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ON PROCONGRUENCE CURVE COMPLEXES AND THEIR AUTOMORPHISMS

PIERRE LOCHAK

Abstract. In this paper we start exploring the procongruence completions of three varieties of curve
complexes attached to hyperbolic surfaces, as well as their automorphisms groups. The discrete counterparts

of these objects, especially the curve complex and the so-called pants complex were defined long ago and

have been the subject of numerous studies. Introducing some form of completions is natural and indeed
necessary to lay the ground for a topological version of Grothendieck-Teichmüller theory. Here we state

and prove several results of fundational nature, among which reconstruction theorems in the discrete and

complete settings, which give a graph theoretic characterizations of versions of the curve complex as well
as a rigidity theorem for the complete pants complex, in sharp contrast with the case of the (complete)

curve complex, whose automorphisms actually define a version of the Grothendieck-Teichmüller group, to

be studied elsewhere (see [20]). We work all along with the procongruence completions – and for good
reasons – recalling however that the so-called congruence conjecture predicts that this completion should

coincide with the full profinite completion.

AMS Math Classification: 11R32, 14D22, 57M99.

1. Introduction

The primary goal of this paper is to start laying the foundations for a topological version of Grothendieck-
Teichmüller theory and the goal of this short introduction is to provide some clues as to what this could
mean ; and of course about the contents of the paper. For much more on the background landscape we refer
once and for all to [21] and its references. Because numerous objects are involved we have gathered the main
(essentially classical) definitions in a short Appendix which the reader is invited to consult when (s)he feels
like it. We will also explicitly refer to it.

In a few words which will be considerably expanded below and possibly elsewhere, the situation can be
described as follows. Let S = Sg,n be a hyperbolic surface of finite type (cf. §A.1); it has (modular) dimension
d(S) = 3g− 3 + n which can be seen for instance as the (complex) dimension of the modular orbifoldM(S)
(cf. §A.2) or else as the maximal number of non intersecting simple closed curves lying on S, considered
up to isotopy (these objects form a set which we denote L(S)). Starting from L(S) one builds several
(simplicial, non locally finite) complexes, especially the curve complex C(S) (cf.§A.5), of dimension d(S)−1,
and the so-called two-dimensional pants complex CP (S) (cf. §A.7) of which it is enough to consider the
1-skeleton (the pants graph). The attached Teichmüller group (a.k.a. mapping class group) Γ(S) (cf. §A.3)
acts naturally on these objects (L(S), C(S), CP (S)).

The curve complex C(S) was first constructed by W.J.Harvey in close analogy with buildings for reductive
groups, from which the significance of its automorphisms was immediately recognized (see [21], Introduction,
for a more detailed story and references). It was shown in the eighties, by N.V.Ivanov (cf. [15]) and J.L.Harer
(cf. [12, 13]) independently, that the curve complex C(S) has the homotopy type of a wedge of spheres,
an important and fundationnal result. A few years later N.V.Ivanov proved (cf. [16] as well as [18]) that
C(S) is essentially rigid, the only automorphism not arising from the action of Γ(S) being the mirror
reflection (an orientation reversing automorphism of the underlying surface). This is embodied in the exact
sequence (A 2) of §A.12. An important point is that it also enables one to control the automorphisms of the
group Γ(S), leading to the exact sequence (A 3), and indeed the automorphisms of any cofinite subgroup
Γλ(S) ⊂ Γ(S). The upshot is thus that both C(S) and Γ(S) are rigid with the mirror reflection as only non
inner automorphism; in anticipation one can identify the reflection with complex conjugacy and consider
that it generates the Galois group Gal(C/R) ' Z/2.

The pants complex CP (S) was defined somewhat later and its automorphisms were considered relatively
recently. D.Margalit showed (in [24]) that it is rigid as well, more precisely that one can replace C(S) by
CP (S) in the sequence (A 2), so that Aut(CP (S)) = Aut(C(S)). This result will be reproved below (in §2)
in a different way.
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Now to completions; they were introduced in [3] in an effort to attack the congruence conjecture (cf. §A.10).
Although this was actually not achieved in [3] (see the review of D.Abramovitch in MathSciNet for a care-
ful and well intended discussion), the idea of completing various geometric or in fact topological objects
(cf. §A.11), primarily versions of the complexes of curves, appears as a deep and potentially fruitful one.
Perhaps the main point or slogan of the present paper is that the automorphisms of the completed complexes
have a lot to do with Grothendieck-Teichmüller theory (in all genera, not only genus 0) and the corresponding
group. This is also the main theme of the manuscript [20] (2007, unpublished).

More specifically let Ĉ(S) and ĈP (S) denote the respective profinite completions of the curves and pants

complexes. Then ĈP (S) remains rigid whereas Ĉ(S) acquires an enormous automorphism group, which
is precisely (a somewhat sophisticated version of) the Grothendieck-Teichmüller group. These issues are
discussed in detail in [20] but watertight proofs are missing there, for technical reasons which in some sense

amount to the fact that one does not know how to prove (the highly plausible fact) that Ĉ(S) is isomorphic

to the profinite completion ĈG(S) of the group theoretic version CG(S) of the curve complex (cf. A.6).
Fortunately things become somewhat easier when working with the congruence completions. In terms

of covers the congruence completion Γ̌(S) describes the (orbifold unramified finite) covers of the modular
orbifold M(S) arising from covers of S itself, which are obviously much more manageable. Whether these
covers are cofinal or not is the question which the congruence conjecture purports to answer in a positive
way. In any event here we take advantage of the results shown in particular in [4] to attack the questions
in the framework of the congruence completions. Turning to the procongruence complexes Č(S) and ČP (S)
we prove that the latter one, namely the procongruence pants complex, remains rigid. That is we have a
short exact sequence:

1→ Inn(Γ̌(S))→ Aut((ČP (S))st)→ Z/2→ 1.

This is a somewhat cryptic and incomplete version of the result. The subscript st stand for “stack” and
the exact definition of these objects, which involves the so-called topological stacks, will be detailed in due
time, at the beginning of section 7. One can again state that (with the mild exception of type (1, 2))
Out((ČP (S))st) ' Z/2 ' Gal(C/R), just as in the discrete case, and the nontrivial outer automorphism
comes again from orientation or complex conjugacy.

At first sight this may appear as a rather dull result: the procongruence pants complex is rigid, and this is
also the case in the full profinite setting, modulo the congruence conjecture. In other words, rigidity survives
completion in that case. So what? The point is that there are at least one surprise and one application in
store. The surprise – if any – consists in the fact that the procongruence curve complex is not rigid. Far
from it; indeed the outer automorphism group Out(Č(S)) (for d(S) > 3, say) is enormous and can be taken
as a higher genus version of the Grothendieck-Teichmüller group. In particular it is independent of S, that
is of the type (g, n), and it naturally contains the absolute Galois group Gal(Q̄/Q). This and much more
is elaborated in [20] (see also [21]) which however again does not contain watertight proofs inasmuch as the
setting there is that of full profinite completion where certain tools are still lacking, in contrast with the
case of the procongruence completion. The upshot is that the rigidity result shown in the present paper
should pave the way for a thorough investigation of this new, topological version of Grothendieck-Teichmüller
theory.

To end this introduction in a concrete fashion, we give a tour of the paper, highlighting some of the key
concepts and statements. Most definitions are to be found in the Appendix; a few appear in the body of the
text. Section 2 deals with three types of curve complexes attached to the surface S, namely C(S), CP (S)
and C∗(S). The setting is the classical discrete one ; the main, important and often difficult classical results
are recalled in §2.1 and at the end of the Appendix. Yet even in this discrete framework one will notice
two novel features: First, the emphasis on the role of the graph C∗(S) (defined in §A.8), second the very
idea of reconstruction in §2.2. Although the paper is geared towards treating the case of complete (more
accurately, completed) complexes, reconstruction, as embodied in Theorem 2.10, already bears new fruits
in the discrete setting, recovering in particular the discrete rigidity Theorem 2.13, which features the main
result of [24]. Section 3 introduces completions, which in this setting are quite a new notion, introduced
by M. Boggi a few years ago and never discussed anywhere outside of his own papers. This is why we
found it necessary to include some easy but not trivial and often somewhat counterintuitive properties. The
reader may recall how “exotic” it may appear to pass from the ordinary integers (Z) to the p-adic ones
(Zp). The situation here is analogous, only substantially more intricate. The main result of this section
is the isomorphism of three versions of the curve complex, as stated in Theorem 3.1. Note that this same
isomorphism in the discrete case is elementary. Although this basic and important result is stated in [4],
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the proof there does not appear to be completely satisfactory, so we present a new, hopefully waterproof,
one. As a general remark, one should stress that we are treading fairly new and slippery ground, say the
profinite geometry of surfaces, so that it seems useful, indeed necessary, to do one’s best in order to make it
firmer and sometimes add in a little more context, like e.g. in §3.3 as well as in several “remarks” along the
text. Section 4 provides part of the necessary and quite nontrivial dictionary between graphs (more generally
complexes) and the more traditional group theoretic setting. These translations are often elementary in the
discrete setting but not always. For instance the discrete analog of Proposition 4.4 uses some basic results
from Thurston’s theory of diffeomorphisms of surfaces, something which has no analog in the complete case
(see [21]). This section owes a lot to [4] and discussions with its author. Yet it is self-contained and includes
several new results and/or proofs. Proposition 4.4 and Theorem 4.5 are particularly noticeable. Section 5
starts the exploration of the congruence case, recalling that the congruence conjecture precisely predicts
that it coincides with the full profinite one. We refer to the introduction of that section for details about its
content. Theorem 5.1 is new, and so is of course the reconstruction result (Theorem 5.13) in the complete
case, as well as Proposition 5.15. It should be stressed that some “easy” results (God given, so to speak)
are in fact of the utmost importance here. This is indeed the case of Proposition 5.8 (see also Remark 5.2
beneath that result), which states (and proves) the existence of an important stratification of the moduli
stacks of curves. This property is crucial and not (yet) available in the full profinite setting. In fact its
validity is equivalent to that of the congruence conjecture, as explained in Remark 5.2 ii). Section 6 takes
up the question of the automorphisms of the congruence completed complexes, probably the main goal of
the paper, on the road to a topological version of Grothendieck-Teichmüller theory, true to Grothendieck’s
watermark indications in his Esquisse d’un programme. We refer again to the introduction of that section
for more detail and context. The content of that section is essentially new, building in particular on the
reconstruction results of §5.2. For instance Propositions 6.1, 6.2 and 6.3 appear as easy but important
corollaries of these results. The property of type preservation for automorphisms of the procongruence curve
complex (Theorem 6.4) is quite significant and its proof cannot really mimic the topologically inspired proof
in the discrete case. In §6.2 we translate again the situation from group automorphisms to automorphisms
of (complete) complexes. Yet, as examplified in Proposition 6.8, an important property emerges, namely
that automorphisms of complexes correspond to virtual group automorphisms, that is automorphisms up
to passing to finite index subgroups (étale covers, in geometric terms for fundamental groups). Note that
this property in turn relies crucially on Proposition 4.4, describing a certain lattice property of the (open
subgroups of the) free abelian groups generated by commuting (pro)twists. The short paragraph §6.3 finally
introduces the arithmetic Galois group GQ and shows that it acts naturally and faithfully on the congruence
completed curve complex (Proposition 6.9). The same property holds true for a variant of the profinite
Grothendieck-Teichmüller group constructed by the author together with H.Nakamura and L.Schneps some
years ago (Proposition 6.10). Note that this version, denoted IΓ, is rather more sophisticated than the one
which appears in modern deformation theory (denoted GT (Q) after Drinfel’d) as it is profinite (as opposed to
prounipotent) and adapted to every genus (as opposed to genus 0 only). In particular it captures the whole
of GQ (see below Proposition 6.10), as opposed to the quotient defined by the maximal nilpotent extension
of Q. However, all in all, §6.3 should be considered a “prequel” to a much more extensive investigation
(with a somewhat preliminary version appearing in [20]). The final Section 7 is essentially devoted to an
important fundational result stated as Theorem 7.1. Here the main message is that this result is dramatically
wrong if one replaces ČP (S) (assuming congruence completion for definiteness ; the result is more general as
the statement indicates) with Č(S). Not only the curve complex is not rigid but the deformation group is
precisely the (enormous) Grothendieck-Teichmüller group (much more can be gathered from the text as well
as [20] and [21]). The proof, indeed the precise statement, requires an excursion into B.Noohi’s topological
stacks (§7.2). It also crucially uses one of the main results of [14]. We have added in §7.5 a more detailed
exposition of the one-dimensional case (which covers the case of “dessins d’enfant”) and finally a geometric,
more precisely modular, interpretation of some of the notions and results connected with CP (S) and its
completion (§7.6).

Acknowledgments. This paper benefited from conversations and exchanges with M. Boggi and L. Funar,
who after the near completion of the present text decided to produce a different exposition of part of this
material. The attentive reader will find that the differences actually overshadow some obvious similarities.

2. Discrete complexes : rigidity and reconstruction

In this section we prepare the ground by recalling some rigidity results in the discrete setting in a fashion
taylored to our needs (see §A.12 for a tightly compressed summary) and prove a reconstruction result which
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later on will be adapted to the procongruence setting; as a side benefit it provides another proof of the main
result of [24], that is the rigidity of the discrete pants complex. To a hyperbolic surface S we associate
in particular three graphs, namely the 1-skeleton C(1)(S) of the curve complex (cf. §A.5), the pants graph

C
(1)
P (S) (cf. §A.7) and the graph C∗(S) (cf. §A.8). The definitions readily extend (cf. §A.9) to the case of not

necessarily connected surfaces, with hyperbolic connected. These three graphs, and later on their respective
completions, carry all the information we need. In some sense we are trying to pass from an essentially
group theoretic framework, revolving around the Teichmüller group Γ(S) (cf. §A.3), its completions and
their cofinite subgroups to a graph theoretic one, based on the graphs above and later their completions,
together with certain subgraphs.

2.1. Rigidity of the discrete curves complex. Basically this paragraph revolves around the two short
exact sequences of §A.12. We start with the curve complex C(S) and consider its group of simplicial auto-
morphisms Aut(C(S)). There is a natural map Mod(S)→ Aut(C(S)) induced by letting a diffeomorphism
act on loops (i.e. elements of L(S) = C(0)(S); cf. §A.5), everything up to isotopy. The elements of the
center of the left-hand group lie in the kernel of that map because they commute with twists, so there is an
induced map θ : Inn(Mod(S)))→ Aut(C(S)). Assume now that C(S) is connected, that is d(S) > 1. Then
it is not too difficult to show that θ is injective. The deep fundamental fact mentioned in the introduction
and embodied by the sequence (A 2) states that θ is also surjective for (g, n) 6= (1, 2). This surjectivity, in
item i) below, is due to N.V.Ivanov ([16]) and F.Luo ([18]):

Theorem 2.1. Let S be a connected hyperbolic surface of type (g, n) with d(S) > 1. Then
i) the natural map θ : Inn(Mod(S))→ Aut(C(S)) is an isomorphism except if (g, n) = (1, 2), in which case
it is injective but not surjective; in fact θ maps Inn(Mod(S1,2)) onto the strict subgroup of the elements
Aut(C(S1,2)) which globally preserve the set of vertices representing nonseparating curves;

ii) Aut(C(1)(S)) = Aut(C(S)).

Of course, if the type is different from (1, 2) and (2, 0), Mod(S) is centerfree and θ provides an isomorphism
between Mod(S) and Aut(C(S)). Item ii) is easy but quite telling; it confirms that the pants complex
and the pants graph (i.e. its 1-skeleton) have the same automorphisms. This fact will remain valid after
completion. Here is a short proof. There is a natural map Aut(C(S)) → Aut(C(1)(S)) which is injective;
indeed the restriction to the set of vertices is already injective. To prove surjectivity it is enough to give a
graph theoretic characterization of the higher dimensional simplices of C(S) and this is easily available: a
moment contemplation will confirm that the k-dimensional simplices are in one-to-one correspondence with
the complete subgraphs (a.k.a. cliques) of C(1)(S) with k + 1 vertices, i.e. subgraphs such that any two
vertices are connected by an edge. This characterization proves ii). Note that to any simplicial complex one
can associate the complex obtained by adding in all the cliques as simplices. Here C(S) is a flag complex,
that is, its simplices are exactly given by the cliques. This will also be the case of the other complexes we will
meet (including in the profinite world) and it says that in fact all the information is contained is contained
in a graph, namely the 1-skeleton of the relevant complex.

�

Remark 2.1. The odd looking case of type (1, 2) is actually easy to understand. It stems from the fact that
C(S1,2) and C(S0,5) are isomorphic, whereas Γ1,[2]/Z(Γ1,[2]) maps into Γ0,[5] as a subgroup of index 5; indeed
θ maps Inn(Mod(S1,2)) injectively onto an index 5 subgroup of Aut(C(S1,2)). See §A.4 and [20, 24] for a
geometric discussion.

N.V.Ivanov went on to show how to use the description of Aut(C(S)) afforded by Theorem 2.1 in order
to study the action of Γ(S) on Teichmüller space. He recovered in this way ([16]) the classical result of
H.Royden about automorphisms of Teichmüller spaces:

Corollary 2.2. If d(S) > 1, any complex automorphism of T (S) is induced by an element of Mod(S).

As N.V.Ivanov again showed, Theorem 2.1 also has immediate bearing on the automorphisms of the
modular groups. Here we require one more definition, which will turn out to be of typical anabelian flavor:

Definition 2.3. An element of Aut(Γ(S)) is called inertia preserving if it (globally) preserves the set of
cyclic subgroups generated by Dehn twists, that is maps a twist in Γ(S) to a power of some other twist.

For a geometric discussion justifying this terminology we refer e.g. to [21]. In the present discrete setting
we have the following

Theorem 2.4. If d(S) > 1, all automorphisms of Γ(S) are inertia preserving: Aut∗(Γ(S)) = Aut(Γ(S)).
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This result, which again is essentially due to N.V.Ivanov (cf. [15] and references therein) rests on a group
theoretic characterization of twists inside Γ(S). It is rarely stated independently or emphasized but we would
like to stress it in view of the profinite or procongruence case; we also refer to [25] for a nice proof based on
the notion of stable rank. This is because first we do not know how to prove the profinite or procongruence
analog, which is unfortunate, and second because in the profinite setting this would feature a rather striking
and precise analog of the so-called “local correspondence” in birational anabelian geometry (see [21] for more
detail). Armed with Theorem 2.4 it is easy to use Theorem 2.1 in order to study the automorphisms of Γ(S).
Actually it turns out to be no more difficult to study morphisms between all the cofinite subgroups, (cf. [16],
Theorem 2); we state this as:

Corollary 2.5. Assume d(S) > 1 and Γ = Γ(S) has trivial center; let Γ1,Γ2 ⊂ Γ be two finite index
subgroups. Then any isomorphism φ between Γ1 and Γ2 is induced by an element of Mod(S), namely there
exists g ∈Mod(S) such that φ(g1) = g−1g1g for any g1 ∈ Γ1. In particular Out(Γ(S)) ' Z/2.

As usual one can study the two cases with nontrivial center, that is (1, 2) and (2, 0) in detail; see [25] for
the latter one. This ends our review of the rigidity properties of the curves complex in the discrete setting,
together with the group theoretic consequences. Before switching to the pants complex (or graph), we now
introduce a kind of reconstruction technique for the various complexes.

2.2. Reconstructing complexes and the rigidity of the pants graph. In this paragraph we explore
the local structure of our three complexes C(S), C∗(S) and CP (S) and show how to reconstruct them from
local data. We especially focus on the three graphs obtained by retaining only the 1-skeleta of C(S) and
CP (S). As mentioned already we often abuse notation by writing CP (S) for the pants graph, bearing in mind
that the full two-dimensional complex can be reconstructed from its 1-skeleton (cf. [24]). Trivially we have
CP (S) ↪→ C∗(S); it will turn out that this inclusion or rather its (equally trivial) analog after completion is
of fundamental importance and lies in some sense at the very basis of a topological version of Grothendieck-
Teichmüller theory. Note that (for d(S) > 1) C∗(S) is the 1-skeleton of the dual of the simplicial complex
C(S). In terms of automorphisms C∗(S) carries essentially the same information as C(S) (see below for a
precise statement) and it has been introduced essentially with a view to the above inclusion. Here we show
(in the discrete setting) how to reconstruct the complexes from local data. Rigidity of the pants graph and a
fortiori of the full complex will appear as an easy corollary. The proof of the reconstruction result (Theorem
2.10) is given in the next subsection.

Let us move to concrete and elementary notions. Given a surface S, a subsurface T is defined as T = S \σ
where σ ∈ C(S). We denote it Sσ; it is nothing but S cut or slit along the multicurve representing σ. In this
definition the curves are defined as usual up to isotopy and one can choose a representative of the multicurve.
One way to do this in a coherent way is to equip S with a (any) metric of constant negative curvature and
use the (unique) geodesic representatives of the various multicurves. The metric plainly induces a metric
with the same property on all the subsurfaces of S. There is a natural inclusion C∗(Sσ) ⊂ C∗(S); in fact
C∗(Sσ) is the full subgraph of C∗(S) whose vertices correspond to those pants decompositions of S which
include σ (ditto for CP (S)). For σ ∈ C(S), we let |σ| denote the number of curves which constitute σ. So
|σ| = dim(σ) + 1 if dim(σ) denotes the dimension of the simplex σ ∈ C(S). The quantity |σ| turns out to
be more convenient in our context; in particular d(Sσ) = d(S)− |σ|. We include throughout the case of an
empty cell (dimension −1): S∅ = S. For example if σ is a maximal multicurve (pants decomposition), Sσ is
a disjoint union of pants and C∗(Sσ) is empty or reduced to a point (cf. §A.8) depending on convention. We
call two simplices ρ, σ ∈ C(S) compatible if the curves which compose ρ and σ do not intersect properly, that
is they are either disjoint or coincide. Complex theoretically it means that ρ and σ lie in the closure of a
common top dimensional simplex of C(S). If ρ and σ are compatible, we define their unions and intersections
ρ ∪ σ, ρ ∩ σ ∈ C(S) in the obvious way. Then we clearly have:

Lemma 2.6. If ρ, σ ∈ C(S) are compatible simplices: C∗(Sρ) ∩ C∗(Sσ) = C∗(Sρ∪σ). If they are not
compatible, this intersection is empty. �

Here all graphs C∗(Sτ ) (τ ∈ C(S)) are considered as subgraphs of C∗(S). This lemma has a number of
equally obvious consequences. For instance C∗(Sρ) ⊂ C∗(Sσ) if and only if σ ⊂ ρ. Let us now return to the
connections between C∗ and CP . The inclusion CP ⊂ C∗ can be made more precise (cf. §A.8), given that
two simplicial embeddings of F in CP (S) are either disjoint, or else intersect in a single vertex.

Lemma 2.7. C∗(S) is obtained from CP (S) by replacing every maximal copy of the Farey graph F =
CP (S0,4) = CP (S1,1) inside CP (S) by a copy of the complete graph G = C∗(S0,4) = C∗(S1,1) associated to
the vertices of the given Farey graph. �
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A maximal copy of F is a subgraph of CP (S) which is isomorphic to F and is not properly contained
in another such subgraph. Note that the operation described in this lemma is not reversible; one cannot
recognize CP (S) inside C∗(S) without additional information and this may well be the seed of Grothendieck-
Teichmüller theory. For the time being we note the following consequence in terms of automorphisms:

Lemma 2.8.
Aut(CP (S)) ⊂ Aut(C∗(S))

Proof. An automorphism of CP (S) determines a permutation of the common vertex set V (S) (cf. §A.9),
which in turn defines an automorphism of C∗(S) provided it is compatible with its edges. Lemma 2.7 and
the fact that G is a complete graph ensure that this is always the case. �

So any automorphism of CP (S) determines an automorphism of C∗(S) because both graphs share the
same set of vertices and automorphisms of complexes are determined by their effect on the vertices. However
a priori only certain automorphisms of C∗(S) will preserve the additional structure given by the edges of
CP (S), inducing an automorphism of this subgraph. In dimension 1, Aut(G) is nothing but the permutation
group on its vertices. Any automorphism of F determines a unique automorphism of G by looking at its
effect on the vertices, but Aut(F ) ' PGL2(Z) is certainly much smaller than Aut(G). In the discrete case
a kind of rigidification occurs for d(S) > 1 but this is not so after completion. Again this phenomenon lies
at the very heart of Grothendieck-Teichmüller theory.

The (semi)local structure of C∗ and CP is not so mysterious. It is described in the following

Proposition 2.9. Let v ∈ V (S) be a vertex of C∗(S) and CP (S), with d(S) = k ≥ 0. Then v lies at the
intersection of exactly k maximal copies of G (resp. F ) in C∗(S) (resp. CP (S)). For any two copies Gi,
Gj (i 6= j) one has Gi ∩Gj = {v} ⊂ C∗(S) and two vertices wi ∈ Gi, wj ∈ Gj with wi 6= v, wj 6= v are not
joined by an edge in C∗(S).

As for F , for any two copies Fi and Fj (i 6= j) we have Fi ∩Fj = {v} ∈ CP (S) and for any wi ∈ Fi such
that v and wi are connected by an edge, the vertices wi and wj are not connected by a finite chain in CP (S).

Proof. Let v be given as a pants decomposition v = (α1, . . . , αk). The main point here is that any triangle
(complete graph on three vertices) of C∗ or CP is obtained by varying one of the αi’s keeping all the other
curves αj fixed. This in turn depends only on the already mentioned (and obvious) fact that two curves on
a surface of dimension 1 always intersect. So we get k copies of G inside C∗ which are indexed by the curves
appearing in v. The rest of the statement and the transposition to CP is easily verified.

