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Abstract

Probabilistic forecasting consists in predicting a distribution of possible future
outcomes. In this paper, we address this problem for non-stationary time series,
which is very challenging yet crucially important. We introduce the STRIPE
model for representing structured diversity based on shape and time features,
ensuring both probable predictions while being sharp and accurate. STRIPE is
agnostic to the forecasting model, and we equip it with a diversification mechanism
relying on determinantal point processes (DPP). We introduce two DPP kernels
for modeling diverse trajectories in terms of shape and time, which are both
differentiable and proved to be positive semi-definite. To have an explicit control
on the diversity structure, we also design an iterative sampling mechanism to
disentangle shape and time representations in the latent space. Experiments carried
out on synthetic datasets show that STRIPE significantly outperforms baseline
methods for representing diversity, while maintaining accuracy of the forecasting
model. We also highlight the relevance of the iterative sampling scheme and the
importance to use different criteria for measuring quality and diversity. Finally,
experiments on real datasets illustrate that STRIPE is able to outperform state-of-
the-art probabilistic forecasting approaches in the best sample prediction.

1 Introduction

Time series forecasting consists in analysing historical signal correlations to anticipate future out-
comes. In this work, we focus on probabilistic forecasting in non-stationary contexts, i.e. we aim at
producing plausible and diverse predictions where future trajectories can present sharp variations.
This forecasting context is of crucial importance in many applicative fields, e.g. climate [60, 33, 14],
optimal control or regulation [64, 40], traffic flow [38, 37], healthcare [7, 1], stock markets [13, 6],
etc. Our motivation is illustrated in the example of the blue input in Figure 1(a): we aim at performing
predictions covering the full distribution of future trajectories, whose samples are shown in green.

State-of-the-art methods for time series forecasting currently rely on deep neural networks, which
exhibit strong abilities in modeling complex nonlinear dependencies between variables and time.
Recently, increasing attempts have been made for improving architectures for accurate predictions
[30, 52, 36, 41, 34] or for making predictions sharper, e.g. by explicitly modeling dynamics [8, 15, 49],
or by designing specific loss functions addressing the drawbacks of blurred prediction with mean
squared error (MSE) training [11, 46, 32, 56]. Although Figure 1(b) shows that such approaches
produce sharp and realistic forecasts, their deterministic nature limits them to a single trajectory
prediction without uncertainty quantification.
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(a) True predictive distribution (b) Sharp loss [32] (c) deep stoch model [63] (d) STRIPE (ours)

Figure 1: We address the probabilistic time series forecasting problem. (a) Recent deep learning
models include a specific loss enabling sharp predictions [11, 46, 32, 56] (b), but are inadequate
for producing diverse forecasts. On the other hand, probabilistic forecasting approaches based on
generative models [63, 45] loose the ability to generate sharp forecasts (c). The proposed STRIPE
model (d) produces both sharp and diverse future forecasts.

Methods targeting probabilistic forecasting enable to sample diverse predictions from a given input.
This includes deterministic methods that predict the quantiles of the predictive distribution or proba-
bilistic methods that sample future values from a learned approximate distribution, parameterized
explicitly (e.g. Gaussian [51, 44, 50]), or implicitly with latent generative models [63, 28, 45]. These
approaches are commonly trained using MSE or variants for probabilisting forecasts, e.g. quantile loss
[27], and consequently often loose the ability to represent sharp predictions, as shown in Figure 1(c)
for [63]. These generative models also lack an explicit structure to control the type of diversity in the
latent space.

In this work, we introduce a model for including Shape and Time diverRsIty in Probabilistic forEcast-
ing (STRIPE). As shown in Figure 1(d), this enables to produce sharp and diverse forecasts, which fit
well the ground truth distribution of trajectories in Figure 1(a).

STRIPE presented in section 3 is agnostic to the predictive model, and we use both deterministic or
generative models in our experiments. STRIPE encompasses the following contributions. Firstly,
we introduce a structured shape and temporal diversity mechanism based on determinantal point
processes (DPP). We introduce two DPP kernels for modeling diverse trajectories in terms of shape
and time, which are both differentiable and proved to be positive semi-definite (section 3.1). To have
an explicit control on the diversity structure, we also design an iterative sampling mechanism to
disentangle shape and time representations in the latent space (section 3.2).

