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signaling as a critical pathway for this
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SUMMARY
Axonal arbors in many neuronal networks are exuberant early during development and become refined by
activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions
between co-active axons to co-stabilize their connections, but the demonstration of such interactions is
lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of
retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a
cAMP-dependent interaction that promotes axon stabilization.
INTRODUCTION

Competitive mechanisms involving synapse stabilization and

pruning underlie the development of neuronal connectivity in

the nervous system. In amphibians and frogs, they control

branch formation and elimination by an electrical activity-depen-

dent pathway and contribute to the developmental refinement of

neuronal networks (Ben Fredj et al., 2010; Hua et al., 2005; Ruth-

azer et al., 2003). Because spontaneous activity of nearby devel-

oping neurons is synchronized in many regions of the brain, their

co-activity is thought to stabilize their synaptic contacts and to

oppose competitive mechanisms (Arroyo and Feller, 2016).

This hypothesis has shaped the current model of neuronal circuit

development. However, whether axons of co-active neurons in-

fluence each other during the refinement of their terminal arbor in

physiological conditions lacks experimental confirmation.

Retinofugal projections are an exemplary model to investigate

competitive mechanisms shaping neuronal connectivity. In

mammals, axonal arbors of developing retinal ganglion cells

(RGCs) from both eyes first invade overlapping areas in the

dorso-lateral geniculate nucleus (dLGN) before segregating in

distinct territories (Godement et al., 1984; Shatz, 1983). The

refinement of binocular maps requires competitive mechanisms

relying on spontaneouswaves of calcium elevation and electrical

activity that propagate across the developing retina (Stellwagen

and Shatz, 2002). Forcing the synchronization of electrical activ-

ity in both retinas reduces the pruning of RGC axons, supporting

the hypothesis of competition between asynchronous neurons

and/or stabilizing interactions between co-active neurons

(Munz et al., 2014; Zhang et al., 2011). The correlation of activity
This is an open access article under the CC BY-N
between neighboring RGCs has also been included as a critical

component of retinal map development in computational simula-

tions (Godfrey and Swindale, 2014). This suggests that interac-

tions between axons from adjacent RGCs in the retina contribute

to the regulation of axon pruning.

The frequency of retinal waves is controlled by cyclic AMP

(cAMP) signaling and shapes binocular maps (Penn et al.,

1998; Stellwagen and Shatz, 2002). However, the impact of

this second messenger is not restricted to the regulation of

retinal waves because knocking out adenylyl cyclase 1, a

cAMP synthesizing enzyme, prevents the segregation of ipsilat-

eral and contralateral territories (Nicol et al., 2006; Ravary et al.,

2003) without altering spontaneous activity in the retina (Dhande

et al., 2012; Dunn et al., 2009). The role of a cAMP pathway that

does not impact the generation of retinal waves has not been

elucidated.

Here, we provide direct evidence that RGCs from the same

eye influence each other during the stabilization of their axonal

branches via a cAMP-dependent mechanism that does not

involve cell-specific changes in the spontaneous activity of the

developing retina.

RESULTS

A molecular approach termed Zaic (short for mosaic) was de-

signed to alter cAMP signaling in a sparse population of RGCs

and monitor the axonal development of their neighbors with

intact cAMP signaling. Previous sparse labeling approaches in

the retina did not enable to trace axons from neurons in the vicin-

ity of labeled or manipulated cells (Badea et al., 2003; Dhande
Cell Reports 33, 108220, October 6, 2020 ª 2020 The Author(s). 1
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Figure 1. cAMP-Dependent Interactions between Neighboring RGCs during Axon Refinement
(A) The Zaic strategy leads to a mosaic of YFP-expressing neurons with reduced cAMP signaling (cAMPreduced) and CFP-positive neurons with intact signaling

(cAMPintact) in the retina. This enables the tracing of RGC axons in the dLGN where they are intermingled with unlabeled axons from the same and the

opposite eye.

(B) In utero electroporation of the ventro-temporal retina was used to implement the Zaic strategy with Cre expression driven either by the generic CAG promoter

or by the RGC-specific Sncg promoter. Drawing shows the orientation of an isolated retina with the desired electroporation area indicated in blue-yellow

checkered pattern (left). Dashed lines delineate the contour of the retina (right).

(C) The electroporated area in the retina is similar in ControlZaic and SpongeZaic conditions regardless of the promoter used.

(D) YFP- and CFP-expressing axonal arbors in the contralateral dLGN of either ControlZaic or SpongeZaic electroporated P15 animals (using the CAG promoter).

Dashed lines delineate the ventro-medial contour of the dLGN.

(legend continued on next page)
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et al., 2011). In contrast, Zaic enables the generation and tracing

of two mutually exclusive but intermingled populations of cells.

cAMP signaling is altered in one of these cellular populations

by using Lyn-cAMP sponge, a genetically encoded cAMP scav-

enger restricted to lipid rafts that buffers cAMP in cell lines and

RGCs (Averaimo et al., 2016; Lefkimmiatis et al., 2009). cAMP

sponge contains the cAMPbinding sites from the regulatory sub-

unit 1b of protein kinase A and acts as a dominant negative for

cAMP signaling (Lefkimmiatis et al., 2009). The Zaic approach re-

lies on a DNA construct that contains the CFP sequence (ending

with a Stop codon) flanked by two LoxP sites, and followed by

Lyn-cAMP sponge fused to YFP by a self-cleaving 2A motif

(SpongeZaic) (Figure S1A). Co-electroporating SpongeZaic

with a low concentration of DNA encoding the Cre recombinase

leads to two cellular populations expressing either CFP, with

unaffected cAMP signals (cAMPintact), or YFP together with

Lyn-cAMP Sponge (cAMPreduced). A similar construct lacking

Lyn-cAMP Sponge (ControlZaic) serves as a control. The Zaic

strategy was first tested in vitro in HEK293 cells and retinal

explants from E14.5 mouse embryos. Lyn-cAMP Sponge

expression was detected in Cre and SpongeZaic co-expressing

cells, in contrast to cells lacking Cre expression, demonstrating

that Cre recombinase is required to drive Lyn-cAMP sponge

expression (Figures S1B–S1F). The Zaic:Cre DNA ratio was

optimized in vitro using retinal explants (Figures S1E and S1F).

