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Abstract 

 Proprioception provides crucial information necessary for determining limb position and 

movement and plausibly also for updating internal models that might underlie the control of 

movement and posture. Seminal studies of upper-limb movements in individuals living with 

chronic, large-fiber deafferentation have provided evidence for the role of proprioceptive 

information in the hypothetical formation and maintenance of internal models to produce 

accurate motor commands. Vision also contributes to sensorimotor functions but cannot fully 

compensate for proprioceptive deficits. More recent work has shown that posture and movement 

control processes are lateralized in the brain, and that proprioception plays a fundamental role in 

coordinating the contributions of these processes to the control of goal-directed actions. In fact, 

the behavior of each limb in a deafferented individual resembles the action of a controller in 

isolation. Proprioception thus provides state estimates necessary for the nervous system to 

efficiently coordinate multiple motor control processes. 
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Introduction 

 Proprioception, a term coined by Sir Charles Sherrington in 1906 [1] refers to information 

about position and movement derived from muscular, tendon and articular sensors. Later 

research emphasized the specific role of muscle spindles and Golgi tendon organs by 

demonstrating that joint position sense remains largely intact after complete joint replacement 

surgeries [2], a finding consistent with experimental demonstrations that joint receptors do not 

provide information in the midrange of the joint [3]. Thus, joint receptors cannot provide 

continuous information about segment configuration and movement. Rare cases of large fiber 

sensory neuropathy (LFSN) have shown that a massive yet specific loss of the large afferent 

fibers that innervate Golgi tendon organs (Ib) and muscle spindles (Ia & II) result in profound 

loss of position and movement sensation, regardless of intact small fibers that innervate joint 

articular tissues and skin. The fact that the most energetically costly sensory neurons (with large 

fibers) in the mammalian system innervate these sensors, and that muscle spindles are found in 

all skeletal muscles in the primate system, suggests an important role of proprioception in 

adaptive behavior.  

 Seminal research on these sensors, their innervation and central projections has elucidated 

the important roles of spinal circuits, including both homogenous and heterogenous reflexes, in 

modulating mechanical behavior of the muscles in response to perturbations [4–6]. Research in 

human deafferentation has introduced the important role of proprioception in feedforward 

mechanisms to update the internal model of limb dynamics, which is largely mediated by 

supraspinal centers, including the cerebellum [7], and regions of the cerebral cortex [6,8]. In this 

review, we elucidate the importance of proprioception in feedforward mechanisms that specify 

upper limb reaching trajectories and final limb positions, drawing largely on evidence from 

experimental studies in deafferented individuals with LFSN. 

 

The role of proprioception in updating internal models for the feedforward control of 

movement 

 Sensory information is used for both feedforward and feedback motor control processes. 

Feedforward processes refer to the modification of system output using anticipated results in 

order to modify descending commands before the onset of the impending movement. 

Feedback processes compare state estimates derived from sensory signals to predicted sensory 



states, using the difference as an error signal to generate corrections. When the feedback loop is 

rapid and gains are optimized, feedback can lead to stability of responses, such as the 

linearization of the rapid and incremental stretch response by stiffness regulation [4]. However, 

errors requiring large proportional gains without an appropriate derivative gain, and invoking 

loops of longer latency can lead to destabilizing responses. Feedforward mechanisms provide the 

ability to anticipate system responses to future output and, thus, allow for stability of behavior 

when predictions are fairly accurate. It should be stressed that feedforward mechanisms can be 

used to modulate feedback systems, allowing robustness in the face of inaccurate predictions due 

to environmental variations, prediction errors, and/or neural noise (see [9–12] for recent articles 

on optimal feedback control and gain modulation).  