Note that this shows that d(S) can be read off (graph theoretically) from C∗ or CP . In fact it can be
detected locally around any vertex v. To this end one can look for a star at v, namely a family (wi)i∈I of
vertices of C∗(S) such that each wi is connected to v by an edge and no two distinct wi’s are connected.
Then d(S) is the maximal possible number of such vertices i.e. the maximal cardinal of the index set I.
Passing to CP (S), if wi, wj ∈ Fi ⊂ CP (S), then there is a finite chain connecting wi and wj in the link of
v. Together with the last assertion of the statement, this shows that there are exactly k = d(S) copies of F
around v.

�

We now would like to reconstruct C(S) from C∗(S), hence also from CP (S) by Lemma 2.7. One way to do
this is to set up a correspondence between the subgraphs of C∗(S) which are graph theoretically isomorphic
to some C∗(Sσ) (σ ∈ C(S)) and the subsurfaces of S. This correspondence, to be later adapted to the
complete setting, is interesting even in this relatively simple discrete case. A precise wording goes as follows:

Theorem 2.10. Let C ⊂ C∗(S) be a subgraph which is (abstractly) isomorphic to C∗(Σ) for a certain surface
Σ and is maximal with this property. Then there exists a unique σ ∈ C(S) such that C = C∗(Sσ).

The proof is deferred to the next subsection. Here we list some fairly straightforward and important
consequences. First one has:

Corollary 2.11. C(S) can be (graph theoretically) reconstructed from C∗(S).

Proof. Starting from C∗(S) one builds a complex by considering subgraphs C as in the statement of the
theorem, with the inclusion map as boundary operator. The result ensures that this simplicial complex is
isomorphic to the curve complex C(S). �

One then immediately gets:

Corollary 2.12. Aut(C∗(S)) = Aut(C(S)). �
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Taking Lemma 2.8 into account, this shows that there is a natural injective map:

Aut(CP (S)) ↪→ Aut(C(S)),

from which by Theorem 2.1 we get the rigidity of the pants graph (a fortiori the pants complex) as

Theorem 2.13. Let S be a hyperbolic surface of type (g, n) with d(S) > 1. Then the natural map

θP : Inn(Mod(S))→ Aut(CP (S))

is an isomorphism.

For the fact that here type (1, 2) is no exception, see the last page of [24], of which we thus reproved the
main result. We will see below (in §7) how this rigidity result (Theorem 2.13) does survive (procongruence)
completion, in sharp and interesting constrast with item i) of Theorem 2.1)

2.3. Proof of Theorem 2.10. Let us start with some remarks and reductions. First we note that the
word “maximal” is indeed necessary. For instance there are proper subgraphs of F (resp. G) which are
isomorphic to F (resp. G). Second, implicit in the statement is the fact that any C∗(Sσ) ⊂ C∗(S) does
indeed answer the problem, namely it is maximal in its isomorphy class. Assume on the contrary that we
have a nested sequence C∗(Sσ) ⊂ C ⊂ C∗(S) where d(Sσ) = k, C is isomorphic to C∗(Sσ) and the first
inclusion is strict. Since C is connected, we can find a vertex w ∈ C \C∗(Sσ) which is connected by an edge
to a vertex v ∈ C∗(Sσ). Since Sσ has dimension k, we can find k vertices wi ∈ C∗(Sσ) as in the proof of
Lemma 2.9 (with respect to v). But w ∈ C is connected to v and it is easy to check that it is not connected
to any of the wi. In other words we have actually found k+ 1 vertices which are connected to v and no two
of which are connected, which contradicts the fact that C is isomorphic to C∗(Sσ).

Having justified the statement, we can turn to the proof of Theorem 2.10, noticing first that uniqueness is
clear: obviously C∗(Sσ) coincides with C∗(Sτ ) (σ, τ ∈ C(S)) if and only if σ = τ ; this is also a very particular
case of Lemma 2.6. From Lemma 2.9 we can now define d(C) = d(Σ), which determines |σ| (assuming the
existence of σ) since d(Sσ) = d(C) = d(S) − |σ|. Next the result is true if d(Σ) = 0 because then C∗(Σ) is
just a point and so is C. Hence it does correspond to a vertex of C∗(S), in other words to an actual pants
decomposition of S. We will prove the result by induction on k = d(Σ) but it is useful and enlightening to
prove the case k = 1 directly. This is easy and essentially well-known in a different context. Much as in
Lemma 2.9 the point is that any triangle inside C∗(S) (or CP (S)) determines a unique subsurface Σ with
d(Σ) = 1. This sets up a one-to-one correspondence between subsurfaces of S of dimension 1 and maximal
complete subgraphs of C∗(S).

Now let k > 1, assume the result has been proved for d(C) < k and consider a graph C ⊂ C∗(S) as in the

statement, with d(C) = k. We fix an isomorphism C
∼−→ C∗(Σ). Changing notation slightly for convenience,

we are looking for a subsurface T ⊂ S, defined by a cell of C(S) and such that C = C∗(T ). Note that it may
happen that the surfaces Σ and T (assuming the existence of the latter) are not of the same type because
of the well-known exceptional low-dimensional isomorphisms between complexes of curves. One will have
C∗(Σ) ' C∗(T ) and indeed, as a consequence of the result itself, C(Σ) ' C(T ), so for instance Σ could be
of type (0, 6) and T of type (2, 0).

We may now consider subsurfaces of Σ and transfer the information to C ⊂ C(S). Namely for any
σ ∈ C∗(Σ), we denote by Cσ ⊂ C the subgraph corresponding to C∗(Σσ) under the fixed isomorphism
C ' C∗(Σ). Actually, forgetting about this isomorphism, we just write Cσ = C∗(Σσ) ⊂ C ⊂ C∗(S). By
the induction hypothesis, for any σ ∈ C(Σ), σ 6= ∅, there corresponds to Cσ a unique subsurface S(σ) ∈ S.
Beware of the fact that σ now runs over the cells of C(Σ), not of C(S), and this is the reason of the added
brackets. In these terms we are trying to extend this correspondence to σ = ∅, i.e. find T = S(∅).

In order to show the existence of T it is actually enough to show that there exists a k-dimensional
subsurface of S, call it precisely T , such that any S(σ) with σ ∈ C(Σ) not empty is contained in T . Indeed,
the corresponding Cσ’s form a covering of C. So assuming the existence of such a subsurface T , we find that
C ⊂ C∗(T ); these two subgraphs being isomorphic and C being maximal by assumption, they coincide. In
order to prove the existence of T , we can now restrict attention to the largest possible S(σ)’s, i.e. to the case
|σ| = 1, which simply means that σ consists of a single loop.

We are thus reduced to showing that there exists a k-dimensional subsurface T ⊂ S such that, for any
loop α on Σ, S(α) is contained in T . Now C(Σ) is connected because k > 1 and this can be used as
follows. If α and β are two non intersecting curves on Σ, Σα and Σβ are two subsurfaces of Σ of dimension
k − 1 intersecting along the subsurface Σα∪β of dimension k − 2, where α ∪ β is considered as a simplex of
C(Σ). Informally speaking for the time being, the union S(α) ∪ S(β) has dimension k and this is the natural
candidate for T . In other words the latter, if it exists, is determined by any two non intersecting loops of
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Σ. Returning to the formal proof, let γ and δ be two arbitrary loops on Σ. There exists a path in the
1-skeleton of C(Σ) connecting γ to δ. It is given by a finite sequence γ, α1, . . . , αn, δ of loops such that α1

does not intersect γ, αn does not intersect δ and for 1 < i < n, αi does not intersect αi−1 and αi+1. Using
the existence of such a chain, we are reduced to the following situation. Let α, β, and γ be three loops on
Σ such that α ∩ β = β ∩ γ = ∅; there remains again to show that S(α), S(β) and S(γ) are contained in a
common k-dimensional subsurface T , and this will complete the proof of the result.

We can write S(α) = Sρ, S(β) = Sσ, S(γ) = Sτ , for certain simplices ρ, σ, τ ∈ C(S) with |ρ| = |σ| = |τ | =
d(S) − k + 1. Moreover, because α ∩ β = ∅ (resp. β ∩ γ = ∅) ρ and σ (resp. σ and τ) are compatible
simplices. So we can consider ρ∩ σ and σ ∩ τ , with |ρ∩ σ| = |σ ∩ τ | = d(S)− k. The corresponding surfaces
Sρ∩σ and Sσ∩τ are both subsurfaces of S of dimension k. There remains only to show that they coincide:
Sρ∩σ = Sσ∩τ (= T ). We argue much as above, when proving that a subcomplex of type C∗(Sσ) ⊂ C∗(S)
is maximal in its isomorphy class. The complexes Cρ∩σ and Cσ∩τ are two subcomplexes of dimension k
inside C which is also of dimension k, and they are maximal such complexes, being attached to subsurfaces
of S. This forces them to coincide – and in fact coincide with the whole of C. More formally, assume the
contrary, that is Sρ∩σ and Sσ∩τ are distinct. Then, breaking the symmetry for a moment and relabeling if
necessary, we can choose as above two vertices v ∈ Cρ∩σ and w ∈ Cσ∩τ \ Cρ∩σ which are connected by an
edge. Then again pick a maximal family (wi) of k vertices in Cρ∩σ which are connected to v and are not
mutually connected. Adding in the vertex w we get a family of k + 1 vertices with the same properties,
which contradicts the fact that d(C) = k and completes the proof. �

3. Profinite complexes and the isomorphism theorem

In this section we introduce and study profinite completions of the simplicial complexes which have ap-
peared above. We focus on the procongruence completion because crucial results are not available to-date for
the full profinite completions, as will become clear below. General foundations pertaining to completions of
“spaces”, possibly equipped with group actions, are now available in a profinite context, thanks in particular
to the work of G.Quick who has put these objects in the classical framework of model categories (see [31, 32]
and references therein). However in our much more specific context we can and do rely on the more direct
constructions of the first author (see [3, 4]). We then state and prove the crucial isomorphism result which
very roughly speaking provides a bridge between group theoretic and complex or graph theoretic statements.
We claim little novelty as to the framework and statements in this section, which are essentially borrowed
from [4]. However some proofs in that paper (which itself uses [5] in a crucial way) are not so easy to decipher
and it thus seemed useful to provide at times alternative proofs or at least sketches thereof, using a more
concrete, if somewhat ad hoc approach. We have also added a short “guide for the perplexed” (§3.3) aiming
at summarizing some of the main points of the theory, delineating a roadmap and pointing at a few serious
bumps along the road.

3.1. Completions etc. Profinite complexes of curves were introduced in [3] ; the necessary constructions
(and caveats) are summarized in [4], §3 to which we refer, especially concerning the congruence completions
on which we focus hereafter. Minimal inputs appear in the Appendix below (§§A.10, 11). Starting as usual
from a (connected) hyperbolic surface of finite type S and the attending Teichmüller group Γ = Γ(S), one

constructs in particular its (full) profinite completion Γ̂ as well as its (pro)congruence completion Γ̌ (see
§A.10). One then proceeds to show that the cofinite subgroups Γ(m) ⊂ Γ (m > 2) pertaining to the abelian
levelsM(m) (see again §A.10 or [4] for much more) operate without inversion on the (discrete) curve complex
C(S). This implies that this Γ-simplicial complex C(S) can be considered as a Γ(m)-simplicial set for any
m > 2 (after numbering the vertices). Now by restricting to the congruence levels which dominate some
such abelian level (that is the inverse system of congruence subgroups Γλ with Γλ ⊂ Γ(m) ⊂ Γ for some
m > 2) we define the congruence completion Č(S) which we can view as a Γ̌-simplicial profinite set, that
is a simplicial object in the category of profinite sets, which moreover is equipped with an action of the
congruence completion Γ̌. We refer again to [3, 4] for the necessary precisions. Roughly speaking this makes
sense of the definition of the congruence completion as a pro-simplicial set defined by

Č(S)• = lim←−
λ∈Λ

C(S)•/Γ
λ

where Γλ runs over the congruence subgroups of Γ, indexed by the (countable) set Λ. We denote the finite
quotients by Cλ(S) = C(S)•/Γ

λ. Note that one may and it is sometimes useful to restrict consideration to
the normal or even characteristic subgroups Γλ since both types define cofinal inverse subsystems (because
Γ is finitely generated). Note also that these completions are plainly defined “asymptotically”, that is one
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can omit any subsequence of “large” subgroups. This is why for instance we may restrict to congruence
subgroups which are contained in some subgroup Γ(m) (m > 2).

So we regard Č(S)• as a simplicial object in the category of profinite sets, although below bullets are
often omitted, while keeping in mind that we are indeed dealing with simplicial objects. There is a canonical
inclusion C(S) ↪→ Č(S) ([4], Prop. 3.3) with dense image and a natural continuous action of Γ̌ on Č(S).

In a similar fashion and for the same reasons we can define ČP (S) as the inverse limit

ČP (S)• = lim←−
λ∈Λ

CP (S)•/Γ
λ

and regard it again as a simplicial object in the category of profinite sets. It is in fact a prograph; the finite
quotients are denoted CλP (S) = C(S)•/Γ

λ. There is again a canonical inclusion CP (S) ↪→ ČP (S) with dense

image, which is equivariant for the Γ-action (resp. Γ̌-action) on CP (S) (resp. ČP (S)) and the inclusion
Γ(S) ↪→ Γ̌(S). Finally, as in the discrete case, there is a one-to-one correspondence between the vertices
of ČP (S) and the simplices of Č(S) of maximal dimension (= d(S) − 1). A deep additional information is
contained in the edges of ČP (S).

We now concentrate on alternative, more geometric and manageable descriptions of the congruence curves
complex Č = Č(S). More precisely we will shortly define the simplicial profinite complexes ČL = ČL(S) and

ČG = ČG(S), denoted respectively L(π̂) and L′(π̂) in [4] (π̂ = π̂top1 (S), the topological fundamental group
of the surface S) to which we refer for more detail. An important result, stated and proved in the next
subsection asserts that Č(S), ČL(S) and ČG(S) are isomorphic, so that we are indeed describing the same
object from several standpoints. Typically, these three objects can be defined in the full profinite setting
but the fact that they are isomorphic is not known.

In order to define ČL(S), where L stands for “loops” we first define its set of vertices L̂(S) = ČL(S)0, the
set of unoriented proloops. Recall that in the discrete setting L(S) = CL(S)0 denotes the set of unoriented
simple loops up to isotopy which moreover are not peripheral, that is do not bound a disc on S with a single
puncture. We are looking for a completion which is a priori simpler and more manageable than the one
afforded by Ĉ(S) in that it will involve only the fundamental group π = πtop1 (S) and its completion, instead

of the much more involved Γ = πtop1 (M(S)), the topological or orbifold fundamental group of the moduli
space of curves.

We proceed as follows (see again [4], §3). For a set X, let P(X) denote the set of unordered pairs of
elements of X and for G a group, let G/ ∼ denote the set of conjugacy classes in G. Now given γ ∈ π,
denote by γ± the equivalence class of the pair (γ, γ−1) in P(π) and by [γ±] the equivalence class of γ± in
P(π/ ∼). Note that the latter has a natural structure of profinite set. The point is that there is a natural
embedding ι : L ↪→ P(π/ ∼). Indeed, given a loop ` ∈ L, it can be represented by an element γ = γ(`) ∈ π
and we define ι(`) = [γ±], which is plainly independent of the choice of the representative γ of `. Finally

we define the set L̂ = L̂(S) of proloops on S as the closure of the image ι(L) inside P(π̂/ ∼), where we are
using the nontrivial fact from combinatorial group theory (conjugacy separability for the group π) that the
natural map P(π/ ∼)→ P(π̂/ ∼) is injective.

It is then easy to define, in much the same way, the simplicial complex CL(S) (with L = CL(S)0) and

its completion ČL(S) (with L̂ = ČL(S)0)). For X a set and k ≥ 1, define Pk(X) to be the set of unordered
subsets of P(X) with k elements (P = P1). Then we get a natural embedding ιk : C(S)k ↪→ Pk+1(π/ ∼)
(ι = ι0) of the k-simplices of the discrete curve complex into the unordered sets of k + 1 conjugacy classes
of the group π modulo inversion. There remains only to define ČL(S)k as the closure of the image and to
organize the collection of profinite sets (ČL(S)k) (0 ≤ k ≤ d(S) − 1) into the simplicial complex CL(S)•,
using the usual face and degeneracy operators (deleting and adding elements).

The last avatar ČG(S) of the congruence complex is actually easier to define. It is enough to define its
sets of vertices ČG(S)0 and then proceed as above. Return to L(S); mapping a simple loop to the cyclic
subgroup of Γ generated by the corresponding twist, we get a natural embedding L ↪→ G(π)/ ∼ where the
right-hand side denotes the set of cyclic subgroups of π modulo conjugacy. Again we have a further natural
injective map G(π/ ∼) ↪→ G(π̂)/ ∼ and we denote by Ĝ(S) the closure of the image of L in G(π̂)/ ∼ via
the composite embedding. Equivalently we may consider the image G(S) of L in G(π)/ ∼ and then take its

closure Ĝ(S in G(π̂)/ ∼, corresponding to certain procyclic subgroups of π̂, still up to conjugacy. Starting

from Ĝ(S) = ĈG(S)0 we then build up the prosimplicial complex ČG(S) the same way we built ČL(S) out

of L̂(S).
The next subsection will be essentially devoted to showing that these three avatars of Č(S) (including

Č(S) itself) are isomorphic. Here in closing we add a few simple but extremely useful remarks about this
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type of relatively new objects. First of all one should keep in mind that we are dealing with compact (totally
disconnected) spaces. This means in particular that there is no “going to infinity”. As a first extremely

crude approximation Ĉ(S) or Č(S) differ as much from C(S) as the ring Zp of the p-adic integrs differs from
Z. Note for instance that Thurston’s theory precisely starts from considerations connected with geometric
intersection numbers, twists and ways of going to infinity, whether on Teichmüller space T (S) or on the
curves complex C(S). Nothing of the kind is available – nor even relevant – here. For much more on a
dynamical viewpoint on these objects we refer to [21], §8.

Next we sketch a line of arguments which we will meet below more than once. Let X(= X•) denote a
discrete G-simplicial complex with G a finitely generated group. Assume the number of G-orbits in X is
finite. Let G′ be some completion of G and assume we have constructed a completion X ′ of X which is a
G′-prosimplicial complex. In particular there is a natural morphism ι : X → X ′ with dense image and X ′

enjoys the universal property that any morphism φ : X → Z from X to a G′-prosimplicial complex Z factors
through a unique φ′ : X ′ → Z i.e. φ = φ′ ◦ ι. Moreover ι is equivariant for the G-action on X and G′-action
on X ′. Note that all the morphisms we consider are continuous for the natural topologies on their respective
source and target.

In the situation above, there is at first a seemingly simple description of X ′ which goes as follows. Pick
k ≥ 0 and let Xk denote the k-skeleton of X ; by assumption one can decompose Xk into disjoint G-orbits
enumerated by the finite set Ek:

Xk =
∐
σ∈Ek

G · σ,

where the k-simplices σ are representatives in the orbits. Under these circumstances one can decompose the
k-skeleton X ′k of X ′ as

X ′k =
∐
σ∈Ek

G′ · ι(σ).

In other words it is covered by the G′-orbits of the images of the same simplices. Note that these orbits now
may not be disjoint. In all the cases we will encounter X is residually finite, that is ι is injective, and we
omit it from the notation. So X ′ is made of (not necessarily disjoint) G′-orbits and there are finitely many
in every dimension. The one line proof of the above is both simple and instructive. Consider the right-hand
side of the equality above: it is compact because so is G′ and Ek is finite; it is dense because it contains
ι(X). So it coincides with X ′k.

Finally let X and Y be as above and for simplicity assume they are both residually finite so that we
identify X (resp. Y ) with its image in X ′ (resp. Y ′). Let f : X → Y be a simplicial morphism. It naturally
determines a morphism f ′ : X ′ → Y ′ by the universality property of the completion. Moreover, if f is onto,
so is f ′. The proof is again one line : the image f ′(X ′) contains f ′(X) = f(X) = Y ⊂ Y ′ which is dense ;
f(X ′) being dense and compact (as the continuous image of a compact) in Y ′, it coincides with it.

3.2. The isomorphism theorem. Let us return to S and the three attending versions of the congruence
complex, namely Č(S), ČL(S) and ČG(S). By the universality of the Γ̌-completion we have a sequence of
(simplicial) maps :

Č(S)→ ČL(S)→ ČG(S).

We can now apply (twice) the reasoning immediately above (end of §3.1) and conclude that both maps are
surjective. Their injectivity constitutes one of the main statements in [4] :

Theorem 3.1 ([4], Theorem. 4.2). The natural maps Č(S)→ ČL(S) and ČL(S)→ ČG(S) are Γ̌-equivariant
isomorphisms of prosimplicial sets.

Sketch of proof. We will present a partial proof of this important result (using ideas from [4]), breaking it
into three propositions. First it is clearly enough to show that the composition of the two maps is injective
and one can actually restrict to showing that the map on the vertices, namely

Φ : Č(S)0 → ČG(S)0,

is injective, hence a bijection since it is known to be surjective. Recall that on the left

Č(S)0 = Ľ = lim←−
λ∈Λ

L/Γλ

where λ ∈ Λ runs over the congruence subgroups of Γ. The right-hand side is given as the closure of the set
of cyclic subgroups of π corresponding to elements of L(S) inside G(π̂)/ ∼, the set of procyclic subgroups

of π̂ (π = πtop1 (S)) modulo conjugacy. Both sides are naturally equipped with a Γ̌-action and the map Φ is
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equivariant and onto. The only moot point is injectivity, whose validity is equivalent to that of the statement
of the theorem. We used the symbol Ľ(S) because L̂(S) has already been used for the set ČL(S)0 of vertices

of ČL(S); a posteriori the theorem will confirm that Ľ(S) = L̂(S).
Our first assertion reads:

Proposition 3.2. The map Φ induces a bijection between the respective Γ̌-orbits of Č(S)0 and ČG(S)0.

In fact these Γ̌-orbit have nothing mysterious. Indeed recall how curves and (Dehn) twists are related
with the Γ-action in the discrete case. If α ∈ L is a loop (i.e. an isotopy class of simple closed curves), τα
the associated twist (we assume that the surface S has been given an orientation once and for all) and g ∈ Γ,
then we have the familiar and elementary formula

τg·α = gταg
−1.

Anticipating (a lot) we remark that the Grothendieck-Teichmüller action can and will be seen essentially as
a generalization of this formula to ‘procurves’ and ‘protwists’. For the moment we recall that this provides a
description of the Γ-orbits of the discrete complex C(S) = CL(S) = CG(S) (with obvious definitions). Two
loops α and β lie in the same Γ-orbit if and only if the topological types of the two slit surfaces Sα = S \ α
and Sβ = S \ β coincide. This is also the necessary and sufficient condition for the two associated twists τα
and τβ over α and β to be Γ-conjugate. The topological type of a twist τγ along a curve γ is defined as the
type of Sγ , the surface S slit along γ, which we also refer to as the type of the curve γ itself.

Now any Γ̌-orbit in Č contains a discrete representative, i.e. a curve in L (see the end of §3.1). So the
Γ̌-orbits of Č are enumerated, with possible redundancies, by the finitely many topological types of the slit
surfaces Sα (α ∈ L), which also enumerate the irreducible components of the divisor at infinity of the stable
compactification ofM(S). The same is true of the Γ̌-orbits of ČG , for the same reason. Since Φ is onto, this
shows that Proposition 3.2 is a consequence of the following:

Proposition 3.3. Given twists τα, τβ ∈ Γ ⊂ Γ̌ (with α, β ∈ L) two nontrivial powers τkα, τ `β (k, ` ∈ Ẑ \ {0})
are conjugate in Γ̌ if and only if k = ` and τα and τβ (equivalently α and β) have the same topological type.

Note that this will show that the topological type of a “protwist”, or actually a power thereof is well-
defined as the type of any discrete twist lying in the same Γ̌-orbit, a protwist being nothing but a Γ̌-conjugate
of some bona fide discrete twist. We will henceforth often skip the prefix “pro” (“protwists”, “procurves”,
etc.) when it should not lead to confusion. We also remark that it has long been known that the congruence
levels separate the powers of a twist (or protwist for that matter). That is, given a twist τ , the natural map

Ẑ→ Γ̌ which sends a ∈ Ẑ to τa is injective. In other words the procyclic group 〈τα〉 generated by a twist τα
is contained in Γ̌.

Granted Proposition 3.3 (see below for its proof) there remains to show what we state as:

Proposition 3.4. For every α ∈ L = C(S)0 ⊂ Č(S)0 the Γ̌-stabilizer Γ̌α ⊂ Γ̌ of α as an element of Č(S)0

coincides with the stabilizer of its image Φ(α) ∈ ČG(S)0.

Here again one can reduce – as we did – the question to the stabilizer of a discrete curve by first acting
with Γ̌. Moreover, by [3], Proposition 6.5, the Γ̌-stabilizer of α is the closure in Γ̌ of the stabilizer Γα ⊂ Γ
of α ∈ C(S)0, that is viewed as an element of the discrete complex C(S). Finally the discrete stabilizer Γα
affords an elementary geometric description.

We have now reduced the proof of Theorem 3.1 to those of Propositions 3.3 and 3.4. We will present
the first in detail, partly for its own sake, partly in order to illustrate certain techniques in a concrete, if
somewhat ad hoc way. By contrast, we will essentially rely on [4] for the proof of Proposition 3.4.