Experiments are conducted in section 4 on synthetic datasets to evaluate the ability of STRIPE to
match the ground truth trajectory distribution. We show that STRIPE significantly outperforms
baseline methods for representing diversity, while maintaining the accuracy of the forecasting
model. Experiments on real datasets further show that STRIPE is able to outperform state-of-the-art
probabilistic forecasting approaches when evaluating the best sample (i.e. diversity), while being
equivalent based on its mean prediction (i.e. quality).

2 Related work

Deterministic time series forecasting Traditional time series forecasting methods, including linear
autoregressive models such as ARIMA [5] or exponential smoothing [26], handle linear dynamics
and stationary time series (or made stationary by modeling trends and seasonality). Deep learning has
become the state-of-the-art for automatically modeling complex long-term dependencies, with many
works focusing on architecture design based on temporal convolution networks [4, 52], recurrent
neural networks (RNNs) [30, 62, 43], or Transformer [55, 36]. Another crucial topic more recently
studied in the non-stationary context is the choice of a suitable loss function. As an alternative to the
mean squared error (MSE) largely used as a proxy, new differentiable loss functions were proposed
to enforce more meaningful criteria such as shape and time [46, 11, 32, 56], e.g. soft-DTW based
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on dynamic time warping [11] or the DILATE loss with a soft-DTW term for shape and a smooth
temporal distortion index (TDI) [19, 54] for accurate temporal localization. These works toward
sharper predictions were however only studied in the context of deterministic predictions and not for
multiple outcomes.

Probabilistic forecasting For describing the conditional distribution of future values given an
input sequence, a first class of deterministic methods add variance estimation with Monte Carlo
dropout [65, 31] or predict the quantiles of this distribution [59, 20, 58] by minimizing the pinball
loss [27, 48] or the continuous ranked probability score (CRPS) [22]. Other probabilistic methods
try to approximate the predictive distribution, explicitly with a parametric distribution (e.g. Gaussian
for DeepAR [51] and variants [44, 50]), or implicitly with a generative model with latent variables
(e.g. with conditional variational autoencoders (cVAEs) [63], conditional generative adversarial
networks (cGANs) [28], normalizing flows [45]). However, these methods lack the ability to produce
sharp forecasts by minimizing variants of the MSE (pinball loss, gaussian maximum likelihood),
at the exception of cGANs - but which suffer from mode collapse that limits predictive diversity.
Moreover, these generative models are generally represented by unstructured distributions in the
latent space (e.g. Gaussian), which do not allow to have an explicit control on the targeted diversity.

Diverse predictions For improving the diversity of predictions, several repulsive schemes were
studied such as the variety loss [25, 53] that consists in optimizing the best sample, or entropy
regularization terms [12, 57] that encourage a uniform distribution and thus more diverse samples.
Submodular distribution functions such as determinantal point processes (DPP) [29, 47, 39] are an
appealing probabilistic tool to enforce structured diversity via the choice of a positive semi-definite
kernel. DPPs has been successfully applied in various contexts, e.g. document summarization [23],
recommendation systems [21], object detection [2], and very recently to image generation [16] and
diverse trajectory forecasting [63]. GDPP [16] is based on matching generated and true sample
diversity by aligning the corresponding DPP kernels, and thus limits their use in datasets where the
full distribution of possible outcomes is accessible. In contrast, our approach is applicable in realistic
scenarii where only a single label is available for each training sample. Although we share with [63]
the goal to use DPP as diversification mechanism, the main limitation in [63] is to use the MSE loss
for training the prediction and diversification models, leading to blurred prediction, as illustrated in
Figure 1(c). Our approach is able to generate sharp and diverse predictions ; we also highlight the
importance in STRIPE to use different criteria for training the prediction model (quality) and the
diversification mechanism in order to make them cooperate.

3 Shape and time diversity for probabilistic time series forecasting

We introduce the STRIPE model for including shape and time diversity for probabilistic time series
forecasting, which is depicted in Figure 2. Given an input sequence x1:T = (x1, ...,xT ) ∈ Rp×T , our
goal is to sample a set ofN diverse and plausible future trajectories ŷ(i) = (ŷT+1, ..., ŷT+τ ) ∈ Rd×τ
from the data future distribution ŷ(i) ∼ p(.|x1:T ).

