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The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at single nanopar-
ticle level. There has been a lot of progress in the understanding of the magnetic properties of NPs, but incomparably less when
interparticle interactions govern the overall magnetic response. Here, we present a quantitative investigation of magnetic fields
generated by small clusters of NPs assembled on a dielectric non-magnetic surface. Structures ranging from individual NPs to
fifth-fold particulate clusters are investigated in their magnetization saturation state by magnetic force microscopy and numerical
calculations. It is found that the magnetic stray field does not increase proportionally with the number of NPs in the cluster.
Both measured and calculated magnetic force fields underline the great importance of the exact spatial arrangement of NPs,
shedding light on the magnetic force field distribution of particulate clusters, which is relevant for the quantitative evaluation of
their magnetization and perceptibly for many applications.

1 Introduction

Stable and well characterized magnetic nanoparticles (NPs)
are much sought after in many research fields. In particular,
bio-related applications making use of iron-oxide NPs (mag-
netite - Fe3O4 and maghemite - Fe2O3) are currently one of
the pharmaceutical markets with the fastest growth1,2. Such
nanoparticles are now intensively used in biomedical imag-
ing, diagnostic and therapeutic applications3–7. Their rather
easy synthesis8–10, along with their peculiar magnetic prop-
erties11 and relatively low toxicity12,13 also make them ideal
candidates as contrast agents for magnetic resonance imag-
ing (MRI)14–17, heat generators for cancer treatment by mag-
netic hyperthermia18–21, as well as carriers in drug delivery
systems22,23. As always the case for any compound which
is meant to be used in human health, there are stringent re-
quirements on the properties of these materials. From the
nanometer-scale interaction point of view, the magnetic prop-
erties of NPs is of utmost importance for the entire spectrum
of applications24. For example, the local magnetic field sur-
rounding the NPs is crucial for self-organization of NPs in
solutions and on surfaces25,26. Or, the magnetic field of NPs
is key for the magnetic relaxation-based detection, which is
not limited to MRI imaging27. Magnetic relaxation-based
detection exploits the local magnetic field generated by NPs
by altering the spin-spin relaxation time of nearby molecules.
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In MRI detection scheme the additional homogenous external
magnetic field is high enough to enable a magnetization satu-
ration state of NPs. In any case, the study of NPs in their mag-
netic saturation state is consequently of critical importance.

The local magnetic field is nonetheless strongly modified
by aggregation, an effect which has been recognized quite
early to further enhance the rate of transverse spin relaxation
of nearby water molecules for instance27–30. An efficient im-
plementation of NPs in applications is consequently strongly
related not only to their saturation magnetization - an active
research field in synthetic inorganic chemistry - but also to the
magnetic properties of NPs, which has been shown to be im-
pacted by the degree of clustering22,31–35, or the formation of
controlled multicore particulate architectures36–38. The char-
acterization of the local magnetic field generated by either in-
dividual or few interacting NPs (hereafter referred to as clus-
ters) is, therefore, also of great interest.

Here, we present an experimental and theoretical study on
a quantitative evaluation of the magnetic force fields created
by clusters consisting of 1 to 5 NPs. A homogeneous external
magnetic field able to saturate the magnetization of NPs has
been used. It was found that the local magnetic force fields do
not increase proportionally with the number of NPs in the clus-
ters. Moreover, minute modifications of the spatial arrange-
ment of NPs in the cluster were found to drastically modify
the magnetic stray field, which in turn has a great impact on
the quantitative determination of the magnetic moments of the
clusters. In particular, it is shown that at distances smaller
than the size of the clusters, the NPs do not equally participate
to the measured signal, yielding to an overestimation of the
magnetic moment of clusters when using a two-dipole model.
This model is nevertheless shown to be suited for distances
exceeding some critical values, which can be roughly approx-
imated as twice the diameter of NPs forming the clusters. For



measurements performed at larger distances, the application of
the two-dipole model leads to a good estimation of the mag-
netic moments, improving further for clusters having a com-
pact configuration.

