),
∑

FA = ΓFA × (0, T ) and
∑

out = Γout × (0, T ). Notice that
due to the linearity of the operator L introduced in (2) and according to the superpo-
sition principle, the use of a non-zero initial condition and/or inhomogeneous boundary
conditions do not affect the results established in this paper.

In the present study, we are interested in the case of multiple time-dependent point sources
occurring in the problem (1)-(4) i.e., F is defined as follows:

F (x, t) =
N∑
n=1

λn(t)δ(x− Sn) in Ω× (0, T ), (5)

where N ∈ IN∗, δ denotes the Dirac mass, Sn=1,...,N are N distinct interior locations in
Ω that represent the positions of the occurring sources and λn=1,...,N ∈ L2(0, T ) designate
their associated time-dependent source intensity functions that satisfy:∫ T

0

λn(t)eRtdt 6= 0 and ∃T 0 ∈ (0, T ) / λn = 0 in (T 0, T ), ∀n ∈ {1, . . . , N}. (6)
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Then, using the transposition method introduced by Lions [27, 28], it follows that the
forward problem (1)-(5) admits a unique solution u that belongs to:

L2
(
0, T ;L2(Ω)

)
∩ C0

(
0, T ;

(
H1
)′

(Ω)
)
. (7)

We assume to be available I ∈ IN∗ sufficiently smooth interfaces Γi=1,...,I subdividing the
domain Ω into I + 1 subdomains Ωi=1,...,I+1 defined by ∂Ωi = Γi−1 ∪ ΓiFS ∪ ΓiFA ∪ Γi, with
Γ0 = Γin and ΓI+1 = Γout whereas ΓiFS and ΓiFA are the parts of the boundaries ΓFS and
ΓFA situated between Γi−1 and Γi. Moreover, the interface ΓI is set in a way such that
the last subdomain ΩI+1 remains a ”No source region of Ω”. Therefore, we have

Ω = ∪I+1
i=1 Ωi, where ΩI+1 ⊂ Ω \

{
S1, . . . , SN

}
. (8)

In our study, Ωi=1,...,I represent the suspected sections within the monitored domain Ω
wherein sources could occur and the interfaces Γi = ∂Ωi∩∂Ωi+1 are available for measuring
the state u and its flux D∇u · ν crossing each intersection. Since the source positions
Sn=1,...,N are interior locations in Ωi=1,...,I ⊂ Ω, it follows that the state u solution of the
problem (1)-(5) is smooth enough on ∂Ω as well as on the interfaces Γi=1,...,I . That allows
us to define the following observation operator:

M [F ] :=
{
D∇u · ν on

∑
in;

(
u,D∇u · ν

)
on
∑

i=1,...,I ; uDν on
∑

FA

}
, (9)

where
∑

i = Γi × (0, T ). The inverse source problem in which we are interested here is:
Given the records ddin of D∇u ·ν on

∑
in, the records

(
di, ddi

)
of
(
u,D∇u ·ν

)
on
∑

i=1,...,I

and the records dFA of u on
∑

FA, detect whether there is or not active sources occurring
in each suspected subdomain Ωi ⊂ Ω, for i = 1, . . . , I. If the presence of active sources is
detected within Ωi, determine the total amount discharged in Ωi and whether it is done
by a single or multiple occurring unknown sources. In the case of a single active source
occurring within Ωi, localize its sought position i.e., find Sn ∈ Ωi that yields(

di, ddi
)

=
(
u,D∇u · ν

)
on
∑

i−1 ∪
∑

i and dFA = u on
∑i

FA. (10)

Remark 2.1 The last term in (9) defining the observation operator M [F ] means that if
the dispersion tensor D along the boundary ΓFA is such that Dν either null or of norm
small enough that can be neglected then, the underlined inverse source problem can be
solved without any need of state records taken on the Fluid-Air part ΓFA of the boundary.

3 Appropriate adjoint functions

Let i ∈ {1, . . . , I}. From multiplying the equations (1)-(2) by a sufficiently regular test
function v and integrating by parts over Ωi × (0, T ) using Green’s formula, we obtain∫ T

0

〈F, v〉D(Ωi),D′(Ωi) = 〈La[v], u〉L2(Ωi×(0,T )) +Avi , (11)

where 〈, 〉D(Ωi),D′(Ωi) designates the product in the distribution sense and La is the adjoint
operator associated to the operator L in (2) i.e.:

• La[v] := −∂tv − div
(
D∇v

)
− V · ∇v +Rv,

• Avi =

∫
Ωi

u(·, T )v(·, T ) +

∫
∂Ωi×(0,T )

(
u
[
D∇v + vV

]
− vD∇u

)
· ν.

(12)
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Since the state u is subject to only knowledge of M [F ] then, to keep in the right hand side
of (11) only known terms, we aim to develop adjoint functions vi that solve the system

La[vi](x, t) = 0 in Ωi × (0, T ),(
D∇vi + viV

)
· ν = 0 on ΓiFS × (0, T ),

u
(
D∇vi + viV

)
· ν known from M [F ] on ΓiFA × (0, T ).

(13)

From (3), the boundary conditions in (13) are equivalent to D∇vi · ν = 0 on ΓiFS × (0, T )
and uD∇vi · ν known on ΓiFA × (0, T ). Hence, by searching for vi under the form

vi(x, t) = eRtv0i(x) in Ωi × (0, T ) =⇒ −∂tvi +Rvi = 0 in Ωi × (0, T ), (14)

it follows according to (13) that the spatial part v0i in (14) should solve
div(D∇v0i) + V · ∇v0i = 0 in Ωi,

D∇v0i · ν = 0 on ΓiFS,

uD∇v0i · ν known from M [F ] on ΓiFA.

(15)

Therefore, the first kind of adjoint functions is what we refer to as free space adjoint
function defined from v0i = 1 by vi(x, t) = eRt in Ωi × (0, T ). In the following two
subsections, we develop two other kinds of spatial adjoint functions v0i solving (15):

3.1 Full adjoint function

Since from (3) we have div(V ) = 0 in Ωi, it follows that div(v0iV ) = V · ∇v0i in Ωi.
Afterwards, the first equation in (15) is equivalent to: div(D∇v0i + v0iV ) = 0 in Ωi. By
looking for v0i under the form v0i(x) = eψi(x) for all x ∈ Ωi, we get

D∇v0i + v0iV = 0 in Ωi ⇔ D∇ψi + V = 0 in Ωi. (16)

Thus, the scalar potential ψi is well defined from the second equation in (16) provided
the following compatibility condition on D and V holds true:

−→
rot
(
D−1V

)
= ~0 in Ωi. (17)

For the simplicity of our notations, in the remainder of this paper we denote for k = 1, 2, 3
by (D−1)k the kth row of the matrix D−1. Then, we have

−→
rot
(
D−1V

)
=


∂x2
(
(D−1)3 · V

)
− ∂x3

(
(D−1)2 · V

)
∂x3
(
(D−1)1 · V

)
− ∂x1

(
(D−1)3 · V

)
∂x1
(
(D−1)2 · V

)
− ∂x2

(
(D−1)1 · V

)
 , (18)

where (D−1)k · V designates the inner product of the kth row of the matrix D−1 and the
velocity field V . Hence, provided (17) holds true, the scalar potential ψi fulfilling the
second equation in (16) is defined for all x = (x1, x2, x3) ∈ Ωi by

ψi(x) = −
∫ x1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ x2

bi

(
(D−1)2 · V

)
(ai, ξ, x3)dξ

−
∫ x3

ci

(
(D−1)3 · V

)
(ai, bi, ζ)dζ,

(19)

where (ai, bi, ci) ∈ Ωi. In addition, for later use we establish the following property of ψi:
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Lemma 3.1 Provided (17) holds, the scalar potential ψi defined in (19) satisfies: For all
x = (x1, x2, x3) and y = (y1, y2, y3) in Ωi, ψi(x) = ψi(y) implies that∫ x1

y1

(
(D−1)1·V

)
(η, x2, x3)dη+

∫ x2

y2

(
(D−1)2·V

)
(y1, ξ, x3)dξ+

∫ x3

y3

(
(D−1)3·V

)
(y1, y2, ζ)dζ = 0.

Proof. See the Appendix.

Therefore, in view of (3) and from (16), it follows that v0i(x) = eψi(x) solves the two first
equations of the system (15) and reduces to null its last boundary condition. Thus, we
obtain the so-called full adjoint function defined by

vi(x, t) = eRt+ψi(x) in Ωi × (0, T ). (20)

3.2 Separated adjoint functions

The third way of developing v0i that solves the system (15) consists of reducing to zero
separately each of the two terms defining the first equation in (15). To this end, let

V =
(
V1, V2, V3

)>
be the velocity field in Ω and V ⊥ =

(
V ⊥1 , V

⊥
2 , V

⊥
3

)>
be a vector field

defined from the same components of V and perpendicular to it i.e.,

V ⊥k=1,2,3 ∈
{

0,±V1,±V2,±V3

}
and V · V ⊥ = 0 in Ω. (21)

Afterwards, we define v0i such that its gradient is collinear to V ⊥ i.e.,

∇v0i = wiV
⊥ in Ωi =⇒ V · ∇v0i = 0 in Ωi, (22)

where wi is a weighting function. Besides, in order to satisfy also div
(
D∇v0i

)
= 0 in

Ωi as well as to ensure the compatibility condition
−→
rot
(
∇v0i

)
= ~0 in Ωi, we require the

weighting function wi involved in (22) to solve the following system: div
(
wiDV

⊥) = 0 in Ωi,
−→
rot
(
wiV

⊥) = ~0 in Ωi,
⇔

 wi div
(
DV ⊥

)
+∇wi ·DV ⊥ = 0 in Ωi,

wi
−→
rot
(
V ⊥
)

+∇wi ∧ V ⊥ = ~0 in Ωi,
(23)

where ∧ designates the vector product.

Remark 3.2 In view of (23), if the dispersion tensor D and the velocity field V satisfy

div
(
DV ⊥

)
= 0 and

−→
rot
(
V ⊥
)

= ~0 in Ωi which is the case, for example, when D and V are
defined in Ωi by mean values, then the weighting function can be taken wi = 1 in Ωi.