STRIPE builds upon a general Sequence To Sequence (Seq2Seq) architecture dedicated to multi-step
time series forecasting: the input time series x1:T is fed into an encoder that summarizes the input
into a latent vector h. Note that our method is agnostic to the specific choice of the forecasting model:
it can be a deterministic RNN, or a probabilistic conditional generative model (e.g. cVAE [63], cGAN
[28], normalizing flow [45]).

For training the predictor (upper part in Figure 2), we concatenate h with a vector 0k ∈ Rk (free
space left for the diversifying variables) and a decoder produces a forecasted trajectory ŷ(0) =

(ŷ
(0)
T+1, ..., ŷ

(0)
T+τ ). The predictor minimizes a quality loss Lquality(ŷ(0),y(0)) between the predicted

ŷ(0) and ground truth future trajectory y(0). In our non-stationary context, we train the STRIPE
predictor with Lquality based on the recently proposed DILATE loss [32], that has proven successful
for enforcing sharp predictions with accurate temporal localization.

For introducing structured diversity (lower part in Figure 2), we concatenate h with diversifying
latent variables z ∈ Rk and produce N future trajectories

{
ŷ(i)
}
i=1,..,N

. Our key idea is to augment
Lquality(·) with a diversification loss Ldiversity(·;K) parameterized by diversity kernel K and
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Figure 2: Our STRIPE model builds upon a Seq2Seq architecture trained with a quality loss Lquality
enforcing sharp predictions. Our contributions rely on the design of a diversity loss Ldiversity based
on a specific Determinantal Point Processes (DPP). We design admissible shape and time DPP
kernels, i.e. positive semidefinite, and differentiable for end-to-end training with deep models (section
3.1). We also introduce an iterative DDP sampling mechanism to generate disentangled latent codes
between shape and time, supporting the use of different criteria for diversity and quality (section 3.2).

balanced by hyperparameter λ ∈ R, leading to the overall objective training function:

LSTRIPE(ŷ(0), ..., ŷ(N),y(0);K) = Lquality(ŷ(0),y(0)) + λ Ldiversity(ŷ(1), ..., ŷ(N);K) (1)

We highlight that STRIPE is applicable with a single target trajectory y(0), i.e. we do not require the
full trajectory distribution. We now detail how the Ldiversity(·;K) loss is designed to ensure diverse
shape and time predictions.

3.1 STRIPE diversity module based on determinantal point processes

Our Ldiversity loss relies on determinantal point processes (DPP) that are a convenient probabilistic
tool for enforcing structured diversity via adequately chosen positive semi-definite kernels. For
comparing two time series y1 and y2, we introduce the two following kernels Kshape and Ktime, for
finely controlling the shape and temporal diversity:

Kshape(y1,y2) = e−DTWγ(y1,y2) (2)

Ktime(y1,y2) = TDIγ(y1,y2) =
1

Z

∑
A∈Aτ,τ

〈A,Ω〉 exp−
〈A,∆(y1,y2)〉

γ (3)

where DTWγ(y1,y2) := −γ log
(∑

A∈Aτ,τ exp−
〈A,∆(y1,y2)〉

γ

)
is a smooth relaxation of Dy-

namic Time Warping (DTW) [11], and Ktime corresponds to a smooth Temporal Distortion
Index (TDI) [19, 32]: γ > 0 denotes the smoothing coefficient, A ⊂ {0, 1}τ×τ is a warp-
ing path between two time series of length τ , Aτ,τ the set of all feasible warping paths and
∆(y1,y2) = [δ((y1)i, (y2)j)]1≤i,j≤τ is a pairwise cost matrix between time steps of both se-
ries with similarity measure δ : Rd × Rd → R, Ω is a τ × τ matrix penalizing the deviation of
warping paths from the main diagonal and Z is the partition function. These kernels are derived from
the two components of the DILATE loss [32] ; however in contrast to the deterministic nature of
DILATE, they are used in a probabilistic context for producing sharp and diverse forecasts.

Kshape and Ktime are differentiable by design1, making them suitable for end-to-end training with
back-propagation. We also derive the key following result for ensuring the submodularity properties
of DPPs, that we prove in supplementary 1:

1In the limit case γ → 0, DTWγ (resp. TDIγ) recovers the standard DTW (resp. TDI).
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Figure 3: At test time, STRIPE sequential shape and time sampling scheme that leverages the
disentangled latent space. STRIPE-shape first proposes diverse shape latent variables. For each
generated shape, STRIPE-time further enhances its temporal variability, leading to a final set of
accurate predictions with shape and time diversity.