Proof of Proposition 3.3. First let us clarify the (natural) definition of a profinite power. If – say – g ∈ Γ̌

and k ∈ Ẑ, then gk ∈ Γ̌ is defined explicitly as an inverse system. For a level λ ∈ Λ, let aλ denote the order
of the finite group Γ/Γλ. Then the λ-component of gk reads gλ

kλ where gλ ∈ Γ/Γλ is the λ-component of g
and kλ ∈ Z/aλ is the aλ-component of k (of course this definition is valid for any completion of any group).

Consider again τα and τβ , where α, β ∈ L(S). We need only prove the only if part of the statement: given

two profinite powers τkα and τ `β (k, ` ∈ Ẑ \ {0}) there should exist a finite congruence quotient of Γ in which
their images are not conjugate, if either α and β do not share a common type, or k and ` are different.

For α ∈ L(S), let Tα denote the action in homology of τα. It is well-known that for any loop γ ∈ L(S) on
the surface we have

Tα[γ] = [γ] + 〈[γ], [α]〉 [α]



12 P.LOCHAK

where [γ] denotes the homology class of the curve γ and 〈 , 〉 is the symplectic intersection form on S.
Therefore Tα is either trivial, when the curve is separating (i.e. when [α] = 0), or it can be represented by
a nontrivial elementary matrix with one unit nonzero entry outside of the diagonal, when the curve α is
nonseparating. Therefore the conjugacy classes of (powers of) twists along two curves, at least one of which is
non separating, can be distinguished in any nontrivial congruence quotient of the integral symplectic group.
We are thus reduced to the case where both α and β are separating, which we assume from now on.

Let f : S̃ → S be a characteristic (finite unramified) cover associated to a finite index characteristic

subgroup K = π1(S̃) ⊂ π = π1(S), which can be identified with the image f∗(π1(S̃)) by the map f∗ induced
at the level of fundamental groups. It is Galois with Galois group GK = π/K. We would like to compute the
action in homology of the lift of a twist to such a cover. If φ ∈ Aut(π) is an automorphism of π, its restriction

to K determines an automorphism φ̃ ∈ Aut(π̃)) (π̃ = π1(S̃) = K), via the requirement of equivariance

f∗ ◦ φ̃ = φ ◦ f∗.

This also defines a way of lifting mapping classes ϕ ∈ Out+(π) = Γ = Γ(S) (where the superscript +

indicates the preservation of orientation) to ϕ̃ ∈ Out+(π̃) = Γ̃ = Γ(S̃); the lift is well-defined up to the
action of the Galois group GK . Since mapping classes are determined by their action on the simple closed
curves we derive that ϕ̃ is determined – again up to multiplication by an element of GK – by the equivariance
on these, that is the property that

f(ϕ̃(γ̃)) = ϕ(f(γ̃))

(up to homotopy) for every γ ∈ L(S) and γ̃ ∈ L(S̃) with γ = f∗(γ̃).

We say that a loop α̃ ∈ L(S̃) on S̃ is a lift of α ∈ L(S) if it is a connected component of its preimage
f−1(α); any two lifts of any two equivalent curves (i.e. curves with the same type) are equivalent. We denote
by αn the curve obtained by traveling n times around α. If α̃ is a lift of α, the restriction of f to α̃ defines
a finite covering of α of degree – say – m(α), which is independent of the choice of the lift, indeed only
depends on the type (i.e. equivalence class) of α. In fact m(α) coincides with the order in GK = π/K of
any element of π represented by the curve α, which can be seen as follows. Let d(α) denote this order; it is
well-defined since the various elements representing α belong to a single conjugacy class of GK . Then (the

class of) αd(α) belongs to K = f∗(π1(S̃)) and hence it can be lifted to a closed curve α̃. Moreover α̃ cannot

be a power of some other curve β̃ (α̃ = β̃n, n > 1) because if so the restriction of f to β̃ would cover α with

degree d(α)/n < d(α). Hence α̃ ∈ L(S̃) and m(α) = d(α).

We wish to describe a lift τ̃α of τα to Γ̃, or at least a suitable power of it. So let γ ∈ L(S), γ̃ ∈ L(S̃) a lift
of γ. By the above

f(τ̃α(γ̃)) = (τα(γ))d(γ).

On the other hand it also holds that

f(τα̃(γ̃)) = (τd(α)
α (γ))d(γ)

from which we conclude that

τ̃d(α)
α = τα̃.

We can now compute the action of τ̃
d(α)
α on the homology of S̃, which we denote T̃

d(α)
α . Indeed the action

of any power is determined by

T̃ kd(α)
α [γ̃] = T kα̃ [γ̃] = [γ̃] + k〈[γ̃], [α̃]〉[α̃]

with k an integer, γ̃ ∈ L(S̃) and the angle brackets denote the symplectic pairing on S̃ (here and below
pairings will implicitly relate to the relevant surface). From the above we find in particular that

T̃ kd(α)
α [γ̃] = [γ̃] + k〈[γ̃], [α̃]〉[α̃].

Raising this identity to the power d(β)) we find that

T̃ kd(α)d(β)
α [γ̃] = [γ̃] + kd(β)〈[γ̃], [α̃]〉[α̃];

swapping (α, k) and (β, `), this delivers

T̃
`d(α)d(β)
β [γ̃] = [γ̃] + `d(α)〈[γ̃], [β̃]〉[β̃].

We now choose a basis of the integral homology group H1(S̃) = H1(S̃,Z) as follows. First consider the

curves α̃ and β̃ along with their images by the deck transformation group GK ; we then further adjoin simple
closed curves to this set until we reach a maximal set of pairwise disjoint curves which is invariant under the
action of GK , so that no two curves are pairwise homotopic (and none is null homotopic).
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Assume that the covering S̃ is such that the lifts α̃ and β̃ of both original curves α and β are nonseparating
on S̃. The validity of this crucial assumption will be discussed below. Granted this for the moment and

using the basis of H1(S̃) described above, the matrices corresponding to T̃
kd(α)d(β)
α , resp. T̃

`d(α)d(β)
β read(

1 Bα
0 1

)
resp.

(
1 Bβ
0 1

)
where Bα (resp. Bβ) is a diagonal matrix having d = |GK | nonzero entries equal to kd(α) (resp. `d(β)).

Note that GK acts via permutations on the basis of H1(S̃).
Assume first that k = ` but α and β are not conjugate, and consider the principal congruence quotients

of the integral symplectic group Aut(H1(S̃), 〈 , 〉) of the form Aut(H1(S̃,Z/mZ), 〈 , 〉) with m an integer.

We will show below that there exists an m such that the image of T̃
kd(α)d(β)
α is not conjugate to any

matrix in the GK-orbit of T̃
kd(α)d(β)
β , which will imply that the images of τ̃

kd(α)d(β)
α =

(
τ̃kα
)d(α)d(β)

and

τ̃
kd(α)d(β)
β =

(
τ̃kβ
)d(α)d(β)

are not conjugate in the image of Γ in Aut(H1(S̃;Z/mZ), 〈, 〉)/GK . Finally it is
known that the latter is a congruence quotient of Γ, which will complete the proof of the proposition in that
case. The other case, when k 6= ` but α and β are conjugate, is easy (one can assume that α = β).

In order to find a cover S̃ → S as described above, it is enough to find a characteristic subgroup K such

that d(α) and d(β) are mutually prime. Indeed, picking then m = d(β) above, the image of T̃
kd(α)d(β)
β will be

the identity modulo m along with all its GK-conjugates, whereas the image of T̃
km(α)m(β)
α will be a nontrivial

unipotent, provided the curve α̃ is non separating on S̃. Summarizing the above, in order to complete the
proof of the proposition there remains to find a characteristic cover S̃ → S such that the lifts of α (and of
β as well, in order to preserve symmetry) are nonseparating, whereas d(α) and d(β), that is the respective
orders of the lifts of α and β in the group of the cover, are coprime; here recall that the lifts of a given loop,
i.e. the connected components of its preimage, are conjugate in the group of the cover.

The two requirements above are essentially independent. First note that for any cover, the lifts of the
nonseparating loops are nonseparating. Next it turns out to be easy to exhibit covers of S in which the lifts
of all the separating loops, hence all the loops, are nonseparating (see below). Furthermore the lifts of the
separating loops are simple : d(α) = 1 for any separating α ∈ L(S). (Note that here we are actually dealing
with conjugacy classes of loops since the elements of L(S) are not attached to a base point, but that does
not affect the argument.) Then any further cover has the property that all the lifts are nonseparating and
there remains to manufacture such a cover with d(α) and d(β) coprime. We can thus break the remaining
part of the proof of the proposition into two lemmas, the first of which reads:

Lemma 3.5. For any integer m ≥ 1, consider the cover S(m) corresponding to the invariant subgroup π(m)

which is the kernel of the natural surjection

p(m) : π = π1(S)→ H1(S,Z/m).

Then the lifts of all the loops on S to S(m) are non separating and simple.

Proof. Let α ∈ L(S) be a loop on S. If α is non separating there is nothing to prove. If it is, then its image
[α] in homology is trivial, and so in particular is its reduction in H1(S,Z/m). In other words π(m) contains
all the separating loops. So we find that d(α) = 1 which, referring to the above, implies that the multiplicity
(= d(α)) of any connected component of the preimage p−1

(m)(α) is also equal to 1. But this says that this

preimage breaks into dm = |H1(S,Z/m)| non separating curves, whose union separates S(m).
�

Here are some additional remarks. First the covers S(m) are precisely those which are used when defining
the abelian levelsM(S)(m) and the principal congruence subgroups Γ(S)(m) ⊂ Γ(S) (see e.g. [5], §1). Then
π(m) = [π, π] ·πm is a cofinite invariant subgroup of π and so is K(m) = [K,K] ·Km for any cofinite invariant
subgroup K ⊂ π. Lemma 3.10 in [5] (whose proof is much trickier) asserts that all the covers associated to
such subgroups (under some mild additional conditions) have the property that the inverse image of a loop
does not contain separating loops. Indeed it states much more which we refrain from detailing here. This
provides a much larger sample of covers and constitutes the basis for the essential “linearization” of the tower
of congruence subgroups of Γ(S) (see §3.3 below). Finally and in a different vein, we note the tantalizing
analogy between the breaking of the preimage of separating loops in a Galois cover and the completely split
primes in a Galois field extension. We now turn to the second and concluding lemma namely:

Lemma 3.6. Given α, β ∈ L(S) there exists a finite, unramified, Galois cover of S such that d(α) and d(β)
are coprime.
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Proof. Fix two coprime numbers ` and m. Consider the quotient group

Π = Π(`,m) = π1(S)/〈α` = 1, βm = 1〉
This is the fundamental group of a 2-complex obtained by adding 2-cells along the relations. It splits as an
amalgamated product Π = Π1 ∗〈α〉 Π2 ∗〈β〉 Π3 where:

Π1 = π1(S1)/〈α` = 1〉,Π2 = π1(S2)/〈α` = βm = 1〉,Π3 = π1(S3)/〈βm = 1〉.
Notice now that the Πj ’s are fundamental groups of orbifolds, namely they are Fuchsian groups of nonzero

genus. In particular they are conjugacy separable, hence they admit finite quotients in which α has order `
and β has order m. Pick such finite quotients Qj of Πj , so that Π surjects onto an amalgamated product
Q = Q1 ∗〈α〉 Q2 ∗〈β〉 Q3. It is well-known that a graph of groups in which the vertex groups are finite, such

as Q, is virtually free. Let now Q denote a finite quotient of Q such that ker(Q → Q) is free. Then the
images of α and β have respective orders ` and m in Q, since the kernel is torsionfree.

Consider next a finite index characteristic subgroup K of π contained in ker(π → Q), for instance the
intersections of its images by all the conjugacy automorphisms. Then GK surjects onto Q and in particular
the orders of α and β in GK are divisors of ` and m, respectively. In particular, these are coprime integers.

This completes the proof of the lemma, hence also of Proposition 3.3.
�

As mentioned above we refer to [4] for the proof of Proposition 3.4, which will complete the proof of
Theorem 3.1. In fact the core of the proof of Proposition 3.4, to be found at the very end of the proof of
Theorem 4.2 in [4] (top of p.5200) consists in a direct application of the “linearization theorem” in [5], to
which we return in the next subsection. In essence it does not differ so much from the proof of Proposition 3.3
presented above, which is in line with the proof of the linearization theorem.

Thanks to the isomorphism theorem we will henceforth often refer to the (pro)congruence curve complex,
without explicitly distinguishing between its three versions, namely Č(S), ČL(S) and ČG(S). As a last item
in this paragraph we mention a fairly direct consequence of Proposition 3.3, namely:

Proposition 3.7. The Γ̌(S)-orbits of the simplices of the procongruence complex Č(S) are in one-to-one
correspondence with the Γ(S)-orbits of the simplices of the discrete complex C(S).

Proof. It is enough to show that if two discrete (k − 1)-simplices α = {α1, . . . , αk} and β = {β1, . . . , βk},
as viewed in Č(S), sit in the same Γ̌-orbit, then they actually belong to the same Γ-orbit. Proposition 3.3
takes care of the case of loops (k = 1) and then one proceeds by induction. Assuming α and β are in the

same Γ̌-orbit, Proposition 3.3 says there exists g ∈ Γ such that g(α1) = β1. After twisting by g we may thus
assume that α1 = β1. Now by assumption there exists h ∈ Γ̌ such that h(α) = β and h belongs to Γ̌α1 , the

stabilizer of the loop α1 in Γ̌. By [4] (Theorem 4.5) this stabilizer is naturally isomorphic to an extension of
Γ̌(Sα1) by the procyclic group 〈τα1〉 generated by the twist along α1. Here Sα1 denotes as usual the surface
S slit along the loop α1 and note that we are using the fact that we consider precisely the procongruence
completion (see [3], Proposition 6.6). Multiplying out by a (profinite) power of the twist τα1

, we are led
to dealing with (k − 2)-simplices on the surface Sα1

, where the assertion holds true by induction, which
proceeds either on the dimension of the simplices or on the modular dimension of the underlying surface S.

�

3.3. Elucidation. Before moving forward it may be desirable, indeed necessary, to elucidate the actual
content of the above isomorphim result and its significance. The point is roughly that objects which are more
or less clearly equivalent (isomorphic) in the discrete case, are definitely not obviously so after completion.
Sometimes the equivalence requires a difficult proof and sometimes it simply does not hold true. So let us
first briefly review the various objects connected with isotopy classes of simple closed curves (a.k.a. loops)
on a connected oriented hyperbolic surface S. We will essentially confine ourselves to the case of a single
loop, higher simplices are determined by their vertices.

Let us first summarize and review four constructions, starting from an oriented loop ~γ on S, where we
may consider that ~γ ∈ π = π1(S). Since π is constructed picking out a basepoint P ∈ S this means that we
choose a loop through P in the free isotopy class of ~γ. Let γ ∈ L(S) = C(S)0 denote ~γ after forgetting the
orientation.

Working again with the fundamental group π, specifying γ is equivalent to specifying a pair γ± of two
oriented loops with opposite orientations. Passing to conjugacy classes in order to free the construction from
the choice of a basepoint, we find that γ ∈ L leads to an unordered pair [γ±] of elements of π/ ∼ which is
now an element CL(S)0.
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That was so to speak on the graph theoretic side. Now from a group theoretic viewpoint, γ defines the
cyclic subgroup 〈γ〉 ⊂ π it generates inside π (~γ and ~γ−1 define the same subgroup). Considering the
subgroup 〈γ〉 up to conjugacy in π leads to the definition of γ as an element of CG(S)0. Slightly more
generally, given any integer k > 0, one can consider the finite index cyclic subgroup 〈γk〉 ⊂ π. This will
prove useful below.

Finally one can pass to the Teichmüller group Γ(S). Then γ defines the twist τγ along it (using the
orientation of S) and again the cyclic group 〈τγ〉 ⊂ Γ(S) or its finite index subgroups 〈τkγ 〉 ⊂ Γ(S) (k > 0).

So far so good in the discrete case. Part of the fundational work then consists in exploring what happens
after completion. A main point is that one can complete either working directly with π, the fundamental
group of the surface S, and thus its profinite completion π̂, or with Γ = Γ(S), the fundamental group of
the moduli space M(S). It is clear a priori that these two forms of completions can be related only if one
considers completions of Γ that are no finer than the congruence completion Γ̌, which records the covers of
M(S) coming from covers of S. Recall that the congruence conjecture asserts that in fact Γ̌ = Γ̂. So in some
sense the problem, from this foundational standpoint, consists in setting up a dictionary between these two
kinds of completions, and also, in a slightly different but closely related fashion, between the graph theoretic
and the group theoretic information.

Concretely, what are then the main tools and results ? We will list one essential tool and two foundational
results, globally referring to [4, 5]. Let us give these threee statements names as it can help further reference
as well as pointing to the core of the matter. The tool leads to a kind of linearization of the problem, replacing
homotopy with homology. The first result is precisely the isomorphism theorem above (Theorem 3.1) ; the
second one expresses a property we will refer to as twist separability. Let us now go into somewhat more
detail.

The idea of “linearization” is fairly old and may be ascribed to E.Looijenga. It has actually been used in
the proof of Proposition 3.3 above. A general expression of this principle is embodied by Corollary 7.8 in [4].
A proper statement is cumbersome and requires introducing a lot of notation, so let us content ourselves with
the main idea, namely that given S as above, a loop γ ∈ L(S) is entirely determined by the projective set of
the homology classes of its preimages on the (finite unramified) covers of S. Explicitly and with π = π1(S),
let K ⊂ π an invariant finite index subgroup (normal would be enough but invariant is forced when working
with mapping class groups), let GK = π/K denote the quotient group, pK : SK → S the ensuing Galois
cover with group GK . For α ∈ L(T ) a loop on a surface T , let [α] ∈ H1(T,Z) denote the associated integral
homology class. Then given γ ∈ L(S), we can consider the projective system ([p−1

K (γ)])K of homology classes
on SK , where K runs through the cofinite invariant subgroups of π (for K = π, SK = S and we omit the
mention of pπ = id). Roughly speaking, the theorem asserts that γ is entirely determined by the family of
“linear” data ([p−1

K (γ)])K .
What are the obvious obstacles which arise when trying to identify a loop via its homology class? In fact,

a loop α ∈ L(S) is trivial in homology, that is [α] = 0 ∈ H1(S), if and only if α is separating. More generally,
given non intersecting loops α, β ∈ L(S), their homology classes coincide ([α] = [β]) for the appropriate
orientations if and only if they form a cut pair, that is their union separates the surface (the first case can
be seen as the case β = ∅). This is why it is important to detect a large sample of covers pK : SK → S such
that for any loop on S, more generally any simplex σ ∈ C(S), the inverse image p−1

K (σ) does not contain
separating curves nor cut pairs. This is provided by the important Lemma 3.10 in [5] (see above, after the
proof of Proposition 3.3).

Passing to the first main result, it was already mentioned that it is embodied by the isomorphism theorem
(Theorem 3.1) above. Here we simply insist again that its main thrust lies in connecting, on the one hand
completion via the Teichmüller group Γ(S) i.e. the fundamental group of the moduli space M(S), which is
used when defining Č(S), on the other hand completion via the much simpler and more tractable fundamental
group π = π1(S) of the surface S itself, which is used when defining both ČL(S) and ČG(S).

The second main result traces a fundamental link between (pro)curves and (pro)twists, that is between
the graph theoretic and the group theoretic facets of the theory. This is Theorem 5.1 in [4], which can be
stated more easily. Starting in the discrete setting we have (after orienting the surface S) a natural injective
map d : L(S) ↪→ Γ(S) which to a loop γ ∈ L(S) assigns the corresponding twist τγ . Given k ∈ Z \ {0} it can
be generalized to dk : γ 7→ τkγ (d = d1), still an injective map between the same source and target.

As usual, upon completion the plot thickens and things become more interesting. From the injective map
d and the natural embedding Γ ↪→ Γ̌ we get a (still injective) map which we denote by the same name for
simplicity d : L ↪→ Γ̌. By the universality of the progruence completion, this leads to a map

d̂ : Ľ(S)→ Γ̌(S)
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which now may or may not be injective (this is precisely the moot point here) with, as above,

Ľ(S) = Č(S)0 = lim←−
λ∈Λ

L(S)/Γλ.

Finally the isomorphism theorem ensures that Ľ(S) = L̂(S) = ČL(S)0, namely the set of (pro)curves on S.

This can be generalized in the obvious way to d̂k : Ľ(S) → Γ̌(S) for any k ∈ Z \ {0} and indeed jazzed up

to k ∈ Ẑ \ {0}, using the density of Z in Ẑ. Note from a topological viewpoint that in the complete case we
are always considering continuous maps between compact spaces.

We may now state the second fundamental result about twists separability we have been alluding to:

Theorem 3.8 ([4], Thm. 5.1). For any k ∈ Ẑ \ {0} the map

d̂k : Ľ(S)→ Γ̌(S)

is injective.

In words : a (pro)curve can be detected via any (profinite) power of the associated twist. Indeed more is
true, as can be gathered from the – difficult – proof of the above result (see [4], Remark 5.14). Let Dk ⊂ Γ(S)
denote the set of k-th powers of twists (k ∈ Z \ {0}) and let Ďk ⊂ Γ̌(S) denote its closure in Γ̌(S). Extend

the definition of Ďk to k ∈ Ẑ \ {0}. Then one can show that the intersection Ďk ∩ Γ(S) is exactly Dk if
k ∈ Z and is empty if not. This leads to the following striking corollary of the above theorem, or rather of
its proof, which will be substantially strengthened below (see in particular Proposition 4.3):

Corollary 3.9. Let α, β ∈ L̂(S) be two (pro)curves, k, ` ∈ Ẑ \ {0} two nonzero (pro)integers, then the
equality τkα = τ `β holds if and only if α = β and k = `.

We will next proceed to record some important consequences of these foundational results, before moving
to the study of the automorphisms of our various simplicial complexes. Note again that these complexes are
entirely determined by their 1-skeleta. So in some sense we are primarily interested in profinite graphs.

Remark 3.1. The above is in some ways reminiscent of anabelian geometry and the exploration of the
structure of the Galois groups of fields, especially fields of functions (including in positive characteristic).
On this topic we refer for instance to [33] and in particular some basic phenomena summarized there in
Proposition 1.5, as well as to the work of F.Pop (starting with [30]).

4. From Graphs to Groups and back : Centralizers and Normalizers of twists

Fixing as usual a connected oriented hyperbolic surface S, there is a natural action of Γ̌(S) on the three
isomorphic versions of the curve complex, namely Č(S), ČL(S) and ČG(S). This group also acts on powers
of twists by conjugation. By Theorem 3.8, given a loop α ∈ L(S), the centralizer Z(τα) of τα in Γ̌ coincides

with the stabilizer Γ̌α of α for the action of Γ̌ on Ľ = L̂. This still holds true for τkα with α ∈ L̂ and

k ∈ Ẑ \ {0}. Now the stabilizer Γ̌α admits a rather explicit description, and more generally so does Γ̌σ, the
stabilizer of a simplex σ ∈ Č(S) (equivalently ČL(S), ČG(S)). The structure is identical to the one occurring
in the discrete case and this can be vindicated relatively easily; see [4], Theorem 4.5 and references there. It
is important to insist at this point that we are definitely using the procongruence completion. The analogous
description for the full profinite completion (as stated in [3]) remains unproved to-date.

Here we give a short and partial account of the descriptions of the centralizers and normalizers of twists
as well as of the commutative subgroups of Γ̌(S) generated by finite sets of commuting twists. We refer
globally to [4, 7] for detailed results and proofs. The second reference improves on the first, addressing in
particular the case of multitwists, that is products of powers of commuting twists. As is often the case the
results are easily predictable from the discrete case, where direct geometric proofs are elementary. The proofs
however are a different and much more involved matter. These results – and more – in the procongruence
case essentially follow from Theorems 3.1 and 3.8, as well as the improvement of the latter in [7] (§§5,6).
They are again not available to-date in the full profinite setting.

First an important connection between commuting twists and “nonintersecting procurves” is given by:

Theorem 4.1. (cf. [4], Corollary 6.4). Let α1, α2, . . . , αk ∈ Ľ(S) be proloops and τh1
α1
, τh2
α2
, . . . , τhkαk ∈ Γ̌(S)

denote nontrivial powers of the associated twists (h1, h2, . . . , hk ∈ Ẑ\{0}). Then the τhiαi ’s pairwise commute

if and only if the αi’s span a simplex α ∈ ČL(S).
Moreover the centralizer ZΓ̌(τh1

α1
, τh2
α2
, . . . , τhkαk ) ⊂ Γ̌(S) of this family of powers of twists coincides, up to

possible permutations of the curves, with the stabilizer Γ̌α of the simplex α for the action of Γ̌(S) on ČL(S).
�
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Before the statement we used the phrase “nonintersecting procurves” with inverted commas. It shoud be
understood that the fact that the curves α1, α2, . . . , αk span a simplex of ČL(S) (equivalently of Č(S)) defines
them as “nonintersecting”. There is no direct definition available in a profinite context. The theorem above
says that nonintersection may equivalently be characterized by the commutation of any set of nontrivial
powers of the associated twists.