Moreover, from searching for a weighting function wi that solves (23) under the form:
wi = egi , it follows that the unknown function gi should fulfill in Ωi:

 ∇gi ·DV ⊥ = −div
(
DV ⊥

)
,

∇gi ∧ V ⊥ = −−→rot
(
V ⊥
)
,

⇔



∇gi ·DV ⊥ = −div
(
DV ⊥

)
”scalar equation”,

0 V ⊥3 −V ⊥2
−V ⊥3 0 V ⊥1

V ⊥2 −V ⊥1 0

∇gi = −


∂x2V

⊥
3 − ∂x3V ⊥2

∂x3V
⊥

1 − ∂x1V ⊥3
∂x1V

⊥
2 − ∂x2V ⊥1

 .
(24)
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Notice that the 3× 3 matrix involved in (24) is antisymmetric and thus, its determinant
is equal to zero. Then, we consider the following three particular choices of V ⊥:

• Let V 1⊥ =
(
0,−V3, V2

)>
. From replacing in the system (24) V ⊥ by V 1⊥ and gi by g1

i ,
it follows under the condition:

V3

(
∂x1V2

)
= V2

(
∂x1V3

)
in Ωi, (25)

that the scalar equation can be taken into account in the 3 × 3 linear system of (24) as
follows: If V2 = 0 or V3 = 0 in Ωi then, we substitute the null equation in the 3× 3 linear
system of (24) with the scalar equation. If V2V3 6= 0 in Ωi then, since (25) implies that
the two last equations in the 3× 3 linear system of (24) are equivalent, we replace one of
those two equations by the scalar equation. For example, if V2 6= 0 in Ωi, replacing the
last equation of the 3× 3 linear system in (24) by the scalar equation gives

0 V2 V3

−V2 0 0

(DV 1⊥)1 (DV 1⊥)2 (DV 1⊥)3

∇g1
i =


∂x1V1

∂x1V2

−div
(
DV 1⊥)

 , (26)

where (DV 1⊥)k is the kth component of the vector DV 1⊥ and the first component in the
right hand side vector is obtained from applying div(V ) = 0 in Ωi.

• Let V 2⊥ =
(
− V3, 0, V1

)>
. We set in (24) V ⊥ = V 2⊥ and gi = g2

i . Afterwards, provided
the following condition holds:

V3

(
∂x2V1

)
= V1

(
∂x2V3

)
in Ωi, (27)

the scalar equation can be included in the 3× 3 linear system of (24) as follows: If V1 = 0
or V3 = 0 in Ωi, we substitute the null equation in the 3 × 3 linear system of (24) with
the scalar equation. If V1V3 6= 0 in Ωi, then since (27) implies that the first and the last
equations in the 3 × 3 linear system of (24) are equivalent, we replace one of those two
equations by the scalar equation. For example, if V1 6= 0 in Ωi, replacing the last equation
of the 3× 3 linear system in (24) by the scalar equation leads to

0 V1 0

−V1 0 −V3

(DV 2⊥)1 (DV 2⊥)2 (DV 2⊥)3

∇g2
i = −


∂x2V1

∂x2V2

div
(
DV 2⊥)

 . (28)

The second component of the right hand side in (28) is obtained from div(V ) = 0 in Ωi.

• Let V 3⊥ =
(
− V2, V1, 0

)>
. From substituting in (24) V ⊥ with V 3⊥ and gi with g3

i , it
follows under the condition:

V2

(
∂x3V1

)
= V1

(
∂x3V2

)
in Ωi, (29)

that the scalar equation can be taken into account within the 3× 3 linear system of (24)
as follows: If V1 = 0 or V2 = 0 in Ωi, we substitute the null equation in the 3 × 3 linear
system of (24) with the scalar equation. If V1V2 6= 0 in Ωi, then since (29) implies that
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the two first equations in the 3 × 3 linear system of (24) are equivalent, we replace one
of those two equations by the scalar equation. For example, if V1 6= 0 in Ωi, replacing the
second equation of the 3× 3 linear system by the scalar equation gives

0 0 −V1

(DV 3⊥)1 (DV 3⊥)2 (DV 3⊥)3

V1 V2 0

∇g3
i =


∂x3V1

−div
(
DV 3⊥)

∂x3V3

 . (30)

The third component of the right hand side in (30) is obtained from div(V ) = 0 in Ωi.

Remark 3.3 For example, if the velocity field V (x1, x2, x3) =
(
V1(x1, x2), V2(x1, x2), 0

)>
in Ωi, then all of the three conditions (25), (27) and (29) are well fulfilled.

Thus, according to (22), we determine the function v`0i associated to g`i from solving

∇v`0i = eg
`
iV `⊥ in Ωi, for ` = 1, 2, 3. (31)

Moreover, (31) leads to: For all x = (x1, x2, x3) ∈ Ωi,

• v1
0i(x) = −

∫ x2

bi

(
eg

1
i V3

)
(ai, η, x3)dη +

∫ x3

ci

(
eg

1
i V2

)
(ai, bi, ξ)dξ,

• v2
0i(x) = −

∫ x1

ai

(
eg

2
i V3

)
(η, bi, x3)dη +

∫ x3

ci

(
eg

2
i V1

)
(ai, bi, ξ)dξ,

• v3
0i(x) = −

∫ x1

ai

(
eg

3
i V2

)
(η, x2, ci)dη +

∫ x2

bi

(
eg

3
i V1

)
(ai, ξ, ci)dξ,

(32)

where (ai, bi, ci) ∈ Ωi. In view of (22)-(23), since V `⊥ are defined from the components of
V and as according to (3), V = ~0 on ΓFS, it follows that the separated adjoint functions
v`=1,2,3

0i in (32) solve the two first equations of (15) and, according to (31), satisfy

D∇v`0i · ν = eg
`
iV `⊥ ·Dν on ΓiFA. (33)

(33) holds since D is a symmetric matrix. Hence, all the developed adjoint functions i.e.,

vi(x, t) = eRtv0i(x) in Ωi × (0, T ), ∀v0i(x) ∈
{

1, eψi(x), v1
0i(x), v2

0i(x), v3
0i(x)

}
, (34)

solve the two first equations of the system (13). In addition, the free space adjoint function
vi(x, t) = eRt and the full adjoint function vi(x, t) = eRt+ψi(x) reduce to null the last bound-
ary condition of (13) whereas the three separated adjoint functions v`i (x, t) = eRtv`0i(x)

yield u
(
D∇v`i + V v`i

)
· ν = eg

`
i+RtV `⊥ · uDν on ΓiFA × (0, T ).

3.3 Dispersion-Current vector function

Using the developed adjoint functions in (34) and given two distinct integers m and n
from {1, 2, 3}, we introduce what we will refer to as Dispersion-Current vector function:

Ψm,n
i : Ωi −→ IR3,

x 7→ Ψm,n
i (x) =


eψi(x)

vm0i(x)

vn0i(x)

 ,
(35)

8



where ψi is the scalar potential obtained in (19) and vm0i , v
n
0i are two functions from (32).

Moreover, to prove the injectivity of Ψm,n
i , we establish the following technical result:

Lemma 3.4 Let V =
(
V1, V2, V3

)>
be a vector field such that Vk=1,2,3 ∈ W 1,∞(Ω). For all

two elements x = (x1, x2, x3) and y = (y1, y2, y3) of Ωi, we have

• v1
0i(x) = v1

0i(y) =⇒
∫ x2

y2

(
eg

1
i V3

)
(ai, η, x3)dη =

∫ x3

y3

(
eg

1
i V2

)
(ai, y2, ξ)dξ,

• v2
0i(x) = v2

0i(y) =⇒
∫ x1

y1

(
eg

2
i V3

)
(η, bi, x3)dη =

∫ x3

y3

(
eg

2
i V1

)
(y1, bi, ξ)dξ,

• v3
0i(x) = v3

0i(y) =⇒
∫ x1

y1

(
eg

3
i V2

)
(η, x2, ci)dη =

∫ x2

y2

(
eg

3
i V1

)
(y1, ξ, ci)dξ,

(36)

where v`=1,2,3
0i are the three adjoint functions obtained in (32).

Proof. See the Appendix.

That leads to prove the following theorem on the injectivity in a suspected subdomain
Ωi ⊂ Ω of the Dispersion-Current function Ψm,n

i introduced in (35):

Theorem 3.5 Let V = (V1, V2, V3)> and D be such that Lemmas 3.1 and 3.4 apply. If
there exists k ∈ {1, 2, 3} for which D and V yield a.e. in Ωi one of the two assertions:

1. Vk > 0 and Vm,n ≥ 0 with
(
D−1

)
k
· V > 0 and

(
D−1

)
m,n
· V ≥ 0,

2. Vk < 0 and Vm,n ≥ 0 with
(
D−1

)
k
· V < 0 and

(
D−1

)
m,n
· V ≥ 0,

(37)

where m,n are the two distinct elements of {1, 2, 3} \ {k}, then Ψm,n
i is injective in Ωi.

Proof. Let k ∈ {1, 2, 3} and m,n be the two distinct elements of {1, 2, 3} \ {k}. In view
of (35), it follows that for all x = (x1, x2, x3) and y = (y1, y2, y3) elements of Ωi, we have

Ψm,n
i (x) = Ψm,n

i (y) ⇔


ψi(x) = ψi(y),

vm0i(x) = vm0i(y),

vn0i(x) = vn0i(y).

(38)

• Assertion 1. If Vk > 0 and Vm,n ≥ 0 a.e. in Ωi, then since Lemma 3.4 applies, the two
last equations in (38) imply, in view of (36), that each element of {x1−y1, x2−y2, x3−y3} is
either null or admits the same sign as the other non-null element(s) of this set. Therefore,
because according to Lemma 3.1, ψi(x) = ψi(y) is equivalent to∫ x1

y1

(
(D−1)1 · V

)
(η, x2, x3)dη +

∫ x2

y2

(
(D−1)2 · V

)
(y1, ξ, x3)dξ

+

∫ x3

y3

(
(D−1)3 · V

)
(y1, y2, ζ)dζ = 0,

(39)

and it holds
(
D−1

)
j
· V ≥ 0 a.e. in Ωi, for j = 1, 2, 3, then each of the three integrals in

(39) is either null or admits the same sign as the other non-null integral(s). Hence, those
three integrals are all null. Since

(
D−1

)
k
· V > 0, it follows that xk = yk. Afterwards,
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using xk = yk in the two last equations of (38) implies in view of (36) and as Vk > 0 that
xm = ym and xn = yn. That means x = y.