 

 



 The term ‘internal model’ has been widely studied through behavioral and 

neurophysiological research in the field of neuroscience [13,14]. Here we refer to an internal 

model as a neural process that allows prediction of motor actions and their consequences. The 

internal model is continuously updated by sensory information, and the predicted movement 

features vary depending on task goals and costs [15]. For instance, when kinematic and kinetic 

variables, such as smoothness and work, are critical costs for a task, the internal model makes 

predictions to optimize each variable. While researchers can model this process through forward 

and inverse dynamic equations, we expect that the biological system has less explicit solutions to 

predict the effects of impending dynamic events. Cognitive models of the body, referred to as 

body schema, are also a type of internal model that appears to be dependent on proprioceptive 

information [16,17]. In fact, Sacks has reported cases in which individuals who have lost 

proprioception can view their deafferented limbs as foreign and even pernicious [18].  

 Studies in deafferented individuals have exhibited the critical roles played by 

proprioception, and vision, in rapid online control of movement as well as in the development, 

maintenance and modification of internal models. There is evidence that visual and 

proprioceptive information contribute differently for control of trajectory vs. final position of 

reaching, with proprioception deemed sufficient to recover movement direction after a 

perturbation, and early vision of hand position considered necessary to correct initial direction 

errors [19,20]. Vision can provide information of limb configuration, which may explain why 

deafferented individuals can adapt to a novel force field when provided with visual information 

about hand position, and update their internal model of limb dynamics using vision alone [21–

23]. In fact, a study with three deafferented individuals showed that vision of the limb, either 

prior to or during a reaching movement, was necessary to update the internal models for 

trajectory control [24]. The absence of vision degrades accuracy of the model, resulting in high 

movement variability and drift. 

 While visual information also contributes to movement control, it does not suffice to 

maintain accuracy of the presumptive internal model that accounts for limb dynamics in 

specification of movement trajectories. Deafferented individuals make movements under visual 

guidance that are abnormal, even years after the proprioceptive loss [23,25,26], reflecting poor 

coordination of intersegmental dynamics [27,28]. A seminal study examining unconstrained 

multi joint movements in two deafferented individuals revealed their inability to accurately and 



sharply reverse movements of the arm when instructed to produce out-and-back goal-directed 

slicing motions of the hand [27]. The slicing motions required precise coordination of movement 

between shoulder and elbow joints, and were well achieved in neurologically intact controls; 

however, the deafferented individuals produced curved hand paths, rather than sharp movement 

reversals even when vision of the limb was provided during movement. This resulted from an 

inability to account for the intersegmental interaction torques produced at one joint by motion of 

the other joints. A follow-up study [28] demonstrated that these reversal errors varied with the 

amplitude of such interaction torques. Participants made out-and-back movements along 

different directions and varying distances from the start position that required the same amount 

of elbow excursion but different amounts of shoulder excursion. While control participants made 

linear movements with direction-dependent changes in interaction torques, deafferented 

individuals produced errors at movement reversal that did not adapt to direction-dependent 

changes in interaction torques, resulting in inter-joint coordination deficits (Figure 1). Because 

intersegmental interactions are transient and large in amplitude, interjoint coordination depends 

on feedforward mechanisms that shape motor output signals in accord with impending variations 

in movement direction and speed. This series of studies demonstrated the importance of 

proprioception in tuning the parameters used to predict and compensate for the effects of limb 

inertial dynamics on rapid arm movements. It is likely that feedforward and feedback processes 

share a model-based process that accounts for limb dynamics [29], and that proprioception 

provides the foundation necessary for coordinating posture and movement.  

 



 

Figure 1. Loss of interjoint coordination in the absence of proprioception. A) Representative 

hand paths from a control participant and a deafferented patient when completing an out-and-

back tracing movement in 6 different directions. B) Correlation between peak elbow joint 

acceleration and peak interaction torque during movement reversal for all 6 directions in two 

controls and deafferented patients. C) Histograms of the range of interjoint coupling intervals 

(time between elbow and shoulder reversals) for controls and deafferented patients. Adapted 

from [28]. 