Normalizers of finite families of commuting twists are quite close to their centralizers. Just as in
the discrete case, they only differ by a possible finite group of permutations. More precisely let again
α1, α2, . . . , αk ∈ Ľ(S) span a (k−1)-simplex α ∈ ČL(S), let h = {h1, h2, . . . , hk} denote a k-tuple of nonzero

profinite integers, and let τ
h
α = {τh1

α1
, τh2
α2
, . . . , τhkαk } be the corresponding family of powers of twists. Finally,

let Gα,h ⊂ Γ̌(S) denote the closed free abelian group spanned by the components of τ
h
α . We will abbreviate

this to Gα if hi = 1 for all i = 1, . . . , k. With these pieces of notation we have:

Theorem 4.2. (cf. [4], Theorem 6.6). The normalizer NΓ̌(Gα,h) ⊂ Γ̌(S) coincides with the stabilizer Γ̌α of

the simplex α for the action of Γ̌(S) on ČL(S). �

We refer the reader to [7], Corollary 6.2 for a strengthening of Theorems 4.1 and 4.2 to the analogous
description of the centralizer and normalizer of a single multitwist, as a corollary of the following result. Let
α = {α1, α2, . . . , αk} ∈ Č(S)k−1 and β = {β1, β2, . . . , β`} ∈ Č(S)`−1 be two simplices, h = {h1, h2, . . . , hk}
and i = {i1, i2, . . . , i`} two sets of nonzero profinite integers. Then we have:

Theorem 4.3. (cf. [7], Theorem 6.1). The equality of the products

τh1
α1
τh2
α2
· · · τhkαk = τ i1β1

τ i2β2
· · · τ i`β`

holds in Γ̌(S) if and only if k = l, α = β and h = i. �

It is both telling and useful to rephrase the statements above in a more topological and intrinsic fashion.
Recall that for a simplex α ∈ Č(S)(' ČL(S)), we denote by Gα ⊂ Γ̌(S) the closed abelian subgroup
generated by the twists along the multicurves defining the vertices of α. We actually already proved the
following

Proposition 4.4. Let α, β ∈ Č(S) be two simplices. Then:

i) If U ⊂ Gα is an open subgroup of Gα, the normalizer NΓ̌(U) ⊂ Γ̌(S) coincides with the stabilizer Γ̌α of α

for the action of Γ̌(S) on Č(S). In particular NΓ̌(U) = NΓ̌(Gα). Moreover the centralizer ZΓ̌(U) has finite
index in NΓ̌(Gα), the latter being an extension of a finite permutation group by the former.
ii) The intersection of the groups Gα and Gβ is given by

Gα ∩Gβ = Gα∩β .

In particular, Gα ∩Gβ is open in α (resp. β) if and only if α ⊂ β (resp. α ⊂ β). �

Given the above it is now easy and useful to manufacture yet another representation of the congruence
curves complex, which we call ČT (S) (T for twist). Let us start from the discrete situation. Then we have
the curve complex C(S) and two incarnations or representations of it, CL(S) and CG(S), respectively by
means of curves and conjugacy classes of cyclic subgroups of π = π1(S). All three are isomorphic and it is
also fairly easy to prove the discrete version of Proposition 4.4 above. In particular, for a simplex α ∈ C(S),
Gα ⊂ Γ(S) denotes the free abelian group generated by the commuting twists along the curves defining the
vertices of α and in the statement of the discrete analog of Proposition 4.4 one should read “open” as “finite
index”. Let now G(Γ) denote the (discrete) poset of all the subgroups of Γ = Γ(S). There is a natural map

C(S)→ G(Γ)

which to a simplex α associates the group Gα. It is injective by the discrete analog of ii) in Proposition 4.4
and the image has a natural structure of simplicial complex induced by that of C(S). We call this image
CT (S); it is (tautologically) isomorphic to C(S) and realizes this complex inside G(Γ), which is equipped
with a natural action of Γ by conjugation.

We now return to the procongruence setting, adding in a useful refinement; namely we would like to
work “virtually” in the sense of group theory, that is up to considering open subgroups. (This is of course
doable, mutatis mutandis, in the discrete case as well.) The first observation is that the closed subgroups of
a profinite group have a natural structure of profinite (po)set. Sticking to our specific case, with Γ̌ = Γ̌(S),
we define G(Γ̌), as the set of closed subgroups of Γ̌, which can be written as

G(Γ̌) = lim←−
λ∈Λ

G(Γ/Γλ),
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exhibiting it as a profinite set. Here Γλ runs through the normal congruence subgroups of Γ and G(Γ/Γλ)
denotes the finite set of the subgroups of the finite group Γ/Γλ. We also have an action of Γ̌ on G(Γ̌) by
conjugation, as well as a (Γ− Γ̌)-equivariant map G(Γ)→ G(Γ̌) sending a subgroup of Γ to its closure in Γ̌.

On the other hand we define a weight function on procurves w : Ľ(S) → Z∗+, with values in the strictly

positive integers, requiring that it be Γ̌-invariant. Since the Γ̌-orbits of Ľ(S) are in one-to-one correspondence
with the types of (ordinary) loops on S, there only remains to assign an arbitrary (strictly positive) integer
to each of the finitely many types. In a more geometric or modular way, this is tantamount to assigning such
an integer to every irreducible component of the divisor at infinity of the stable compactification of M(S).

Given a weight function w we now consider the map C(S) → G(Γ̌) which sends a discrete simplex

α = {α1, . . . , αk} to the closed abelian subgroup generated (as a Ẑ-module) by the τ
w(αi)
αi (i = 1, . . . , k). We

then take the closure of the image of C(S) and call it ČT ,w(S) ⊂ G(Γ̌); it is equipped again with a structure

of profinite simplicial complex and an action of Γ̌(S). In a slightly more intrinsic fashion this amounts to
considering the discrete weighted complex CT ,w(S) ⊂ G(Γ) as mentioned above and map it to G(Γ̌) via the

natural map G(Γ)→ G(Γ̌). The closure of the image is by definition ČT ,w(S). This being said, the following
result and its easy proof should not come as a surprise (compare [4], Proposition 6.8):

Theorem 4.5. Let w be a weight function as above. There is a natural Γ̌-equivariant isomorphism

Č(S) ' ČL(S)→ ČT ,w(S).

Moereover the images ČT ,w(S) ⊂ G(Γ̌) for varying w are naturally isomorphic.

Proof. The map in the statement exists by universality and is onto by the usual argument: C(S) is dense
in Č(S) which is compact so that its image is closed. It is injective by Proposition 4.4. Note that the
weight function w admits a unique extension from L(S) to Ľ(S) since any proloop belongs to the Γ̌-orbit
of a discrete loop and the Γ̌-action is type preserving. Finally i) in Proposition 4.4 shows that we can work
virtually. Namely consider the trivial weight function w0, assigning weight 1 to every element of Ľ(S) and
write ČT (S) = ČT ,w0

(S). Then there is a canonical isomorphism ČT ,w(S) ' ČT ; it is defined simply by

mapping every power τ
w(ai)
αi (i = 1 . . . , k) to the twist ταi itself. �

The introduction of the weight function simply provides an explicit basis of open subgroups of the groups
Gα, just as with the groups Gα,h. One can again rephrase the above in a more intrinsic fashion as follows

(compare [4], Theorem 6.9). Let Γ̌λ ⊂ Γ̌ be a normal open subgroup of Γ̌, equivalently the closure in Γ̌ of a
normal conguence subgroup Γλ ⊂ Γ. We can form the profinite set G(Γ̌λ) of the closed subgroups of Γ̌λ and
there is a natural map G(Γ̌)→ G(Γ̌λ) defined by mapping each subgroup G ⊂ Γ̌ to the intersection G ∩ Γ̌λ.
Now consider the prosimplicial complex ČT (S) = ČT ,w0(S) as above, which on the vertices is defined simply

by mapping any (pro)loop γ ∈ Ľ(S) to the associated (pro)twist τγ ∈ Γ̌(S). Then the images of ČT (S) in

G(Γ̌λ) for varying λ ∈ Λ are naturally isomorphic; in other words, the map ČT (S) → G(Γ̌λ) is injective for
every λ ∈ Λ. The proof amounts to a translation of the above.

Let us briefly summarize where we stand. Given a hyperbolic surface S, we first defined the congruence
curve complex Č(S) by completing the usual discrete version C(S), using the action of the Teichmüller
group. We now have at our disposal three other realizations of Č(S), namely ČL(S) and ČG(S) which
are both constructed by using the fundamental group π = π1(S) of the surface and finally ČT (S) which
uses Γ(S), the fundamental group of the moduli stack M(S). All four appear as the completion or closure
of natural discrete versions; referring to Grothendieck’s manuscript Longue marche à travers la théorie de
Galois, they are equipped with natural “discretifications”. They are also provided with a natural action of
Γ̌(S) extending the actions of Γ(S) on the respective isomorphic discrete versions. All four are isomorphic;
moreover the isomorphisms are Γ̌(S)-equivariant and “natural” in the sense that once more they extend the
obvious or say, geometric isomorphisms between the discrete versions (they are also natural with respect to
varying S). Finally there is a dictionary between the graph or complex theoretic side and the group theoretic
side, again extending the elementary discrete, geometric dictionary.

5. Procongruence complexes : structure and reconstruction

This section revolves around three results. First we show that the complexes Č(Sg,n) are not isomorphic
for different values of the type (g, n) (the latter being well-defined thanks to the results of §3 above ; see
especially Proposition 3.7) except for a few low dimensional exceptions which already occur in the discrete
setting. Indeed our result parallels the analogous one in the discrete case although the proof significantly
departs from the discrete one. We refer especially to [18] for the proof in the discrete setting, including
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some more references and background. Note that this already parallels a classical nonisomorphism result for
Teichmüller spaces, due to D.B.Patterson (see also [9]). Next we elucidate the structure of the procongruence
complex of curves Č(S), or rather its close cousins Č∗(S) and ČP (S), in a fashion which again parallels the
discrete setting as discussed in §2 above. Finally we prove a reconstruction result in the procongruence case,
on the model of Theorem 2.10 above for the discrete complexes.

5.1. Isomorphisms and non isomorphisms among the congruence curve complexes. Our first
result reads:

Theorem 5.1. Let S = Sg,n and S′ = Sg′,n′ be two connected hyperbolic surfaces of different types (g, n)

and (g′, n′). Then the procongruence complexes Č(S) and Č(S′) are not isomorphic, except for the following
exceptional cases: Č(S1,1) ' Č(S0,4), Č(S1,2) ' Č(S0,5) and Č(S2,0) ' Č(S0,6).

Before going into the proof proper, let us dispose of the low dimensional exceptions. We mentioned the
one dimensional cases for the sake of completeness only; the isomorphism is then tautological, provided
that C(S1,1) and C(S0,4) are redefined properly, as explained in §2 (see also §§A.7, 8). The two and three
dimensional cases stem directly from the exceptional discrete cases (see e.g. [18]). One has C(S1,2) ' C(S0,5).

Then Č(S1,2) (resp. Č(S0,5)) is the completion of that complex with respect to the action of Γ1,[2] (resp.
Γ0,[5]). However, Γ1,[2] acts via the quotient by its center Γ1,[2]/Z (Z = Z(Γ1,[2]) ' Z/2) and we have an
inclusion Γ1,[2]/Z ⊂ Γ0,[5] where Γ1,[2]/Z can be identified with the stabilizer of one of the 5 marked points,

so has finite index (= 5) in Γ0,[5]. This implies that Č(S1,2) ' Č(S0,5). The last case is analogous.
In order to prove Theorem 5.1 we first of all have to drastically reduce the number of possible isomorphisms

between two complexes Č(Sg,n) and Č(Sg′,n′) for different types (g, n) and (g′, n′). This we do by introducing
two invariants. The first one is the dimension of the complex, dg,n = dim(C(Sg,n)) = 3g−3+n. It is indeed

invariant under completion, since C(Sg,n) injects densely into its completion Č(Sg,n). We will then introduce
another invariant, or rather two closely connected ones, which will require some preliminary lemmas. This
departs from the discrete setting, where the cohomological dimension of the complex C(Sg,n) provides a
second invariant (see [18] and item ii) in Remark 5.1 below).

The first lemma-definition introduces a useful invariant in the discrete case, which will subsequently be
shown to survive completion. Denote by LC(σ) the link of the simplex σ in a simplicial complex C. We
define a graph L−C(σ), the dual link of σ, as follows: the set of vertices is the same as that of LC(σ), and we

add an edge joining two vertices in L−C(σ) if and only if these are not joined by an edge in LC(σ). Also and
following [18], we say that a simple loop on S (or rather an element of L(S)) is of boundary type if it bounds
a subsurface of type (0, 3). The following lemma is immediate, after recalling that C(S0,3) is empty:

Lemma 5.2. Let α ∈ L(S) be a simple closed curve on S connected hyperbolic. The dual link L−C(S)(α)

is nonempty if S is different from S1,1 (α nonseparating) and S0,4 (α separating and of boundary type). If
nonempty, the dual link L−C(S)(α) is connected if and only if α is either nonseparating or of boundary type.

�

The key property to be used in the sequel is a certain type of persistence upon completion. We start
with a definition. For any simplicial complex C, we say that it is (finitely) chain connected if every pair of
vertices can be joined by a finite chain of edges in C. Note that this only depends on the 1-skeleton of C,
and indeed below we work only with graphs. Note also that this is a combinatorial rather than topological
property and indeed part of the argument below is combinatorial, independent of the underlying profinite
topology. Here is the main invariance lemma:

Lemma 5.3. Let α ∈ L(S) be a simple closed curve on S connected hyperbolic. Then the dual link L−
Č(S)

(α)

is chain connected if and only if the discrete dual link L−C(S)(α) is (chain) connected.

Proof. Here we put the word “chain” between brackets in the discrete case because it is clear that L−C(S)(α)

is chain connected if and only if it is connected for the usual topology.
Let us first express the fact that two procurves α, β ∈ Ľ(S) are disjoint, in a concrete, combinatorial way.

They are represented by coherent systems (αλ)λ∈Λ and (βλ)λ∈Λ where Λ denotes as usual the inverse system
of the congruence levels and αλ, βλ ∈ L(S). One can project αλ (resp. βλ) to αλ ∈ Lλ(S) = L(S)/Γλ =
(C(S)/Γλ)(0) = Cλ(S)(0) (idem βλ). For λ large enough (Γλ small enough), the group Γλ ⊂ Γ(S) acts
simplicially on C(S). So we can choose αλ and βλ to be adjacent in C(S) (that is, connected by an edge),
and the projections αλ and βλ will then be adjacent in the quotient complex Cλ(S). We thus conclude that
α, β ∈ Ľ(S) are adjacent, that is are joined by an edge in Č(S)(1), if and only if they can be represented by
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coherent systems αλ, βλ ∈ L(S) such that αλ and βλ are adjacent (that is, are disjoint) in C(S) for λ large
enough (they may coincide for a finite number of λ’s). If one of the two curves is discrete, say β ∈ L(S),
the same holds with βλ = β for every λ ∈ Λ. Conversely two curves α, β ∈ Ľ(S) are not adjacent in Č(S),
or say have nontrivial intersection, if and only if for every representatives (αλ)λ∈Λ and (βλ)λ∈Λ, αλ ∈ L(S)
and βλ ∈ L(S) intersect non trivially for λ large enough.

Going back to the proof of the lemma, let us first assume that the dual link L−
Č(S)

(α) is chain connected

in the congruence completion. By the previous lemma we have to show that α is either nonseparating or of
boundary type. Assume the contrary, that is α separating not of boundarytype; we will show that it leads
to a contradiction. By our assumption there exist then two loops β, γ ∈ L(S) lying in different connected
components of the slit surface Sα. They determine two vertices of L−

Č(S)
(α) and since this complex is chain

connected there exists a finite chain of (pro)loops ζi ∈ Ľ(S) (j = 0, . . . , k) connecting β and γ in L−
Č(S)

(α):

ζ0 = β, ζk = γ. By definition this means that ζj is not adjacent to ζj+1 for j = 0, 1, . . . , k − 1. On the
other hand α is adjacent to ζj for all j = 0, 1, . . . , k, so there are defining families (ζj,λ)λ∈Λ with ζj,λ ∈ L(S)
disjoint from α ∈ L(S) for all j and for λ large enough. But now since ζj and ζj+1 are not adjacent, we
find that ζj,λ and ζj+1,λ intersect nontrivially for λ large enough. In particular for any such λ the chain
(ζi,λ)j∈(0,k) is connected and joins the two connected components of Sα, a contradiction.

Conversely, assume that L−C(S)(α) is chain connected and let β̌, γ̌ be two vertices of L−
Č(S)

(α). We want

to prove that there is a finite path in L−
Č(S)

(α) connecting them. If {β̌, γ̌} is an edge of L−
Č(S)

(α) there is

nothing to prove. If not the three pairs of vertices of the triplets {α, β̌, γ̌} are edges of Č(S) and the latter
being a flag complex, {α, β̌, γ̌} forms a triangle (a 2-simplex), that is it belongs to Č(S)(2). Now there exists
g ∈ Γ̌ = Γ̌(S) such that g · {α, β̌, γ̌} = {α, β, γ} ∈ C(S)(2) for some loops β, γ ∈ L(S); indeed we may – and
did – choose g ∈ Γ̌α ⊂ Γ̌, the stabilizer of α. By assumption we can now find a path between β and γ in
L−C(S)(α) and pull it back via g−1 to a path between β̌ and γ̌ in L−

Č(S)
(α), which completes the proof. Note

that we have actually been using a basic property of the procongruence topology, namely that it is inherited
by a subsurface obtained by cutting a given surface S along a multi curve. Here the closure Γ̄α in Γ̌ of the
discrete stabilizer along the curve α is isomorphic to its congruence completion Γ̌α, that is the completion
of the modular group Γ(Sα) of the surface slit along α. This important property will be further explicited
and proved in general in Proposition 5.8 below.

�

Next we define two closely connected invariants and explicitly compute them in the discrete case before
showing that they survive after completion. Given a connected hyperbolic surface S, we let Sep(S) denote
the maximal number of pairwise disjoint separating curves not of boundary type on the surface S. Here and
below “disjoint curves” means as usual “disjoint elements of L(S)”, that is “free isotopy classes of simple
closed curves with disjoint representatives”. We also denote by NSep(S) the maximal number of disjoint
curves which are either nonseparating or of boundary type on S. It is fairly easy to compute these numbers
explicitly. This is taken care of by the following counting lemma:

Lemma 5.4. We have

Sep(Sg,n) =

 max(n− 5, 0), if g = 0;
max(n− 2, 0), if g = 1;
2g + n− 3, if g ≥ 2.

NSep(Sg,n) =

{ [
n
2

]
, if g = 0;

3g + n− 3, if g ≥ 1.

Proof. Any maximal set of disjoint curves on S0,n has n − 3 elements, among which at least two are of
boundary type. Hence Sep(S0,n) ≤ n − 5. In order to check equality, define inductively a system of curves
by starting with a boundary type curve α1, adjoining iteratively a new curve αi surrounding αi−1 and a new
boundary component (or marked point).

A separating curves on S1,n bounds a copy of S1,k, k ≤ n. Thus there are at most n − 1 disjoint such
curves, among which at least one is of boundary type. This yields Sep(S1,n) ≤ n − 2. Again equality is
attained by an obvious variant of the system of curves constructed above in genus 0.

Note now that the maximal number of pairwise disjoint separating curves on Sg,n is 2g + n − 3 for any
(g, n), so that Sep(Sg,n) ≤ 2g + n − 3. For g ≥ 2 it is immediate to construct a system with exactly this
number of disjoint separating curves, none of which is of boundary type ; the equality follows.

Moving to the computation of NSep(Sg,n), if g = 0, all curves are separating and one can arrange as many
curves of boundary type on S0,n as there are pairs of boundary components (or marked points), namely at
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most
[
n
2

]
. For g ≥ 1, a set of pairwise disjoint curves on Sg,n has at most 3g − 3 + n elements (= dg,n + 1)

so that NSep(Sg,n) ≤ 3g+ n− 3. Since one can construct a system with this many nonseparating curves on
Sg,n, equality holds true.

�

We now show the invariance of these numbers under isomorphisms of complexes. Here we need only
consider (combinatorial) simplicial isomorphisms, without any topological requirement, that is continuity
with respect to the natural profinite topology is not required in the procongruence (or possibly a more
general profinite) setting, as will be the case in the next paragraph.

Lemma 5.5. A simplicial automorphism φ : Č(S)→ Č(S′) preserves both Sep and NSep, that is we have
Sep(S) = Sep(S′) and NSep(S) = NSep(S′).

Proof. Let α = (α1, α2, . . . , αs) ∈ C(S)(s−1) be a simplex with every loop αi ∈ L(S) separating and not of
boundary type. We assume α has maximal dimension, that is s = Sep(S). Since φ is simplicial, φ(α) is a
simplex of Č(S′). As usual there exists a discrete simplex in the orbit of φ(α), that is a g ∈ Γ̌(S′) such that
g · φ(α) ∈ C(S′) ; call this discrete simplex β = (β1, β2, . . . , βs) ∈ C(S′)(s−1).

Since both φ and the Γ̌(S′)-action are simplicial, for every i = 1, 2, . . . , s, the link LČ(S)(αi) and dual link

L−
Č(S)

(αi) are combinatorially isomorphic to LČ(S)(βi) and L−
Č(S)

(βi) respectively.

Now since L−
Č(S)

(αi) is not chain connected we derive that L−
Č(S)

(βi) is not chain connected either and

hence by Lemma 5.3 the curves βi are separating not of boundary type. This implies that Sep(S) ≤ Sep(S′).
The reverse inequality follows by symmetry, that is by considering the inverse isomorphism φ−1.

The proof for NSep is completely similar.
�

We are now finally in a position to complete the proof of Theorem 5.1. Assume there exists a simplicial
isomorphism φ : Č(S)→ Č(S′), where S = Sg,n and S′ = Sg′,n′ are of types (g, n) and (g′, n′) respectively.
It follows that C(S) and C(S′) satisfy the equalities :

dim(S) = dim(S′), Sep(S) = Sep(S′), NSep(S) = NSep(S′).

Straightforward bookkeeping using Lemma 5.4 shows that if the two types are different, the only possible
isomorphisms occur for:

(1) g = 2, n ≥ 0, g′ = 0, n′ = n + 6 and n =
[
n+6

2

]
, so that n = 0. In this case (g, n) = (2, 0) and

(g′, n′) = (0, 6).
(2) g = 1, n ≥ 1, g′ = 0, n′ = n + 3 and n =

[
n+3

2

]
, so that n ∈ {2, 3}. Then (g, n) = (1, 2),

(g′, n′) = (0, 5) or (g, n) = (1, 3), (g′, n′) = (0, 6).
(3) g = 2, n ≥ 0 and g′ = 1, n′ = n+ 3.

In the first two cases we have to exclude a possible isomorphism betwee Č(S1,3) and Č(S0,6). Assume

such an isomorphism φ : Č(S1,3) → Č(S0,6) does exist. Let α and γ be nonseparating curves on S1,3 and

β of boundary type, such that {α, β, γ} ∈ C(S1,3)(2) form a (discrete) triangle. Next pick g ∈ Γ̌(S0,6) such

that {α′, β′, γ′} = g · φ({α, β, γ}) ∈ C(S0,6) is a discrete triangle (both Γ̌((S0,6) and φ act componentwise).
Since the dual links of α and α′ = g ·φ(α) are isomorphic (ditto for β and γ), it follows that α′, β′ and γ′

are disjoint loops of boundary type on S0,6. There then exists a diffeomorphism of S0,6 swapping α′ and β′

while fixing γ′. Let h denote its class in the extended maping class group of S0,6) (it may not preserve the

orientation) and let H = φ−1g−1hgφ ; it is an automorphism of Č(S1,3), exchanging α and β while keeping
γ fixed.

Let now δ be a loop disjoint from α and β, intersecting γ in two points such that δ separates S1,3 into
two components S1,1 containing α and S0,4 containing β. Lemma 5.3 shows that the dual link L−

Č(S1,3)
(δ)

is disconnected. Consider the preimage {α, β,H−1(δ)} ∈ Č(S1,3)(2) of the simplex {β, α, δ} ∈ C(S1,3)(2) via

H and let f ∈ Γ̌(S1,3) be such that f · {α, β,H−1(δ)} ∈ C(S1,3)(2) is a discrete triangle. The curves α and
β form a cut pair, dividing S1,3 into two components which are copies of S1,1 and S0,4 respectively. One

can take f in the stabilizer of α and β, indeed in a group of type Γ̂0,4 = Γ̂(S0,4) (which is profree on two
generators) because f · H−1(δ) lies in the copy of S0,4. The curve f · H−1(δ) is either nonseparating as a
curve on S1,3 or of boundary type. In both cases its dual link in the completed complex, L−

Č(S1,3)
(f ·H−1(δ))

is chain connected. On the other hand it should be isomorphic to L−
Č(S1,3)

(δ), which is disconnected. This
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contradiction proves that Č(S1,3) and Č(S0,6) are not isomorphic; of course Č(S1,3) and Č(S2,0) are not

isomorphic either, since Č(S0,6) and Č(S2,0) are indeed isomorphic.

Turning to the last case (3) and a putative isomorphism φ : Č(S2,n) → Č(S1,n+3) we consider φ(α)

where α is nonseparating on S = S2,n. Its image is a vertex of Č(S′) (S′ = S1,n+3) which can be mapped

to a discrete loop by some g ∈ Γ̌(S′). This curve β = g · φ(α) ∈ L(S′) has a well-defined type when
considered in Ľ(S′) by Proposition 3.3 and the links and dual links of α and β are isomorphic. Thus β is
either separating or of boundary type. Moreover the links of α in Č(S2,n) and of β in Č(S1,n+3) should be

isomorphic. But the first link is isomorphic to Č(S1,n+2) and the second one to either Č(S0,n+5), if β is

nonseparating or to Č(S0,n+2) if β is of boundary type. Using what we did above in case (2) we conclude that
β should be nonseparating and that n ∈ {0, 1}. Thus either (g, n) = (2, 0), (g′, n′) = (1, 3) or (g, n) = (2, 1),
(g′, n′) = (1, 4). Finally, an isomorphism betweenČ(S1,4) and Č(S2,1) would send a nonseparating curve α

on S1,4 to a nonseparating curve on S2,1 with isomorphic links. However these are isomorphic to Č(S0,6)

and Č(S1,3), respectively and it was shown above (case (2)), that these complexes are not isomorphic. This
completes the proof of the theorem.