• Assertion 2. If Vk < 0 and Vm,n ≥ 0 a.e. in Ωi then, the two last equations in (38) imply
in view of (36) that: 1. If xk − yk 6= 0, then each of the two terms xm − ym and xn − yn
is either null or admits the opposite sign of xk − yk. 2. If xk = yk, then xm = ym and
xn = yn. Since

(
D−1

)
k
· V < 0 whereas

(
D−1

)
m,n
· V ≥ 0 a.e. in Ωi, it follows that each

of the three integrals in (39) is either null or admits the same sign as the other non-null
integral(s). Thus, each of those integrals is null which implies that xk = yk. Because
Vk < 0, using xk = yk in the two last equations of (38) gives xm = ym and xn = yn. �

4 Identifiability

We start this section by proving that within all suspected subdomain Ωi ⊂ Ω, there is
no a single point source that can generate on the outflow boundary Γi state and flux
time measurements same as those generated by multiple distinct point sources. Then,
we establish that the Dispersion-Current vector function Ψm,n

i introduced in (35) leads to
localize in a unique manner the position of an unknown point source occurring in Ωi.

Theorem 4.1 Let i ∈ {1, . . . , I} and Ωi ⊂ Ω, where ∂Ωi = Γi−1 ∪ ΓiFS ∪ ΓiFA ∪ Γi. We
denote by u and u(P ) the solutions of the problem (1)-(5) with F (x, t) = λ(t)δ(x − S)
and F (x, t) =

∑P
p=1 λp(t)δ(x− Sp) in Ωi× (0, T ), where P ∈ IN∗, Sp=1,...,P , S are interior

points in Ωi and λp=1,...,P , λ are functions of L2(0, T ) fulfilling (6). u = u(P ) on Γi × (0, T ),

D∇u · ν = D∇u(P ) · ν on Γi × (0, T ).
=⇒ P = 1 and S1 = S. (40)

Proof. Let w = u − u(P ) in Ωi × (0, T ) and Ω0
i = Ωi \ {S, Sp=1,...,P}. In view of the

boundary conditions in (40) and the two main equations (1)-(2), it follows that w solves
L[w](x, t) = λ(t)δ(x− S)−

P∑
p=1

λp(t)δ(x− Sp) in Ωi × (0, T ),

w = D∇w · ν = 0 on Γi × (0, T ).

(41)

Let ωi be a connected open subset of Ω such that: ∅ 6=
(
ωi ∩ Ωi

)
⊂ Ω0

i , ωi ∩ Γi 6= ∅ and
∅ 6=

(
ωi ∩ Ωi+1

)
⊂ Ω0

i+1, where Ω0
i+1 is an open subset of Ωi+1 that doesn’t contain any

source position. Since w fulfills (41), then its extension by zero in ωi ∩ Ωi+1 solves in
ωi× (0, T ) the homogeneous parabolic equation obtained from replacing by zero the right
hand side of the first equation in (41). Thus, by applying twice the unique continuation
Theorem [29], we get w = 0 in ωi × (0, T ) and then, w = 0 in Ω0

i × (0, T ). That implies
w is either null a.e. in Ωi× (0, T ) or it’s a linear combination of the dirac mass and some
of its derivatives at the points S, Sp=1,...,P . This second option it’s not possible due to
the regularity of w. Hence, by setting w = 0 a.e. in Ωi × (0, T ), it follows from the first
equation of (41) that P = 1 and S1 = S. �
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Besides, we establish the following constructive identifiability result. This result is said
to be constructive since it sets guidelines that lead later on to localize in a unique manner
the sought position of an unknown point source occurring in Ωi ⊂ Ω.

Theorem 4.2 Let i ∈ {1, . . . , I}, Ωi ⊂ Ω and u be the solution of the problem (1)-(5)
with F (x, t) = λ(t)δ(x− S) in Ωi × (0, T ), where S is an interior point in Ωi. Provided

1. D and V are such that Theorem 3.5 applies in Ωi,

2. λ ∈ L2(0, T ) and fulfills (6),

boundary records of
(
u,D∇u · ν

)
on
(
Γi−1 ∪ Γi

)
×
(
0, T

)
and of uDν on ΓiFA × (0, T )

determine uniquely the unknown source elements S and λ̄ =
∫ T

0
λ(t)eRtdt.

Proof. Let u(k=1,2) be the solution of the problem (1)-(5) with F in Ωi × (0, T ) equal to
F (k)(x, t) = λ(k)(t)δ(x − S(k)), where λ(k) ∈ L2(0, T ) fulfilling (6) and S(k) is an interior
point in Ωi. We denote by w = u(2) − u(1). Then, from assuming

w = D∇w · ν = 0 on
(
Γi−1 ∪ Γi

)
×
(
0, T

)
and wDν = ~0 on ΓiFA × (0, T ), (42)

it follows that the variable w solves the system:

L[w](x, t) = λ(2)(t)δ(x− S(2))− λ(1)(t)δ(x− S(1)) in Ωi × (0, T ),

w(·, 0) = 0 in Ωi,

w = 0 on Γi−1 × (0, T ),

D∇w · ν = 0 on
(
ΓiFS ∪ ΓiFA ∪ Γi

)
× (0, T ).

(43)

From the last equation in (42) and according to (33), it follows that all of the adjoint
functions vi obtained in (34) solve the desired system (13), where its last boundary con-
dition is replaced by w

(
D∇vi + viV ) · ν = 0 on ΓiFA× (0, T ). Hence, as in (11)-(12), from

multiplying the first equation in (43) by an adjoint function vi(x, t) = eRtv0i(x) of (34)
and integrating by parts over Ωi × (0, T ) using Green’s formula, we get

λ̄(2)v0i(S
(2))− λ̄(1)v0i(S

(1)) = Av0ii , ∀v0i(x) ∈
{

1, eψi(x), v1
0i(x), v2

0i(x), v3
0i(x)

}
, (44)

where λ̄(k) =
∫ T

0
eRtλ(k)(t)dt, for k = 1, 2 and

Av0ii = eRT
∫

Ωi

w(·, T )v0i +

∫
(Γi−1∪Γi)×(0,T )

eRt
(
w
[
D∇v0i + v0iV

]
− v0iD∇w

)
· ν. (45)

Moreover, using (42) in (44)-(45), gives: For all v0i(x) ∈
{

1, eψi(x), v1
0i(x), v2

0i(x), v3
0i(x)

}
,

λ̄(2)v0i(S
(2))− λ̄(1)v0i(S

(1)) = eRT
∫

Ωi

w(·, T )v0i. (46)

Besides, according to (8), w solves in ΩI+1 × (0, T ) a system similar to (43), where the
first equation becomes homogeneous. That implies w = 0 in ΩI+1× (0, T ) which, in view
of (6) and using the problem satisfied by w in Ω× (T 0, T ), gives from applying the unique
continuation Theorem [29] that w(·, T ) = 0 in Ω. Hence, (46) leads to

λ̄(2)v0i(S
(2)) = λ̄(1)v0i(S

(1)), ∀v0i(x) ∈ {1, eψi(x), v1
0i(x), v2

0i(x), v3
0i(x)}. (47)

Using v0i = 1 in (47) gives λ̄(2) = λ̄(1). Afterwards, from (47) and (35), we get

Ψm,n
i (S(2)) = Ψm,n

i (S(1)) =⇒ S(2) = S(1). (48)

The implication in (48) is obtained from applying Theorem 3.5. �
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5 Detection-Identification of sources

Let i ∈ {1, . . . , I}, Ωi be a suspected section of Ω and Ni ∈ {0, . . . , N} be the number
of point sources occurring in Ωi i.e., Sn ∈ Ωi, for n = ni, . . . , ni + Ni − 1, where ni ∈
{1, . . . , N}. Thus, in the problem (1)-(5), F (x, t) =

∑ni+Ni−1
n=ni

λn(t)δ(x−Sn) in Ωi×(0, T ).
Therefore, likewise (11)-(12), from multiplying the equations (1)-(2) by an adjoint function
vi(x, t) = eRtv0i(x) from (34) and integrating by parts in Ωi×(0, T ) using Green’s formula,
we obtain: For all v0i(x) ∈ {1, eψi(x), v1

0i(x), v2
0i(x), v3

0i(x)},

Av0ii =


ni+Ni−1∑
n=ni

λ̄nv0i(Sn) if Ni ≥ 1,

0 if Ni = 0,

(49)

where λ̄n =

∫ T

0

eRtλn(t)dt and the coefficient

Av0ii = eRT
∫

Ωi

u(·, T )v0i +

∫
∂Ωi×(0,T )

eRt
(
u
[
D∇v0i + v0iV

]
− v0iD∇u

)
· ν. (50)

Afterwards, using in (49)-(50) the free space adjoint function i.e., v0i = 1 leads to

A1
i = eRT

∫
Ωi

u(·, T ) +

∫
(Γi−1∪Γi)×(0,T )

eRt
(
uV −D∇u

)
· ν =


ni+Ni−1∑
n=ni

λ̄n if Ni ≥ 1,

0 if Ni = 0.

(51)

Hence, employing the records of
(
u,D∇u ·ν

)
taken on the intersections (Γi−1∪Γi)×(0, T )

to compute the coefficient A1
i in (51) enables to detect the presence of all active sources

within Ωi. Indeed, if A1
i 6= 0 then, its value corresponds to the total suspended amount

discharged by all sources occurring in Ωi. Moreover, for example, provided the reaction
coefficient R ≥ 0 and

∑ni+Ni−1
n=ni

λn(t) ≥ 0 a.e. in (0, T ), it follows from (51) that

e−RTA1
i ≤

ni+Ni−1∑
n=ni

∫ T

0

λn(t)dt ≤ A1
i . (52)

Remark 5.1 Since in practice R is usually small, (52) could provide an approxima-
tion/estimation of the total amount discharged by all sources occurring in Ωi without
having to identify a priori the historic in (0, T ) of each time-dependent intensity λn.

5.1 Localization of a detected source

Assume the detection coefficient A1
i 6= 0 and there exists one source occurring in Ωi i.e.,

Ni = 1 and thus, F (x, t) = λni(t)δ(x− Sni) in Ωi× (0, T ). From (49)-(50), it follows that
the two unknown elements Sni and λni defining the occurring source are subject to:

λ̄ni = A1
i ,

eψi(Sni ) =
Aeψii

A1
i

,

v`0i(Sni) =
Av

`
0i
i

A1
i

, for ` = 1, 2, 3.

=⇒ Ψm,n
i (Sni) =

1

A1
i


Aeψii

Av
m
0i
i

Av
n
0i
i

 , (53)
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where Ψm,n
i is the Dispersion-Current function in (35) defined from the two distinct inte-

gers m and n selected in {1, 2, 3} such that Theorem 3.5 yields injectivity of Ψm,n
i in Ωi.