Proposition 1. Providing that κ is a positive semi-definite (PSD) kernel κ such that κ
1+κ is also

PSD, if we define the cost matrix ∆ with general term δ(yi, yj) = −γ log κ(yi, yj), then Kshape and
Ktime defined respectively in Equations (2) and (3) are PSD kernels.

In practice, we choose κ(u, v) = 1
2e
− (u−v)2

σ2 (1− 1
2e
− (u−v)2

σ2 )−1 that fullfills Prop 1 requirements.

DPP diversity loss We combine the two differentiable PSD kernels Kshape and Ktime with the
DPP diversity loss from [63] defined as the negative expected cardinality of a random subset Y (of a
ground set Y of N items) sampled from the DPP of kernel K (denoted as K in matrix form of shape
N ×N ). This loss is differentiable and can be efficiently computed in closed-form:

Ldiversity(Y; K) = −EY∼DPP (K)|Y | = −Trace(I− (K + I)−1) (4)

Intuitively, a larger expected cardinality means a more diverse sampled set according to kernel K.
We provide more details on DPPs and the derivation of Ldiversity in supplementary 2.

3.2 STRIPE learning and sequential shape and temporal diversity sampling

To maximize shape and time diversity with Eq (1) and (4), a naive way is to consider the combined
kernel Kshape + Ktime which is also PSD. However, this reduces to using the same criterion for
quality and diversity, i.e. DILATE [32]. This directly makes Ldiversity conflicts with Lquality and
harms prediction performances, as shown in ablation studies (section 4.2). Another simple solution
is to diversify using Kshape and Ktime independently, which prevents from modeling joint shape
and time variations, and intrinsically limits the expressiveness of the diversification scheme. In
contrast, we propose a sequential shape and temporal diversity sampling scheme, which enables to
jointly model variations in shape and time without altering prediction quality. We now detail how the
STRIPE models are trained and then used at test time.

STRIPE-shape and STRIPE-time learning We start by independently training two proposal
modules STRIPE-shape and STRIPE-time (and their respective encoders and decoders) by optimizing
Eq (1) with LSTRIPE(·;Kshape) (resp. LSTRIPE(·;Ktime)). To this end, we complement the latent
state h of the forecaster with a diversifying latent variable z ∈ Rk decomposed into shape zs ∈ Rk/2
and temporal zt ∈ Rk/2 components: z = (zs, zt) ∈ Rk. As illustrated in Figure 3, STRIPE-shape
(the description of STRIPE-time is symmetric) is a proposal neural network that producesNs different
shape latent codes z(i)s (the output of the STRIPE-shape neural network is of shape Ns × k). The
decoder takes the concatenated state (h, z

(i)
s , zt) for a fixed zt and produces Ns future trajectories

ŷ(i), whose diversity is maximized with Ldiversity(ŷ(1), ..., ŷ(Ns); Kshape) in Eq (4).
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Sequential sampling at test time Once the STRIPE-
shape and STRIPE-time models (and their corresponding
encoders and decoders) are learned, test-time sampling (il-
lustrated in Figure 3 and detailed in Algorithm 1) consists in
sequentially maximizing the shape diversity with STRIPE-
shape (different guesses about the step amplitude in Figure
3) and the temporal diversity of each shape with STRIPE-
time (the temporal localization of the step).
Notice that the ordering shape+time is actually important
since the notion of time diversity between two time series
is only meaningful if they have a similar shape (so that
computing the DTW optimal path has a sense).
As shown in our experiments, this two-steps scheme (de-
noted STRIPE S+T) leads to more diverse predictions with
both shape and time criteria compared to using the shape or
time kernels alone.

Algorithm 1: STRIPE S+T sam-
pling at test time

Sample an initial z(0)t ∼ N (0, I)

z
(1)
s , ..., z

(Ns)
s =

STRIPE-shape(x1:T , z
(0)
t )

for i=1..Ns do
z
(i,1)
t , ..., z

(i,Nt)
t =

STRIPE-time(x1:T , z
(i)
s )

for j=1..Nt do
ŷ
(i,j)
T+1:t+τ =

Decoder(x1:T , (z
(i)
s , z

(i,j)
t ))

end
end

4 Experiments

To illustrate the relevance of STRIPE, we carry out experiments in two different settings: in the
first one, we compare the ability of forecasting methods to capture the full predictive distribution of
future trajectories on a synthetic dataset with multiple possible futures for each input. To validate our
approach in realistic settings, we evaluate STRIPE on 2 standard real datasets (traffic & electricity)
where we evaluate the best (resp. the mean) sample metrics as a proxy for diversity (resp. quality).