�

Remark 5.1. i) As can be readily checked Theorem 5.1 is actually valid, with the same proof, for any
residually finite completion of the curve complexes C(Sg,n). Completing C(S) with respect to a quotient Γ(S)′

of the full profinite completion Γ̂(S), it amounts to requiring (see [3], Prop. 5.1) that Γ(S)′ be residually
finite (i.e. the natural map Γ(S) → Γ(S)′ should be into). In particular this is the case of any completion
which is finer than the congruence completion.
ii) By a famous result of Harer-Ivanov, the curve complex C(S) is homotopically equivalent to a wedge of
spheres of dimension h(S). The value of h(Sg,n), which is also the cohomological dimension of C(Sg,n), is
explicit (see e.g. [18]) and provides a second invariant (after the dimension) in the discrete case. However in
the complete case we could not use it for a reason which perhaps deserves to be mentioned. One knows that
Hq(C(S),Q) vanishes for all q 6= 0, h (h = h(S)); the same is true of every finite quotient Hq(C(S)/Γλ,Q)
(Γλ normal cofinite in Γ(S)). But we were not able to show that Hh(C(S)/Γλ,Q) does not vanish. In fact
one would like to show this for some (any) value of λ and in particular one can take λ large enough (Γλ

small enough) so that all the components of the boundary ∂Mλ(S) of the associated level are smooth. The
question is whether the combinatorics of these components contributes to the cohomology of the simplicial
variety ∂Mλ(S). Note that Hh(C(S)/Γλ,Q) injects into the Hodge weight 0 part of the rational cohomology

of ∂Mλ(S). Is W 0Hh(∂Mλ(S),Q) nontrivial for some λ, in particular for Γλ = Γ(S), Mλ(S) =M(S)) ?

5.2. Local structure and reconstruction of congruence graphs. Our next objective is the profinite
analog of Theorem 2.10, which is interesting for its own sake and will be used in the next section, much
as was done in §2 in the discrete setting, in order to start exploring the continuous automorphisms of the
congruence complexes. In this subsection we will deal almost exclusively with the graphs C∗(S) and CP (S)
and their congruence completions, as they carry most of the relevant information. We refer to §§A.5, 7, 8, 9
for the basic definitions. Note that we will not make use of the isomorphism theorem in what follows, and for
good reasons since we have not shown any result of that type pertaining to these graphs. It could however
be interesting to state and prove such results.

We start from a surface S which is not assumed to be connected but is such that each of its finitely many
connected component Si is hyperbolic (S =

∐
i∈I Si). We define Γ(S) =

∏
i∈I Γ(Si), the colored modular

group, and let each Γ(Si) act naturally on C∗(Si) and CP (Si) so as to extend definitions to the non connected
situation (see also §A.9). Finally we deal with the congruence completions Č∗(S) and ČP (S) by completing
the modular groups Γ(Si) of the connected components. Note that possible permutations of the pieces have
no effect on completions, since they generate a finite group; in other words, the colored modular group has
finite index in the full modular group.

If S is connected with d(S) = 0 i.e. is a trinion (a.k.a a pair of pants), Č∗(S) = ČP (S) is empty or
conventionally reduced to a point and coincides with its discrete version. If S is connected with d(S) = 1,
Č∗(S) = Ǧ and ČP (S) = F̌ , where the completion can be taken with respect to the natural action of
Γ0,4(' F2), which has finite index in Γ1,1 (see §§A.7,8) Although for resaon of coherence we use the notation
for the congruence completion, here it does not differ from the full profinite completion. Recall that more
generally the congruence conjecture holds for types (g, n) with g = 0, 1, 2, and n arbitrary.

If d(S) > 1, Č∗(S) identifies with the 1-skeleton of the dual of Č(S) but we are aiming at a direct
description, actually valid in all dimensions d(S) ≥ 0. There is a natural action of Γ̌(S) on Č∗(S) and ČP (S)
and as usual, one can describe their common set of vertices (denoted V̌ (S)) as a finite disjoint union

∐
v∈F Γ̌·v
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of Γ̌-orbits of discrete vertices v ∈ V (S). Each v ∈ V (S) represents a discrete maximal multicurve (a.k.a. a
pants decomposition) of S and the finite set F enumerate the types (Γ-orbits) of such deompositions. The
set Ě(S) of edges of Č∗(S) can be described as follows:

Lemma 5.6. The vertices v, w ∈ Č∗(S) are joined by an edge if and only the corresponding maximal
multicurves differ by exactly one component up to relabeling.

Proof. The statement should be interpreted as follows. Write v = (α1, . . . , αk) (resp. w = (β1, . . . , βk))
where the αi’s and βj ’s are (pro)curves and k = d(S) + 1). One could assume that either v or w corresponds
to a discrete pants decomposition but that does not really help. The claim is that the condition for v and
w to be joined by an edge in Č∗(S) is the exact analog of what happens in the discrete case.

The “if” part of the statement is clear and we have to show the “only if” part. In order to do this, let
v = lim←−λ∈Λ

vλ, w = lim←−λ∈Λ
wλ where λ ∈ Λ belongs to the set of congruence levels (here we may assume S

connected for simplicity) and vλ, wλ ∈ Cλ∗ = C∗(S)/Γλ. We can write vλ = (αλi ), wλ = (βλi ) where the αλi
and βλi represent Γλ-orbits of curves (i.e. they lie in L(S)/Γλ). Moreover since v and w are joined by an edge
in Č∗, there exist discrete pants decompositions (Aλi ), (Bλj ) in C∗ which project to vλ and wλ repectively

and are joined by an edge in C∗. So (Aλi ) and (Bλj ) differ by at most one curve, after relabeling. For any

λ ∈ Λ consider the label (in {1, . . . , k}) of the curve in the family (Aλi ) which does not occur in (Bλj ) (if

they coincide pick any label). This may depend also on the chosen lifts of vλ and wλ but that does not
matter. Now consider a cofinal sequence in Λ and choose a label which occurs infinitely often in the above
construction. One finds that v and w can indeed be represented by multi(pro)curves (αi) and (βi) which
coincide except for the entry in v corresponding to that label.

�

We are heading toward a statement and proof of the procongruence analog of Theorem 2.10, which deals
with the graph Č∗(S). We take up the setting and notation of the beginning or §2.2, starting with a
hyperbolic surface S. We assume that all connected components of S have the same modular dimension,
which we denote d(S), and that d(S) > 0. For a multicurve σ ∈ C(S), Sσ denotes, as in §2, the surface S
slit along the multicurve σ. We will first show that given such a multicurve, there is a natural embedding
of the procongruence curve graph Č∗(Sσ) into Č∗(S) and that it is equivariant with respect of the actions of
the attending modular groups Γ̌(Sσ) and Γ̌(S). This in essence is not new but it does embody an essential
property of the proconguence topology, which we summarize in the following geometric lemma:

Lemma 5.7. Let S be as above, σ ∈ C(S) a multicurve, Sσ the surface with boundary obtained by cutting
S along σ. Then every unramified Galois cover of Sσ is dominated by a Galois cover of S.

Proof. To be sure, the lemma asserts that one can find a Galois cover of S which restricts to a cover of the
multicurve σ, does not permute the pieces of Sσ, and dominates the given cover of Sσ as a surface with
boundary. The proof is in fact elementary. By an immediate induction one restricts to the case of a single
curve σ = {α} and this case is dealt with in [3], Lemmas 6.7 (α non separating) and 6.8 (α separating).

�

We insist that this elementary and relatively easy lemma is nonetheless a key point. In essence it says
that the procongruence topology transfers nicely when cutting along a multicurve, producing subsurfaces of
the ambient surface; see Proposition 5.8 below. The analog in the full profinite case, where one has to work
with covers of moduli stacks and not just surfaces is not known.

We will now proceed to state the proposition we need in order to make good sense of the reconstruction
problem in the procongruence setting. The proof is again quite easy, given the lemma above. In fact we
will state the proposition for Γ(S), C∗(S) and CP (S) simultaneouslys because these are the objects we have
to deal with but it simply expresses again the fact that the topology induced – so to speak – on Sσ by the
congruence topology attached to S coincides with the congruence topology attached to Sσ; this in turn is
nothing but the content of Lemma 5.7 above. Put this way it is clear that it applies “functorially” and
equivariantly to a lot of objects attached to surfaces (starting with C(S), the curve complex itself), provided
they display a nice behavior with respect to the operation of “cutting along multicurves”. We refrain from
giving a more abstract statement, but see Remark 5.2 below.

Given S and σ ∈ C(S) we have natural embeddings: Γσ ↪→ Γ(S), C∗(Sσ) ↪→ C∗(S), CP (Sσ) ↪→ CP (S).
In the first case Γσ denotes the stabilizer of σ in Γ(S); for the two others see the beginning of §2.2 above.
Using that the congruence completion is residually finite, we get corresponding embeddings Γσ ↪→ Γ̌(S),
C∗(Sσ) ↪→ Č∗(S) and CP (Sσ) ↪→ ČP (S). This leads to continuous embeddings of the respective closures:
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Γ̄σ ↪→ Γ̌(S), C̄∗(Sσ) ↪→ Č∗(S) and C̄P (Sσ) ↪→ ČP (S). Note that by the universality of the congruence
completion the discrete embeddings into the respective completions factors through the completions of the
respective sources. In other words we also have (continuous) maps: Γ̌σ → Γ̌(S), Č∗(Sσ) → Č∗(S) and
ČP (Sσ)→ ČP (S). These however are not known a priori to be injective. In fact, we a priori get surjective
maps Γ̌(Sσ) → Γ̄σ, Č∗(Sσ) → C̄∗(Sσ) and ČP (Sσ) → C̄P (Sσ) stemming from the fact that the induced
topology from S is a priori a quotient (i.e. at most as fine) as the congruence topology attached to Sσ. Our
next proposition asserts that these last maps are in fact isomorphisms:

Proposition 5.8. Let S be as above, σ ∈ C(S) be a multicurve, Sσ the surface S slit along σ. With the
notation and construction as above, the resulting maps are all isomorphisms:

Γ̌(Sσ)
∼−→ Γ̄σ, Č∗(Sσ)

∼−→ C̄∗(Sσ), ČP (Sσ)
∼−→ C̄P (Sσ).

Proof. As mentioned above the proposition is a fairly straightforward consequence of Lemma 5.7. One only
needs to transfer the information from covers of surfaces to the analog on congruence levels of the associated
moduli spaces M(S) and M(Sα). This again is part of Lemmas 6.7, 6.8 in [3]. One could also use, in the
same spirit, isomorphism results of the type Č(S) ' ČL(S) (see Theorem 3.1), whose goal is precisely to
transfer information from the congruence levels of the moduli space M(S) to covers of the surface S itself
– and back. But we have not shown or even stated such general results outside of the case of the curve
complex C(S). �

So in the end we get continuous embeddings: Γ̌σ ↪→ Γ̌(S), Č∗(Sσ) ↪→ Č∗(S) and ČP (Sσ) ↪→ ČP (S)
with closed, hence compact images since the sources are compact. From the first isomorphism, namely
Γ̄σ ' Γ̌(Sσ), we conclude that in the last two cases the maps are equivariant with respect to the action of
Γ̌(Sσ) and Γ̌(S) on the sources and targets respectively. We remark that in the above we have been a little
sloppy about boundary curves, not always distinguishing very carefully between a surface with or without
boundary. In fact we have left it to the reader to straighten out some details for her/himself.

Remark 5.2. i) As anticipated in Grothendieck’s Esquisse, there exists an underlying beautiful “dictionary”
between objects of a priori very different natures, from topology to arithmetic through hyperbolic, conformal,
complex or algebraic geometry. For instance one can – should – consider the completed stack M̄(S), or more
generally M̄λ(S) as a simplicial or stratified object where the strata are enumerated by C(S)/Γ(S) (resp.
C(S)/Γλ(S)). Note that formally the generic stratum M(S) corresponds to S = S∅, that is to ∅ ∈ C(S)(−1).
In essence, Proposition 5.8 says that the congruence completion respects this simplicial character of the stably
completed moduli stacks of curves.
ii) The analog of Proposition 5.8 is not known in the full profinite case and in fact its validity is equivalent
to that of the congruence subgroup conjecture (this is the case for several statements in §§3, 4, 5). Indeed,
assuming it holds true one can prove the conjecture working by induction on the the modular dimension d(S)
and using equivariant spectral sequences as in [3], §6.

We now turn to the reconstruction problem. We first note that one can view ČP (S) ⊂ Č∗(S) as a
closed subgraph with the identical set V̌ (S) of vertices and a set ĚP (S) ⊂ Ě(S) of edges. Indeed consider
the natural injections CP (S) ↪→ C∗(S) and C∗(S) ↪→ Č∗(S); by composition we get an equally natural
injection CP (S) ↪→ Č∗(S); taking the closure of CP (S) inside Č∗(S) yields ČP (S) as should be clear from
the above. Alternatively the injection of CP (S) into Č∗(S) factors through ČP (S) by universality and the
resulting map ČP (S) → Č∗(S) is injective. Yet it is not so easy to give a description of ČP (S) inside
Č∗(S) or equivalently of ĚP (S) as a subset of Ě(S). We insist on that matter because it will turn out that,
modulo reconstruction of the whole of Č(S) from the graph Č∗(S) (Corollary 5.14 below) and the rigidity
of ČP (S) (Theorem 7.1 below), we are getting quite close to the actual root of Grothendieck-Teichmüller
theory in this profinite topological (“nonlinear”) setting. In particular it will evolve (elsewhere) that the set
of injective morphisms j : ČP (S) ↪→ Č∗(S) is a close profinite analog of the variety of associators introduced
by V.G.Drinfel’d in the prounipotent case. Here, however, we restrict attention to the “natural” injection
or inclusion ČP (S) ⊂ Č∗(S), or equivalently ĚP (S) ⊂ Ě(S).

We are first aiming at a better understanding of the local structure of Č∗(S) and ČP (S), more precisely
at making sense and proving an analog of Lemma 2.7. We start with:

Lemma 5.9. Let S be connected hyperbolic and let σ ∈ C(S) be a multicurve which is not maximal. Then if
g ∈ Γ̌(S) stabilizes the subcomplex Č∗(Sσ) of Č∗(S), i.e. g(Č∗(Sσ)) = Č∗(Sσ), it stabilizes σ, i.e. g(σ) = σ.

Proof. Assume that g(σ) is different from σ. We want to show that there exists a proloop γ̌ ∈ Ľ(S) which is
disjoint from σ but not from g(σ). First, there exists β ∈ L(S) contained in σ (i.e. β is a vertex of σ) such
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that g−1(β) is not a vertex of σ. By hypothesis, for any τ ∈ C∗(Sσ) we have g(τ) ∈ Č∗(Sσ). In particular, if
we consider a maximal multicurve τ ∈ C∗(Sσ) containing the curve β, we derive that the proloop g(β) ⊂ g(τ)
must be disjoint from σ, namely that the simplex (σ, g(β)) ∈ Č(S). Further, there exists h ∈ Γ̌(S) such that
h(σ, g(β)) is a discrete simplex. We may choose h such that h(σ) = σ and hg(β) = α ∈ L(S) is then a simple
closed curve disjoint from σ, so that (σ, α) ∈ C(S). The component of Sσ containing α ∈ L(Sσ) cannot be
of type (0, 3) since it contains the curve α. Thus Sσ contains some simple closed curve γ which intersects
geometrically α. The proloop γ̌ = h−1(γ) then satisfies the original requirement.

Observe now that any proloop γ̌ as above can be completed to a maximal multicurve τ ∈ Č∗(Sσ), since
discrete curves have this property and h(γ̌) is discrete. Now τ contains the curve γ̌ which intersects g(σ),
so that g−1(τ) does not belong to Č∗(Sσ), contradicting the assumption that g stabilizes Č∗(Sσ).

�

For any subsurface Σ ⊂ S we may identify the (pro)graph Č∗(Σ) (resp. ČP (Σ)) with a subgraph of Č∗(S)
(resp. ČP (S)). We can now proceed with:

Lemma 5.10. Let Σ1 and Σ2 be two distinct subsurfaces of S of dimension 1. Then the intersection
ČP (Σ1) ∩ ČP (Σ2) in ČP (S) is either empty or consists of a single vertex.

Proof. Let Σj be the connected component of Sσj of dimension 1, where the σj (j = 1, 2) are codimension 1

simplices of C(S). The vertices of ČP (Σj) ⊂ ČP (S) are of the form (σj , γ̌j), where γ̌j ∈ Ľ(Σj) is a proloop

on Σj . If the intersection ČP (Σ1) ∩ ČP (Σ2) is non-empty there exist two such vertices which coincide, i.e.

such that (σ1, γ̌1) = (σ2, γ̌2) as vertices of ČP (S). Since Σ1 and Σ2 are distinct we can write σj = (σ′j , δj)
for simple closed curves δj ∈ L(Σj) such that σ′1 = σ′2, γ̌1 = δ2 and δ1 = γ̌2. In particular γ̌j ∈ L(Σj) is a
(discrete) simple closed curve (j = 1, 2) and for fixed Σj the common vertex is a unique discrete vertex.

�

Given σ ∈ C(S), we recall that Sσ denotes the surface S obtained by cutting S along the curves in σ and
then crushing boundary circles to punctures. There is a natural injection CP (Sσ) → CP (S), which sends
the pants decomposition τ of Sσ to the pants decomposition τ ∪ σ of S. This construction extends to the
completions, as follows. Let σ̌ ∈ Č(S). There exists then g ∈ Γ̌(S) and σ ∈ C(S) a discrete simplex such
that g · σ = σ̌. We set then

ČP (Sσ̌) = g · ČP (Sσ) ⊂ ČP (S)

This is well-defined and independent on the choices involved, as the topological type of σ̌ is well-defined. We
will need the following properties of ČP (S):

Lemma 5.11.
i) ČP (S) is covered by the images of ČP (Sσ̌), where σ̌ ∈ Č(S) is a simplex of codimension cd(σ̌) = 1:

ČP (S) =
⋃

σ̌∈Č(S), cd(σ̌)=1

ČP (Sσ).

ii) Given Σ a dimension 1 surface we construct the complete prograph C∗(Σ) whose vertices are those of
ČP (Σ). We define C∗(S) as the quotient of the disjoint union

⊔
C∗(Σ), over all dimension 1 subsurfaces

Σ of S, by the equivalence relation which identifies vertices v ∈ C∗(Σ1) and w ∈ C∗(Σ2) if their respective
images under the natural embeddings ČP (Σi) ↪→ ČP (S) coincide. Then C∗(S) is isomorphic to Č∗(S).
iii) Say that the simplices ρ and τ of Č(S) are compatible if for every pair of vertices v and w of ρ and σ
respectively, either v = w or v and w are not joined by an edge in ČP (S). Then if ρ and τ are compatible

Č∗(Sρ) ∩ Č∗(Sσ) = Č∗(Sρ∪σ);

otherwise the intersection is empty.

Proof. The first statement follows from its discrete counterpart and Proposition 5.8. The second item is a
consequence of Proposition 5.8 along with Lemma 5.10. Then Lemma 5.10 and Lemma 5.6 imply the last
claim, which is the procongruence analog of Lemma 2.6.

�

The procongruence analog of Lemma 2.7 is a straightforward consequence of this lemma, that is:

Proposition 5.12. The graph Č∗(S) is obtained from ČP (S) by replacing every maximal copy of F̂ inside

ČP (S) by a copy of Ĝ. �
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Let us now proceed towards the reconstruction theorem, starting however with a discussion about its
proper statement and meaning in the complete setting. In the discrete case the natural action of Γ(S) on
C(S) translates into an action of Γ(S) on the graphs C∗(Sσ), viewed as subgraphs of C∗(S). For g ∈ Γ(S),
σ ∈ C(S), we get the following equivariance formula:

g · C∗(Sσ) = C∗(Sg·σ)

which also holds with C∗ replaced by CP . In particular the reconstruction principle of Corollary 2.11 respects
the natural Γ-action.

In the procongruence case, using the natural action of Γ̌(S) on Č(S), we find that g · Č∗(Sσ) is a well-
defined closed subgraph of Č∗(S) for g ∈ Γ̌(S) and σ ∈ C(S). At this point one is tempted to write
down the same formula as above, replacing the objects with their respective congruence completions, that
is g · Č∗(Sσ) = Č∗(Sg·σ) for any g ∈ Γ̌(S), σ ∈ Č(S). In the general case however, that is for g /∈ Γ(S) and

σ /∈ C(S), neither side is a priori well-defined. If we pick σ ∈ C(S) a discrete simplex and g ∈ Γ̌(S) arbitrary,
then the right-hand side can be defined by the left-hand side. Then extend the definition to any σ ∈ Č(S)
using as usual the fact that the Γ̌(S)-orbit of any simplex in Č(S) contains a discrete representative.

One thus gets a family (Č∗(Sσ))σ∈Č(S) of closed subgraphs of Č∗(S) which is indexed by the profinite

simplicial set Č(S) and is equipped with a natural simplicial action of Γ̌(S). These subgraphs are distinct
for σ not maximal, that is Č∗(Sσ) = Č∗(Sτ ) if and only if σ = τ ∈ Č(S). In fact in order to vindicate this
assertion, it is enough to show that for any discrete σ ∈ C(S) and any g ∈ Γ̌(S), g · Č∗(Sσ) = Č∗(Sσ) if
and only if g · σ = σ, which is Lemma 5.9 above. As in the discrete case, reconstructing Č(S) out of Č∗(S)
consists in graph theoretically detecting or characterizing the family (Č(Sσ))σ∈Č(S), which can be made into
a prosimplicial complex using the inclusion of curves as a boundary operator.

In what follows, for τ ∈ Č(S), one can think of Č∗(Sτ ) via the defining formula Č∗(Sτ ) = g · Č∗(Sσ)
for σ ∈ C(S) discrete, g ∈ Γ̌(S), g · σ = τ , thus avoiding making sense directly of the symbol Sτ , that is
“S slit along the profinite simplex τ”. Finally it may be worth pointing out the possible connection with
what Grothendieck calls discrétifications in his Longue Marche à travers la théorie de Galois (§26). Roughly
speaking and to be specific, given a finitely generated residually finite group G and its profinite completion
Ĝ one can consider the set of its discretifications, that is of the dense injections G ↪→ Ĝ. This can be seen
as a natural extension of the notion of integral lattice or integral structure in the linear setting. These
discretifications will form a torsor under a group which is not easy to capture in general but may be worth
keeping in mind. In an analogous way one can view the set of dense embeddings C(S) ↪→ Č(S) as the set of
integral structures on Č(S) and in our context the above seemingly formal definitions become more natural,
since the group Γ̌(S) will act naturally on these structures (“discretifications”) as well.

We can now state the procongruence version of Theorem 2.10 as:

Theorem 5.13. Let S be a connected hyperbolic surface, C ⊂ Č∗(S) a subgraph which is topologically
isomorphic to Č∗(Σ) for a certain surface Σ and is maximal with this property. Then there exists a unique
σ ∈ Č(S) such that C = Č∗(Sσ).

Proof. If one wishes to stick to Sσ for discrete simplices σ ∈ C(S), the assertion can be rephrased by saying
that there exist σ ∈ C(S) and g ∈ Γ̌(S) such that C = g · Č∗(Sσ). Two solutions (σ, g) and (σ′, g′) satisfy
g · σ = g′ · σ′ ∈ Č(S). As in the discrete setting, the case σ = ∅ should be included and corresponds to the
full complex Č∗(S).

With Lemmas 5.6 and 5.11 at our disposal, the proof proceeds along the lines of the proof in the discrete
case. We need only show the existence part, uniqueness being clear, as in the discrete case. The first step
consists in showing that a subgraph of the form indicated in the statement is maximal. To this end, one can
consider a discrete σ ∈ C(S) and prove that Č∗(Sσ) is maximal in its isomorphy class. The proof follows
the one in the discrete case in §2.3.

Here and as in the discrete case again, it is more elegant (although not necessary) to include the case
d(Σ) = 0, i.e. Σ a trinion, of type (0, 3), by declaring that the attending curve complex is reduced to a point
rather than empty: C(S0,3) = C∗(S0,3) = {∗}. The case of dimension 0 is then clear: the vertices of Č∗(S)
correspond to maximal multicurves (not necessarily discrete). One can start induction from there, or treat
the case d(Σ) = 1 independently, as in the discrete case. We do not do it in detail because the inductive
argument applies to that case as well. Suffice it to say that it is still true that any triangle in Č∗(S) defines
a unique subsurface of dimension 1, possibly after twisting by an element of Γ̌(S).

Having disposed of the low-dimensional cases, we argue again by induction on k = d(Σ). So we pick

k > 1, assume the statement is true for d(Σ) < k and fix an isomorphism C
∼−→ Č∗(Σ). For σ ∈ C(S)
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we then define Cσ ' Č∗(Σσ) ⊂ Č∗(S) as in the discrete case. This time the union of the Cσ’s as σ runs
over the nonempty simplices of C(Σ) form a dense part of C, which is sufficient for the same argument as
in the discrete case to go through. Namely in order to conclude the proof, it is enough to show that there
exists a k-dimensional subsurface T ⊂ S and an element g ∈ Γ̌(S) such that for any (nonempty) σ ∈ C(Σ),
Cσ ⊂ g · Č∗(T ) ⊂ Č∗(S).