Therefore, the unknown source position Sni is the unique point of Ωi that solves the last
equation in (53). Besides, according to (50) and in view of (34), we get

• A1
i = eRT

∫
Ωi

u(·, T ) +

∫
(Γi−1∪Γi)×(0,T )

eRt
(
uV −D∇u

)
· ν,

• Aeψii = eRT
∫

Ωi

u(·, T )eψi −
∫

(Γi−1∪Γi)×(0,T )

eRt+ψiD∇u · ν,

• Av
`=1,2,3
0i
i = eRT

∫
Ωi

u(·, T )v`0i +

∫
(Γi−1∪Γi)×(0,T )

eRt
(
u
[
eg
`
iDV `⊥ + v`0iV

]
− v`0iD∇u

)
· ν

+

∫
ΓiFA×(0,T )

eRt+g
`
iV `⊥ · uDν.

(54)

From computing the coefficients in (54), we localize the unknown source position Sni as
the unique point within the suspected section Ωi that solves the last equation in (53).

5.2 Determination of the final state u(·, T )

For the computation of the coefficients in (54), we propose the following two different
ways to determine the unknown data u(·, T ):

• First way. Least squares: Since from (8) the subdomain ΩI+1 is a ”No source region”,
we use the state records taken on ΓI× (0, T ) to solve the forward problem satisfied by the
state u in ΩI+1× (0, T ). Then, because all sources become inactive in (T 0, T ), we identify
u(·, T ) as the final condition that leads the solution of the Cauchy problem satisfied by u
in Ω× (T 0, T ) to fit the forward problem solution in ΩI+1 × (T ∗, T ), where T ∗ ∈ (T 0, T ).

• Second way. Data assimilation: For i = 1, . . . , I, use the state records di−1 on
Γi−1 × (0, T ) and di on Γi × (0, T ) to determine an approximation û(·, T ) in Ωi of u(·, T )
from solving the following system:

L[ûi](x, t) = 0 in Ωi × (0, T ),

ûi(·, 0) = 0 in Ωi,

ûi = di−1 on Γi−1 × (0, T ),

ûi = di on Γi × (0, T ),

D∇ûi · ν = 0 on
(
ΓiFS ∪ ΓiFA

)
× (0, T ).

(55)

Then, we establish the following Lemma on how does ûi(·, T ) approximate u(·, T ) in Ωi:

Lemma 5.2 Provided (6) holds, there exists 0 < α ∈ IR such that the state ûi solution
of the system (55) fulfills: For all t ∈ (T 0, T ),∥∥ûi(·, t)− u(·, t)

∥∥2

L2(Ωi)
≤
∥∥ûi(·, T 0)− u(·, T 0)

∥∥2

L2(Ωi)
e−α(t−T 0), (56)

where T 0 is the final active time introduced in (6) and u is the solution of (1)-(5).
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Proof. See the Appendix.

For the clarity of our presentation, we summarize in the following algorithm the main
steps defining the Detection-Identification method developed in the present paper:

Algorithm. Detection-Identification method

For i = 1 to I do

• Compute the detection coefficient A1
i from (54).

• If | A1
i | ≤ ε0 then, there is no significant sources occurring in Ωi. Go to End do.

• Otherwise, proceed as follows:

1. Determine from (51)-(52) the total amount discharged in Ωi.
2. Select m and n such that Theorem 3.5 yields injectivity of Ψm,n

i in Ωi.
3. Compute the coefficients in (54) and solve the last equation in (53):

I If NO solution in Ωi, according to Theorem 4.1, MULTIPLE sources occur in Ωi.
I If ONE solution, from Theorem 4.2, it’s the position of the UNIQUE source in Ωi.

End do

6 Application to three types of flow

We apply the developed Detection-Identification method to the following three different
types of flow crossing a suspected subdomain Ωi ⊂ Ω: 1. Flow defined by a mean velocity
vector 2. Flow defined by a unidirectional velocity field 3. Flow defined by a bidirectional
velocity field. We employ Bear’s hydrodynamic dispersion tensor, see [8, 9, 33]:

D =
(
DM + αT‖V ‖2

)
I +

αL − αT
‖V ‖2

V · V >, (57)

where DM > 0 is a real number that represents the molecular diffusion, I is the 3 × 3
identity matrix and 0 < αT < αL are two real numbers that represent the longitudinal
and transverse dispersivities of the porous medium. From (57), it follows that

• DV =
(
DM + αL‖V ‖2

)
V ⇔ D−1V =

1

DM + αL‖V ‖2

V,

• DV `⊥ =
(
DM + αT‖V ‖2

)
V `⊥, for ` = 1, 2, 3.

(58)

Therefore, the scalar potential ψi in (19) is given by: For all x = (x1, x2, x3) ∈ Ωi,

ψi(x) = −
∫ x1

ai

( V1

DM + αL‖V ‖2

)
(η, x2, x3)dη −

∫ x2

bi

( V2

DM + αL‖V ‖2

)
(ai, ξ, x3)dξ

−
∫ x3

ci

( V3

DM + αL‖V ‖2

)
(ai, bi, ζ)dζ.

(59)

6.1 Flow of mean velocity vector

In Ωi ⊂ Ω, assume V =
(
V1, V2, V3

)>
to be a mean velocity vector and D to be the

associated dispersion tensor in (57). Then, (17) is satisfied and from (59), we get

ψi(x) = − 1

DM + αL‖V ‖2

V ·
(
x− Ai

)
, ∀x = (x1, x2, x3) ∈ Ωi, (60)
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where Ai = (ai, bi, ci) ∈ Ωi. Besides, according to Remark 3.2, we define v`=1,2,3
0i from

solving ∇v`0i = V `⊥ in Ωi. Thus, setting g`i = 0 in (31)-(32) gives: For ` = 1, 2, 3

v`0i(x) = V `⊥ ·
(
x− Ai

)
, ∀x = (x1, x2, x3) ∈ Ωi. (61)

Provided the mean velocity vector V fulfills in Ωi, for example, V1 > 0, V2 ≥ 0 and V3 ≥ 0,
it follows from (58) that (D−1)1V > 0 and (D−1)2,3V ≥ 0 and thus, the first condition of
Theorem 3.5 is fulfilled for k = 1, m = 2 and n = 3. Therefore, from (35), the function

Ψ2,3
i : Ωi −→ IR3,

x 7→ Ψ2,3
i (x) =


eψi(x)

v2
0i(x)

v3
0i(x)

 ,
(62)

is injective in Ωi. Afterwards, assuming the detection coefficient A1
i 6= 0 and there exists

one unknown source λni(t)δ(x − Sni) occurring in Ωi, it comes from (53)-(54) that the
sought source position Sni is the unique point within Ωi that satisfies

Ψ2,3
i (Sni) =

1

A1
i


Aeψii

Av
2
0i
i

Av
3
0i
i

 , (63)

which, in view of (60)-(61), can be written under the following matrix form:


V1 V2 V3

−V3 0 V1

−V2 V1 0

(Sni − Ai) =


−
(
DM + αL‖V ‖2

)
ln
(Aeψii

A1
i

)
Av

2
0i
i

A1
i

Av
3
0i
i

A1
i


. (64)

The determinant of the 3× 3 matrix involved in the linear system (64) is −V1‖V ‖2
2 < 0.

That confirms the result announced by Theorem 3.5 on the injectivity of the Dispersion-
Current function Ψ2,3

i in (62). Therefore, the unknown position Sni defining the detected
source is the unique point within Ωi that solves the linear system in (64).

6.2 Flow of unidirectional velocity field

Assume within Ωi ⊂ Ω, there exists two functions ϕ and ζ such that the velocity field

V (x) =
(
V1(x), 0, 0

)⊥
, where V1(x) = ϕ(x2)ζ(x3) > 0, for all x = (x1, x2, x3) ∈ Ωi.

Since the molecular diffusion DM is usually small enough [8, 9], for the simplicity of our
presentation we set DM = 0 in (58). That leads to

D−1V =
1

αL

(
1, 0, 0

)>
in Ωi =⇒ −→

rot
(
D−1V

)
= ~0 in Ωi. (65)
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Thus, the condition (17) on the existence of the scalar potential ψi defined from (16) is
well fulfilled. Moreover, from using DM = 0 in (59), we obtain

ψi(x) = − 1

αL
(x1 − ai), ∀x = (x1, x2, x3) ∈ Ωi. (66)

Since V1 > 0 and V2 = V3 = 0 in Ωi, it follows that the first condition of Theorem 3.5 is
satisfied for k = 1, m = 2 and n = 3. Therefore, the function Ψ2,3

i defined from (35) is
injective in Ωi. To define Ψ2,3

i , we determine the two adjoint functions v2
0i and v3

0i.

According to (31), v2
0i is defined by ∇v2

0i = eg
2
i V 2⊥ in Ωi, where V 2⊥ =

(
0, 0, V1

)>
and g2

i

solves (28). Moreover, using (58) in the linear system (28) implies that g2
i is subject to:

∇g2
i = − 1

V1

G2, where G2 =


0

∂x2V1

2∂x3V1

 . (67)

Because V1(x) = ϕ(x2)ζ(x3) in Ωi, it follows that
−→
rot
(

1
V1
G2
)

= ~0 in Ωi and thus, we get

g2
i (x) = −ln

(
|ϕ(x2)|

)
− 2ln

(
|ζ(x3)|

)
= ln

( 1

|ϕ(x2)|ζ2(x3)

)
, ∀x = (x1, x2, x3) ∈ Ωi. (68)

That leads, in view of (32), to determine v2
0i as follows:

v2
0i(x) =

∫ x3

ci

(
eg

2
i V1

)
(bi, ξ)dξ = sign

(
ϕ(bi)

) ∫ x3

ci

1

ζ(ξ)
dξ, ∀x = (x1, x2, x3) ∈ Ωi. (69)

Besides, v3
0i is defined from (31) by ∇v3

0i = eg
3
i V 3⊥ in Ωi, where V 3⊥ =

(
0, V1, 0

)>
and g3

i

solves (30). From employing (58) in the linear system (30), it comes that g3
i solves in Ωi

∇g3
i = − 1

V1

G3, where G3 =


0

2∂x2V1

∂x3V1

 . (70)

Since V1(x) = ϕ(x2)ζ(x3) in Ωi, it follows that
−→
rot
(

1
V1
G3
)

= ~0 in Ωi. From (70), we get

g3
i (x) = −2ln

(
|ϕ(x2)|

)
− ln

(
|ζ(x3)|

)
= ln

( 1

ϕ2(x2)|ζ(x3)|
)
, ∀x = (x1, x2, x3) ∈ Ωi. (71)

Afterwards, from (32), we find

v3
0i(x) =

∫ x2

bi

(
eg

3
i V1

)
(η, ci)dη = sign

(
ζ(ci)

) ∫ x2

bi

1

ϕ(η)
dη, ∀x = (x1, x2, x3) ∈ Ωi. (72)
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Hence, given (ai, bi, ci) ∈ Ωi and in view (66)-(72), the function Ψ2,3
i is defined by

Ψ2,3
i : Ωi −→ IR3,

x 7→ Ψ2,3
i (x) =



exp
(
− 1

αL
(x1 − ai)

)

sign
(
ϕ(bi)

) ∫ x3

ci

1

ζ(ξ)
dξ

sign
(
ζ(ci)

) ∫ x2

bi

1

ϕ(η)
dη


.