Implementation details: To handle the inherent ambiguity of the synthetic dataset (multiple targets
for one input), our STRIPE model is based on a natively stochastic model (cVAE). Since this situation
does not arise exactly for real-world datasets, we choose in this case a deterministic Seq2Seq predictor
with 1 layer of 128 Gated Recurrent Units (GRU) [9]. In our experiments, all methods produce
N=10 future trajectories that are compared to the unique (or multiple) ground truth(s). For a fair
comparison, STRIPE S+T generates Ns × Nt = 10 × 10 = 100 predictions and we randomly
sample N=10 predictions for evaluation. Further neural network architectures and implementation
details are described in supplementary 3.1. Our PyTorch code implementing STRIPE is available at
https://github.com/vincent-leguen/STRIPE.

4.1 Synthetic dataset with multiple futures

We use a synthetic dataset similar to [32] that consists in predicting step functions based on a two-
peaks input signal (see Figure 1). For each input series of 20 timesteps, we generate 10 different
future series of length 20 by adding noise on the step amplitude and localisation. The dataset is
composed of 100× 10 = 1000 time series for each train/valid/test split (further dataset description in
supplementary 3.1).

Metrics: In this multiple futures context, we define two specific discrepancy measures Hquality(`)
and Hdiversity(`) for assessing the divergence between the predicted and true distributions of futures
trajectories for a given loss ` (` = MSE or DILATE in our experiments):

Hquality(`) = Ex∈DtestEŷ

[
inf

y∈F (x)
`(ŷ,y)

]
Hdiversity(`) = Ex∈DtestEy∈F (x)

[
inf
ŷ
`(ŷ,y)

]
Hquality penalizes forecasts ŷ that are far away from a ground truth future of x denoted y ∈ F (x)
(similarly to the precision concept in pattern recognition) whereas Hdiversity penalizes when a true
future is not covered by a forecast (similarly to recall). We also use the continuous ranked probability
score (CRPS)2 which is a standard proper scoring rule [22] for assessing probabilistic forecasts [20].

2An intuitive definition of the CRPS is the pinball loss integrated over all quantile levels. The CRPS is
minimized when the predicted future distribution is identical to the true future distribution.
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Table 1: Forecasting results on the synthetic dataset with multiple futures for each input, averaged
over 5 runs (mean ± standard deviation). Best equivalent method(s) (Student t-test) shown in bold.
Metrics are scaled (MSE × 1000, DILATE ×100, CRPS × 1000) for readability.

Hquality (.)(↓) Hdiversity(.) (↓) CRPS (↓)
Methods MSE DILATE MSE DILATE

Deep AR [51] 26.6 ± 6.4 67.0 ± 12.0 15.2 ± 3.4 45.4 ± 4.3 62.4 ± 9.9
cVAE MSE 11.8 ± 0.5 48.8 ± 3.2 20.0 ± 0.6 85.4 ± 7.0 76.4 ± 3.0

variety loss [53] MSE 13.1 ± 2.7 50.9 ± 4.7 19.6 ± 1.1 84.7 ± 2.2 80.1 ± 3.3
Entropy regul. [12] MSE 12.0 ± 0.7 51.5 ± 2.9 19.7 ± 0.7 89.5 ± 7.4 78.9 ± 2.9
Diverse DPP [63] MSE 15.9 ± 2.6 56.6 ± 2.8 16.5 ± 1.5 59.6 ± 5.6 80.5 ± 6.1
GDPP [16] kernel MSE 11.7 ± 1.3 47.5 ± 3.1 19.5 ± 0.4 82.3 ± 5.2 74.0 ± 4.5