We may again (as in the discrete case) restrict to |σ| = 1, i.e. to the discrete loops on Σ. To any such loop
α ∈ L(Σ) we can attach by induction a subsurface S(α) ⊂ S of dimension k − 1 and an element gα ∈ Γ̌(S)

such that Cα = gα · Č∗(S(α)) ⊂ Č∗(S). As usual, having fixed an isomorphism C
∼−→ Č∗(Σ) we write an

equality sign for the sake of simplicity.
Next we use, again as in the discrete case, the connectedness of C(Σ) which is ensured by the assumption

on the dimension (k > 1). So we have to study the following situation. We consider three discrete loops α,
β, and γ on Σ such that α∩β = β∩γ = ∅. We attach to them as above pairs (gα, S(α) = Sρ), (gβ , S(β) = Sσ)
and (gγ , S(γ) = Sτ ) for certain simplices ρ, σ, τ ∈ C(S) with |ρ| = |σ| = |τ | = d(S)− k + 1. Moreover ρ and
σ (resp. σ and τ) are compatible simplices.

As in the discrete case, the situation should be entirely determined by any two pairs of non intersecting
curves on Σ, after which one can worry over a possible overdetermination. The reasoning below may appear
more transparent if one recalls that a graph of the form g · Č∗(Sσ) is actually determined by the profinite
simplex g · σ and so depends on g only up to the subgroup of Γ̌(S) fixing σ, which is nothing but the
centralizer of the multitwist corresponding to σ. These centralizers are determined in §4 above. So let us
first examine what happens when trying to paste the data for α and β. After twisting we may assume that
gα = 1 and write gβ = g ∈ Γ̌(S). Next we know that the intersection Cα∩Cβ has dimension k−2 and indeed

is isomorphic to a twist of Č∗(Σα∪β). This implies that |ρ ∩ σ| = d(S)− k and that g fixes $ = ρ ∩ σ, that

is g ∈ Z$. Writing T = S$ we find that S(α) = Sρ ⊂ T . Moreover, because g fixes $ we can find h ∈ Γ̌(T )

such that Cβ = g · Č∗(Sσ) = h · Č∗(Sσ). But then, since h ∈ Γ̌(T ), h · Č∗(Sσ) ⊂ Č∗(T ) and so we get the

inclusion Cβ ⊂ Č∗(T ). Returning to our original notation, we found a k-dimensional subsurface T ⊂ S such

that Cα ⊂ gα · Č∗(T ), Cβ ⊂ gβ · Č∗(T ) and in fact gβ = gα = g. Proceeding in the same way with the pair
(β, γ) we get a possibly different pair (g′, T ′). Now in order to compare T and T ′, we use again the fact that
there is a large intersection, namely that Cβ ⊂ g · Č∗(T ) ∩ g′ · Č∗(T ′). This implies that one can modify –
say – g′ in order to achieve g = g′ and then, because T , T ′ and Σ are all of dimension k, one shows as in the
discrete case that T = T ′.

�

We now draw a consequence of this recognition result, much as in the discrete case, before turning to the
study of the automorphism groups of the congruence complexes. Indeed Theorem 5.13 yields the analog of
Corollary 2.11:

Corollary 5.14. For d(S) > 1, Č(S) can be reconstructed from Č∗(S).

Proof. In fact, as mentioned above, one reconstructs Č(S) by considering the set of subgraphs of Č∗(S)
satisfying the conditions stated in Theorem 5.13, making it into a prosimplicial complex by using inclusion
and deletion of curves as the face and boundary operators respectively. The theorem ensures that the
resulting complex is indeed isomorphic to Č(S).

�

As a last item in this section and a corollary of what has been done above, we return to the issue of the
possible isomorphisms between complexes of different types:

Proposition 5.15. Let S = Sg,n and S′ = Sg′,n′ be connected hyperbolic surfaces of different types. Then:
i) C∗(S1,1) ' C∗(S0,4), C∗(S1,2) ' C∗(S0,5), C∗(S2,0) ' C∗(S0,6) and there are no other isomorphims;

ii) same as i) above in the procongruence setting, that is with C∗(S) replaced with Č∗(S) everywhere;
iii) CP (S1,1) ' CP (S0,4) and this is the only nontrivial isomorphism between discrete pants graphs;

iv) same as iii) above in the procongruence setting, that is with CP (S) replaced with ČP (S) everywhere.

Proof. Item i) holds true if we replace C∗(S) by C(S) (see e.g. [18]). For d(S) = 1 C∗(S0,4 = C∗(S1,1 = G,
where G is the complete graph on the vertices of the Farey graph F (see §A.8). If d(S) > 1, C∗(S) is the
1-skeleton of the dual of C(S); conversely C(S) can be reconstructed from C∗(S) by Corollary 2.11. So the
cases of isomorphisms for C∗(S) and for Č(S) coincide.

The reasoning for ii) is identical, using Theorem 5.1 and Corollary 5.14.
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For iii), that is concerning the discrete pants graph, Lemma 2.7 says that C∗(S) can be reconstructed
from CP (S) (but not vice versa!) so that the cases of possible isomorphisms for CP (S) are among the
possibilities C∗(S). In dimension 1 we do have C∗(S1,1) ' C∗(S0,4) = F . In order to rule out the other two
possibilities it is enough to show that CP (S1,2) and CP (S0,5) are not isomorphic. In fact, assume there exists

an isomorphism φ : CP (S2,0)
∼−→ CP (S0,6). Let then α ∈ L(S2,0) be a nonseparating loop; it is mapped to

a loop α′ = φ(α) ∈ L(S0,6) which is of boundary type. Cutting the surfaces along α and α′ respectively,
we find that φ would induce an isomorphism between CP (S1,2) and CP (S0,5). However this is impossible
because it would also imply an isomorphism between the attending full (two dimensional) complexes. Now
CP (S0,5) contains pentagons whereas CP (S1,2) does not (see [14]), which shows that these complexes are
not isomorphic.

To iv) we use Proposition 5.12 to conclude that Č∗(S) can be reconstructed from ČP (S) (again, this is not
reversible) and that the possible isomorphisms are at most those which obtain for Č∗(S). In dimension 1 we

get ČP (S1,1) ' ČP (S0,4) = F̂ but in dimensions 2 and 3, although the discrete graphs are not isomorphic,
we cannot a priori rule out possible isomorphisms between their respective profinite analogs. Recall that
the congruence conjecture holds for types (g, n) with g = 0, 1, 2 and n arbitrary, so that we may replace the
procongruence by the (full) profinite completion as far as the low dimensional complexes mentioned above
are concerned. By now it is easy to transpose the reduction argument in the proof of item iii) to the profinite

setting. So the only moot point consists in showing that the completed complexes ĈP (S1,2) and ĈP (S0,5) are
not isomorphic, which follows essentially by the same argument as in the discrete case. The reader will find
in [20] a detailed study of the “completed pentagons”. Note that this non isomorphism statement is rather
obvious from the viewpoint of Grothendieck-Teichmüller theory because owing to the two-level principle and
the fact that ĈP (S1,1) and ĈP (S0,4) are indeed isomorphic, the discrepancy between ĈP (S1,2) and ĈP (S0,5)
actually carries the whole difference between the genus 0 and the general case of Grothendieck-Teichmüller
theory (see [14, 20]).

�

6. Automorphisms of procongruence complexes

We now start investigating the automorphisms of the procongruence complexes attached to a connected
hyperbolic surface S, especially our three favorite complexes Č(S), ČP (S) and Č∗(S). These are by definition
limits of the quotients Cλ(S) = C(S)/Γλ over the inverse system λ ∈ Λ indexing the principal congruence
subgroups of the Teichmüller modular group Γ(S). Now an interesting point is that the quotient C(S)/Γλ

(for λ large enough) can be considered in two ways, either “naively”, as a finite CW-complex or, retaining
more structure, as a topological stack, which here is almost the same thing as an orbifold, except that
the stabilizers are not finite. Thus, working with the curve complex purely for definiteness, Č(S) can
be considered as a pro-object either of the category of finite complexes or of topological stacks. In both
cases endomorphisms are defined following the classical prescriptions for pro-objects of a category (see [2],
Appendix), namely as a system of of compatible maps Cµ(S) → Cλ(S) between finite complexes (so in
particular continuous for the ordinary topology), with λ running over Λ and µ ≥ λ. An automorphism is
an invertible endomorphism. When varying λ ∈ Λ, a basis of neighborhoods of the identity in the group
Aut(Č(S)) is defined by those elements which induce the natural projection between the above quotients for
some fixed λ, µ ∈ Λ. Note that these elementary neighborhoods are not subgroups. They endow Aut(Č(S))
with a structure of profinite group.

In this section we will consider the finite quotients as complexes, erasing in particular the information
coming from the ramification. However in the next section, topological stacks will play an important role
and we will return to the above in more detail. Note also that here ČP (S) and Č∗(S) are prographs and
we will recall below how Č(S), being a flag complex, is entirely determined by its 1-skeleton. So the first
striking fact is that here we need actually deal only with profinite graphs, that is one-dimensional complexes.

This section aims at proving some basic and fundamental properties of the automorphism groups attached
to the three complexes above. The reconstruction theorem above (Theorem 5.13) will play a significant role;
on the one hand and much as in the discrete case, it paves the way towards some basic results, demonstrating
how much of the information about the original curve complex Č(S) can be transferred to Č∗(S), which we
recall is nothing but the 1-skeleton of the dual of Č(S) (in modular dimension d(S) > 1). The gain is that
we have a natural inclusion of profinite graphs ČP (S) ↪→ Č∗(S) which actually summarizes the main part
of the information we are interested in (see also above Proposition 5.12). Anticipating again, we remark
that from the point of view of Grothendieck-Teichmüller theory, this reconstruction result demonstrates how
the so-called “Teichmüller tower” is not really needed: at every level, that is for a given modular dimension
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d(S), the corresponding congruence curve complexes contain all the information coming from the lower levels.
Putting this together with the “two level principle” (“principe des deux premiers étages”), will imply, as
will be shown elsewhere, that one needs only consider a single, given profinite graph Č(S), with S of large
enough dimension and genus, in order to investigate the automorphism group of the whole “tower”, a kind
of very strong stability result.

6.1. Basic results. First we state and prove explicitly a proposition which has already been alluded to,
namely:

Proposition 6.1. For any hyperbolic surface S, Č(S) is a flag complex. As a consequence every automor-
phism of the 1-skeleton can be extended to an automorphism of the full complex:

Aut(Č(S)) = Aut(Č(S)(1)).

Proof. Recall that a flag complex is a simplicial complex such that every clique is a simplex. That is if
σ = (vi)i∈I is a finite set of vertices such that every pair of elements of I defines an edge, then σ is a
simplex. This is obviously the case of the discrete complex C(S) but the preservation of this property
under completion is in general a delicate question. Fortunately here we can take advantage of Theorem 4.5
(which itself constitute a highly nontrivial result), say for the trivial weight function. It then asserts that

Č(S)
∼−→ ČT (S) where the isomorphism is defined by mapping a simplex α = {α1, . . . , αk} ∈ Č(S) to the

closed free abelian group Gα = 〈τα1
, . . . , ταk〉 ⊂ Γ̌(S) generated by the corresponding protwists. It is then

clear that this group is abelian if and only the twists are pairwise commuting which translates into the fact
that ČT (S) ⊂ G(Γ̌(S)) is a flag complex, hence Č(S) as well. The second assertion of the proposition is an
immediate corollary of the first.

�

So we have reduced our problem to studying the automorphisms of the graphs Č(1)(S), Č∗(S) and ČP (S).
Now the analog of Lemma 2.8 holds true for the congruence graphs thanks to Proposition 5.12 i.e. the
procongruence analog of Lemma 2.7. So we get:

Proposition 6.2. Given the injection ČP (S) ↪→ Č(S), there is a natural injection

Aut(ČP (S)) ↪→ Aut(Č∗(S)).

�

Note that we favored the word ‘injection’ over ‘inclusion’ because it has a more dynamical flavor and the
set of (not necessarily natural) injections ČP (S) ↪→ Č(S) will play a leading role in topological Grothendieck-
Teichmüller theory, as already noticed. In particular and in sharp constrast to what happens in the discrete
case, the injective map of the proposition is very far from being an isomorphism. The next section (§7) will
be devoted to determining the first group, namely Aut(ČP (S)).

As a next step and thanks to the reconstruction theorem, more accurately Corollary 5.14, we find that
the automorphism groups of Č(S), or equivalently of its 1-skeleton Č(S)(1) and that of Č∗(S) coincide for
d(S) > 1. (The cases d(S) = 0, 1 are well-known; besides the two 0-dimensional complexes occurring for
d(S) = 1 are isomorphic: Č(S0,4) ' Č(S1,1)). We record this piece of information as:

Proposition 6.3. For d(S) > 1, Aut(Č(S)) ' Aut(Č∗(S)).
�

Our next result will require substantially more work. Recall that the type of a proloop, that is an element of
Ľ(S) = Č(S)(0), is well-defined, and more generally so is the type of any simplex σ ∈ Č(S). An automorphism
φ ∈ Aut(Č(S)) is type preserving if it maps every simplex to one of the same type. In other words φ is type
preserving if it preserves the Γ̌(S)-orbits: φ(σ) ∈ Γ̌(S) · σ for every σ ∈ Č(S). Before stating our next
result, we remark that it does not use any notion of topology, dealing in principle with automorphisms which
respect the simplicial structure, not necessarily the profinite topology. However the notion of type itself does
require more structure; in fact it has not even been defined in the full profinite setting, and for good reasons.
So we keep the notation Aut(Č(S)), denoting continuous simplicial automorphisms of Č(S), although some
statements do not require continuity. We now state:

Theorem 6.4. Let S be a connected hyperbolic surface; if S is not of type (1, 2), every simplicial automor-
phism of Č(S) is type preserving. If S = S1,2, an element of Aut(Č(S)) is type preserving if and only if it
preserves the set of separating curves.
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Note that here we assumed S to be connected for simplicity only. The statement for arbitrary hyperbolic
surfaces is only slightly more involved and the extension is obvious. Moreover the statement is empty for
d(S) = 0, 1 and these cases have been included only formally. From now on we assume that d(S) > 1. Then
for d(S) = 2, either S = S0,5 or S = S1,2, with the exceptional isomorphism C(S0,5) ' C(S1,2) and ditto for
the respective congruence completions. This gives rise to the exception recorded in the statement.

We will break the bulk of the proof into two lemmas and then complete the proof of the theorem. First,
except for type (1, 2), simplicial automorphisms preserve the set of separating curves.

Lemma 6.5. Let S be connected hyperbolic, d(S) > 1, S not of type (1, 2). Every simplicial automorphism
φ ∈ Aut(Č(S)) maps a separating curve α̌ ∈ Ľ(S) to a separating curve φ(α̌).

Proof. Suppose that α̌ were nonseparating whereas φ(α̌) is separating. From Lemma 5.2 φ(α̌) must be of
boundary type. There exist g, h ∈ Γ̌(S) such that both α = g · α̌ and ϕ(α) = h · φ(α̌) are discrete curves.
Moreover ϕ = h · φ · g−1 is also an automorphism of Č(S). Then the links of the vertices α and ϕ(α) in
Č(S), namely Č(Sα) and Č(Sϕ(α)), should be isomorphic. From our assumptions Sα is of type (g− 1, n+ 2)
while Sϕ(α) is of type (g, n− 1). Then Theorem 5.1 implies that (g, n) ∈ {(1, 2), (1, 3)}.

In order to get rid of the case (g, n) = (1, 3) we closely follow the proof of ([18], Lemma 2.2). Extend α to
a pants decomposition {α, β, γ}, where β and γ are non-separating. Then (ϕ(α), ϕ(β), ϕ(γ)) is a 2-simplex
of Č(S) and hence there exists k ∈ Γ̌(S) such that k · ϕ(α) = ϕ(α) and k · ϕ(β), k · ϕ(γ) are discrete curves
which form a pants decomposition of S. Now ϕ(α) bounds a subsurface S1,2. Then, k · ϕ(β) and k · ϕ(γ)
are contained in the subsurface S1,2 and hence one of them, say k · ϕ(β), must be non-separating. Choose a

simple curve which must be of the form ϕ(δ̌) in S1,2 disjoint from k ·ϕ(β); it bounds a subsurface S1,1 of S1,2.

Then ϕ(δ̌) ⊂ S1,3 is a separating curve not of boundary type. By the proof of Lemma 5.5, δ̌ is a proloop

which is separating and not of boundary type on S1,3. On the other hand (ϕ(α), ϕ(δ̌), ϕ(β)) is a 2-simplex

of Č(S) and hence (α, δ̌, β) is also a 2-simplex. There exists m ∈ Γ̌(S) such that m · α = α, m · β = β and
m · δ̌ = δ are discrete curves on S. Moreover, α and β are non-separating, δ is separating not of boundary
type, while α, β and δ are pairwise disjoint. This is impossible and the claim follows.

�

Next it turns out that the requirement in the statement of the theorem concerning the exceptional case
S = S1,2 is actually general. In this lemma we will deal with curves (loops), that is elements of Ľ(S). It will

then be easy to generalize this to multicurves i.e. arbitrary simplices of Č(S). So for the moment we state:

Lemma 6.6. For any hyperbolic surface S, a simplicial automorphism which preserves the sets of separating
classes of curves also preserves the type of the curves.

Proof. We may and do assume that d(S) > 1. The proof follows the lines of ([18], Lemma 2.3). Let
φ ∈ Aut(Č(S)) mapping separating elements of Ľ(S) to such. By lemma 5.2, φ preserves the set of proloops
of boundary type. Let then α̌ ∈ Ľ(S) be separating not of boundary type. As in the previous lemma, after
left and right composition of φ with elements of Γ̌(S) we can assume that both α̌ = α and φ(α) are discrete
curves. The slit surfaces have two connected components: Sα = S1

α ∪ S2
α and Sφ(α) = S1

φ(α) ∪ S
2
φ(α), none of

them of type (0, 3).
Now, φ induces an isomorphism between the dual links φ : L−

Č(S)
(α)→ L−

Č(S)
(α). The proof of Lemma 5.2

shows that L−
Č(S)

(α) is not chain connected and in fact it has exactly two connected components. A connected

component L−,j
Č(S)

(α) of L−
Č(S)

(α) consists of those vertices of L−
Č(S)

(α) corresponding to the proloops γ̌ on

one connected component Sjα of Sα. As φ preserves chain connectedness, it must send a connected component

of L−,j
Č(S)

(α) isomorphically to a connected component of L−,j
Č(S)

(φ(α)). Observe now that L−,j
Č(S)

(φ(α)) is the

dual of a profinite curve graph, as it has the same set of vertices as Č(1)(Sjα) while two vertices are adjacent

in L−,j
Č(S)

(φ(α)) if and only if they are not adjacent in Č(1)(Sjα).

In particular φ induces isomorphisms Č(1)(Sjα)→ Č(1)(Sjφ(α)). These are flag complexes by Proposition 6.1

and we get isomorphisms Č(Sjα)→ Č(Sjφ(α)). We can use now Theorem 5.1 to derive that either α and φ(α)

have the same topological type or else:

(1) S1
α = S2

φ(α) = S1,1, S2
α = S1

φ(α) = S0,4;

(2) S1
α = S2

φ(α) = S1,2, S2
α = S1

φ(α) = S0,5;

(3) S1
α = S1,1, S1

φ(α) = S0,4, S1
α = S0,5, S2

φ(α) = S1,2.
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None of these cases can occur since an isomorphism Č(S1
α)→ Č(S1

φ(α)) will necessarily send a nonseparating

curve β to a separating one of S1
φ(α), hence of Sφ(α). This would contradict Lemma 6.5. The claim follows.

�

End of proof of Theorem 6.4. We use induction on the dimension of the simplex σ ∈ Č(S). Lemma 6.6
yields the claim when the dimension 0. Assume it holds true up to dimension k − 1 and let σ be a k-
dimensional simplex. After composing φ on the left and on the right φ by two elements of Č(S) we may
assume that σ = (α0, α1, . . . , αk), φ(σ) = (β0, β1, . . . , βk) are both discrete simplexes. By the induction
hypothesis σ′ = (α0, α1, . . . , αk−1) and φ(σ′) = (β0, β1, . . . , βk−1) lie in the same Γ̌(S)-orbit. Indeed by
Proposition 3.7, they are in the same Γ(S)-orbit, namely they have the same topological type. Composing
further with an element of Γ(S) we may assume that σ′ is fixed pointwise: φ(αi) = αi, i = (0, 1, . . . , k − 1).

Denote by the same letters the traces of the curves αk and βk on the surface Sσ′ hyperbolic of dimension
d(S)−k but not necessarily connected. However Lemma 6.6 still holds true in that case (for obvious reasons),
hence αk and βk have the same topological type on Sσ′ . An element of Γ(Sσ′) sending αk to βk lifts to
a mapping class in Γσ′(S) ⊂ Γ(S) which maps σ to φ(σ), proving the claim and completing the proof of
Theorem 6.4.

�

6.2. Automorphisms of goups and complexes. In this short subsection we make the connection between
group automorphisms on the one hand, automorphisms of complexes on the other. The next statement will
serve to emphasize how computing the automorphisms of curve complexes enables one to study, not only the
automorphism groups Aut(Γ̌(S)) of the procongruence modular groups, but indeed the groups Aut(Γ̌λ(S))
for all values of λ ∈ Λ, that is the automorphism groups of the open subgroups of the procongruence modular
groups. In the discrete setting the analogous statement comes from Theorem 2.4 and leads, via Theoreme
2.1 to the statement of Corollary 2.5. In the procongruence (or profinite) setting, we first define inertia
preserving automorphisms just as in the discrete case, namely:

Definition 6.7. An element of Aut(Γ̌(S)) is inertia preserving if it globally preserves the set of procyclic
subgroups generated by Dehn twists, that is maps a twist in Γ̌(S) to a profinite power of a twist.

We denote again with an upperscript the subgroup Aut∗(Γ̌λ(S)) ⊂ Aut(Γ̌λ(S)) of the inertia preserving
automorphisms. Here however the analog of Theorem 2.4, asserting that every automorphism preserves
inertia, although conjectured to hold true, is not available. We only remark that this statement stands in
close analogy with the so-called local correspondence of anabelian geometry. So we will deal explicitly with
the subgroup of inertia preserving automorphisms and we do indeed restrict attention to automorphisms,
as opposed to the more general isomorphisms appearing in Corollary 2.5. This is purely for the sake of
simplicity. The extension to isomorphisms would be easily available. In this context we have:

Proposition 6.8. For every hyperbolic S and every congruence level λ ∈ Λ there is a natural morphism:

γλ : Aut∗(Γ̌λ(S))→ Aut(Č(S)).

This morphism is injective if Γλ(S) has trivial center, thus in particular if Γ(S) itself has trivial center.

Proof. Note that in the last assertion we refer to the centers of the discrete groups, which actually coincide
with those of the completed ones (cf. [4], Corollary 6.2). Since we are working with colored modular groups,
the only exceptions are the types (1, 1) and (2, 0), in which cases the center is of order 2, generated by the
hyperelliptic involution. One should also pay attention to the levels such that Γλ(S) ⊂ Γ(S) contains this
involution. These cases could easily be treated in detail but we refrain to do so here.

The main remark and the main point in this proof consists in the fact that given φ ∈ Aut∗(Γ̌λ(S)) one can
assign to every simplex α ∈ Č(S) an image in a coherent way, thereby defining γλ(φ) ∈ Aut(Č(S)). This is a
direct consequence of Proposition 4.4. Let again Gα ⊂ Γ̌(S) denote the commutative subgroup topologically

generated by the (pro)twists along the (pro)curves attached to the vertices of α, and let Uλα = Gα ∩ Γ̌λ(S).

Then Uλα is open in Gα and by Proposition 4.4, for a simplex β ∈ Č(S), the intersection Uλα ∩Uλβ is open in

Uλα if and only if α ⊂ β.

So given φ ∈ Aut∗(Γ̌λ(S)) it makes senses to define φ̃ = γλ(φ) ∈ Aut∗(Γ̌λ(S)) via the formula:

φ(Uλσ ) = Uφ̃(σ),

which is valid for every simplex σ ∈ Č(S) and every congruence level λ ∈ Λ. One should pay attention to
the exact meaning of this formula. Indeed on the right-hand side Uφ̃(σ) denotes a kind of “generic”’ open
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subgroup of the group Gφ̃(σ). It is asserted, in accordance with the above, that there exists a unique simplex

φ̃(σ) ∈ Č(S) such that the left-hand side, namely φ(Uλσ ), is open in Gφ̃(σ); this property defines φ̃ = γλ(φ).

We have thus defined a map γλ for every λ ∈ Λ. It is actually easy to see that this a coherent family
with respect to the level λ. More precisely consider µ ≥ λ, so that Γµ(S) ⊂ Γλ(S) and assume that Γ̌µ(S)
is invariant (characteristic) in Γ̌µ(S) (recall that these groups are topologically finitely generated, so that
invariant subgroups are cofinal). Then there is a natural restriction map ρλ,µ : Aut∗(Γ̌λ) → Aut∗(Γ̌µ) and
it is clear that γλ = γµ ◦ ρλ,µ.

We finally address the issue of the injectivity of the map γλ. We use the natural action of Γ̌(S) on Č(S),
which defines an injective map Inn(Γ̌λ(S)) ↪→ Aut(Č(S)). Moreover, for every λ ∈ Λ, φ ∈ Aut∗(Γ̌λ(S)),
g ∈ Γ̌λ(S) and σ ∈ Č(S), we find that:

φ(g)(σ) = φ̃ ◦ g ◦ φ̃−1(σ)

(with φ̃ = γλ(φ)). If Γλ(S) is centerfree, so is Γ̌λ(S) as mentioned above i.e. Γ̌λ(S) = Inn(Γ̌λ(S))). Then if

φ̃ = id the formula above implies that φ(g)g−1 ∈ Z(Γ̌λ(S)) hence φ(g) = g for all g ∈ Γ̌λ(S); in other words
φ = id, proving injectivity and completing the proof.