(73)

From (73) and since the two functions ϕ and ζ are such that ϕ(x2)ζ(x3) > 0 in Ωi, we
verify readily the injectivity of Ψ2,3

i in Ωi announced by Theorem 3.5. Thus, assuming
the detection coefficient A1

i 6= 0 and one unknown source λni(t)δ(x− Sni) is occurring in
Ωi, it follows that the sought source position Sni is the unique point within Ωi that solves
the last equation in (53), where Ψm,n

i = Ψ2,3
i obtained in (73).

6.3 Flow of bidirectional velocity field

The third type of flow crossing a suspected section Ωi ⊂ Ω that we consider for the
application of the developed Detection-Identification method is a flow defined by a velocity

field: V (x) = V0(x3)
(
1, β, 0

)>
, where the function V0(x3) > 0 for all x = (x1, x2, x3) ∈ Ωi

and β ≥ 0 is a real number. From setting DM = 0 in (58), it follows that

• D−1V =
1

αL
√

1 + β2

(
1, β, 0

)>
in Ωi =⇒ −→

rot
(
D−1V

)
= ~0 in Ωi,

• DV `⊥ = αT
√

1 + β2V0V
`⊥ in Ωi, for ` = 1, 2, 3.

(74)

The second equation in (74) implies that the condition (17) on the existence of the scalar
potential ψi defined from (16) is well fulfilled. Moreover, using DM = 0 in (59) gives

ψi(x) = − 1

αL
√

1 + β2

(
x1 − ai + β(x2 − bi)

)
, ∀x = (x1, x2, x3) ∈ Ωi. (75)

Besides, in view of (74), since the function V0 > 0 and the real number β ≥ 0, the first
condition of Theorem 3.5 is satisfied for k = 1, m = 2 and n = 3. Thus, the function Ψ2,3

i

in (35) is injective in Ωi. To define Ψ2,3
i , we determine the two functions v2

0i and v3
0i.

From (31), the adjoint function v2
0i is defined by ∇v2

0i = eg
2
i V 2⊥ in Ωi, where V 2⊥ =(

0, 0, V0

)>
and g2

i satisfies (28). Moreover, using (74) in the linear system (28) leads to

∇g2
i =


0

0

−2
V ′0
V0

 =⇒ g2
i (x) = ln

( 1

V 2
0 (x3)

)
, ∀x = (x1, x2, x3) ∈ Ωi. (76)

Furthermore, from replacing in (32) g2
i by its value obtained in (76), we find

v2
0i(x) =

∫ x3

ci

1

V0(ξ)
dξ, ∀x = (x1, x2, x3) ∈ Ωi. (77)
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The adjoint function v3
0i is defined from (31) by ∇v3

0i = eg
3
i V 3⊥ in Ωi, where V 3⊥ =(

− βV0, V0, 0
)>

and g3
i solves (30). Then, using (74) in the linear system (30) leads to

∇g3
i =


0

0

−V
′

0

V0

 =⇒ g3
i (x) = ln

( 1

V0(x3)

)
, ∀x = (x1, x2, x3) ∈ Ωi. (78)

Afterwards, from subtituting in (32) the function g3
i by its value in (78), we get

v3
0i(x) = −β(x1 − ai) + (x2 − bi), ∀x = (x1, x2, x3) ∈ Ωi. (79)

Therefore, given (ai, bi, ci) ∈ Ωi, Ψ2,3
i is defined in Ωi from (75), (77) and (79) as follows:

Ψ2,3
i : Ωi −→ IR3,

x 7→ Ψ2,3
i (x) =


exp

(
− 1

αL
√

1 + β2

(
x1 − ai + β(x2 − bi)

))
∫ x3

ci

1

V0(ξ)
dξ

−β(x1 − ai) + (x2 − bi)

 .
(80)

Since the function V0 > 0 in Ωi, we check readily from (80) the injectivity of Ψ2,3
i in Ωi

announced by Theorem 3.5. Hence, if the detection coefficient A1
i 6= 0 due to the presence

in Ωi of an unknown source λni(t)δ(x− Sni), the sought source position Sni is the unique
point within Ωi that solves the last equation in (53), where Ψm,n

i = Ψ2,3
i given in (80).

7 Numerical experiments

We carry out numerical experiments in the case of a domain Ω defined by

Ω =
{
x = (x1, x2, x3) ∈

(
0, 10

)
×
(
0, 1
)
×
(
0, 1
)}
, (81)

wherein, we assume to be available the following I = 4 interfaces:

Γi =
{
x = (2i, x2, x3) ∈

(
0, 1
)2
, for i = 1, . . . , I

}
. (82)

We generate synthetic measurements on the interfaces Γi=1,...,I × (0, T ) from solving the
problem (1)-(5), where D is Bear’s dispersion tensor introduced in (57) for two different

types of flow: Flow of mean velocity vector V =
(
0.5, 0, 0

)>
and flow of unidirectional

velocity field V (x) =
(
x2(1 − x2)x3, 0, 0

)>
. We used the coefficients R = 0, αT = 0.02,

αL = 0.3 and DM = 0. Regarding the source F in (5), we considered N = 2 point sources
located at S1 =

(
1.2, 0.4, 0.3

)
∈ Ω1, S2 =

(
3.0, 0.6, 0.2

)
∈ Ω2 and loading in

(
0, T

)
:

λ1(t) = sin
(2π

T
t
)
χ(

0,T
2

)(t) and λ2(t) =
5

2
sin
(2π

T
(t− T

4
)
)
χ(T

4
, 3T

4

)(t). (83)
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Since along ΓFA =
{
x = (x1, x2, 1) ∈

(
0, 10

)
×
(
0, 1
)}

we have ν =
(
0, 0, 1

)>
and thus,

V · ν = 0, it follows from (57) that Dν = αT‖V ‖2ν on ΓFA. Therefore, in the carried
out numerical experiments, we neglected the term Dν which means we do not use state
measurements on ΓFA ×

(
0, T

)
in the computation of the coefficients v`0i from (54).

We computed from (54) the detection coefficient A1
i associated to all suspected sections

Ωi=1,...,I . If A1
i 6= 0, we localize the unknown position defining the detected source occur-

ring in Ωi from: 1. Solving the linear system in (64), for the flow of mean velocity vector.
2. Solving the last equation in (53), where Ψm,n

i = Ψ2,3
i given in (73), for the flow defined

by the unidirectional velocity field. Besides, since we use R = 0, it follows from (53) that

if there exists a source λni(t)δ(x− Sni) occurring in Ωi, then A1
i =

∫ T
0
λni(t)dt. However,

if there is no source occurring in Ωi, then A1
i = 0. We set T = 20 and using (83), we

calculate the exact values of A1
i in all suspected sections Ωi=1,...,I :

A1
1 =

T

π
≈ 6.37, A1

2 =
5T

2π
≈ 15, 92 and A1

3 = A1
4 = 0. (84)

As far as the unknown data u(·, T ) involved in (54) is concerned, we used data assimilation
to determine an approximation ûi(·, T ) of u(·, T ) in Ωi. To this end, we solved the forward
problem (55) whose, according to Lemma 5.2, the solution ûi(·, t) converges to u(·, T ) in
Ωi when t tends to T . We start by presenting the behaviour of the detection coefficient
A1
i computed from (54), where we replaced u(·, T ) by ûi(·, t) for t ∈ (0, T ).

(a) (b)

Figure 1: Behaviour of A1
i : (a) Mean velocity vector (b) Unidirectional velocity field.

The results in Figure 1 show that for the flow of mean velocity vector, the detection
coefficient A1

i calculated from (54) converges quickly to its exact values given in (84) for
all suspected sections Ωi=1,...,I . For the flow of velocity field, the calculated A1

i=1,2 in the
two sections Ωi=1,2, wherein there is an occurring source, converge to their exact values
when t is sufficiently close to T = 20. This observation could be explained, in view of
Lemma 5.2, by the convergence rate of ûi(·, t) to the unknown final state u(·, T ).

For the two considered types of flow, we computed the coefficients in (54) and localized
the positions of the detected unknown sources. In the sequel, we present the obtained
results, where the dashed lines give the exact coordinates of each sought source position:
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(c) (d)

Figure 2: Flow of mean velocity: (c) Localized source in Ω1 (d) Localized source in Ω2.

(e) (f)

Figure 3: Flow of velocity field: (e) Localized source in Ω1 (f) Localized source in Ω2.

The analysis of the numerical results presented in Figures 2-3 shows that for t sufficiently
close to T , the used ûi(·, t) yields a good approximation in Ωi of u(·, T ) which leads the
developed method to localize accurately the unknown positions of all detected sources.

8 Baby Example

Here, we illustrate in the one dimensional case of the underlined inverse source problem
the non-identifiability of multiple unknown point sources from measurements taken only
upstream and/or downstream all occurring point sources.
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Let N ∈ IN∗, 0 < ` ∈ IR and u be the solution of the following problem:

−Du′′(x) + V u′(x) +Ru(x) =
N∑
n=1

λnδ(x− Sn) in
(
0, `
)

and u(0) = u′(`) = 0. (85)

Provided DV 6= 0 and V 2 +4RD > 0, the characteristic equation −Dr2 +V r+R = 0 ad-
mits the roots: r1 =

(
V/(2D)

)(
1+
√

1 + 4RD/V 2
)

and r2 =
(
V/(2D)

)(
1−
√

1 + 4RD/V 2
)
.

Let ψ(x) = −(er1x − er2x)/
(
D(r1 − r2)

)
, ∀x ∈ (0, `). The solution u of (85) is given by

u(x) =
N∑
n=1

λn

(
ψ(x− Sn)H(x− Sn)− ψ′(`− Sn)

ψ′(`)
ψ(x)

)
, ∀x ∈

(
0, `
)
, (86)

where H is the Heaviside function. We introduce the following observation operator:

M :
(
IR∗ × (0, `)

)N
−→ IR2N ,

F =
(
λ1, S1, . . . , λN , SN

)
7→ M [F ] =

(
u(p1), u(P1), . . . , u(pN), u(PN)

)
,

(87)

where pi=1,...,N and Pi=1,...,N are 2N distinct state measuring points within (0, `).