2 mg 3 mL�1 of the Zaic plasmids and 0.1 mg 3 mL�1 of Cre

were used in the other experiments. To verify that cAMP

signaling is affected in YFP-expressing retinal axons electropo-

rated with SpongeZaic, the SpongeZaic or ControlZaic strate-

gies was implemented in retinal explants expressing R-FlincA,

a red fluorescent sensor for cAMP (Ohta et al., 2018). Retinal

axons were exposed to a 60-s pulse of 10 nM forskolin, an acti-

vator of transmembrane adenylyl cyclases, resulting in an eleva-

tion of cAMP concentration observed by an increase in R-FlincA

fluorescence. The amplitude of this elevation was inversely

correlated with YFP intensity in SpongeZaic axons, whereas

the level of YFP did not influence R-FlincA fluorescence in

ControlZaic-electroporated axons, demonstrating that YFP in-

tensity can serve as a proxy for the reduction of cAMP signaling

in SpongeZaic RGC axons (Figures S1G–S1I).

We predicted that the need for interactions between neigh-

boring RGCs would be strongest when they are in competition

with axons from the other eye. To investigate the impact of

cAMP manipulation in a few RGCs on the axonal arbor of their

neighbors, SpongeZaic was electroporated in utero in the ven-

tro-temporal embryonic retina of a single eye (Figures 1A and

1B). RGCs in this area of the retina project within the contralateral
(E) The extent of the cAMPintact axonal arbors (CFP-positive) is reduced in Spong

against the extent of the cAMPreduced (YFP-positive) arbors highlights a specific

(F) The number of CFP-positive axons detected in the optic chiasm is diminished

(G) Driving expression of the Cre recombinase by the RGC-specific Sncg promot

the RGC layer. RGCs are labeled using a RBPMS antibody (red) at P3.

(H) When Sncg::Cre is used, YFP-positive cells are found almost exclusively in th

(I–K) Reducing cAMP signaling in a sparse population of RGCs using the Sncg p

positive) in the dLGN at P15 and (K) in the number of cAMPintact axons in the op

Scale bars, 1 mm (B); 50 mm (D, G, and I). Data are mean ± SEM. (C, E, F, J, and K

shown. *p < 0.05; **p < 0.01; Mann-Whitney. Exact p values and number of repli

See also Figures S1, S2, and S4.
dLGN to regions close to the territory of the opposite eye. Elec-

troporated axons were traced from the retina and the optic

chiasm to the dLGN. The area covered by CFP- and by YFP-

positive projections in the dLGN was analyzed at post-natal

day (P) 15 after eye-specific segregation of axonal arbors using

a semi-supervised machine learning-based segmentation

method (Figures S1J and S1K). In the contralateral dLGN, both

CFP- and YFP-positive axons formed a dense termination

zone in ControlZaic animals (Figure 1D). The area covered by

cAMPintact axons in the dLGN (Figures 1D and 1E) and the

number of cAMPintact axons in the chiasm (Figure 1F) were

reduced in SpongeZaic animals. This reduction does not

reflect variations in the size of the electroporation in the retina

(Figures 1B and 1C). In contrast, no significant change in the

area covered by cAMPreduced axons was found (Figures 1D and

1E). cAMPreduced axons might differ from their cAMPintact neigh-

bors because of their cell-autonomous reduced ability to retract,

previously identified in the context of ephrinA-induced axon

guidance in the superior colliculus (Averaimo et al., 2016). To

evaluate whether our observations are affected by the extent

of the electroporation, we plotted the area covered by CFP-

expressing axons against the area of the YFP-positive arboriza-

tions for individual animals and fitted the results to a straight line.

The slope of the fit is reduced in the SpongeZaic-electroporated

animals compared to ControlZaic brains (Figure 1E), confirming

the specific reduction in the area covered by cAMPintact axons.

The results demonstrate that reducing cAMP signaling in a

restricted number of retinal neurons (cAMPreduced) affects the

development of neighboring RGCs in which cAMP signals

were not manipulated (cAMPintact).

cAMP signaling in amacrine cells is essential for the modula-

tion of patterned spontaneous activity in the retina (Hsiao

et al., 2019) and for the refinement of retinal projections (Nicol

et al., 2006; Ravary et al., 2003). Because adenylyl cyclase 1 is

not expressed in amacrine cells and is critical for binocular

maps to refine (Nicol et al., 2006; Ravary et al., 2003), cAMP

signaling in RGCs must also be involved. To determine the

identity of the retinal cells requiring cAMP signaling for the

stabilization of cAMPintact axon branches, the non-specific

CAG promoter used to drive Cre expression was replaced by

the RGC-specific g-synuclein (Sncg) promoter (Chaffiol et al.,

2017). The control of Cre expression by the Sncg promoter led

to the restriction of YFP expression to the RGC layer, immuno-

stained by the RGC marker RNA-binding protein with multiple

splicing (RBPMS) (Figures 1G and 1H). The area covered by

cAMPintact axons in the dLGN and the number of axons in

the chiasm were reduced at P15 in SpongeZaic-electroporated
eZaic-electroporated animals. Plotting the area covered by cAMPintact arbors

reduction in the arborizations of cAMPintact axons (right plot).

in SpongeZaic-electroporated animals.

er rather than the non-specific CAG promoter leads to the restriction of YFP to

e RGC layer but not in the inner nuclear layer (INL).

romoter leads to a reduction (J) in the area covered by cAMPintact axons (CFP-

tic chiasm.

) Values for individual animals are shown. (H) Values for individual sections are

cates in Table S1.
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Figure 2. Altering cAMP Signaling in Sparse RGCs Affects the Overall Development of Binocular Maps

(A) Lyn-cAMP sponge was expressed in sparse RGCs from the ventro-temporal crescent of the developing retina (yellow) using in utero electroporation. The

same animal was injected into the eyes at P13 with Alexa647- (electroporated eye, blue) or Alexa594- (non-electroporated eye, red) cholera toxin subunit b. The

dLGN contralateral to the electroporated eye was imaged.

(B and C) The ipsilateral territory (red, from the non-electroporated retina) is enlarged in Lyn-cAMP Sponge-expressing animals at P15. The electroporated YFP-

positive axons (inset) are found in the contralateral territory. Two sections of the dLGN from the same animal are shown.

Scale bars, 200 mm (A); 50 mm (inset). (B) Data are mean ± SEM. Values for individual animals are shown. *p < 0.05; Mann-Whitney. Exact p values and number of

replicates in Table S1.
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animals compared to their controls (Figures 1I–1K). Like in

CAG::Cre-electroporated mice, no significant change in the

area covered by cAMPreduced axons was found (Figures 1I and

1J). Overall, reducing cAMP signaling only in RGCs reproduces

the phenotype observed when Lyn-cAMP sponge is expressed

throughout the retinal layers, demonstrating that the stabilization

of retinal axon branches requires cAMP signaling in neighboring

RGCs. Of note, using the Sncg instead of the CAG promoter also

reduces the ratio between the area covered by CFP and YFP

axons in the dLGN of ControlZaic-electroporated animals

(�1:20 in CAG::Cre animals, �1:1 in Sncg::Cre animals) (Figures

1D, 1E, 1I, and 1J), without preventing the reduction in cAMPintact

axonal branches in SpongeZaic-electroporated animals. Com-

bined with the observation that in the electroporated area only

few RGCs express either CFP or YFP (Figure 1G), this suggests

that reducing cAMP signaling in a minority of RGCs is sufficient

to alter the projections of neighboring cAMPintact axons.