Our numerical analyses were carried out by virtually split-
ting both the tip and the clusters into a large number of mi-
croscopic elements, permitting a full pairwise integration of
magnetostatic potentials. This method allows taking into ac-
count the exact geometry of both tip and sample, which is cru-
cial in the present study. Using the numerical results given
by our model in combination with the experimental findings,
we bring unprecedented insights into the quantitative evalua-
tion of the magnetic field generated by clusters of NPs. The
importance of the tip-sample distance and of the spatial orga-
nization of the particulate clusters is clearly emphasized. The
results shed light on the magnetic force field distribution near
clusters of NPs, which is relevant for a broad range of appli-
cations.

2 Experimental and modeling considerations

The investigation of the local field distribution above magnetic
nanostructures of dimensions down to a few nanometers can
be experimentally achieved by means of either magnetic force
microscopy (MFM)39 or electron holography40. The former
technique has been extensively used in the last two decades
and is now a mature approach, providing unique information
about nanoscale magnetism of on-surface41,42, immersed43 or
embedded nanostructures44. MFM uses the attractive and/or
repulsive magnetostatic interactions established between the
magnetic probe of the microscope and the near-field magnetic
stray field emerging from the nanostructure, yielding a force
gradient image. The signal is generally measured by con-
verting the local magnetostatic interaction to an amplitude or
phase change of the vibrating cantilevered MFM tip39,41. In a
first approximation, the phase shift of the cantilever vibration
can be written as a function of the gradient force along the
z-direction:

∆ϕ =−Q
k

∂Fz

∂ z
, (1)

where Q is the oscillation quality factor of the cantilever, and
k is the cantilever spring constant. For quantitative informa-
tion, the phase shift needs to be probed at various tip-sample
distances. This is in order to allow a 3D imaging of the mag-
netic field distribution generated by the magnetic nanostruc-
ture39,45. Moreover, a quantitative interpretation of the phase
shift is also complex, since it depends on the detailed mag-
netic properties of the tip46,47. A few experimental studies
have nevertheless proven feasible the extraction of quantitative
information, such as magnetization or coercive fields, provid-
ing that the exact spatial distribution of the tip magnetization
is known48–51. Nonetheless, in many studies the two-dipole
model52 was used to interpret the experimental findings53–55.

The two-dipole model, also called point-probe model, re-
places the magnetic nanostructure by a unique magnetic dipole
moment, and idealizes the tip magnetization by a magnetic
dipole moment which is virtually located in the tip at a certain
distance from the apex52. Within this model, the phase shift
of the cantilever is directly proportional to the nanostructure
magnetic dipole moment and to the magnetic dipole moment
of the tip52. This two-dipole model has been successfully
applied for extracting quantitative magnetic information, par-
ticularly on nanostructures able to generate field geometries
similar to those used for the tip calibration56–58. Accordingly,
spherical NPs with known magnetization have been employed
to calibrate the magnetic tips, which were subsequently used
to determine the magnetic moment of other spherical NPs or
clusters58,59,63.

Our experiments have been performed in ambient con-
ditions using an ICON-AFM apparatus controlled by a
Nanoscope V electronics. The topographic images have been
acquired in tapping mode, while the lift mode was used for the
magnetic (MFM) imaging. The tip-sample distance has been
determined by adding at the mean topographic scan height (30
nm) to the tip-lift values used in the MFM scan. The spring
constant of the used cantilevers was between 2 and 3 N/m and
their resonance quality factor ranged between 500 and 1000.
The probes were silicon tips covered with a hard magnetic
coating presenting a coercive field of about 250 Oe. A mag-
netic field of 0.5 T was permanently applied in all experiments
reported in this work. This field is high enough to saturate both
the magnetic MFM probe and the NPs. Other details about
the experiments are described in Sec. SI3. A characterization
of the tip magnetic properties in the framework of two-dipole
model is presented in Sec. SI4. The magnetic moments of the
NPs evaluated with the two-dipole model are in Sec. SI5.