Theorem 8.1 Let D, V and R be real numbers such that DV 6= 0 and V 2 + 4RD > 0.
The 2N × 2N Jacobian matrix JM of the observation operator M [F ] in (85)-(87) fulfills

1. For N = 1: H(p1 − S1) 6= H(P1 − S1) ⇐⇒ det(JM) 6= 0.

2. For N = 2: Let 0 < p1 < P1 < p2 < P2 < ` and, for example, S1 < S2. We have

(i) Cardinality
({
pi=1,2, Pi=1,2

}
∩
]
S1, S2

[)
≤ 1 =⇒ det(JM) = 0,

(ii) 0 < p1 < S1 < P1 < p2 < S2 < P2 < ` =⇒ det(JM) 6= 0.
(88)

Proof. See the Appendix.

Theorem 8.1 indicates that for N = 1 point source λδ(x−S) occurring in (0, `), two state
measuring points p1, P1 framing the source region i.e., 0 < p1 < S < P1 < ` yield local
injectivity of the observation operator M [F ] in (85)-(87) and thus, local identifiability
of the two source elements λ, S. However, for N = 2 point sources occurring in (0, `),
the local identifiability of the four source elements holds only if in addition to the two
state measuring points framing the sources region, two other state measuring points are
set between the two source positions. Moreover, using similar computations, we prove
that the two additional state measuring points that should separate the two occurring
source positions can be replaced by one state and flux measuring point whereas the two
measuring points p1 and P1 framing the sources region can be placed at the two boundary
points i.e., p1 = 0 and P1 = ` if at these points both the state and its flux are known.
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9 Conclusion, discussion and comparaison

In this paper, we developed appropriate adjoint functions that led to establish a construc-
tive Detection-Identification method for solving the nonlinear inverse source problem of
identifying multiple unknown time-dependent point sources occurring in 3D transport
equations. In the literature, many authors have addressed similar inverse source prob-
lems in different PDEs, for instance [2, 3, 4, 18, 19, 20, 31]. In these works, the developed
identification approaches are mainly either iterative based on the minimisation of cost
functions such as least squares and Kohn-Vogelius or quasi-direct such as the algebraic
method especially used for elliptic equations [1, 32]. Besides, the underlined inverse source
problem becomes more challenging in n = 2, 3 dimensions where the involved PDE admits
an advection term. Indeed, this asymmetric term creates hydrodynamic dispersion as a
consequence of molecular diffusion and mechanical dispersion caused by non-uniform ve-
locities [8, 9]. Consequently, in such PDEs the effectiveness of a developed identification
approach relies on how much it takes into account the impact of these physical phenomena
on the used measurements: For example, in the case of an advection dominant flow, using
measurements taken only upstream all occurring unknown sources do not yield identifiabil-
ity as well as in the case of high dispersion coefficients, the signals emmitted by different
sources might get rapidly intermixed and thus, without using measurements taken be-
tween the occurring sources these latest become indistinguishable. These assertions are
illustrated in the one dimensional case by the Baby Example of section 8. Moreover, the
authors in [3] used measurements taken on the whole boundary to address the identifi-
cation of multiple time-dependent point sources in 2D advection-diffusion equation from
minimising two different cost functions i.e., least squares and Kohn-Vogelius. They re-
ported that the least squares approach doesn’t enable to identify more than one active
source whereas the Kohn-Vogelius approach identifies two sources only if they are well
separated and the diffusion coefficient is very small in order to avoid rapid intermixing.

Therefore, comparing with identification approaches from the literature, it follows that:

1. The constructive Detection-Identification method developed in the present paper
takes into account the velocity field effects on the flow nature, is quasi-direct and
thus easy to implement and does not have to deal always with the classic issues of
iterative approaches i.e., questions related to the choices of an initial iterate and a
regularisation term as well as to ensure convergence.

2. The herein developed method is based on a direct detection procedure that deter-
mines whether within the monitored domain a single or rather multiple unknown
point sources occur and provides a framing/approximation of the total amount dis-
charged by all occurring sources. These results lead to i) Reducing the total identi-
fication cost: In the case of no significant unknown sources i.e., sources discharging
a total amount smaller than a certain tolerance or the case where the immediate
aim is rather to know how important is the total discharged amount in order to
take prompt appropriate actions, we can choose to not go ahead with the identifica-
tion of the remaining unknown elements defining the occurring sources. ii) Avoiding
misinterpretations: In the case of multiple unknown point sources, the procedure de-
tects the presence of more than one source and suggests to add measurements taken
between the occurring sources in order to ensure their identifiability. However, as
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reported in [3], in this case usually the iterative approaches give identification results
that could be inaccurate and thus, leading to misinterpretations.

3. For the identification approach developed in this paper, the construction of the ap-
propriate adjoint functions defining the dispersion-current function Ψm,n

i relies on
some conditions that should be fulfilled by the velocity field V and the dispersion
tensor D. In practice, failing those conditions, one could employ rather approxima-
tions of V and D that ensure the applicability of the developed approach.

Acknowledgement: This work was supported by M2SINUM project co-financed by the Euro-
pean fund(ERDF,18P03390/18E01750/18P02733) and the Normandie Regional Council.
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Appendix.

A. We start by establishing the proof of the results announced in Lemmas 3.1, 3.4 and 5.2.

I. Proof of Lemma 3.1: Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of Ωi. In view
of (19), from writing ψi(x) = ψi(y) under the form ψi(y)− ψi(x) = 0 and treating in this latest
equation separately each two integrals following the same axis, we obtain:

• The two integrals with respect to the variable η in the equation ψi(y)− ψi(x) = 0:∫ x1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ y1

ai

(
(D−1)1 · V

)
(η, y2, y3)dη =

∫ x1

y1

(
(D−1)1 · V

)
(η, x2, x3)dη

+

∫ y1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ y1

ai

(
(D−1)1 · V

)
(η, y2, y3)dη.

(89)

The first integral in the right hand side of the equation (89) is obtained from using Chasles’s
relation by introducing y1 on the integral over (ai, x1) in the left hand side of (89). Moreover,
by adding and substracting the following integral:∫ y1

ai

(
(D−1)1 · V

)
(η, y2, x3)dη, (90)

to the right hand side of the equation in (89), we get∫ x1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ y1

ai

(
(D−1)1 · V

)
(η, y2, y3)dη =

∫ x1

y1

(
(D−1)1 · V

)
(η, x2, x3)dη

+

∫ y1

ai

[(
(D−1)1 · V

)
(η, ξ, x3)

]ξ=x2
ξ=y2

dη +

∫ y1

ai

[(
(D−1)1 · V

)
(η, y2, ζ)

]ζ=x3
ζ=y3

dη.
(91)

Thus, using Fubini’s Theorem in the two last integrals of the right hand side in (91) gives∫ x1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ y1

ai

(
(D−1)1 · V

)
(η, y2, y3)dη =

∫ x1

y1

(
(D−1)1 · V

)
(η, x2, x3)dη

+

∫ x2

y2

∫ y1

ai

∂ξ
(
(D−1)1 · V

)
(η, ξ, x3)dηdξ +

∫ x3

y3

∫ y1

ai

∂ζ
(
(D−1)1 · V

)
(η, y2, ζ)dηdζ.

(92)

In addition, since
−→
rot
(
D−1V

)
= ~0 in Ωi, it follows from (18) that

∗ ∂ξ
(
(D−1)1 · V

)
(η, ξ, x3) = ∂η

(
(D−1)2 · V

)
(η, ξ, x3),

∗ ∂ζ
(
(D−1)1 · V

)
(η, y2, ζ) = ∂η

(
(D−1)3 · V

)
(η, y2, ζ).

(93)

Hence, from replacing the partial derivatives in (92) by their values in (93), we obtain∫ x1

ai

(
(D−1)1 · V

)
(η, x2, x3)dη −

∫ y1

ai

(
(D−1)1 · V

)
(η, y2, y3)dη =

∫ x1

y1

(
(D−1)1 · V

)
(η, x2, x3)dη

+

∫ x2

y2

[(
(D−1)2 · V

)
(η, ξ, x3)

]η=y1

η=ai
dξ +

∫ x3

y3

[(
(D−1)3 · V

)
(η, y2, ζ)

]η=y1

η=ai
dζ.

(94)

• The two integrals with respect to the variable ξ in the equation ψi(y)− ψi(x) = 0:∫ x2

bi

(
(D−1)2 · V

)
(ai, ξ, x3)dξ −

∫ y2

bi

(
(D−1)2 · V

)
(ai, ξ, y3)dξ

=

∫ x2

y2

(
(D−1)2 · V

)
(ai, ξ, x3)dξ +

∫ y2

bi

[(
(D−1)2 · V

)
(ai, ξ, ζ)

]ζ=x3
ζ=y3

dξ,

=

∫ x2

y2

(
(D−1)2 · V

)
(ai, ξ, x3)dξ +

∫ x3

y3

∫ y2

bi

∂ζ
(
(D−1)2 · V

)
(ai, ξ, ζ)dξdζ.

(95)
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The right hand side of the first equality in (95) is obtained from its left hand side term by
introducing, according to Chasles’s relation, y2 on the integral over (bi, x2). Moreover, since−→
rot
(
D−1V

)
= ~0 in Ωi and in view of (18), it follows that

∂ζ
(
(D−1)2 · V

)
(ai, ξ, ζ) = ∂ξ

(
(D−1)3 · V

)
(ai, ξ, ζ). (96)

Thus, using (96) to replace the partial derivative in the last integral of (95) leads to∫ x2

bi

(
(D−1)2 · V

)
(ai, ξ, x3)dξ −

∫ y2

bi

(
(D−1)2 · V

)
(ai, ξ, y3)dξ

=

∫ x2

y2

(
(D−1)2 · V

)
(ai, ξ, x3)dξ +

∫ x3

y3

[(
(D−1)3 · V

)
(ai, ξ, ζ)

]ξ=y2
ξ=bi

dζ.
(97)

• The two integrals with respect to the variable ζ in the equation ψi(y)− ψi(x) = 0:∫ x3

ci

(
(D−1)3 · V

)
(ai, bi, ζ)dζ −

∫ y3

ci

(
(D−1)3 · V

)
(ai, bi, ζ)dζ =

∫ x3

y3

(
(D−1)3 · V

)
(ai, bi, ζ)dζ.(98)

Therefore, since ψi(y) − ψi(x) is equal to the sum of the left hand side terms in the three
equations (94), (97) and (98) then, from setting the sum of the right hand side terms of those
equations to null, we find the result announced in Lemma 3.1. �

II. Proof of Lemma 3.4: Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of Ωi. In view
of (32), it follows that:

• The first equation v1
0i(x) = v1

0i(y) is equivalent to∫ x3

y3

(
eg

1
i V2

)
(ai, bi, ξ)dξ =

∫ x2

bi

(
eg

1
i V3

)
(ai, η, x3)dη −

∫ y2

bi

(
eg

1
i V3

)
(ai, η, y3)dη,

=

∫ x2

y2

(
eg

1
i V3

)
(ai, η, x3)dη +

∫ y2

bi

[(
eg

1
i V3

)
(ai, η, ξ)

]ξ=x3
ξ=y3

dη,

=

∫ x2

y2

(
eg

1
i V3

)
(ai, η, x3)dη +

∫ x3

y3

∫ y2

bi

∂ξ

((
eg

1
i V3

)
(ai, η, ξ)

)
dηdξ,

=

∫ x2

y2

(
eg

1
i V3

)
(ai, η, x3)dη −

∫ x3

y3

(∫ y2

bi

∂η

((
eg

1
i V2

)
(ai, η, ξ)

)
dη
)
dξ.