To evaluate whether the influence of cAMP signaling in cAM-

Preduced axons on their cAMPintact neighbors is restricted to the

ventro-temporal end of the retina, we reproduced similar exper-

iments with electroporation performed in the central part of the

retina. Like when the electroporation was performed in the ven-

tro-temporal retina, the area covered by cAMPintact axons was

reduced in SpongeZaic-electroporated animals compared to

ControlZaic-electroporated animals, generalizing our findings

to the entire retina (Figure S2).

To investigate whether altering cAMP signaling in a few retinal

neurons impacts the projections from the non-electroporated

retina, the Zaic strategy conducted in the ventro-temporal retina

was combined with tracing the complete projections of each eye

using fluorescent cholera toxins (Figure 2A). The area covered by

the ipsilateral projections of the non-electroporated eye was
4 Cell Reports 33, 108220, October 6, 2020
enlarged in Lyn-cAMP sponge-expressing animals (Figures 2B

and 2C), demonstrating that altering cAMP signaling in a sparse

number of neurons of one retina is sufficient to influence binoc-

ular competition.

The reduction in the terminal arbor size and number of

cAMPintact axons in SpongeZaic-electroporated animals might

reflect abnormalities in early development of retinal projections

prior to their pruning. To identify the affected developmental

stage, embryonic day (E) 14.5 embryos were electroporated us-

ing the Zaic strategy and pups were harvested at P3, after retinal

axons have reached the dLGN, but before eye-specific map

refinement (Godement et al., 1984; Huberman et al., 2008).

SpongeZaic-electroporated axons invaded the dLGN to the

same extent as their controls at P3 (Figures 3A–3C) and were

as numerous in the chiasm (Figure 3D), suggesting a minimal

role of errors in axonogenesis, axon outgrowth, or axon path-

finding. Therefore, the reduction of cAMPintact arbors arises while

RGC axons are pruned.

Programmed cell death is involved in the refinement of visual

axons (Fawcett et al., 1984) and peaks at P3 (Young, 1984).

Because the reduction in the number of cAMPintact axons in

the chiasm occurs between P3 and P15 in SpongeZaic-electro-

porated animals, we performed TUNEL staining to assess the

impact of SpongeZaic on developmental cell death. The propor-

tion of TUNEL-positive cells among cAMPreduced and cAMPintact

RGCs did not differ from RGCs in ControlZaic retinas (Figures

3E–3G), indicating that Lyn-cAMP sponge expression does not

alter cell death at this stage.

Reducing spontaneous electrical activity in one retina dimin-

ishes the size of the territory occupied by the projections from

this eye (Penn et al., 1998). Because cAMP signaling modulates

the activity of developing RGCs (Stellwagen et al., 1999), we



Figure 3. cAMP Signaling Reduction in a

Few RGCs Does Not Prevent Retinal Axons

from Reaching the dLGN or Alter Develop-

mental Cell Death

(A) cAMPreduced and cAMPintact retinal axons are

found at P3 in the dLGN of SpongeZaic-electro-

porated animals with the same extent as the CFP-

and YFP-expressing axons respectively after

ControlZaic electroporation. Dashed lines delin-

eate the contour of the dLGN.

(B) The longest five axons have a similar length in

the dLGN, regardless of their expression of Lyn-

cAMP sponge.

(C and D) The area covered by axons (C) and the

number of axons in the optic chiasm (D) are similar

in SpongeZaic and ControlZaic animals, indicating

that early development of retinal axons (including

axonogenesis and pathfinding to their targets) is

not affected.

(E) Retinal cells undergoing cell death were TUNEL

stained in whole mount P3 retinas.

(F) Treatment of non-electroporated retina with

DNase as a positive control leads to a high density

of TUNEL-positive cells, in contrast to retinas from

either non-electroporated animals, ControlZaic or

SpongeZaic-electroporated pups. Lyn-cAMP

Sponge expression does not impact the overall

number of TUNEL-positive cells.

(G) Neither the proportion of TUNEL-labeled cells

among YFP-positive neurons, nor the number of

YFP-negative neurons undergoing cell death was

affected by Lyn-cAMP Sponge expression.

Scale bars, 50 mm. Data are mean ± SEM. *p <

0.05; Mann-Whitney except for in (F; right) Krus-

kal-Wallis. Values for individual animals are

shown. Exact p values and number of replicates in

Table S1.
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evaluated the impact of Lyn-cAMP sponge using whole-cell

electrophysiology. Either the CAG or Sncg promoter was used

to drive Lyn-cAMP sponge expression. No difference was

observed in RGC resting properties or action potential wave-

forms (Figures S3A–S3H). When monitoring spontaneous activ-

ity, neither the firing frequency, nor the number of action poten-

tials within a burst were different for either cAMPreduced or

cAMPintact neurons compared to their respective controls

(ControlZaic) at P7–8 or P10–11 (Figures S3I–S3L). The burst fre-

quency of cAMPintact neurons might be slightly elevated

compared to CFP-positive RGCs in ControlZaic animals at P7–

8 (Sncg::Cre, p0 = 0.08 but CAG::Cre, p0 = 0.34), but this elevation

did not persist until P10–11, and the burst frequency was not

different from wild-type retinas (Figures 4A and S3I–S3L). In

the context of competitive interactions, increased activity would

lead to an extension of the territory of the over-active RGCs

(Penn et al., 1998) and is thus not the reason of the observed
C

reduction in the cAMPintact arbor size. Of

note, nearby cells did fire more action po-

tentials per burst in all retinas (including

controls) leading to an increase in

average firing (Figures S3I–S3L). This

may reflect a difference in RGC subtype
or maturation between electroporated and nearby neurons. It

is not related to the expression of Lyn-cAMP Sponge and thus

cannot explain the reduction in the extent of cAMPintact arbors

in SpongeZaic-electroporated animals.