The numerical simulations were conducted by considering
the real geometry of the tip and of the NPs number and or-
ganization. The configuration used in simulations is sketched
in Fig. SI9. The advantage of our simulation model is that it
considers a tip and a sample composed of small magnetic ele-
ments (meshes), which better account for the geometry of the
systems. A magnetic moment corresponding to the respective
volume is associated to each mesh element. Various meshes
sizes have been checked, until a convergence was obtained.
This typically corresponds to square meshes of a lateral sizes
below 2 nm (see Sec. SI6). The experimental height of the tip
H was also considered to get a convergence of the calculated
force. The elementary force between two elementary mag-
netic elements of magnetic moments M⃗1 and M⃗2 separated by
r⃗, reads:

∆ F⃗
(

M⃗1,M⃗2 ,⃗r
)
= 3 µ0

4π r5

[
M⃗2

(
M⃗1 · r⃗

)
+ M⃗1

(
M⃗2 · r⃗

)
+

+ r⃗
(

M⃗1 · M⃗2

)
− 5(M⃗1 ·⃗r)(M⃗2 ·⃗r)

r2 r⃗
]
. (2)

For a saturated magnetization along z-direction, the total
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Fig. 1 Top row: AFM topographic images (200 × 200 nm2) of a
single NP and of various clusters made from two to five iron-oxide
nanoparticles. The vertical scale bar is 34 nm. Middle row: MFM
phase shift profiles (horizontal direction) as a function of tip-sample
distance [tip lifts from 20 nm (dark blue) to 65 nm (light brown), val-
ues measured with respect to the topographic scan which is at about
30 nm from the sample surface]. Lower row: Phase shift profiles
(vertical direction). Profiles are vertically offset for clarity.

magnetic force is then obtained by integrating over the whole
system:

F⃗ =
∫

d⃗r′d⃗r′′dF⃗
(−−→

MNPs

(⃗
r′
)
,
−−→
MTip

(⃗
r′′
)
,⃗r′′− r⃗′

)
, (3)

where m represents the magnetization density. This expression
can be numerically evaluated as a function of tip-sample dis-
tance z, yielding as well to the first derivative of force versus
distance, which can then be compared with the experimental
phase shift. Section SI6 is a complete compilation of all pa-
rameters used in simulations.

3 Results and discussions

The high-temperature decomposition of magnetic precursors
in organic solvents enables the formation of highly crystalline
NPs of various sizes, shapes, compositions and magnetic prop-
erties10,64. Spherical Fe3O4 NPs with diameters of 30 nm ± 5
nm with high saturation magnetization values have been used
(Sec. SI1 and SI2). Prior to the deposition, the NPs were
dispersed in chloroform. The residual traces of water in chlo-
roform solvent lead to the assembly of NPs into ring structures
of various diameters, as reported elsewhere for gold nanopar-
ticles65. In between the ring structures, clusters comprising a
different number of NPs can be found (Fig. 1, also Sec.SI1).

3.1 Magnetic phase-signal and two-dipole model

Phase shift profiles as a function of tip-sample distance are
shown in Fig. 1. The total magnetic moment of the clusters
is expected to proportionally increase with the number of NPs
composing the cluster, inducing a proportional increase of the
phase shift as well. As seen in Fig. 1, this is not the case,
since the variation of the phase shift signal does not scale with
the number of NPs in the cluster. It is important to notice that
for large distances (80 - 95 nm: light-brownish curves), the
phase signal tends, however, to vary proportionally with the
number of NPs. We will see below that the phase shift also
depend on the spatial arrangement of NPs in the cluster. In
any case, the experimental results presented in Fig. 1 already
justify a deeper analysis of how the magnetic field generated
by different clusters evolves with the number and organiza-
tion of NPs. Moreover, experimental observations also reveal
the need to develop an accurate numerical model which can
be subsequently used for quantitative characterizations of the
magnetic fields generated by clusters of NPs.

3.2 Stray fields of single NPs

We have pursued our analysis by extracting quantitative in-
formation on the magnetic moments of various NPs clusters.
This was first realized by characterizing the MFM tip on ref-
erence samples consisting in six different isolated NPs hav-
ing diameters ranging from 26 nm to 34 nm (Fig. 2 and Fig.
SI5). This analysis is a necessary step towards obtaining a
quantitative information about the magnetic moment of clus-
ters58,59. It is worth noting that the diameters of the NPs have
been estimated from height profiles and not from lateral sizes,
as lateral dimensions are usually overestimated by tip convo-
lution effects59. The convolution effects not being present at
the top of a nanoparticle, the extracted diameters of NPs are
then in agreement with size histograms obtained from electron
microscopy images (Sec. SI2).