(99)

The second equality in (99) is obtained using Chasles’s relation by adding the point y2 on the
interval of integration (bi, x2). The third equality is found using Fubini’s theorem by integrating
first with respect to the variable η then, with respect to ξ. The Fourth equality is obtained from

the compatibility condition
−→
rot
(
eg

1
i V 1⊥) = ~0 in Ωi which implies that ∂x3

(
eg

1
i V3

)
= −∂x2

(
eg

1
i V2

)
in Ωi. Therefore, by computing the integral over dη in the right hand side of the last equation
of (99) and then, cancelling out the two same terms occurring in both sides of this equation, we
obtain

v1
0i(x) = v1

0i(y) ⇔
∫ x2

y2

(
eg

1
i V3

)
(ai, η, x3)dη =

∫ x3

y3

(
eg

1
i V2

)
(ai, y2, ξ)dξ. (100)

• The second equation v2
0i(x) = v2

0i(y) is equivalent to∫ x3

y3

(
eg

2
i V1

)
(ai, bi, ξ)dξ =

∫ x1

ai

(
eg

2
i V3

)
(η, bi, x3)dη −

∫ y1

ai

(
eg

2
i V3

)
(η, bi, y3)dη,

=

∫ x1

y1

(
eg

2
i V3

)
(η, bi, x3)dη +

∫ y1

ai

[(
eg

2
i V3

)
(η, bi, ξ)

]ξ=x3
ξ=y3

dη,

=

∫ x1

y1

(
eg

2
i V3

)
(η, bi, x3)dη +

∫ x3

y3

∫ y1

ai

∂ξ

((
eg

2
i V3

)
(η, bi, ξ)

)
dηdξ,

=

∫ x1

y1

(
eg

2
i V3

)
(η, bi, x3)dη −

∫ x3

y3

(∫ y1

ai

∂η

((
eg

2
i V1

)
(η, bi, ξ)

)
dη
)
dξ.

(101)

25



The second equality in (101) is obtained using Chasles’s relation by adding the point y1 on the
interval of integration (ai, x1). The third equality is found using Fubini’s theorem by integrating
first with respect to the variable η then, with respect to ξ. The Fourth equality is obtained from

the compatibility condition
−→
rot
(
eg

2
i V 2⊥) = ~0 in Ωi which implies that ∂x3

(
eg

2
i V3

)
= −∂x1

(
eg

2
i V1

)
in Ωi. Hence, by computing the integral over dη in the right hand side of the last equation of
(101) and then, cancelling out the two same terms occurring in both sides of this equation, we
get

v2
0i(x) = v2

0i(y) ⇔
∫ x1

y1

(
eg

2
i V3

)
(η, bi, x3)dη =

∫ x3

y3

(
eg

2
i V1

)
(y1, bi, ξ)dξ. (102)

• The third equation v3
0i(x) = v3

0i(y) is equivalent to∫ x2

y2

(
eg

3
i V1

)
(ai, ξ, ci)dξ =

∫ x1

ai

(
eg

3
i V2

)
(η, x2, ci)dη −

∫ y1

ai

(
eg

3
i V2

)
(η, y2, ci)dη,

=

∫ x1

y1

(
eg

3
i V2

)
(η, x2, ci)dη +

∫ y1

ai

[(
eg

3
i V2

)
(η, ξ, ci)

]ξ=x2
ξ=y2

dη,

=

∫ x1

y1

(
eg

3
i V2

)
(η, x2, ci)dη +

∫ x2

y2

∫ y1

ai

∂ξ

((
eg

3
i V2

)
(η, ξ, ci)

)
dηdξ,

=

∫ x1

y1

(
eg

3
i V2

)
(η, x2, ci)dη −

∫ x2

y2

(∫ y1

ai

∂η

((
eg

3
i V1

)
(η, ξ, ci)

)
dη
)
dξ.

(103)

The second equality in (103) is obtained using Chasles’s relation by adding the point y1 on the
interval of integration (ai, x1). The third equality is found using Fubini’s theorem by integrating
first with respect to the variable η then, with respect to ξ. The Fourth equality is obtained from

the compatibility condition
−→
rot
(
eg

3
i V 3⊥) = ~0 in Ωi which implies that ∂x2

(
eg

3
i V2

)
= −∂x1

(
eg

3
i V1

)
in Ωi. Thus, by computing the integral over dη in the right hand side of the last equation of
(103) and then, cancelling out the two same terms occurring in both sides of this equation, we
find

v3
0i(x) = v3

0i(y) ⇔
∫ x1

y1

(
eg

3
i V2

)
(η, x2, ci)dη =

∫ x2

y2

(
eg

3
i V1

)
(y1, ξ, ci)dξ. (104)

Hence, (100), (102) and (104) lead to the result announced in (36). �

III. Proof of Lemma 5.2: Let ũi = ûi − u in Ωi × (0, T ). In view of (6), ũi solves

L[ũi] = 0 in Ωi × (T 0, T ),

ũi(·, T 0) = ûi(·, T 0)− u(·, T 0) in Ωi,

ũi = 0 on
(
Γi−1 ∪ Γi

)
× (T 0, T ),

D∇ũi · ν = 0 on
(
∂Ωi \ (Γi−1 ∪ Γi)

)
× (T 0, T ).

(105)

Multiplying the first equation of (105) by ũi and integrating by parts in Ωi using Green’s formula
and (3) gives: For all t ∈ (T 0, T ),

1

2

d

dt

∥∥ũi(·, t)∥∥2

L2(Ωi)
+R

∥∥ũi(·, t)∥∥2

L2(Ωi)
+

∫
Ωi

(
D∇ũi(·, t)− ũi(·, t)V

)
· ∇ũi(·, t) = 0. (106)

Since, from (3), div(V ) = 0 in Ω, it follows that div(V ũi) = V · ∇ũi in Ω. Afterwards, by
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applying an integration by parts and using Green’s formula, we get
∫

Ωi

ũi(·, t)V · ∇ũi(·, t) =

∫
Ωi

div
(
V ũi(·, t)

)
ũi(·, t) = −

∫
Ωi

ũi(·, t)V · ∇ũi(·, t) +

∫
∂Ωi

ũ2
i (·, t)V · ν,∫

∂Ωi

ũ2
i (·, t)V · ν =

∫
Γi−1∪Γi

ũ2
i (·, t)V · ν +

∫
∂Ωi\(Γi−1∪Γi)

ũ2
i (·, t)V · ν = 0,

(107)

=⇒
∫

Ωi

ũi(·, t)V · ∇ũi(·, t) = 0, ∀ t ∈ (T 0, T ). (108)

Because the matrix D is uniformly elliptic in Ω and using Poincaré inequality, we obtain
∃γ > 0, γ

∥∥∇ũi(·, t)∥∥2

L2(Ωi)
≤
∫

Ωi

D∇ũi(·, t) · ∇ũi(·, t),

∃Cp > 0,
∥∥ũi(·, t)∥∥L2(Ωi)

≤ Cp
∥∥∇ũi(·, t)∥∥L2(Ωi)

,

(109)

=⇒ γ

C2
p

∥∥ũi(·, t)∥∥2

L2(Ωi)
≤
∫

Ωi

D∇ũi(·, t) · ∇ũi(·, t), ∀ t ∈ (T 0, T ). (110)

Therefore, in view of (108)-(110), it follows from (106) that

d

dt

∥∥ũi(·, t)∥∥2

L2(Ωi)
≤ −2

(
R+

γ

C2
p

)∥∥ũi(·, t)∥∥2

L2(Ωi)
, ∀t ∈ (T 0, T ). (111)

Afterwards, by applying Gronwall’s Lemma on (111), we get∥∥ũi(·, t)∥∥2

L2(Ωi)
≤
∥∥ũi(·, T 0)

∥∥2

L2(Ωi)
exp

(
− 2
(
R+

γ

C2
p

)
(t− T 0)

)
, ∀t ∈ (T 0, T ). (112)

That is the result announced in (56) for α = 2
(
R+

γ

C2
p

)
. �

B. Baby Example: To establish the proof of Theorem 8.1, we prove the following two technical
lemmas:

Lemma 9.1 Let ψ be the function involved in (86) and (n,m) ∈ {1, . . . , N}2. The following
three functions defined in (0, `)2 from ψ by

• ϕn,mλS (x, y) =
ψ(y)

ψ′(`)

(
ψ(x− Sn)ψ′′(`− Sm)− ψ′(x− Sm)ψ′(`− Sn)

)
− ψ(x− Sn)ψ′(y − Sm),

• ϕn,mSS (x, y) =
ψ(y)

ψ′(`)

(
ψ′(x− Sm)ψ′′(`− Sn)− ψ′(x− Sn)ψ′′(`− Sm)

)
+ ψ′(x− Sn)ψ′(y − Sm),

• ϕn,mλλ (x, y) =
ψ(y)

ψ′(`)

(
ψ(x− Sm)ψ′(`− Sn)− ψ(x− Sn)ψ′(`− Sm)

)
+ ψ(x− Sn)ψ(y − Sm),

are symmetric: ϕn,mλS (x, y) = ϕn,mλS (y, x), ∀(x, y) ∈ (0, `)2. The same holds for ϕn,mSS , ϕn,mλλ .