The desynchronization of RGC activity favors axon pruning

(Huberman et al., 2008; Stellwagen and Shatz, 2002). To

assess the synchronization of RGC activity, we monitored cal-

cium waves in P7–8 retinas (Figures 4B–4I; Video S1). The fre-

quency of retinal waves was not affected when Lyn-cAMP

sponge was expressed throughout the retinal layers and

diminished with RGC-specific expression of Lyn-cAMP

sponge (Figure 4E), excluding the cAMP-dependent regulation

of the frequency of retinal waves to be the explanatory basis of

the reduction in cAMPintact axons. The cells in SpongeZaic ret-

inas were more likely to be active during a calcium wave,

regardless of their expression of Lyn-cAMP sponge (Figures

4D and 4F–4I; Video S1). Although the reduction of cAMPintact
ell Reports 33, 108220, October 6, 2020 5



Figure 4. Spontaneous Activity of RGCs in P7-8 Retinas Expressing Lyn-cAMP Sponge

(A) Whole-cell recordings of retinal ganglion cells. Burst frequency of cAMPintact retinal cells in retinas expressing Lyn-cAMP Sponge was not affected compared

to wild-type (WT) or ControlZaic neurons. Control recordings are from retinas expressing either tdTomato or ControlZaic (see Table S2). In CAG::Cre and

Sncg::Cre conditions, recordings were pooled from retinas expressing SpongeZaic and from retinas expressing the plasmid used for calcium imaging.

(B) E14.5 retinas were electroporated in utero to express Lyn-cAMP sponge together with tdTomato (pseudo-color: yellow) to reduce spectral overlap of the

fluorescent protein with the calcium indicator OGB1 (pseudo-color: cyan). Magenta contours delineate a subset of the regions of interest (ROI) used for

quantifications.

(C) tdTomato intensity reflecting the expression of Lyn-cAMP Sponge expression (left), and OGB1 responses over time (right) of the ROI shown in (B). Lyn-cAMP

Sponge expression does not prevent RGCs from participating in calcium waves.

(legend continued on next page)
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axon arbors and the alteration in eye-specific territories in

SpongeZaic-electroporated animals may have been the result

of a reduced synchronization (Arroyo and Feller, 2016), we

observed an increase in synchronization. We therefore

consider that the mechanism targeted by Lyn-cAMP sponge

leading to the reduction in cAMPintact axon arbors is not a

consequence of changes in retinal activity.

DISCUSSION

Overall, we demonstrated that RGCs influence the stabilization

of the axonal branches of their neighbors during axon pruning

via a RGC-specific, cAMP-dependent signaling pathway. This

suggests a non-cell-autonomous regulation of axonal arbors

via cAMP signaling. This cAMP-dependent interaction, direct

or indirect via a postsynaptic neuron or glial cells, is either

cooperative or competitive in nature (Arroyo and Feller,

2016). In the framework of a non-cell-autonomous regulation

relying on cAMP, altering the signaling of this cellular

messenger can preclude RGCs either to emit a signal that in-

fluences their neighbors or to be sensitive to a cue from the

neighboring neurons. This yields four possibilities, each with

specific experimental predictions (Figure S4). If cAMP is

required in the RGC that receives a (1) competitive (i.e., desta-

bilizing) or (2) co-stabilizing signal from its neighbors, one

would anticipate the terminal arbor of cAMPreduced axons to

be changed without affecting cAMPintact axons. (3) If cAMP is

required in the RGC initiating a competitive (i.e., destabilizing)

signal for its neighbors, cAMPintact arbors are expected to

expand when cAMP is altered in cAMPreduced axons. None of

these possibilities is reflected in our results. In contrast, (4) if

cAMP signaling is required in the RGC sending a co-stabilizing

signal, one would expect a reduction of the cAMPintact arbors,

as observed in our experiments. We thus favor the explanation

that cAMP signaling is required for the generation of a signal

emitted by RGC axons that stabilizes the branches of their

neighboring neurons in the retina.

One might have anticipated the projections of cAMPreduced

neurons to be reduced to a similar extent to the cAMPintact axons.

The difference between these two populations might rely on the

altered ability to retract of axons expressing Lyn-cAMP Sponge.

This cell-autonomous mechanism, that thus cannot affect

cAMPintact axons, has been identified in the context of ephrinA-
(D) Activity of 300 ROI (top, raster plot with every line showing activity of a color-

(E) The frequency of retinal waves is reduced when Lyn-cAMP Sponge expressi

(F) The participation rate of both cAMPintact and cAMPreduced neurons is increase

(G) Example of spontaneous calcium waves from a control retina (left), from a

middle), and from a retina expressing Lyn-cAMP sponge in a few RGCs (Sncg::Cr

of ROIs coded in color. The darker gray area shows the area covered by this wave

wave. Due to the curvature in the retina some parts of the RGC layer are out of f

(H) Participation of ROI with expression of tdTomato alone (Control) or togethe

expression of tdTomato and Lyn-cAMP sponge. Open circle represents an indiv

Dotted line indicates y = x.

(I) Cumulative distribution of ROI participation from a control retina (left), from a re

CAG::Cre plasmid (middle), and from a retina expressing lox-STOP-lox Lyn-cAM

Scale bar, 25 mm (B); 100 mm (G). Data are mean ± SEM. Values for individual retin

***p0 < 0.001; Conover-Iman. Exact p values and number of replicates in Table S

See also Figure S3.
induced axon repulsion (Averaimo et al., 2016). Because axon

pruning coincides with waves of electrical activity and the

expression of adenylyl cyclase 1 inmany sensory systems during

development (Nicol and Gaspar, 2014; Yamamoto and Ló-

pez-Bendito, 2012), we anticipate that the cAMP-dependent

interactions between presynaptic neurons is key for the develop-

ment of the nervous system.
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Antibodies

rabbit anti-PKA1b antibody (1/200) Santa Cruz, Lot# F2310 Cat# SC-907, RRID:AB_2237411

rabbit anti-RBPMS antibody (1/500) Phosphosolutions, lot# NB317a Cat# 1830-RBPMS, RRID:AB_2492225