STRIPE S+T (ours) 12.4 ± 1.0 48.7 ± 0.7 18.1 ± 1.6 62.0 ± 5.4 72.2 ± 3.1
cVAE DILATE 11.6 ± 1.8 28.3 ± 2.9 22.2 ± 2.5 67.8 ± 7.8 62.2 ± 4.2

variety loss [53] DILATE 14.9 ± 3.3 33.5 ± 1.9 23.8 ± 3.9 61.6 ± 1.9 62.6 ± 3.0
Entropy regul. [12] DILATE 12.7 ± 2.6 29.9 ± 3.2 23.5 ± 2.6 65.1 ± 4.5 62.4 ± 3.9
Diverse DPP [63] DILATE 11.1 ± 1.6 30.2 ± 2.9 20.7 ± 2.3 62.6 ± 11.3 60.7 ± 1.6
GDPP [16] kernel DILATE 10.6 ± 1.6 28.7 ± 4.1 21.7 ± 2.1 47.7 ± 9.0 63.4 ± 6.4

STRIPE S+T (ours) 10.8 ± 0.4 30.7 ± 0.9 14.5 ± 0.6 35.5 ± 1.1 60.5 ± 0.4

Results We compare our method to 4 recent competing diversification mechanisms (variety loss
[53], entropy regularisation [12], diverse DPP [63] and GDPP [16]) based two different forecasting
backbones: a conditional variational autoencoder (cVAE) trained with MSE and with DILATE. Results
in Table 1 show that our model STRIPE S+T based on a cVAE DILATE obtains the global best
performances by improving the diversity by a large margin (Hdiversity(DILATE) = 35.5 vs. 67.8),
significantly outperforming other methods. This highlights the relevance of the structured shape and
time diversity in STRIPE. It is worth mentioning that STRIPE also presents the best performances in
quality. In contrast, other diversification mechanisms (variety loss, entropy regularisation, diverse
DPP) based on the same backbone (cVAE DILATE) improve the diversity in DILATE but at the
cost of a loss in quality in MSE and/or DILATE. Although GDPP does not deteriorate quality, it
is significantly worse than STRIPE in diversity, and the approach requires full future distribution
supervision, which it not applicable in in real dataset (see section 2).

Similar conclusions can be drawn for the cVAE MSE backbone: the different diversity mechanisms
improve the diversity but at the cost of a loss of quality. For example, Diverse DPP MSE [63] improves
diversity (Hdiversity(DILATE) = 59.6 vs. 85.4) but looses in quality (Hquality(DILATE) = 56.6
vs. 48.8). In contrast, STRIPE S+T again both improves diversity (Hdiversity(DILATE) = 62.0
vs. 85.4) with equivalent quality (Hquality(DILATE) = 48.7 vs. 48.8). We further highlight that
STRIPE S+T gets the best results evaluated in CPRS, confirming its ability to better recover the true
future distribution.

4.2 Ablation study

To analyze the respective roles of the quality and diversity losses, we perform an ablation study on
the synthetic dataset with the cVAE backbone trained with the quality loss DILATE and different
DPP diversity losses. For a finer analysis, we report in Table 2 the shape (DTW) and time (TDI)
components of the DILATE loss [32].

Table 2: Ablation study on the synthetic dataset. We train a backbone cVAE with the DILATE quality
loss and compare different DPP kernels for diversity. Metrics are scaled for readability. Results
averaged over 5 runs (mean ± std). Best equivalent method(s) (Student t-test) shown in bold.

cVAE DILATE Hquality(.) (↓) Hdiversity(.) (↓) CRPS (↓)
diversity MSE DILATE MSE DTW TDI DILATE

None 11.6 ± 1.8 28.3 ± 2.9 22.2 ± 2.5 18.8 ± 1.3 48.6 ± 2.2 67.8 ± 7.8 62.2 ± 4.2
DILATE 11.1 ± 1.6 30.2 ± 2.8 20.7 ± 2.3 18.6 ± 1.6 42.8 ± 10.2 62.6 ± 11.3 60.7 ± 1.7

MSE 10.9 ± 1.5 30.2 ± 2.9 20.1 ± 2.2 18.5 ± 1.3 41.9 ± 8.8 61.7 ± 9.5 62.1 ± 0.9
shape (ours) 11.0 ± 1.4 30.2 ± 1.2 15.5 ± 1.04 16.4 ± 1.5 15.4 ± 4.2 37.8 ± 3.7 63.2 ± 1.6
time (ours) 11.9 ± 0.5 31.2 ± 1.3 16.1 ± 0.70 17.6 ± 0.5 15.1 ± 3.1 38.9 ± 3.3 62.3 ± 1.4
S+T (ours) 10.8 ± 0.4 30.7 ± 0.9 14.5 ± 0.6 16.1 ± 1.1 13.2 ± 1.7 35.5 ± 1.1 60.5 ± 0.4

7



Traffic Electricity
Figure 4: Qualitative predictions for Traffic and Electricity datasets. Input series in blue are not
shown entirely for readability. We display 10 future predictions of STRIPE S+T that are both sharp
and accurate compared to the ground truth (GT) future in green.