 

Proprioception-mediated differential feedforward control of movement and posture 

 The coordination of the left and right arms in primates is most often asymmetric in ways 

suggesting that feedforward and/or feedback control are lateralized. The dynamic dominance 

hypothesis suggests a differentiation of the control of limb dynamics: in right-hand dominant 

individuals, the dominant left hemisphere specializes in the feedforward control of trajectory 



dynamics and the nondominant right hemisphere specifies the feedforward and feedback control 

of limb impedance about final equilibrium positions [30]. We conducted a recent study on a 

deafferented individual (GL), which revealed that proprioception does indeed play a critical role 

in both of these control mechanisms [31]. GL and a group of neurologically intact controls 

performed point-to-point reaching movements using each hand while the arm was supported on 

an air sled that eliminated the mechanical effects of gravity and friction. In the absence of vision 

of hand position, GL exhibited deficits in trajectory and final position stabilization that differed 

between the left and right hand, and which differed markedly from movements made by control 

participants (Figure 2 A, B). GL’s nondominant left hand produced large initial direction errors 

as well as oscillations at the target. Her dominant right hand produced less initial direction errors, 

but exhibited large drifts away from the target at the end of movement (Figure 2 C, D). 

Computer simulations explained these findings as reflecting a temporal discoordination between 

separate and poorly tuned trajectory and impedance controllers. Previously, a serial hybrid model 

of movement explained differences in movement behavior between the left and right hands as 

resulting from differences in when control of the arm switches from predominantly trajectory 

control to predominantly impedance control [32]. Experimental findings in GL and computer 

simulations are consistent with the idea that the switch time from trajectory to impedance control 

occurs earlier for the nondominant left hand than for the dominant right hand [31], thus, 

suggesting an unequal contribution of each controller to each limb. Therefore, in the absence of 

online peripheral information, the limb that receives less direct input from a controller (i.e., the 

ipsilateral controller) would be especially impaired in the performance aspect for which the 

ipsilateral controller is specialized. The trajectories shown in Figure 2B illustrate this point 

clearly. Taken together, this line of research emphasizes the importance of proprioception in 

feedforward control processes used for coordination of movement trajectories and for stabilizing 

accurate final limb postures.  



 

Figure 2. Deafferentation reveals differential feedforward control of arm movement and posture. 

Participants performed reaching movements to a target (blue) placed in one of three directions 

from an initial start position (green). Vision of hand path was removed upon leaving the start 

position. Left and right hand paths and tangential velocity profiles are shown for  A) a 

representative control individual and B) a deafferented individual. Scale bars next to the left 

hand trajectories represent 2 cm hand movement. C) Mean initial direction error and D) mean 

error at movement’s end is displayed for each hand of 5 control participants and the deafferented 

individual. Error bars in control data represent 1 standard deviation from the mean. Mean values 

for each control participant are plotted as purple squares (left hand) or yellow triangles (right 

hand). p < 0.001 (*). Reprinted from [31]. 

 

Limitations and future directions 

 The studies reviewed here mostly focus on reaching as a paradigm for studying human 

motor control, in healthy and deafferented individuals. The deafferented patients have a specific, 

well-characterized proprioceptive loss; however, the experimental findings reflect the effects of 

both complete proprioceptive loss as well as the re-adaptation of motor skills to their chronic 



condition. While reaching is an important component of functional motor performance, many 

other actions are critical to adaptive behavior in humans, including but not limited to locomotor 

behaviors, object manipulation, catching and throwing behaviors, and coordination between 

whole body and limb movements for activities of daily living. The focus of the reviewed papers 

on reaching behaviors is an early step in understanding the role of proprioception in motor 

control and lateralization, which was driven by many decades of foundational research in motor 

control and biomechanics. Selecting a given paradigm is likely to influence the view of motor 

lateralization, which must be treated as a dynamic process where the contribution of each 

hemisphere to movement control is driven by the skill level and attentional focus of the 

performer [33], the type and complexity of the task, and the relative importance of the various 

goals and costs of the task [34]. The tasks employed to study the contributions of sensory 

information to motor control are likely to expand as our understanding of the basic principles of 

the sensory contributions to motor control advance. This should translate to innovations for 

restoring proprioceptive signals (see [35,36]) in amputees and individuals with neurological 

disorders [37].  
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