goat anti-rabbit HRP-coupled antibody (1/10000) Jackson ImmunoResearch,

Lot# 81283

Cat# 111 035 003 RRID:AB_2313567

donkey anti-rabbit Alexa Fluor-647 (1/500) Jackson ImmunoResearch,

lot# 129486

Cat# 711-605-152, RRID:AB_2492288

Biological Samples

Retinal explants This manuscript N/A

Chemicals, Peptides, and Recombinant Proteins

Ketamine Axience Cat# Ketamidor 100 MG/ML

Xylazine Centravet Cat# Rompun 2%

Buprenorphine Axience Cat# Buprécare multidose 0,3MG/ML

oxybuprocaine CSP Cat# Chlorhydrate d’oxybuprocaı̈ne

1,6 mg/ 0,4 ml

Oregon Green BAPTA-1-AM ThermoFisher Cat# O6807

Forskolin Sigma-Aldrich Cat# F6886

cholera toxin subunit b conjugated to AlexaFluor-594 ThermoFisher Cat# C34777

cholera toxin subunit b conjugated to AlexaFluor-647 ThermoFisher Cat# C34778

DNase I recombinant, RNase-free Roche Cat# 04716728001

Critical Commercial Assays

EndoFree Plasmid kits (maxi) QIAGEN Cat# 12362

Lipofectamine 2000 ThermoFisher Cat# 11668019

Click-iT Plus TUNEL assay; Alexa Fluor-594

connjugated

ThermoFisher Cat# C10618

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-1573. RRID: CVCL_0045

Experimental Models: Organisms/Strains

Mouse: C57BL/6NRj Janvier Labs RRID:MGI:6236253

Mouse: SWISS Janvier Labs RRID:MGI:2168141

Recombinant DNA

Plasmid: Sncg::Cre This manuscript N/A

Plasmid: CAG::Cre Jean Livet laboratory N/A

Plasmid: SpongeZaic This manuscript N/A

Plasmid: ControlZaic This manuscript N/A

Plasmid: lox-STOP-lox-tdTomato This manuscript N/A

Plasmid: lox-STOP-lox-cAMP Sponge-2A-tdTomato This manuscript N/A

Plasmid: RFlincA Ohta et al., 2018 N/A

Software and Algorithms

MetaMorph Molecular Devices https://www.moleculardevices.com/

products/cellular-imaging-systems/

acquisition-and-analysis-software/

metamorph-microscopy

Fiji NIH https://fiji.sc/

Plugin: Trainable Weka Segmentation Arganda-Carreras et al., 2017 https://imagej.net/Trainable_Segmentation

MATLAB R2016a MathWorks https://www.mathworks.com/

(Continued on next page)
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CaImAn Pnevmatikakis et al., 2016 https://github.com/flatironinstitute/

CaImAn-MATLAB

GraphPad Prism GraphPad https://www.graphpad.com/scientific-

software/prism/

R (v3.5.2) The R foundation https://www.r-project.org/

Package: conover R-project https://cran.r-project.org/web/packages/

conover.test/index.html

Other

Electroporation paddles Sonidel CUY650P5

CUY650P2

Electroporator Nepagene CUY21EDIT
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xavier

Nicol (xavier.nicol@inserm.fr).

Materials Availability
Requests for plasmids generated in this study should be directed to and will be fulfilled by the Lead Contact.

Data and Code Availability
This study did not generate any unique dataset or code that is central to supporting the main claims of the paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Timed-pregnant Swiss and C57BL/6NRj mice were purchased from Janvier Labs. All animal procedures were performed in accor-

dancewith institutional guidelines and approved by local ethics committees (C2EA-05: Comité d’éthique en expérimentation animale

Charles Darwin). Animals were housed under 12h light / 12h dark cycle. Embryos from dated matings (developmental stage stated in

each section describing individual experiments) were sexed at the end of some experiments (morphological analyses). The female to

male ratio was close to 1.

Cell lines
HEK293T cells (ATCC, not authenticated, free of mycoplasma contamination) were cultured in DMEM-Glutamax, supplemented with

10% fetal bovine serum (FBS) and 1% non-essential amino acids (NEAA, all from Invitrogen) and maintained in a 37�C, 5% CO2

incubator.

Retinal explants
E14.5 embryoswere isolated and kept in cold PBS. Embryoswere decapitated andDNAwas injected subretinally using an elongated

borosilicate glass capillary (Harvard Apparatus). The following plasmids were used: ControlZaic 2 mg$mL-1; CAG::Cre 0 mg$mL-1,

0.1 mg$mL-1, 0.5 mg$mL-1, 2 mg$mL-1. The success of DNA injection was assessed using 0.05% fast green supplemented to the

DNA solution. The paddles of the electrodes (CUY650P5, Sonidel) were placed at the bottom and at the top of the head respectively.

Two poring pulses (square wave, 175 V, 5 ms duration, with 50 ms interval) followed by four transfer pulses (40 V, 50 ms and 950 ms

interpulse) were applied. The protocol was repeated with inverted polarities. After electroporation, the retinas were isolated and kept

24 hours in culture medium (DMEM-F12 supplemented with 1 mM glutamine (Sigma Aldrich), 1% penicillin/streptomycin (Sigma

Aldrich), 0.01% BSA (Sigma Aldrich), 0.07% glucose), in a humidified incubator at 37�C and 5% CO2.

METHOD DETAILS

Plasmids
All constructs used, except Sncg::Cre, were subcloned into a pCAG variant backbone and the Lyn-cAMP Sponge was previously

described (Averaimo et al., 2016). The ControlZaic plasmid was obtained using a CFP variant mTurquoise2 flanked by two LoxP sites
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and followed by YFP. The SpongeZaic plasmid was obtained using a CFP variantmTurquoise2 flanked by two LoxP sites, attached to

a Lyn-cAMP Sponge sequence fused to a YFP sequence by a self-cleaving 2A sequence (GGAAGCGGAGCTACTAACTT

CAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT). The SpongeZaic sequencewas synthesized byGenscript

and subloned into the pCAG vector. Lox-STOP-Lox Lyn-cAMP Sponge-2A-tdTomato was obtained by replacing the Turquoise2

sequence by its reverse complement and YFP by tdTomato. Further excision of the Lyn-cAMP Sponge sequence led to

Lox-STOP-Lox-tdTomato. The CAG::Cre was a kind gift from Jean Livet. The Sncg promoter was provided by Deniz Dalkara (Chaffiol

et al., 2017). To obtain the Sncg::Cre, the CAG promoter was replaced by the Sncg promoter followed by a multiple cloning site.

Subsequently, the Cre sequence was inserted into the multiple cloning site.

WESTERN-BLOT ANALYSIS

HEK293T cells were transfected with various expression vectors using Lipofectamine 2000 according to themanufacturer’s protocol

(ThermoFisher). After 48h, total cellular proteins were extracted in lysis buffer (10 mMHEPES pH 7, 100mMNaCl, 2 mMEDTA, 0.5%

NP-40) supplemented with protease inhibitor cocktail and phosphatase inhibitor cocktail 1 and 3 (Sigma-Aldrich). For immunoblot-

ting, samples were separated on 4%–15%Mini-Protean TGX Tris-Glycine-buffer SDS-PAGE and transferred onto 0.2 mmTrans-Blot

Turbo nitrocellulose membranes (both Biorad). Membranes were blocked for 1h at room temperature (RT) in 1X TBS (10 mM Tris

pH 8.0, 150 mM NaCl,) supplemented with 5% (w/v) dried skim milk powder. Primary antibody incubation was carried out overnight

at 4�C, with rabbit anti-PKA1b antibody (SC-907; Santa Cruz; RRID:AB_2237411; 1/200). A goat anti-rabbit HRP coupled secondary

antibody was used for detection (Jackson ImmunoResearch, West Grove, PA; 1/10000). In between and after antibody incubations,

membranes were extensively washed in TBS-T (TBS containing 2.5% Tween-20). Western blots were visualized using the enhanced

chemiluminescence method (ECL prime Western Blotting detection reagent, Amersham).