Results presented in Table 2 first reveal the crucial importance to define different criteria for quality
and diversity. With the same loss for quality and diversity (as this is the case in [63]), we observe
here that the DILATE DPP kernel does not bring a statistically significant diversity gain compared to
the cVAE DILATE baseline (without diversity loss). By choosing the MSE kernel instead, we even
get a small diversity and quality improvement.

In contrast, our introduced shape and time kernels Kshape and Ktime largely improve the diversity in
DILATE without deteriorating precision. As expected, each kernel brings its own benefits: Kshape
brings the best improvement in the shape metric DTW (Hdiversity(DTW) = 16.4 vs. 18.8) and
Kshape the best improvement in the time metric TDI (Hdiversity(TDI) = 15.1 vs. 48.6). With our
sequential shape and time sampling sheme described in section 3.2, STRIPE S+T gathers the benefits
of both criteria and gets the global best results in diversity and equivalent results in quality.

4.3 State-of-the-art comparison on real-world datasets

We evaluate here the performances of STRIPE on two challenging real-world datasets commonly used
as benchmarks in the time series forecasting literature [61, 51, 30, 44, 32, 52]: Traffic: consisting in
hourly road occupancy rates (between 0 and 1) from the California Department of Transportation, and
Electricity: consisting in hourly electricity consumption measurements (kWh) from 370 customers.
For both datasets, models predict the 24 future points given the past 168 points (past week). Although
these datasets present daily, weakly, yearly periodic patterns, we are more interested here in modeling
finer intraday temporal scales, where these signals present sharp fluctuations that are crucial for many
applications, e.g. short-term renewable energy forecasts for load adjustment in smart-grids [33].

Contrary to the synthetic dataset, we only dispose of one future trajectory sample y
(0)
T+1:T+τ for each

input series x1:T . In this case, the metrics Hquality (resp. Hdiversity) defined in section 4.1 reduce to
the mean sample (resp. best sample), which are common for evaluating stochastic forecasting models
[3, 18]. We also report the CRPS in supplementary 3.2.

Results in Table 3 reveal that STRIPE S+T outperforms all other methods in terms of the best sample
trajectory evaluated in MSE and DILATE for both datasets, while being equivalent in the mean
sample in 3/4 cases. Interestingly, STRIPE S+T provides better best trajectories (evaluated in MSE

Table 3: Forecasting results on the Traffic and Electricity datasets, averaged over 5 runs (mean ± std).
Metrics are scaled for readability. Best equivalent method(s) (Student t-test) shown in bold.

Traffic Electricity
MSE DILATE MSE DILATE

Method mean best mean best mean best mean best
Nbeats [41] MSE - 7.8 ± 0.3 - 22.1 ± 0.8 - 24.6 ± 0.9 - 29.3 ± 1.3

Nbeats [41] DILATE - 17.1 ± 0.8 - 17.8 ± 0.3 - 38.9 ± 1.9 - 20.7 ± 0.5
Deep AR [51] 15.1 ± 1.7 6.6 ± 0.7 30.3 ± 1.9 16.9 ± 0.6 67.6 ± 5.1 25.6 ± 0.4 59.8 ± 5.2 17.2 ± 0.3
cVAE DILATE 10.0 ± 1.7 8.8 ± 1.6 19.1 ± 1.2 17.0 ± 1.1 28.9 ± 0.8 27.8 ± 0.8 24.6 ± 1.4 22.4 ± 1.3
Variety loss [53] 9.8 ± 0.8 7.9 ± 0.8 18.9 ± 1.4 15.9 ± 1.2 29.4 ± 1.0 27.7 ± 1.0 24.7 ± 1.1 21.6 ± 1.0