Proof. Let ζn,mi,j (x, y) = D2(r1 − r2)2ψ(i)(x − Sn)ψ(j)(y − Sm), where (n,m) ∈ {1, . . . , N}2,

(i, j) ∈ IN2 and ψ(k=i,j) is the kth derivative of the function ψ in (86). That leads to

ζn,mi,j (x, y) =
(
ri1e

r1(x−Sn) − ri2er2(x−Sn)
)(
rj1e

r1(y−Sm) − rj2e
r2(y−Sm)

)
. (113)

Afterwards, from setting y = ` in (113), it follows that: For all i ∈ IN and j ∈ IN∗,

ζn,mi,j (x, `)− ζm,nj−1,i+1(x, `) = βn,mi,j

(
r2e

r1x+r2` − r1e
r2x+r1`

)
, (114)
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where βn,mi,j = rj−1
1 ri2e

−r1Sm−r2Sn − ri1r
j−1
2 e−r1Sn−r2Sm . Then, using (114), we get

ψ(y)

ψ′(`)

(
ζn,mi,j (x, `)− ζm,nj−1,i+1(x, `)

)
= β̂n,mi,j

(
r2e

r1(x+y)+r2` + r1e
r2(x+y)+r1`

)
− β̂n,mi,j

(
r1e

r1y+r2x+r1` + r2e
r1x+r2y+r2`

)
,

(115)

with β̂n,mi,j = βn,mi,j /
(
r1e

r1` − r2e
r2`
)
. Furthermore, from (113), we verify that

ζn,mi,j−1(x, y) =
(
ri1e

r1(x−Sn) − ri2er2(x−Sn)
)(
rj−1

1 er1(y−Sm) − rj−1
2 er2(y−Sm)

)
.

= ri+j−1
1 er1(x+y−Sn−Sm) + ri+j−1

2 er2(x+y−Sn−Sm)

− ri1r
j−1
2 er1x+r2y−r1Sn−r2Sm − rj−1

1 ri2e
r1y+r2x−r1Sm−r2Sn .

(116)

Therefore, for all (i, j) ∈ IN × IN∗ and (x, y) ∈ (0, `)2, it follows from (115)-(116) that

ψ(y)

ψ′(`)

(
ζn,mi,j (x, `)− ζm,nj−1,i+1(x, `)

)
− ζn,mi,j−1(x, y) = β̂n,mi,j

(
r2e

r1(x+y)+r2` + r1e
r2(x+y)+r1`

)
−
(
ri+j−1

1 er1(x+y−Sn−Sm) + ri+j−1
2 er2(x+y−Sn−Sm)

)
+
ri+1

1 rj−1
2 er1`−r1Sn−r2Sm − rj−1

1 ri+1
2 er2`−r1Sm−r2Sn

r1er1` − r2er2`

(
er1x+r2y + er1y+r2x

)
.

(117)

Besides, using ζn,mi,j , the functions introduced in Lemma 9.1 can be rewritten as follows:

∗ ϕn,mλS (x, y) =
1

D2(r1 − r2)2

(
ψ(y)

ψ′(`)

(
ζn,m0,2 (x, `)− ζm,n1,1 (x, `)

)
− ζn,m0,1 (x, y)

)
,

∗ ϕn,mSS (x, y) = − 1

D2(r1 − r2)2

(
ψ(y)

ψ′(`)

(
ζn,m1,2 (x, `)− ζm,n1,2 (x, `)

)
− ζn,m1,1 (x, y)

)
,

∗ ϕn,mλλ (x, y) = − 1

D2(r1 − r2)2

(
ψ(y)

ψ′(`)

(
ζn,m0,1 (x, `)− ζm,n0,1 (x, `)

)
− ζn,m0,0 (x, y)

)
.

(118)

Hence, the symmetry of the functions ϕn,mλS , ϕn,mSS and ϕn,mλλ in (118) is an immediate consequence
of the symmetry with respect to x and y of the right hand side in (117). �

Lemma 9.2 Let (n,m) ∈ {1, . . . , N}2 and (pi, Pi) ∈ (0, `)2. If pi and Pi lie in a same side with
respect to {Sn, Sm} i.e., H(pi − Sn) = H(pi − Sm) = H(Pi − Sn) = H(Pi − Sm), then we have

• ∂λpu(pi)∂Squ(Pi)− ∂Squ(pi)∂λpu(Pi) = 0, ∀(p, q) ∈ {n,m}2,

• ∂Snu(pi)∂Smu(Pi)− ∂Smu(pi)∂Snu(Pi) = 0,

• ∂λnu(pi)∂λmu(Pi)− ∂λmu(pi)∂λnu(Pi) = 0,

(119)

where H is the Heaviside function and u is the solution of (85) given in (86).

Proof. Let (pi, Pi) ∈ (0, `)2 be such that H(pi−Sn) = H(pi−Sm) and H(Pi−Sn) = H(Pi−Sm).
Then, from (86), it follows that: For all (p, q) ∈ {n,m}2,

∗ 1

λq

(
∂λpu(pi)∂Squ(Pi)− ∂Squ(pi)∂λpu(Pi)

)
=(

ϕp,qλS(pi, Pi) + ψ(pi − Sp)ψ′(Pi − Sq)
[
1−H(Pi − Sp)

])
H(pi − Sp)

−
(
ϕp,qλS(Pi, pi) + ψ(Pi − Sp)ψ′(pi − Sq)

[
1−H(pi − Sp)

])
H(Pi − Sp),

(120)
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∗ 1

λnλm

(
∂Snu(pi)∂Smu(Pi)− ∂Smu(pi)∂Snu(Pi)

)
=(

ϕn,mSS (pi, Pi)− ψ′(pi − Sn)ψ′(Pi − Sm)
[
1−H(Pi − Sn)

])
H(pi − Sn)

−
(
ϕn,mSS (Pi, pi)− ψ′(Pi − Sn)ψ′(pi − Sm)

[
1−H(pi − Sn)

])
H(Pi − Sn),

(121)

∗ ∂λnu(pi)∂λmu(Pi)− ∂λmu(pi)∂λnu(Pi) =(
ϕn,mλλ (pi, Pi)− ψ(pi − Sn)ψ(Pi − Sm)

[
1−H(Pi − Sn)

])
H(pi − Sn)

−
(
ϕn,mλλ (Pi, pi)− ψ(Pi − Sn)ψ(pi − Sm)

[
1−H(pi − Sn)

])
H(Pi − Sn),

(122)

where ϕn,mλS , ϕn,mSS and ϕn,mλλ are the three symmetric functions introduced in Lemma 9.1. There-
fore, if pi and Pi are both upstream Sn and Sm i.e., H(pi − Sn,m) = H(Pi − Sn,m) = 0 then, all
terms in (120)-(122) vanish. Moreover, if pi and Pi are rather both downstream Sn and Sm i.e.,
H(pi − Sn,m) = H(Pi − Sn,m) = 1 then, the terms in (120)-(122) vanish too due the symmetry
of the three functions ϕn,mλS , ϕn,mSS and ϕn,mλλ . �

Proof of Theorem 8.1:

1. For N = 1, the determinant of the 2× 2 Jacobian matrix JM is

det
(
JM
)

= ∂λ1u(p1)∂S1u(P1)− ∂S1u(p1)∂λ1u(P1). (123)

From (123) and by applying (120) for i = p = q = 1, it follows due to the symmetry of the
function ϕ1,1

λS introduced in Lemma 9.1 that if H(p1 − S1) = H(P1 − S1) = 0 or H(p1 − S1) =
H(P1 − S1) = 1 then, det(JM ) = 0. However, if H(p1 − S1) 6= H(P1 − S1) i.e., for example
0 < p1 < S1 < P1 < ` then, from applying (120) with i = p = q = 1 and since r1 > 0 whereas
r2 < 0, we obtain

det
(
JM
)

= − λ1

D2(r1 − r2)

er1p1 − er2p1
r1er1` − r2er2`

(
r2e

r1P1+r2` − r1e
r2P1+r1`

)
e−S1(r1+r2) 6= 0. (124)

2. For N = 2: From computing the determinant of the 4× 4 Jacobian matrix JM by developing
firstly with respect to its last row then, with respect to its third row, we find

det
(
JM
)

=
(
∂λ2u(p2)∂S2u(P2)− ∂S2u(p2)∂λ2u(P2)

)(
∂λ1u(p1)∂S1u(P1)− ∂S1u(p1)∂λ1u(P1)

)
−

(
∂S1u(p2)∂S2u(P2)− ∂S2u(p2)∂S1u(P2)

)(
∂λ1u(p1)∂λ2u(P1)− ∂λ2u(p1)∂λ1u(P1)

)
−

(
∂λ2u(p2)∂S1u(P2)− ∂S1u(p2)∂λ2u(P2)

)(
∂λ1u(p1)∂S2u(P1)− ∂S2u(p1)∂λ1u(P1)

)
−

(
∂λ2u(p1)∂S1u(P1)− ∂S1u(p1)∂λ2u(P1)

)(
∂λ1u(p2)∂S2u(P2)− ∂S2u(p2)∂λ1u(P2)

)
−

(
∂S1u(p1)∂S2u(P1)− ∂S2u(p1)∂S1u(P1)

)(
∂λ1u(p2)∂λ2u(P2)− ∂λ2u(p2)∂λ1u(P2)

)
+

(
∂λ2u(p1)∂S2u(P1)− ∂S2u(p1)∂λ2u(P1)

)(
∂λ1u(p2)∂S1u(P2)− ∂S1u(p2)∂λ1u(P2)

)
.

(125)

• (i) If Cardinality
({
pi=1,2, Pi=1,2

}
∩
]
S1, S2

[)
≤ 1 and since 0 < p1 < P1 < p2 < P2 < `

then, there exists i ∈ {1, 2} such that pi and Pi lie both in a same side with respect to {S1, S2}.
Hence, by applying Lemma 9.2 for n = 1 and m = 2, it follows from (119) that all terms in
(125) vanish which leads to det(JM ) = 0.
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• (ii) From setting 0 < p1 < S1 < P1 < p2 < S2 < P2 < ` and using (86), it follows that the last
term in (125) vanishes. Besides, by computing the other five terms, we obtain

det(JM ) = λ1λ2
ψ(p1)

ψ′(`)

(
ψ′(P1 − S1)ψ(p2 − S1)− ψ(P1 − S1)ψ′(p2 − S1)

)
(
ψ′(`− S2)ψ′(P2 − S2)− ψ′′(`− S2)ψ(P2 − S2)

)
.

= λ1λ2
ψ(p1)

D2ψ′(`)
e−(r1+r2)(S1+S2)

(
r1e

r1`+r2P2 − r2e
r2`+r1P2

)(
er2P1+r1p2 − er1P1+r2p2

)
.

(126)

Since r1 > 0 and r2 < 0, it follows from the last equation in (126) that det(JM ) 6= 0. �
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