HEK293 cell transfection
Lipocomplexes were formed using Lipofectamine 2000 in accordance with the manufacturer’s instructions (ThermoFisher). The

following plasmids were used for transfection: ControlZaic 100 ng; CAG::Cre 0 ng, 1 ng, 10 ng, 100 ng. Lipofectamine 2000 trans-

fection reagent diluted in serum-free Opti-MEMmedia (ThermoFisher) was left at RT for 5minutes, then added to the plasmids diluted

in Opti-MEM at a lipid:DNA ratio of 2:1, mixed by gentle pipetting, and incubated at RT for 20 min. After forming the lipocomplexes,

they were delivered to the media above the cells to deliver 0.15 mg$cm-2 of DNA. The complexes remained in contact with the cells

overnight. The cells were fixed in 4%paraformaldehyde (PFA) 15minutes at RT. The cells were finally washed in PBS andmounted in

Mowiol (Sigma). Images were acquired under a 40X objective using an epifluorescence microscope (Leica DMI6000B).

In utero retinal electroporation
Timed-pregnant mice (Janvier Labs) were delivered to the animal facility a week prior to the surgery in order to allow a minimum of

5 days adaptation. In utero electroporation has been performed as previously described (Averaimo et al., 2016). In brief, C57BL/6NRj

pregnant mice were anesthetized with an intraperitoneal injection of a Xylazine/Ketamine mix (10 mg$kg-1 and 100 mg$kg-1, respec-

tively) and a subcutaneous injection of buprenorphine (0.0125mg$kg-1) wasmade pre-surgery for analgesia. Midline laparotomywas

performed, exposing uterine horns and allowing visualization of embryos. Left eye of E14.5 embryos was injected using an elongated

glass capillary (Harvard apparatus) with different plasmid solutions. The success of DNA injection was assessed using 0.07% fast

green supplemented to the DNA solution. The eye was then electroporated with 5 pulses of 45 V during 50 ms every 950 ms (Nepa-

gene electroporator). In order to electroporate the ventro-temporal end of the retina, the negative electrode (CUY650P2, Sonidel) was

positioned on the ventro-temporal part of the injected eye and the positive electrode on the opposite side of the head. To target the

central part of the retina, the positive electrode (CUY650P5, Sonidel) was placed on the side of the injected eye. Following surgery,

the incision site was sutured (4-0, Ethicon), andmice were allowed to give birth. To increase the survival of the electroporated pups, a

Swiss adopting mouse was housed together with the mice that underwent surgery. The Swiss mouse, mated a day earlier than the

C57BL/6NRj mice, gave birth one day earlier. At P0, only 2 Swiss pups were left in the cage so that the electroporated pups were

adopted by the Swiss mouse.

Confocal imaging
P3 or P15 mice were deeply anesthetized with a mix of Xylazine/Ketamine (20 mg$kg-1 and 200 mg$kg-1, respectively), perfused

transcardially with 4% PFA in 0.12 M phosphate buffer. Retinas, optic chiasms and brains were dissected out and postfixed in

4% PFA. Retinas (oriented with an incision on the ventral part) and chiasms were mounted in Mowiol. Brains were cryoprotected

with 30% sucrose in PB during 2 days and sectioned at 80 mm thickness on a freezing microtome (Thermoscientific HM450). Brains

sections were mounted in Mowiol. To validate the area of electroporation, retinas were imaged under a 2.5X objective using an epi-

fluorescence microscope (Leica DMI6000B). In order to quantify the number of electroporated axons, optic chiasms were imaged

using a confocal microscope (Olympus FV1000; 20X objective, N.A. 0.85). Electroporated brain sections were imaged under a

confocal microscope (Olympus FV1000; 40X objective, N.A. 1.3).
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Plasmids electroporated
The plasmids used are summarized in Table S2.

Retina slicing and immunostaining
Electroporated eyes of P3 mice were dissected out, immersed overnight in 4% PFA in PB, then cryoprotected in gelatin-sucrose.

Eyes were frozen at �40�C in propanol, then sectioned at 20 mm using a cryostat (Leica CM3050S). Slices were permeabilized

and blocked with PBS gelatin-sucrose (PBSGT), then incubated with antibodies against RBPMS (RNA-binding protein with multiple

splicing, 1830-RBPMS, Phosphosolutions, lot #NB317a; RRID:AB_2492225; 1/500) followed by a secondary antibody coupled to

AlexaFluor-647 (711-605-152, Jackson, lot #129486; RRID:AB_2492288; 1/500).

Two-photon calcium imaging
For the calcium imaging experiment the central retina was targeted during in utero electroporation. Mice were taken at postnatal day

7-8 (P7-8). The pup was rapidly decapitated, the left eye removed and placed in Ringer’s medium containing (in mM): 119 NaCl,

2.5 KCl, 1.0 KH2PO4, 11 glucose, 26.2 NaHCO3, 2 CaCl2 and 1 MgCl2 (290-295 mOsm), bubbled with carbogen (95% O2/5%

CO2). The retina was carefully dissected and fixed on filter paper (N8895, Sigma-Aldrich) with the RGC layer upward. The chamber

containing the retina was placed in custom-made two-photon setupwhere it was perfused continuously with Ringer’s solution.Wide-

field fluorescence was observed to select a suitable area with a high number of fluorescent RGCs. This area was loaded for 1h at RT

withOregonGreen BAPTA-1-AM (OGB1, 1mM,O6807, ThermoFisher) following themulti-cell bolus loading technique (Stosiek et al.,

2003). Calcium waves were imaged at 32-34�C. A pulsed femtosecond laser (InSight DeepSee; Newport Corporation) was set to

920 nm for OGB1 and to 1050 nm for tdTomato. Imaging was performed with a 25X objective (XLPLN25xWMP/NA1.05, Olympus)

and captured by a PMT (Hamamatsu, DP-Type Socket assembly, C12597-01). To suppress tdTomato fluorescence during calcium

imaging we used a Chroma filter (ET535/50) placed before the PMT. The field of view was 0.5x0.5 or 0.25x0.25 mm with a lateral

resolution of 0.75 or 1 pixel/mm. Acquisition rates ranged from 0.9 Hz to 3.6 Hz. Multiple 15-30 minutes movies were captured. After

each movie the retina was allowed to recover for 30 minutes.