�

6.3. The arithmetic Galois action. We remark now that the above makes it possible to define a faithful
arithmetic Galois action on the completed curve complex. We will stick here to the basic and most important
case, namely the action of GQ, the absolute Galois group of the field Q, on the curve complex. Recall that
for S hyperbolic connected, the (Deligne-Mumford) moduli stack M(S) is defined over Q, hence a natural

outer action GQ → Out(Γ̂(S)). Here the full profinite completion Γ̂(S) actually stands for the geometric

étale fondamental group: Γ̂(S) = π1(M(S) ⊗ Q̄). Very little is known about this action but two pieces of
information are quite relevant here. First it is inertia preserving, as initially showed by A.Grothendieck and
J.Murre (see [22] for references and much more on this and related topics); second it is faithful for d(S) > 0
as a consequence of Belyi’s theorem. It is easy to see that this action descends to the congruence quotient
Γ̌(S) and remains faithful, because in particular Γ̌(S) = Γ̂(S) for d(S) ≤ 5. Moreover the outer action can
be (non canonically) lifted to a bona fide action by picking a (possibly tangential) rational basepoint on the
moduli stack M(S). All in all, after picking a rational basepoint we get a faithful inertia preserving action
GQ ↪→ Aut∗(Γ̌(S)) for d(S) > 0 (we again refer to [22] for much more background, references, etc.). By
composing with the map γ ol Proposition 6.8 (γ = γλ for λ the trivial level: Γλ(S) = Γ(S)) we get:

Proposition 6.9. Let S be connected hyperbolic with d(S) > 0; then there is a map:

GQ ↪→ Aut∗(Č(S))

which is injective and canonical up to composition with the action of Inn(Γ̌(S)) on Č(S).
For d(S) > 1 the same holds true for the graph Č∗(S).

Proof. The possible composition by an inner automorphism of Γ̌(S) comes from the choice of a rational
basepoint. In other words the proposition asserts the existence of a natural faithful outer action of GQ on
Č(S). Here the only thing which requires proof is the injectivity in the two cases (types (1, 1) and (2, 0))
where Γ(S) has nontrivial center. But the kernel of the map γ of Proposition 6.8 is then generated by an
involution. Now any involution in GQ is conjugate to complex conjugacy so that it is enough to check that
the image of this latter element is not central; but this is clear since it corresponds to a reflection of the
surface. We thus find that the image of GQ in Aut(Γ̌(S)) does not intersect the kernel of γ, which completes
the proof for the curve complex.

The last assertion comes either from the reconstruction theorem or from the fact that, for d(S) > 1, Č∗(S)
identifies with the 1-skeleton of the dual of Č(S).

�

It should be stressed that we get a faithful action of the arithmetic Galois group on a profinite space,
whereas it is more common to get an action on a profinite group, which itself arises as a cohomological or
homotopical invariant of an underlying “classical” space. Actually, given – say – a geometrically connected
scheme defined over Q, one can make its étale covers into a p(r)oset by considering a (pro)point in the (pro)-
universal cover, then let GQ act on this proset, much as is done with “dessins d’enfants”. These correspond
to the type (0, 4) and simply give a “pictionary” of the finite (étale, that is here simply unramified) covers
of M0,4(C), alias P1(C) \ {0, 1,∞} alias C \ {0, 1}; recall also the isomorphism C(S0,4) ' C(S1,1) and that
these complexes are 0-dimensional. The resulting Galois action is indeed faithful as an easy corollary of
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Belyi’s theorem, but it is essentially no easier to study than the usual action on the geometric fundamental
group. Here curve complexes retain a kind of homotopical information at infinity from the tower of covers
of the moduli stacks in all dimensions and are much more amenable to a direct study.

The above Galois action readily extends to an action of the Grothendieck-Teichmüller group IΓ as defined
in [14] ( see also [29]) for background material) essentially by the very definition of this group which however
we skip here, as it would lead us too far afield. For the sake of clarity, we record this explicitly as

Proposition 6.10. Let S be connected hyperbolic with d(S) > 0; then there is a map:

IΓ→ Aut∗(Č(S))

which is canonical up to composition with the action of Inn(Γ̌(S)) on Č(S) and is injective if Γ(S) is
centerfree. For d(S) > 1 the same holds true for the graph Č∗(S).

�

Note that here we cannot a priori exclude the existence of a nontrivial kernel in the two cases when Γ(S)
has nontrivial center. It may be useful to remind the reader that there is a nested sequence of profinite
groups:

GQ ⊂ IΓ ⊂ ĜT ⊂ Aut∗(F̂2),

where ĜT is the original “genus 0” Grothendieck-Teichmüller group introduced by V.Drinfeld, IΓ is the
version adapted to all genera constructed in [14] and [29], whereas F2 = Z ∗ Z denotes the free group on
2 generators. For any S as in the proposition, there is also an injective map IΓ → Aut∗(Γ̌(S)) giving rise

to a canonical injection IΓ ↪→ Out∗(Γ̌(S)). If S has genus 0 we can enlarge IΓ to ĜT both here and in
Proposition 6.10, that is both in the group and complex theoretic frameworks. Finally it is essential that
both Propositions 6.9 and 6.10 are “badly” wrong for the pants complex ČP (S), as will become clear in the
next section. We also refer the reader to [20, 21] for much more on these and related topics.

7. Rigidity of the procongruence pants complex

7.1. Main result. We now turn to the study of the automorphism group of the procongruence pants complex
ČP (S), where S is hyperbolic, changing gear in essentially two ways. First in this section we will have to use
topological stacks rather than CW-complexes, as will be detailed in the next paragraph. Second, CP (S) will

denote the full two-dimensional pants complex and not the pants graph, namely the 1-skeleton C
(1)
P (S). Let

us state right away that we will use two specific ingredients in the proof of the rigidity result (Theorem 7.1
below): first the rigidity of the discrete pants complex CP (S) ([24] or Theorem 2.13 above), second the
simple connectedness of that same complex ([14],Theorem D in the introduction there)

It is worth insisting on this second crucial ingredient because although we will have to introduce somewhat
sophisticated objects to make sense of the result, the simple connectedness of CP (S) remains a central tenet
of the proof. Indeed that result features an incarnation of the central fact in the foundation of Grothendieck-
Teichmüller theory. It is central in [29] (a sequel and improvement of [14]), and it is tightly connected with
the so-called “two-level principle” which itself can be geometrically translated into the fact that for d(S) > 2
the fundamental group of the moduli stackM(S) is “concentrated at infinity”, as stated by A. Grothendieck
in his Esquisse and vindicated in [19] (see also [3]). It is thus rather interesting that one of the main
foundational results of the present paper, namely the rigidity of the procongruence (or in fact profinite – see
below) pants complex, can be considered a direct corollary of the main foundational result of the theory.

Let us now state the result rather bluntly. We will return to a more careful elucidation of the definitions in
the next paragraphs (§§7.2, 7.3). Actually the results in this section hardly depend on the type of completion,
provided it is fine enough, in particular residually finite. So let us denote by a prime (′) a completion which
sits between the procongruence and the full profinite one. In other words we pick an inverse system of levels
(cofinite subgroups of Γ = Γ(S)) which contains the congruence system Λ and of course is contained in the
full system M (see §A.10). The reader who is willing to make life simpler or lighter is welcome to elect Λ
and stick to the congruence completion. Indeed for ease of notation, below we will refer to our fixed inverse
system as Λ.

There are natural epimorphisms:

Γ̂ � Γ′ � Γ̌,

and ditto for the other completed objects. The group Γ′ is residually finite (i.e. there is a natural embedding
Γ ↪→ Γ′) since Γ̌ is. Of course if the congruence conjecture holds true (which we do not assume here) all
three completions coincide. We will also be interested in the respective centers of these profinite group. This
is known only for the conguence completion (see [4]) : one has Z(Γ̌) = Z(Γ) so that Inn(Γ̌) = (Inn(Γ))∨.
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As mentioned above we now have to consider the two-dimensional procomplex CP (S)′ as a topological
prostack, which we denote simply CP (S)′st. Precise definitions are given in §7.2 below, along with the exact
meaning of the automorphism group. Granted these for the moment we can state:

Theorem 7.1. For every S connected hyperbolic and any completion which is finer than the congruence one,
the group Aut(CP (S))′st of automorphisms of the topological prostack CP (S)′st is determined by the following
split short exact sequence:

1→ (Inn(Γ(S))′ → Aut(CP (S)′st)→ Z/2→ 1.

In other words and more concisely :

Aut(CP (S)′st) =
(
Aut(CP (S))

)′
.

Note that we get (Inn(Γ(S))′ on the left-hand side of the short sequence of the theorem, rather than
Inn(Γ(S)′) . As mentioned above these groups coincide in the procongruence case.

So Out(CP (S)′st) ' Z/2, like in the discrete case, and the sequence is split by complex conjugacy. Let us
briefly detail the one-dimensional case, noting that in dimension 0 (S = S0,3), all complexes are empty and
there is nothing to prove. If d(S) = 1, the type is (0, 4) or (1, 1), the congruence conjecture holds true and

we are dealing with ĈP (S1,1)st ' ĈP (S0,4)st ' F̂st, the profinite Farey tesselation viewed as a pro-object in
the category of one-dimensional DM-stacks (orbifold curves). We will review this exceptional case in §7.5.

Let us briefly elucidate the two and three dimensional cases, where the congruence conjecture has been
vindicated. In dimension 2, Γ1,[2] = Γ1,2 × Z (direct product) and Γ1,[2]/Z = Γ1,2 ⊂ Γ0,[5] of index 5
and self-normalizing (see §A.4). This takes care of the left-hand side of the exact sequence in dimension
2. Recall that the pants graphs for types (0, 5) and (1, 2) are not isomorphic (cf. Prop. 5.15). Finally
in dimension 3, the congruence conjecture is still valid, the Teichmüller groups Γ0,6 and Γ1,3 have trivial
centers and we just record the fact that Z(Γ2) ' Z/2 (generated by the hyperelliptic involution) with
Γ2/Z ' Γ0,[6]. For all the other types (g, n) the centers of the discrete and procongruence groups are trivial:(
Inn(Γ(Sg,n))

)∨
= Inn(Γ̌(Sg,n)) = Γ̌g,[n].

We stated the result above in terms of topological prostacks, which may appear as somewhat fancy sounding
objects. Let us then try to informally answer the natural question: why are these needed ? First the main
object of study is the projective system of quotients (CP (S)/Γλ)λ∈Λ, which can be viewed as a pro-object
of some category. So it is only natural that pro-categories pop out; we review the basic inputs in §7.3 below.

Now in what category should we consider the quotient CP (S)/Γλ, assuming that λ is large enough and
possibly (w.l.o.g.) that Γλ is normal in Γ? At some point we will want to lift morphisms or automorphisms
of these quotients to CP (S). The latter is indeed simply connected, but not of course the pants graph

C
(1)
P (S). So we need to use the full two-dimensional complex in the proof. Moreover lifting a morphism

usually presupposes that we are dealing with an étale (say unramified; flatness does not enter here) cover.
So the projection CP (S) → CP (S)/Γλ should be unramified, which it is if we consider the stack quotient.
However this case is not covered by the usual (algebraic) theory of stacks (see e.g. [23]), nor by Thurston’s
theory of orbifolds, an important point being that the action of Γλ on CP (S) is not proper and discontinuous.
(Of course we could consider things “bottom up”, CP (S)/Γλ being a cover of CP (S)/Γ with finite group
Γ/Γλ, but it doesn’t help.) Already stabilizers are not finite. We will see below that B. Noohi’s theory of
topological stacks is in fact taylored to our needs.

A last remark: the pants graph affords a geometric and in fact modular interpretation, first noted in
some form by D. Mumford and briefly recalled in 7.6 below. So it is immediately connected with complex
theoretic, hyperbolic, algebraic and in fact arithmetic structures. However, to the best of our knowledge, this
is not the case of the pants complex itself. In other words we do not have a complex theoretic interpretation
of the elementary homotopies which make up the two-cells of the pants complex. This is another deep reason
why we have to work with topological stacks.

7.2. Topological stacks. The foundations of the theory of topological stacks were developed by B. Noohi
in [27], unfortunately unpublished but easily available. We will quote extensively from that paper, which
we recommend for further reading, along with later papers of that author, especially [28]. For the theory
of the fundamental group of algebraic stacks, see [26, 22]. However, in truth we will use very little of the
theory and our situation is a particularly simple and favorable one. So we will try and avoid doing too much
overshooting, confining ourselves to some pointed reminders and observations.

Start from the category Top of (compactly generated) topological spaces, our main example here being
X = CP (X), a two-dimensional non locally finite CW-complex. Recall that in this case the topology is the
quotient topology associated to the gluing of the cells. We cannot go over rather long definitions (referring
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globally to [27]) but to be precise, we mention that defining the category TopSt of topological stacks over
Top involves the choice of a family of local fibrations ; here we work with homeomorphisms, which is item 6
in [27], Example 13.1.

Now we consider the action groupoid [Γλ × X ⇒ X] ([27], §7). This is a topological groupoid and it is
easily seen that the action of Γλ is mild at every point. Here we should insist that this does not entail that
the stabilizer groups are finite; they are not. In fact consider a vertex of X, which is nothing but a maximal
multicurve (a.k.a. “pants decomposition”) of X. Then its stabilizer under the action of the full Teichmüller
group Γ = Γ(S) is an extension of a finite symmetry group by the free abelian group of rank d = d(S)
generated by the twists along the curves which span the given multicurve. For λ large enough the stabilizer
is thus given as a cofinite subgroup of the latter group, that is a lattice in Zd (with finite quotient).

Thus we find that the quotient of the groupoid [Γλ ×X ⇒ X] is a topological Deligne-Mumford stack in
the sense of [27], Def. 14.3. Here again the adjective “topological” is essential and does not only refer to the
fact that all the operations are compatible with a given topology. It implies an effective enlargement of the
category of admissible stacks. In fact every C-stack (locally of finite type) can be regarded as a topological
stack ([27], §20, plus a GAGA-type result). On the other hand, the usual orbifolds are also included in
the picture ([27], §19.3) as a full subcategory of topological Deligne-Mumford stacks. Note that all these
categories are in fact 2-categories but for the sake of simplicity we will not record this, just as we do not
explicitly state that assertions are often up to 2-morphisms.

We denote the quotient by Xλ or by (CP (X)/Γλ)st. We are indeed in a comparatively simple situation,
Deligne-Mumford stacks being in general of this form only locally (this is also true in the algebraic setting, for
the étale topology; see [23] or [22]). Here, since X, regarded as element of Top or TopSt is simply connected, it
is in fact the universal cover of Xλ (see also [27], Theorem 18.24). Moreover, the naive quotient CP (X)/Γλ

in Top is the coarse moduli space of Xλ. We therefore denote it Xλ
mod; there is a functorial morphism

Xλ → Xλ
mod from the topological stack Xλ to its coarse moduli space.

Now the proof of Theorem 7.1 will be quite short (see below), based, apart from the two main and specific
ingredients mentioned above, on a few inputs from the covering theory for topological stacks ([27], §18) and
some notions which are common to topological and algebraic stacks. We refer to [27], §3, for a quick but
sufficient review, or e.g. to [23].

7.3. Pro-objects and their automorphisms. In this short paragraph we recall how pro-objects are
handled. In view of the relative concreteness of our situation we need only a few basic inputs, to be found
essentially in the Appendix to [2]. For more and a more modern approach in the framework of model
categories, see [31, 32] which are quite relevant in the framework of this paper.

First recall some vocabulary: an inverse or projective limit (lim←−) is just a limit, an inductive one (lim−→) is

a colimit, an inverse or projective system is a particular case of a cofiltering category. We use a generic Λ,
which in our case concretely denotes any inverse system which is finer than the one defining the congruence
completion. To make the connection with categories, simply declare that there is a (unique) morphism λ→ µ
if and only if λ ≥ µ. Now indeed for every pair λ, µ of elements of Λ there exists ν ∈ Λ such that ν → λ
and ν → µ. Next we consider pro-objects (rather than just limits) associated with a small category C, here
especially the category tStacks of topological stacks. These are given as coherent collections X = (Xλ)λ∈Λ,
equivalently as maps Λ→ X, with Xλ ∈ C for all λ ∈ C (or in fact just for λ large enough).

These are made into a category pro− C by defining morphisms between two pro-objects X and Y :

Hom(X,Y ) = colimµ limλ Hom(Xλ, Y µ).

Here beware of the fact that we are considering a cofiltering category Λ as the primary object, rather than
the opposite filtering category Λo. So we get a contravariant functor as usual but limits and colimits are
swapped. In any case this essentially amounts to describing the respective variances of “source” and “image”
by chains of morphisms λ′ → λ → µ → µ′ (i.e. λ′ ≥ λ ≥ µ ≥ µ′ in the case of inverse systems). Although
we do not seriously need it, a useful result says that by a clever reindexing we can bring a morphism of
pro-objects to a more manageable form, namely

Proposition 7.2. Let f : X → Y be a map in pro − C for a small category C, with indexing cofiltering
category Λ ; then it can be represented, up to isomorphism, by an inverse system of maps (φλ : Xλ → Y λ)λ∈Λ.
Moreover f is invertible if and only if there exists a system (ψλ : Xλ → Y λ)λ∈Λ with ψλ ◦ φλ = id.

Proof. This is essentially Corollary 3.2 in the Appendix of [2]. This statement is an especially useful but
rather particular case of Proposition 3.3 (ibidem; see also [SGA 4]). Note that the system of maps (φλ)λ∈Λ

can be viewed as a pro-object in the category of maps in C, which helps unraveling the definition of pro−C,
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the procategory built from C. The addition on invertibility in the statement comes as a particular case of
Scholie 3.5, loc. cit.. �

We should warn the reader that the word “represent” in the statement is pointing to the fact that this is
“up to an equivalence” i.e. one may have to replace X and Y by equivalent, that is isomorphic pro-objects,
isomorphisms being invertible morphisms. In particular this proposition is dealing with a given morphism f ,
not with the whole set Hom(X,Y ).

To sum up, we will be working in the category pro-TopSt of topological prostacks, more particularly with
CP (S)′st, defined by the coherent sequence (Xλ)λ∈Λ where Xλ = (CP (S)/Γλ)st. Recall that the type of
the completion (′) is defined by the choice of the inverse system (cofiltering category) Λ. We sometimes
abbreviate CP (S)′st to X ′st, keeping the bare X for the discrete complex CP (S), viewed as a topological
space (CW-complex), a fortiori a topological stack. An automorphism φ ∈ Aut(CP (S)′st) = Aut(X ′st) can
be defined by two systems of maps (φλ, ψλ : Xλ → Xλ) for λ ∈ Λ large enough, which are isomorphisms
(equivalences) of the stacks Xλ = (CP (S)/Γλ)st and are inverse of each other (ψλ ◦ φλ = φλ ◦ ψλ = id).

7.4. Proof of Theorem 7.1. After these preliminaries we may now return to our situation ; the proof
of Theorem 7.1 is now quite short. Start with φ ∈ Aut(CP (S)′st) = Aut(X ′st) an automorphism of the
topological prostack CP (S)′st, given by a coherent sequence of morphisms of stacks φλ : Xλ → Xλ with
Xλ = (CP (S)/Γλ)st. For λ ∈ Λ large enough (i.e. Γλ small enough), φλ is an isomorphism, in particular it
is a representable morphism.

Fixing λ, let then pλ : X → Xλ denote the canonical projection (X = CP (S)). The map pλ is a covering
map of topological stacks (see [27], Def. 18.10) and X is simply connected. We can thus apply the general

lifting lemma (see [27], Prop. 18.18) to pλ and the map φλ ◦ pλ. It yields a map φ̃λ : X → X, which again

is invertible for λ large enough. So φ̃λ is nothing but an automorphism of the (discrete) pants complex
CP (S). We now appeal to Margalit’s rigidity result ([24] or Theorem 2.13 above) asserting that such an
automorphism is induced by an element of Mod(S). By varying λ ∈ Λ along the projective system defining
the completion prime (′), we get the assertion of Theorem 7.1.

�
Let us add two remarks. First the significance of this rigidity result lies in it being the seed of a profinite

version of Grothendieck-Teichmüller theory, much in the spirit of the Esquisse. One should insist again that
the completed curve complex, say Č(S)st, is far from rigid. Indeed its automorphism group appears as a
version of the Grothendieck-Teichmüller group and thus contains the Galois group Gal(Q); it is independent
of S for S “generic” enough. It is important to note the fact restricting ourselves to morphisms of stacks does
not represent a serious restriction in this context. The point is that the Grothendieck-Teichmüller group
clearly induces such morphisms, a fortiori so does the arithmetic Galois group. We hope to return to these
facts in more detail elsewhere (see however [20] for a draft version)..

The second remark is that we applied a slightly paradoxical strategy. There appear two specific ingredients
in the proof of Theorem 7.1, namely the simple connectedness of the discrete pants complex CP (S) and
its rigidity. In turn this last result is shown by D. Margalit (in [M]) by appealing to the rigidity of the
discrete curve complex C(S) ([16, 18] or Theorem 2.1 above). In other words we proved the rigidity of the
completion of the pants complex exploiting the rigidity of the discrete curve complex, whose completion in
turn is anything but rigid.

7.5. The one-dimensional case: a review. In this subsection we detail the geometry of the one-
dimensional case, making the connection with “dessins d’enfants” and reproving Theorem 7.1 in this partic-
ular case (see Proposition 7.3 below) in a simpler way. The perceptive reader will find that we could actually
improve the statement in this one-dimensional case, but for simplicity we refrain from doing so. For the higher
dimensional situation, see §7.6 below. In dimension 1 the modular groups read Γ0,[4] ' Γ1,1/Z ' PSL2(Z)
(Z ' Z/2) where we use the quotient of Γ0,[4] which acts effectively. Since CP (S0,4) = CP (S1,1) = F we may

and will restrict attention to S = S0,4. ThenM0,4
∼= P1 \ {0, 1,∞} which for ease of notation we denoteM

in this paragraph. So up to a stacky phenomenon which needs not concern us here (see [22] for much more
detail) the (rigidified) version ofM0,[4] is given by the quotientM0,4/S3. Here S4 permutes the 4 punctures
and acts effectively via S4/V ' S3, where V is the Klein 4-group. This is summarized by the short exact
sequence

1→ Γ0,4 → Γ0,[4] → S3 → 1.

Recalling that the congruence conjecture holds true in this case, Theorem 7.1 translates into:
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Proposition 7.3.

Aut(F̂st) ' ̂(PGL2(Z)).

�

Here F̂st denotes the Farey tesselation viewed as a (pro-)orbifold and the right-hand factor in the attending
short exact sequence (see the statement of Theorem 7.1) is generated by the class of the matrix diag(−1, 1).

For a bit of geometry, we start again with M ∼= P1 \ {0, 1,∞}. Then M ' P1 with boundary divisor
∂M = {0, 1,∞}. We denote the analytic version also F = M(C) = P1(C) anticipating on the higher
dimensional cases to be tackled below. Next F = P1(C) is naturally triangulated into two triangles, say
black and white, by the two closed hemispheres, with vertices {0, 1,∞}. The common boundary is the
equator, i.e. the setM(R) of the real points insideM(C) or more algebraically the set of fixed points of the
complex conjugacy, generating the Galois group Gal(C/R). Now the attending Teichmüller space T0,4 ' T1,1

(see §A.2) is the Poincaré upper half-plane H or equivalently (i.e. up to a fractional transformation) the
Klein disk D, equipped with the respective actions of PSL2(Z). Lifting the ideal triangulation ofM via the
natural projection

T0,4 = H → P1 \ {0, 1,∞} =M(=M0,4)

we get the classical bicolored Farey tesselation F of the upper half-plane H or the disk D. We also get the
projective system of (Fλ)λ∈Λ defined by all the finite covers of M viewed as orbifold (a.k.a. DM C-stacks):
Fλ = F/Γλ = (CP (S)/Γλ)st. Note that Fλ determines a triangulation (tesselation) of the completed level

Mλ
. The canonical projection πλ :Mλ →M, is an unramified orbifold cover.

Let now φ ∈ Aut(F̂st) given by a compatible system of maps φλ : Fλ → Fλ which are invertible for λ
large enough. In a more algebraic language: Mλ = Xλ is an algebraic curve which is actually defined over
Q (i.e. it is defined over some finite extension of Q). The projection πλ : Xλ → X0 = P1 \ {0, 1,∞} =M
is an (algebraic) Belyi map (also defined over Q) determining an ideal triangulation of Xλ. It extends to a

map (still πλ) Mλ
= X

λ → X
0

= M between the respective completions. We denote the “ground level”

with a zero, writing Γ0 = Γ, M0 = M, M0
= M, etc. The projective algebraic curve X

λ
has quadratic

singularities (nodes) lying over the points 0, 1 and ∞ for the projection πλ. Its normalization X̃
λ

is a
smooth, not necessarily connected, projective algebraic curve, also defined over Q as well as every connected

component. One can view the (dual of) the triangulation of X
λ

as a “dessin d’enfant” drawn on the curve
viewed as a topological surface and rigidifying the situation entirely. For this translation we refer to [34]
and many other papers. Note that we are not using the astonishing part of Belyi’s theorem, which asserts
that every algebraic curve defined over Q arises in this way. For instance the fact that Xλ is affine algebraic
defined over Q was known to A.Weil, as well as everything that is mentioned above (see e.g. [36] which
introduces the notion of “descent” and contains all the necessary material – and more).