Another important issue in non-contact phase imaging is
the electrostatic contributions which can interfere with ”mag-
netic” phase shifts60. However, since all the measurements
presented here are done in the saturation state of the magneti-
zation, the electrostatic contribution is negligible as compared
to the magnetic signal61. A negligible contribution of the elec-
trostatic field is also indicated by the asymptotic variations of
the phase signal with the tip-sample distance, which can only
be explained by an insignificant gradient of the electrostatic
field in the respective tip-distance interval62. The magnetic
field produced by homogenously magnetized spherical NPs
(especially at saturation) is hence well approximated to the
field of a point dipole positioned at the center of the spherical
NP. This is the core of the two-dipole model as used in MFM,
and is quite accurate for individual NPs62. The strength of the
magnetic field is expected to be proportional to the magnetic
moment of the nanoparticle, which in turn increases with its
diameter (Sec. SI4).
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Fig. 2 (a) Phase shift of six single NPs of various diameters. Solid
lines are fits obtained with the two-dipole model. Insets are topo-
graphic images of the investigated NPs (150 × 80 nm2). (b) Plot
of the magnetic dipole moment of the tip as a function of its virtual
location in the tip volume. Blue line is a linear fit.

Within this description, a slight deviation of the magnetic
moment induces a significant modification of the field above
the nanoparticles. Consequently, different volumes of the
magnetic tip are involved in collecting the magnetic signal.
Evolution of the MFM phase shift with the tip-sample dis-
tance is perfectly fitted with the two-dipole model, as seen in
Fig. 2(a), provided that the magnetic dipole moment of the tip
(mtip) as well as its virtual location (δtip) within the tip volume
are free fitting parameters. Note the significant variations with
the NP diameter. Since the magnetic moment of each NP is
well known, the two fitting parameters can be determined as
a function of NP diameter. The resulting values are summa-
rized in Sec. SI4. Those values are helpful for the subsequent
analyses of clusters.

Each pair of parameters (mtip, δtip) reflects the magnetic
force field generated by an isolated NP. Both, mtip and δtip, are
found to increase as the diameter of the particle increases. The
values of mtip are of the order of 10−17 Am2, which is in good
agreement with known values of magnetic moment of the tips.
Plotting the mtip as a function of δtip results in a linear depen-
dence (Fig. 2). In our case, this dependence might be trig-
gered by the reduced variation in the NPs size, since for fields
generated by nanoscale current-carrying parallel lithographed
wires, a power-law behavior has been found57.

3.3 Dimers and role of planarity

The calibration of the magnetic tip enables the extraction of
magnetic properties of clusters presenting different spatial or-
ganizations. For instance, clusters D1 and D2 in Fig. 3 were
formed by assembling two NPs (D1: 30 nm and 28.5 nm; D2:
31 nm and 27.5 nm, respectively, also see Fig. SI6). From
those sizes, we can consider that both dimers have an identical
volume of magnetic material even if their spatial arrangement
is different. The main difference between the two dimers is

20 30 40 50 60 70

-0.20

-0.16

-0.12

-0.08

-0.04

0.00
 D1 + fit

 D2 + fit

P
h

a
s
e
 s

h
if
t 
(d

e
g
re

e
)

Lift (nm)
20 30 40 50 60 70

1.2

1.4

1.6

1.8

2.0

 D1/S4

 D2/S4

D
im

e
r/

S
in

g
le

 p
h

a
s
e

 s
h
if
t

Lift (nm)

(a) 

-0.08 

-0.04 

0.00 

50 60 70

P
h

as
e 

sh
if

t 
(°

) 

-0.20 

-0.16 

-0.12 

80 90 100 
Distance (nm) 

D1 D2 

D1 

D2 

50 60 70 80 90 100
Distance (nm) 

1.6 

1.8 

2.0 

P
h

as
e 

sh
if

t 
 r

at
io

 

1.2 

1.4 

(a) (b) 

Fig. 3 (a) Phase shift of two dimers (D1 and D2) of different organi-
zation. Solid lines are fits obtained with the two-dipole model. The
insets are topographic images of D1 and D2 (150 × 100 nm2). (b)
Distance dependence of the phase shift for the two dimers divided by
the phase shift of a single NP.

that, the NPs in D2 do not lie in the same surface plane. They
partially overlap (Sec. SI3), appearing in the image in a more
compact form than for D1 where both NPs are in the surface
plane (Fig. 3).