Whole-cell electrophysiology
The retina was isolated as described for the two-photon calcium imaging experiments and left to recover for at least 1h. Widefield

RGC fluorescence was checked using a Leica EL6000, Leica filter cubes L5 for GFP, N3 for tdTomato, and Chroma EYFP filter cube

(49003), and a Hamamatsu ORCA-ER camera. An area with a high number of fluorescent RGCs was selected. Thick-walled

borosilicate pipettes (OD/ID of 1.5/0.87 mm; 30-0060, Harvard Apparatus) were pulled on a P-1000 Flaming/Brown puller (Sutter In-

struments). Pipettes were filledwith intracellular solution containing (inmM): 128 K-gluconate, 10 HEPES, 16 KCl, 1 EGTA, 2Mg-ATP,

0.5 Na2-GTP, pH 7.25 with KOH (275mOsm). In some recordings 10-20 mMAlexa Fluor 488 or 594 hydrazide (A10436, A10438, Ther-

moFisher) and/or 2mg/mL biocytin (B4261, Sigma-Aldrich) was added to the pipette solution to validate the recorded cells. Reported

potentials were corrected for a liquid junction potential of�11mV. A pipette with tip resistance of 3-6MUwas gently pushed through

the inner limiting membrane with the pipette solution pressurized to keep the tip clean. Fluorescent cells and surrounding non-fluo-

rescent cells in the RGC layer were targeted. Whole-cell recordings were made with a Multiclamp 700B amplifier (Axon Instruments),

filtered at 10 kHz and digitized at 25 or 50 kHz using a DigiData 1440A (Axon Instruments) and Clampex 10.7 running onWindows 10.

High-resistance patch seals (> 1 GU) were obtained before breaking into the cell. Recordings with a series resistance above 50 MU

were discarded. The resting membrane potential of the cell was recorded in the first minute after breaking in. Cells with a membrane

potential >�45 mVwere discarded. Passive cell properties were recorded by stepping from�70 to�80 mV in voltage-clamp mode.

In current-clampmode series resistance (10-50MU) and pipette capacitance (6.2-7.1 pF) were fully compensated. RGC responses to

square current injections were recorded. The amplitude of first current injection was adjusted to hyperpolarize the cell to �100 mV.

Steps of current were then injected until reaching the action potential (AP) threshold. Cells that did not fire APswere discarded. Lastly,

15-30minutes of spontaneous activity were recorded. During the recording, fluorescence was checked to categorize the cell as pos-

itive or negative for fluorescence of YFP or tdTomato, depending on the plasmid construct that was electroporated.

TUNEL staining and analysis
P3 wild-type or electroporated retinas were dissected out and postfixed 1h with 4% PFA in PB. Developmental cell death was as-

sessed on whole retinas using TUNEL staining, in accordance with the manufacturer’s instructions (ThermoFisher, C10618). To

induce DNA strands breaks (i.e., positive control), retinas were incubated with 1 unit of DNase I (04716728001, Roche) for 30 min

at room temperature. Slices were mounted in Mowiol then imaged using a confocal microscope (Olympus FV1000; 40X objective,

N.A. 1.3) and the number of TUNEL-positive cells was manually counted.

R-FlincA imaging
Retinal explants were electroporated with the R-FlincA, CAG::Cre and SpongeZaic or ControlZaic constructs. The day after electro-

poration, they were cut into 0.2x0.2 mm squares with a Tissue-Chopper (McIlwan) and explants were plated on glass coverslips

coated with poly-L-lysine and laminin (Sigma Aldrich). Cells were cultured for 24 hours in culture medium supplemented with

0.4% methylcellulose and B-27 (Life Technologies) before imaging. Images were acquired every 20 s with an inverted DMI6000B
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epifluorescence microscope (Leica) coupled to a 40X oil-immersion objective (N.A. 1.3), a TX2 filter cube and the Metamorph soft-

ware (Molecular Devices). For live imaging experiments, cells co-transfected with R-FlincA and SpongeZaic or ControlZaic were

perfused (0.3 mL min-1) with 1 mM CaCl2, 0.3 mM MgCl2, 0.5 mM Na2HPO4, 0.45 mM NaH2PO4, 0.4 mM MgSO4, 4.25 mM KCl,

14 mM NaHCO3, 120 mM NaCl, 0.0004% CuSO4, 0.124 mM Fe(NO3)3, 1.5 mM FeSO4, 1.5 mM thymidine, 0.51 mM lipoic acid,

1.5 mM ZnSO4, 0.5 mM sodium pyruvate (all from Sigma), 1X MEM Amino Acids (Life Technologies), 1X non-essential amino acids

(Life Technologies), 25mMHEPES (Sigma), 0.5 mMputrescine (Sigma), 0.01%BSA (Sigma), 0.46%glucose (Sigma), 1mMglutamine

(Life Technologies), 2% penicillin streptomycin (Life Technologies). Vitamin B12 and riboflavin were omitted because of their auto-

fluorescence. Forskolin (Sigma) was used at 10 nM.

Anterograde tracing
In utero electroporated pups were anesthetized at P13 with an intraperitoneal injection of a Xylazine/Ketamine mix (10 mg$kg-1 and

100 mg$kg-1, respectively), and oxybuprocaine (4 mg$mL-1) was used for local analgesia. They were injected with a Nanofil syringe

intravitreally with 2 mL of cholera toxin subunit b (ThermoFisher) conjugated to AlexaFluor-647 (left eye) or 594 (right eye) diluted in 1%

DMSO. P15mice were perfused transcardially with 4%PFA in 0.12M phosphate buffer. Brain sections were imaged under a confocal

microscope (Olympus FV1000; 10X objective, N.A. 0.4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Axon area analysis
Axon density analysis was performed on 40X confocal images from all the coronal sections containing the dLGN contralateral to the

electroporated eye. Z stack images of axons were segmented using a machine-learning based plugin of Fiji: Trainable Weka Seg-

mentation plugin (Arganda-Carreras et al., 2017). Briefly the algorithm was manually trained for several rounds with a set of images

using the default settings of the Weka plugin. The robustness of the training was confirmed on a different set of images. Once sta-

bilized, the segmentation process was applied to all quantified images. After segmentation, axons expressing both YFP and CFP

were excluded from the CFP segmented image, in order to obtain a ‘CFPOnly’ stack of images (Figures S1J and S1K). A region

of interest (ROI) was manually drawn around the patch of axons, and the area covered by axons inside this ROI was measured on

the maximal projection of the segmented stacks of YFP and ‘CFPOnly’ axons. Axon area was summed on all the coronal slices of

the dLGN.