We may consider φλ as a differentiable automorphism of Mλ, up to isotopy. Every vertex, resp. edge,
resp. face (triangle) of the tesselation is mapped to another such, which determines a diffeomorphism up
to isotopy. Actually much more is true since the situation can be uniquely rigidified. Namely φλ a priori

permutes the connected components of the normalization X̃
λ

and on each of these components it is isotopic
to a unique map which is either algebraic or “antialgebraic” i.e. algebraic after composing with the complex
conjugacy (which is a well-defined involution), according to whether it preserves or inverts the orientation
determined by the complex structure. One then arrives at the one-dimensional case of Proposition 7.6 below,
which we refrain to state here. For the more topologically inclined reader we note that part (not all) of the
above can be expressed in another language, namely that of the so-called flat surfaces (see e.g. [35] and
references therein).

Now for every λ ∈ Λ there is a canonical projection pλ : H →Mλ and H is simply connected ; indeed it is
the universal cover ofMλ for every λ ∈ Λ. Then φλ lifts to φ̃λ : H → H, preserving the Farey tesselation F
of H. The lift φ̃λ is well-defined up to the left action of Γλ. This implies that φ̃λ is (isotopic to) an element of
PGL2(Z) ∼= Aut(F ). It belongs to PSL2(Z) if and only if the original map φλ is orientation preserving which

is now seen to be a global property, that is independent of the choice of a connected component of X̃
λ

. We

thus get a compatible system of elements φ̃λ ∈ PGL2(Z), that is an element of ̂PGL2(Z) ∼= ̂PSL2(Z)oZ/2,
which completes the proof of Prop. 7.3. The pattern followed above is the same as in the general case of
Theorem 7.1, only simpler. Indeed H is the universal cover ofMλ (recall thatM = P 1 \{0, 1,∞}) for every
λ ∈ Λ in the ordinary (topological) sense of the word and here CP (S0,4) ' H because the 2-cells of the pants
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complex arise from triangles only (pentagons and faces of type 6AS do not exist in dimension 1). So this is
the only case where the full pants complex is realized in a geometric, in fact modular way.

7.6. A geometric interlude: Fulton curves and the pants graph. We close this section with some
geometric observations, underlining the modular significance of the pants graph. Unfortunately the geometric
significance of the full two-dimensional complex CP (S) is not clear at the moment. Recall that in some sense
its 2-cells come from elementary homotopies which generalize the classical Mac Lane’s relations in genus 0
(i.e. in braided categories). This paragraph does not contain any really new result and we will be somewhat
sketchy but we hope that such geometric observations can nonetheless prove suggestive and useful.

Starting from our usual connected hyperbolic surface S (d(S) ≥ 1) we consider again the attached moduli
space M = M(S), viewed here as a complex orbifold (see §A.2), M the stable (Bers-Deligne-Mumford)
compactification of M. The boundary divisor ∂M =M\M classifies Riemann surfaces with nodes of the
same type as S, or one-dimensional proper complex D-M stack with quadratic singularities and finite groups
of automorphisms, in a more algebraic language. Passing to a level structure λ ∈ Λ, that is a representable

étale cover Mλ →M, we then get a compactification Mλ
with divisor at infinity ∂Mλ = Mλ \Mλ. We

now define a curve, or rather a one-dimensional orbifold (D-M stack) Fλ:

Definition 7.4. Let S be hyperbolic connected of modular dimension d = d(S). The one-dimensional
orbifold F(S) ⊂M(S) is such that its (closed) points represent Riemann surfaces (curves) with at least d−1

nodes (quadratic singularities). For an arbitrary level λ ∈ Λ we let Fλ(S) ⊂Mλ
(S) denote the preimage of

F(S) via the canonical projection Mλ
(S)→M(S).

In other words F = F(S) is nothing but the closure of the one-dimensional stratum in the stable stratifi-
cation of M =M(S). A complex point of F represents an algebraic curve which is a stable graph of copies
of P1 \ {0, 1,∞}, save perhaps for an irreducible component of type (0, 4) or (1, 1). When d(S) = 1, that
is d − 1 = 0, F coincides with M. As soon as d(S) > 1, F is contained in the boundary ∂M and more

generally Fλ ⊂ ∂Mλ. The importance of this one-dimensional stratum in the stratification of M was first
recognized in connection with a conjecture formulated by W.Fulton, hence the notation (see e.g. [11]).

Each irreducible component of F is (isomorphic to) a moduli space of dimension 1 and can be triangulated
as above into two triangles. Lifting that triangulation to the corresponding Teichmüller space T = T (S)
produces again a copy of the Farey tesselation F . It is bicolored and complex conjugacy permutes the colors
of the triangles. On the other hand, for any level λ ∈ Λ, one gets a cover Fλ → F , which ramifies at most over
points representing curves with the maximal (= d) number of nodes (singularities), that is graphs of trinions.
The triangulation of F thus lifts uniquely to Fλ. Moreover, and this is where the connection between F(S)
and CP (S) comes in, it is easily seen that Fλ(S) is naturally isomorphic to CλP (S) = CP (S)/Γλ, after
identifying as usual the Farey graph with the corresponding tesselation. In slightly more detail, it is enough
to show this for the trivial level, and then lift the result to every λ ∈ Λ. Moreover this is a local assertion,
in the sense that we can fix d− 1 curves, after which we are reduced to the one-dimensional situation of the
last subsection. We record this as

Proposition 7.5. For every λ ∈ Λ, Fλ is a compact stable orbifold curve (i.e. a complex one-dimensional
proper D-M stack with nodal singularities and finite group of automorphisms). It is equipped with a natural
bicolored tesselation, whose dual graph is isomorphic to CλP (S) = CP (S)/Γλ �

Note that in the one-dimensional case the curve F coincides with the compactified moduli space, so does
not lie at the boundary. This is one specificity of that case. The second is that the two-dimensional cells
of the complex CP (S) are then given by triangles only. As a result CP (S) is represented by the Farey
tesselation of the attending Teichmüller space, namely the Poincaré upper half-plane.

Suppose now that we are given an inverse system of invertible simplicial maps (simplicial automorphisms)

φλ : CλP (S)→ CλP (S)

between finite graphs (λ ∈ Λ). Here the quotient CλP (S) = CP (S)/Γλ can be considered naively or as an
orbifold ; ditto for the morphisms. From Proposition 7.5) that CλP (S) = CP (S)/Γλ is the dual graph of
a natural bicolored tesselation of Fλ = Fλ(S) and locally, everything happens as in the one-dimensional
case. Appealing again e.g. to [34], we find that this determines a complex structure on Fλ for every λ ∈ Λ
(F0 = F) and in fact these are again projective algebraic curves defined over Q. Note that we may restrict
to λ large enough (say dominating an abelian level of level > 2) so that Fλ is indeed a bona fide curve, as
opposed to an orbifold curve (one-dimensional DM stack); one can accommodate the stack structure just as

well. In fact this complex structure concides with the one inherited from the fact that Fλ ⊂ ∂Mλ is nothing
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but the closure of the one-dimensional stratum of the stratified variety (more correctly DM stack) Mλ
. To

see this it is enough to consider the case of the ground level F0 = F ⊂ ∂M, the point being that Γ acts
isometrically on the Teichmüller space T equipped with the Teichmüller metric.

Returning to the curve Fλ we can proceed as in §7.4 and arrive at the following statement:

Proposition 7.6. Given a simplicial automorphism φλ : CλP (S)→ CλP (S), it determines a real analytic map
(with the same name) φλ : Fλ → Fλ, which on every analytically irreducible component of the projective
curve Fλ is either holomorphic or antiholomorphic. �

We leave it to the reader to further enhance this statement. Basically all the objects are algebraic and
defined over numberfields and so are the morphisms, a priori possibly after twisting by complex conjugacy.
Passing to Teichmüller space we get the classical Bers bordification T of the Teichmüller space T , that is
the Teichmüller space of stable nodal curves. The action of Γ(S) extends to T with quotient T /Γ(S) =M.

It is natural to define F̃ as the lift of F to ∂T . Is is endowed with a natural bicolored triangulation whose

dual represents the pants graph C
(1)
P (S) but although the 2-skeleton of CP (S) is thus uniquely determined,

it is not clear whether it has a geometric (i.e. analytic) counterpart.

Appendix A. Some definitions and known results

We have gathered here a number of definitions, most of which but not all are classical, and a number of
results in the discrete setting, most of which but not all are used in the text. The point is simply to provide
the reader with the basic notation and material, together with some more or less standard references.

A.1. A finite type is a pair (g, n) of non negative integers. Given a type, we let S = Sg,n denote the –
unique up to diffeomorphism – differentiable surface of genus g with n deleted points. We occasionally write
g(S) for the genus of S. The points can also be be considered as “holes”, provided isotopies do not fix the
boundary circles. A surface is of type (g, n) if it is diffeomorphic to Sg,n. The Euler characteristic of Sg,n is
χ(S) = 2− 2g − n; the surface is hyperbolic if 2g − 2 + n > 0.

A.2. Attached to a surface S of type (g, n) are the Teichmüller space T (S) and moduli space M(S). We
restrict henceforth to hyperbolic surfaces. The Teichmüller space T (S) is noncanonically identified with the
standard Teichmüller space Tg,n associated with the given type. It has dimension d(S) = dg,n = 3g − 3 + n,
which we call the modular dimension of S or of the given type – we will often drop the adjective “modular”.
In turnM(S) is – again noncanonically – identified withMg,[n], the moduli space of curves of the given type,
with unlabelled marked points. We use brackets ([n]) when the points are unlabelled, that is are considered
setwise. Note that to be consistent we should write Sg,[n] rather than Sg,n but we nevertheless retain the
latter piece of notation for simplicity; also, Tg,[n] = Tg,n because the definition of Teichmüller space involves
a marking, so in particular the choice of generators of the fundamental group of the model surface.

A.3. We let Mod(S) = π0(Diff(S)) denote the (extended) mapping class group of S, i.e. the group of
isotopy classes of diffeomorphisms of S. The index 2 subgroup of orientation preserving isotopy classes
is denoted Mod+(S). More generally an upper + will mean orientation preservating. We write Γ(S) =
Mod+(S) and call it the (Teichmüller) modular group. It can be seen as the orbifold fundamental group of
M(S) and as the Galois group of the orbifold unramified cover T (S)/M(S). So we have the tautological
exact sequence:

(A 1) 1→ Γ(S)→Mod(S)→ Z/2→ 1.

The group Γ(S) is (noncanonically) isomorphic to Γg,[n], defined as the fundamental group of the complex
orbifold Mg,[n]. The group Γg,[n] is centerfree, except for 4 low-dimensional exceptions, i.e. types (0, 4),
(1, 1), (1, 2) and (2, 0). In the first case the center is Klein’s Vierergruppe (' Z/2×Z/2); in the other three
cases the center is isomorphic to Z/2, generated by the (hyper)elliptic involution. We refer to any elementary
text on the subject for more detail.

A.4. Permutations of points play a certain role in the theory. The moduli space of curves of genus g with
n ordered points is denoted Mg,n. The cover Mg,n/Mg,[n] is finite, orbifold unramified (stack étale) and
Galois with group Sn, the permutation group on n symbols.

Let us detail one low dimensional example (or exception) which is mentioned in the text. The group
Γ1,[2] has center Z isomorphic to Z/2 as mentioned above. It is the direct product of that center and the
corresponding ordered group: Γ1,[2] = Γ1,2 × Z. Moreover Γ1,2 ⊂ Γ0,[5] is the subgroup which corresponds
to the permutations stabilizing the – say – fifth point. Geometrically speaking, to a genus 1 curve with 2
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marked points one can associate 5 points, namely the 4 Weierstrass points plus the orbit of the two points
under the elliptic involution; the two points can be indeed made to form an orbit, after a suitable translation.
The 4 points can be permuted but the fifth one should be kept labeled under the action of the modular group,
hence the above description. Finally, it is useful to note that Γ1,2 is self-normalizing in Γ0,[5], so in particular
not normal.

A.5. We now briefly summarize the definitions pertaining to various curve complexes, referring to any of
the many references (e.g. [15, 16, 18] etc.) for more detail. It is remarkable that we will actually need only
consider graphs (and prographs), that is complexes of dimension 1.

Given a surface S, hyperbolic and of finite type (see §A1), we let L(S) denote the set of isotopy classes of
simple closed curves on S not isotopic to boundary curves (circles around the marked points). A multicurve
is a set of non intersecting elements of L where non intersecting means that there exist representatives which
do not intersect (see [10] or again any standard reference for detail).

The first complex C(S) is the one originally defined by W.J.Harvey in the late sixties. A k-simplex of
C(S) is defined by a multicurve α = (α0, . . . , αk), so that the vertices of C(S) correspond to elements of
L(S). Boundary and face operators are defined by deletion and inclusion of curves respectively. This makes
C(S) into a (non locally finite) simplicial complex of dimension d(S)−1 where d(S) is the modular dimension
of S (see §A.2). We will write C(k)(S) for the k-dimensional skeleton of C(S) and use a similar notation
for the other complexes. Note that L(S) = C(0)(S) is just the 0-skeleton (vertex set) of C(S) but it is
nonetheless useful to retain a specific piece of notation.

There is a natural action of Γ(S) on C(S) determined by saying that to g ∈ Γ and a curve α ∈ L one
associates g · α, the image of the curve by g, everything up to isotopy.

A.6. Next we define CG(S), the group theoretic complex. It is useful essentially in the complete case (see
below), so is included in the present discrete setting essentially to fix notation. Here all objects pertain
to the discrete topology, so we add a superscript “disc”. Let Γ = Γ(S) and Gdisc(Γ) denote the set of all
subgroups of Γ. To every simplex (i.e. multicurve) σ ∈ C(S) we assign the (discrete) free abelian group
Gdiscσ ∈ G(Γ) spanned by the (Dehn) twists associated to σ. We then use the boundary and face operators
as for C(S) in order to make Gdisc(Γ) into a simplicial complex, indeed a Boolean lattice.

In the discrete setting, CG(S) is (more or less trivially) isomorphic to C(S) and we define a Γ-action on
CG(S) so as to make the natural isomorphism equivariant. To α ∈ L, that is a vertex of C(S), one thus
assigns the cyclic group generated by τα, the twist along α. Note that at this point, we should and do fix
an orientation for S. Then for g ∈ Γ one has the well-known formula: τg·α = gταg

−1 ∈ Γ. The right-hand
side of this equality defines an action of Γ on CG(S) which makes the natural isomorphism between C(S)
and CG(S) Γ-equivariant.

A.7. We then come to the pants complex CP (S). It was briefly mentioned the appendix of the classical
1980 paper by A.Hatcher and W.Thurston (see [14] or [24]) and first studied in [14] where it is shown to be
connected and simply connected. It is a two dimensional, not locally finite complex whose vertices are given
by the pants decomposition (i.e. maximal multicurves) of S; these correspond to the simplices of highest
dimension (= d(S) − 1) of C(S). Given two vertices α, α′ ∈ CP (S), they are connected by an edge if and
only if α and α′ have d(S)− 1 curves in common, so that up to relabelling (and of course isotopy) αi = α′i,
i = 1, . . . , d(S)− 1, whereas α0 and α′0 differ by an elementary move, which means the following. Cutting S
along the αi’s, i > 0, there remains a surface Σ of modular dimension 1, so Σ is of type (1, 1) or (0, 4). Then
α0 and α′0, which are supported on Σ, should intersect in a minimal way, that is they should have geometric
intersection number 1 in the first case, and 2 in the second case (in the latter case their algebraic intersection
number is 0). In the first case (genus 1), the edge (and move) is said to be of type S (for “simple”, see [14]);
in the second case (genus 0) of type A (for “associativity”, see [14]). For d(S) = 1, the 1-skeleton of CP (S)
is the Farey graph F .

We have thus defined the 1-skeleton C
(1)
P (S) of CP (S) which, following [24], we call the pants graph of S.

We omit here the definition of the 2-cells of the complex CP (S) (see [14] or [24]), which enters in §7 only.
They describe certain relations between elementary moves, that is they can be considered as elementary
homotopies; as mentioned above, pasting them in makes CP (S) simply connected (cf. [14]). It is shown
in [24] how to recover the full 2-dimensional pants complex from the pants graph. For d(S) = 1 the pants
complex is the Farey tesselation, which we again denote F . We usually use only the pants graph (except

in section 7), i.e. the 1-skeleton C
(1)
P (S) of CP (S), which in order to simplify notation we often abusively

denote CP (S).
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A.8. We finally define the graph C∗(S) which plays an important role in the complete case, while actually
clarifying a number of issues even in the discrete case (see §2). The graph C∗(S) shares the same set of
vertices as CP (S), namely the maximal multicurves (a.k.a. pants decomposition) of S. The edges are defined
simply by relaxing the minimal intersection condition in the definition of the edges of CP (S). In other words
two vertices represented by maximal multicurves α = (αi)i and α′ = (α′i)i (i = 0, . . . , d(S) − 1) are joined
by an edge if up to relabelling αi = α′i for i > 0; then α0 and α′0 lie on a surface of type (0, 4) or (1, 1). So
CP (S) ⊂ C∗(S) is a subgraph with the same set of vertices.

If S is connected (see however §A.9 below) of dimension 0, it is of type (0, 3) (a trinion or pair of pants);
by convention, CP (S) = C∗(S) is reduced to a point with no edge attached; note that usually one defines
C(S0,3) = ∅. If S is connected of dimension 1, it is of type (0, 4) or (1, 1). In both cases CP (S) = F coincides
with the Farey graph. On the other hand, it is easily checked that C∗(S) is the complete graph with the
same vertices as F , which we denote by G: two simple closed curves on a surface of (modular) dimension 1
always intersect nontrivially. If d(S) > 1, C∗(S) is nothing but the 1-skeleton of C(S)∗, the complex dual
to C(S). For this reason, when d(S) = 1, it becomes natural to define C(S) as the dual of G, which is not
the usual convention but seems to be the right one for our purposes.

A.9. It is useful to extend the definitions of the graphs CP (S) and C∗(S) to non connected surfaces. The
extension is rather trivial yet it shows that these two graphs are particularly well-behaved. The definitions
are simply unchanged. We will write V (S) for the set of vertices common to C∗(S) and CP (S) (i.e. maximal
multicurves), E(S) (resp. EP (S)) for the edges of C∗(S) (resp. CP (S)): EP (S) ⊂ E(S).

Let S = S′
∐
S′′ be given as the disjoint sum of S′ and S′′, which themselves need not be connected.

First note that modular dimension is additive: d(S) = d(S′) + d(S′′). Then it is easy to describe C∗(S) and
CP (S) in terms of the graphs associated to S′ and S′′. For the vertices we get: V (S) = V (S′)× V (S′′); and
for the edges of C∗(S): E(S) = E(S′) × V (S′′)

∐
V (S′) × E(S′′). Simply change E into EP for the case

of CP . These prescriptions immediately generalize to an arbitrary number r of not necessarily connected
pieces. If S =

∐
i Si, d(S) = Σid(Si), V (S) =

∏
i V (Si) and E(S) =

∐
i V (S1)× . . .×E(Si)× . . .× . . . V (Sr);

replace again E with EP when dealing with CP .

A.10. We now come to completions, first of groups, then of the various simplicial complexes. Given S
hyperbolic of finite type we start by indexing the inverse system of the cofinite (i.e. finite index) subgroups
of Γ = Γ(S) ' Γg,[n] by a set M , so that to any λ ∈M there correspond a subgroup Γλ and a coverMλ/M
which we call a level structure following a traditional terminology in this context. For λ, µ ∈ M we write
µ ≥ λ if Γµ ⊆ Γλ i.e. ifMµ is a covering ofMλ, and we say thatMµ (resp. Γµ) dominatesMλ (resp. Γλ).

For any subinverse system Λ ⊂M we get the corresponding completion of Γ as the limit :

lim←−
λ∈Λ

Γ/Γλ.

The (full) profinite completion is obtained when Λ = M and is denoted with a hat as usual:

Γ̂ = lim←−
λ∈M

Γ/Γλ.

The analogous definition can be given for any group. Note that the groups we consider, “arising from geom-
etry”, are discrete and finitely generated. It implies that the system of all invariant (a.k.a. characteristic)
subgroups is cofinal. That is for any λ ∈M one can find a (cofinite) invariant subgroup contained in Γλ.

The procongruence (or simply congruence) completion is specific of the situation at hand, selecting a
particular subsystem Λ of cofinite subgroups of Γ. Denote by π = π1(S) the fundamental group of the
surface S with respect to some basepoint and let K ⊂ π be a characteristic subgroup of π. The elements
g ∈ Γ act on π (as ‘mapping classes’) up to inner automorphism, so there is a natural map: Γ→ Out(π/K).
We denote the kernel by ΓK ⊂ Γ and call it a principal congruence subgroup. It is normal and cofinite since
π/K (and thus also Out(π/K)) is a finite group. A congruence subgroup of Γ is one which contains a principal
subgroup. In particular, for m ≥ 2 a positive integer, the abelian level M(m) is defined by the subgroup
Γ(m) which is the kernel of the natural map Γ → Sp2g(Z/m), that is Γ(m) is the group of diffeomorphisms
of S (considered modulo isotopy) which fix the homology of the associated unmarked or compact surface
modulo m.

The congruence completion, denoted Γ̌, is obtained by choosing for Λ ⊂M the system of all the congruence
subgroups. We have a natural surjective map : Γ̂ → Γ̌ and the congruence conjecture (first proposed
by N.Ivanov) asserts that this is actually an isomorphism, which amounts to stating that the congruence

subgroups form a cofinal system in M . If true and vindicated, that is if indeed Γ̂ = Γ̌, all the results of
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the present paper naturally come to hold true in the (full) profinite setting. For more on the congruence
property, including from a homotopical viewpoint, and for references, we refer again to [21].

A.11. We now come to profinite complexes of curves. More generally, let X• be a simplicial complex
endowed with an action of Γ = Γ(S). Then we can define its profinite completion as the inverse limit:

X̂• = lim←−
λ∈M

X•/Γ
λ,

which we regard as a simplicial object in the category of profinite sets. The above definition would of course
be valid for other groups than Γ and spaces X which are not necessarily simplicial complexes. However the
action of Γ on X has to satisfy certain geometric conditions which in our cases are easily met (see [3], §5).

We apply the above to L(S), C(S), CP (S) and C∗(S), obtaining the respective (full profinite) completions

L̂(S), Ĉ(S), ĈP (S) and Ĉ∗(S). We dropped the bullet subscript from the notation but stress that these

are indeed simplicial objects. The profinite set L̂(S) is thus the set of procurves and it is the set of vertices

of Ĉ(S). The complexes ĈP (S) and Ĉ∗(S) are in fact prographs. We will often drop the prefix “pro” for
simplicity but it should definitely be emphasized that these profinite spaces are complicated objects, just like
profinite groups and even more so; note that the group completion Γ̂ is obtained via the above procedure
by letting Γ act on itself by translation. We refer to [3] for basic properties of these profinite complexes of
curves.

In the present paper however we almost only use the congruence completion, obtained by replacing as
above (see A.10) the full system M by the substem Λ of the congruence subroups. This procedure delivers
the respective congruence completions, namely Ľ(S), Č(S), ČP (S) and Č∗(S). The main reference is [4].

A.12. Our last item will deal very briefly with automorphisms of discrete modular groups and curve com-
plexes. We refer to e.g. [16, 18] for more detailed statements and proofs. Our statements are geared towards
the complete case and we have extracted what seems to be the significant minimum in that direction (more
can be found in the body of the text). We let S be connected hyperbolic and of finite type; we assume that
d(S) > 1 and S is not of type (1, 2), that is S is of type (0, 5) or d(S) > 2. This last assumption we make
simply in order to avoid discussing well-known low-dimensional peculiarities (see [18]).

Then the automorphisms of the curve complex are described by the exact sequence:

(A 2) 1→ Inn(Γ(S))→ Aut(C(S))→ Z/2→ 1,

where, in view of the profinite case, the group Z/2 should be considered as generated by complex conjugacy,
so isomorphic to the Galois group Gal(C/R). With our assumptions Inn(Γ(S)) = Γ(S) except if S is
of type (2, 0), in which case the center has order 2. Yet it is best to think of the left-hand group as
Inn(Γ(S)) ⊂ Aut(Γ(S)).

Denoting by C(1)(S) the 1-skeleton of C(S), there is a natural injective map Aut(C(S))→ Aut(C(1)(S))
and this map is actually an isomorphism. This is an easy result, coming from a graph-theoretic character-
ization of the simplices of C(S) inside the graph C(1)(S): they are in one-to-one correspondence with the
finite complete subgraphs, so have to be preserved by any automorphism of the graph.

Using the sequence (A 2) it is fairly easy to derive a description of the group automorphisms in the form
of the following exact sequence:

(A 3) 1→ Inn(Γ(S))→ Aut(Γ(S))→ Z/2→ 1.

In other words Aut(Γ(S)) = Mod(S), Out(Γ(S)) ' Z/2 and the only non inner automorphism is generated
by a reflection of the surface, that is an orientation reversing involution of the surface S, alias complex
conjugacy, the generator of Gal(C/R). Note that the existence of such a reflection shows that the three
sequences (A 1), (A 2) and (A 3) are split. Using (A 2) again, it is fairly easy to extend the above to any
finite index subgroup of Γ(S) (cf. [16]), quite a substantial improvement. In fact (A 3) remains valid if one
replaces the middle group Γ(S) by a normal finite index subgroup Γλ without changing the left and right
hand groups.

Put somewhat differently, there is an a priori injective map Aut(Γ(S)) → Aut(C(S)) and (A 3) asserts
it is an isomorphism. This is a close analog of a famous result of Tits which states hat under suitable
assumptions, the automorphisms of the building of an algebraic group come from the automorphisms of the
group itself.
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