Entropy regul. [12] 11.4 ± 1.3 10.3 ± 1.4 19.1 ± 1.4 16.8 ± 1.3 34.4 ± 4.1 32.9 ± 3.8 29.8 ± 3.6 25.6 ± 3.1
Diverse DPP [63] 11.2 ± 1.8 6.9 ± 1.0 20.5 ± 1.0 14.7 ± 1.0 31.5 ± 0.8 25.8 ± 1.3 26.6 ± 1.0 19.4 ± 1.0

STRIPE S+T 10.1 ± 0.4 6.5 ± 0.2 19.2 ± 0.8 14.2 ± 0.2 29.7 ± 0.3 23.4 ± 0.2 24.4 ± 0.3 16.9 ± 0.2
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and DILATE) than the recent state-of-the-art N-Beats algorithm [41] (either trained with MSE or
DILATE), which is dedicated to producing high quality deterministic forecasts. This confirms that
STRIPE’s structured quality and diversity framework enables to obtain very accurate best predictions.
Finally when compared to the state-of-the art probabilistic deep AR method [51], STRIPE S+T is
consistently better in diversity and quality.

We display a few qualitative forecasting examples of STRIPE S+T on Figure 4 and additional ones in
supplementary 3.3. We observe that STRIPE predictions are both sharp and accurate: both the shape
diversity (amplitude of the peaks) and temporal diversity match the ground truth future.

4.4 Model analysis

Figure 5: Influence of the number N of tra-
jectories on quality (higher is better) and di-
versity for the synthetic dataset.

Figure 6: Scatterplot of 50 predictions in the
plane (DTW,TDI), comparing STRIPE S+T
v.s. Diverse DPP DILATE [63].

We analyze in Figure 5 for the synthetic dataset the evolution of performances when increasing
the number N of sampled future trajectories from 5 to 100: we observe that this results in higher
normalized DILATE diversity (Hdiversity(5)/Hdiversity(N)) for STRIPE S+T without deteriorating
quality (which even increases slightly). In contrast, deepAR [51], which does not have control over
the targetted diversity, increases diversity with N but at the cost of a loss in quality. This again
confirms the relevance of our approach that effectively combines an adequate quality loss function
and a structured diversity mechanism.

We provide an additional analysis to highlight the importance to separate the criteria for enforcing
quality and diversity. In Figure 6, we represent 50 predictions from the models Diverse DPP DILATE
[63] and STRIPE S+T in the plane (DTW,TDI). Diverse DPP DILATE [63] uses a DPP diversity
loss based on the DILATE kernel, which is the same than for quality. We clearly see that the two
objectives conflict: this model increases the DILATE diversity (by increasing the variance in the
shape (DTW) or the time TDI) components) but a lot of these predictions have a high DILATE loss
(worse quality). In contrast, STRIPE S+T predictions are diverse in DTW and TDI, and maintain an
overall low DILATE loss. STRIPE S+T succeeds in recovering a set of good tradeoffs between shape
and time leading a low DILATE loss.

5 Conclusion and perspectives
We present STRIPE, a probabilistic time series forecasting method that introduces structured shape
and temporal diversity based on determinantal point processes. Diversity is controlled via two
proposed differentiable positive semi-definite kernels for shape and time and exploits a forecasting
model with a disentangled latent space. Experiments on synthetic and real-world datasets confirm
that STRIPE leads to more diverse forecasts without sacrificing on quality. Ablation studies also
reveal the crucial importance to decouple the criteria used for quality and diversity.

A future perspective would be to incorporate seasonality and extrinsic prior knowledge (such as
special events) [31, 41] to better model the non-stationary abrupt changes and their impact on diversity
and model confidence [10]. Other appealing directions include diversity-promoting forecasting for
exploration in reinforcement learning [42, 17, 35], and extension of structured diversity to spatio-
temporal or video prediction tasks [60, 18, 24].
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Broader Impact

Probabilistic time series forecasting, especially in the non-stationary contexts, is a paramount research
problem with immediate and large impacts in the society. A wide range of sensitive applications
heavily rely on accurate forecasts of uncertain events with potentially sharp variations for making
crucial decisions: in weather and climate science, better anticipating floods, hurricanes, earthquakes
or other extreme events evolution could help taking emergency measures on time and save lives; in
medicine, better predictions of an outbreak’s evolution is a particularly actual topic. We believe that
introducing meaningful criteria such as shape and time, which are more related to application-specific
evaluation metrics, is an important step toward more reliable and interpretable forecasts for decision
makers.
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