Analysis of the distribution of ipsilateral and contralateral fibers in the dLGN
Quantifications were performed on 10X confocal images from the 3 consecutive coronal sections containing the largest extent of the

ipsilateral territory. Using ImageJ software, the boundary of the dLGN was outlined, excluding the intrageniculate leaflet, the vLGN

and the optic tract. The proportion of ipsilateral projections within the dLGN was measured as a ratio of ipsilateral pixels to the total

number of pixels in the dLGN. The area of ipsilateral projections was summed over the 3 largest consecutive coronal sections of the

dLGN.

Analysis of maximal invading distance
The maximal distance to which axons invade the dLGN of P3 electroporated mice was manually measured on 40X confocal images.

Axon length wasmeasured on the five longest axons on three consecutive coronal sections containing the greatest quantity of retinal

axons.

Calcium imaging analysis
The OGB fluorescence movie Yi,j,t and a tdTomato fluorescence image were imported into MATLAB R2016a (MathWorks). The

tdTomato image was visually aligned to Y (rigid transformation).

Defining ROIs
Centers of ROIs were defined by the user by viewing the overlay of the tdTomato image and the standard deviation time projection of

Yi,j,t. Pixels within 4 mm from the center were included in the initial ROI unless these pixels were already assigned to another ROI. In a

few cases when variations in OGB signals were not sufficient to define the center of the cell, ROIs were defined based on the

tdTomato image. A threshold value was defined by themedian + 0.2*(maximum -median) of the tdTomato image after a 2DGaussian

smoothing kernel (SD = 5 mm). Any pixels above this threshold connected to the defined center would be part of the initial ROI.

Subsequently, the spatial and temporal components were initialized following the Greedy Initialization as described by Pnevma-

tikakis et al., 2016. In brief, Yi,j,t was Gaussian-blurred (2D, SD = 2 mm), subtracted by a pixel-based median, and averaged over the

ROI pixels to obtain the initial temporal component. This was followed by the fine-tuning step of Greedy Initialization to adjust the

spatial and temporal components of the ROI. Pixels were excluded when their spatial component value was below 0.7*median in-

tensity of all spatial component values. Finally, spatial and temporal components of the ROIs were updated following Pnevmatikakis

et al., 2016. Any ROI < 12.5 mm2 or < 16 pixels was excluded.
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ROIs were classified as either tdTomato positive or negative as follows. Mean intensity of tdTomato fluorescence was calculated

for each ROI. Based on the average intensity and the SD of ROIs below the 80th percentile an intensity threshold was calculated as

mean intensity + 6*SD. ROIs with at least 70% of its pixels and an average tdTomato intensity above this threshold were identified as

tdTomato-positive ROIs.

Activity of the ROIs
By multiplying the spatial and temporal component of a ROI we obtained its background-subtracted fluorescence trace. From this

trace we calculated DF/F by (Yt –Ymedian)/ Ymedian, and DF/F was detrended by subtracting a 3 minutes moving median. At first, we

defined the ‘active’ time points when DF/F > 0.2. However, this causes ROIs with low median intensities to cross the threshold very

often. To avoid this, we made the threshold dependent on the Yi,j,t of the ROI. The 3 minutes moving median of YROI,t (YmedROI,t) was

calculated. The activity threshold was calculated asmax (0.2, 0.4 – YmedROI,t /1250) and ROIs were considered active when bothDF/

F > the activity threshold and YmedROI,t > 20. ROIs that had an active period > 30 s were excluded from the analysis.

Defining waves
Waveswere detected when > 5%of the ROIs that are active in themovie were active simultaneously. The start and end of awavewas

defined as the time point that 4% threshold was reached before and after crossing the 5% threshold. To define the wave area, a

convex hull was drawn for every time point around active ROIs within the wave with a centroid-centroid distance < 50 mm. The final

wave area was the total area covered by the individual hulls. To calculate the participation, the number of active ROIs within the wave

area was divided by the total number of ROIs with at least 1 pixel in the wave area.

Electrophysiology analysis
Recordings were imported into MATLAB R2016a. Series and input resistance were calculated from the 10 mV voltage steps. The

membrane resistance was calculated as the difference of the two resistances. For the current injection responses, we analyzed

the AP properties of the first AP at the beginning of each current injection step. AP threshold was defined as the membrane potential

at which 200 kV$s-2 was reached. Maximal rate of rise and maximal rate of fall were taken as the maximum and minimum in the first

derivative of the AP. For a few cells the AP maximal rate of rise corresponds to axon initial segment spike as judged from the phase

plot. Full-width at half-maximum (FWHM) was taken as the duration where the AP was above the membrane potential of the AP

threshold + 0.5 (AP peak � AP threshold). In the spontaneous activity APs were detected in the 15-30 minutes recordings by

threshold crossing at �25 mV. Bursts were defined as > 2 AP within 0.5 s. Cells with less than four bursts were discarded.

R-FlincA imaging analysis
Images were imported into MATLAB R2016A. ROIs were drawn by the experimenter on axons that (1) were structurally stable

throughout the experiment and (2) showed R-FlincA fluorescence above background levels (> 0.5 arbitrary points). For each ROI

a background ROI was drawn next to it. Average fluorescence in ROI was subtracted by the average fluorescence in the background

ROI at each time point (Ft). Baseline fluorescence was calculated by averaging the first 15 frames (F0). The average of F/F0 in 1st-10th

frame after the start of the forskolin pulse was used to measure the R-FlincA response. YFP fluorescence was calculated by aver-

aging the pixels within the ROI and subtracting the average from the background ROI. In some cases the forskolin pulse induced

a shift in Z in the following image with the structures being out-of-focus. This image was then excluded from the averages.

Statistics
No data were excluded from the analysis, except where indicated otherwise. No sample size calculation was performed. Non-para-

metric (Mann-Whitney and Kruskal-Wallis) tests were calculated using GraphPad Prism (GraphPad software Inc.) or using package

conover in R (v3.5.2). Post hoc comparisons were done following the Conover-Iman test using package conover. When the Kruskal-

Wallis test indicated a p value < 0.05, post hoc contrasts were made between (1) cAMPreduced cells versus Control YFP+ or tdTom+,

and (2) cAMPintact versus Control YFP- or tdTom-. These contrasts were corrected following Bonferroni and indicated as p0. When p0

was > 1, p was reported instead. When none of the predefined contrasts reached p0 < 0.10, we explored the comparisons Control

YFP+ or tdTom+ versus Control nearby and cAMPreduced versus cAMPintact. These comparisons are reported without any correction.

R-FlincA experiments were analyzed using a regression model to explain the ranks of R-FlincA response by the ranks of YFP inten-

sity, a logical variable for ControlZaic and SpongeZaic, and the interaction effect. Post hoc comparison tests were corrected

following the Bonferroni correction. Table S1 summarizes the p values and number of replicates for all the data.
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