It is now interesting to realize that the field generated by D2
emerges from a smaller area displaying a larger decay length.
This is a simple and clear example of how the NPs in the
dimer can impact the MFM signal along a particular direc-
tion. Moreover, the phase signal as a function of tip-sample
distance (proportionally to the tip lift in MFM) of D2 exhibits
a more sloped profile, which means that D2 generates a mag-
netic force field with a greater gradient magnitude in the nor-
mal direction.

In order to quantify the stray field generated by the clusters
and to observe at which distances from the cluster surface the
two-dipole model increases its accuracy we calculate the ra-
tio between the phase signals of the clusters and of a single
NP. As an example, the ratio between the experimental MFM
phase shifts recorded for the two dimers (D1 and D2) and a
single NP (S4) are displayed in Fig. 3. The NP has been cho-
sen in order to approach as close as possible the mean diam-
eter of the NPs composing the cluster. As seen, for distances
above 80 nm, the D2/S4 ratio is indeed almost 2, in agreement
with the two-dipole model (which stipulates that if the mag-
netic moment of the investigated cluster is doubled, the phase
shift should also double). However, at lower distances, the ra-
tio decreases down to about 1.5. The D1/S4 ratio starts at 1.7
at the largest distance and smoothly decreases towards 1.2 for
the smallest distances [Fig. 3(b)], remaining therefore signifi-
cantly lower than the ideal value of 2. These findings suggest
in both cases that the tip does not perceive the entire cluster
magnetic moment, which is a significant deviation from the-
ory.

From the fits, δtip is 79 and 82 nm for D1 and D2, respec-
tively. The δtip values are larger in comparison to the ones
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Fig. 4 (a) Phase shift of five 3-fold clusters (trimers) of various com-
pactness. Solid lines are fits using the two-dipole model. The insets
are topographic images of the trimers Tr1 (scale bar: the large side
of images is 170 nm). (b) Phase shifts for the five trimers divided by
the phase shift of a single NP, reported as a function of tip-sample
distance.

obtained for isolated NPs. By applying the linear dependence
from Fig. 2(b), the values of magnetic moment of the tip are
2.95 × 10−17 Am2 and 3.23 × 10−17 Am2, when using D1
and D2, respectively. The higher value of the moment ob-
served for D2 is due to the compact geometry, as the stray
field interacts with a larger tip volume than in the case of D1.
Finally, the extracted values of the magnetic dipole moment of
D1 and D2 are 6.91 × 10−18 Am2 and 7.69 × 10−18 Am2, re-
spectively. These values represent a percentage of 68.5% and
75.5% of the sum of magnetic moments of the two NPs form-
ing the D1 and D2. Consequently, when individuals NPs are
getting closer to each other and start clustering, only a frac-
tion of the entire magnetic moment is detected by the MFM
tip, undermining the two-dipole model. Interestingly, in com-
pact geometries, where NPs partially overlaid, the tip starts to
perceive the entire magnetic moment for tip-sample distances
exceeding roughly twice the diameter of a single NP.

3.4 Trimers, tetramers, pentamers and compactness

It is pertinent to verify this trend and to further investigate
the effect of the arrangement of NPs in clusters of higher or-
der. The association of a third NP to a dimer leads to a va-
riety of geometrical ”trimer” configurations. We analyzed 5
different 3-fold clusters (trimers) (Fig. 4). In Tr1, a NP par-
tially superimposes over the other two, giving rise to a slightly
out-of-plane and compact triangular configuration when look-
ing from above; Tr2 has an almost perfect isosceles in-plane
triangular configuration, while Tr3 presents a slightly more
open triangular shape. Tr4 is less bent, resembling a linear
chain, whereas Tr5 has the two outer NPs in part overlaying
the central one, forming a more compact geometry from atop
perspective. This has consequences for the field gradient gen-
erated in the out-of-plane direction, as discussed below in re-
lation with the phase ratio comparison of the trimers.

As highlighted in Fig. 4 (b), the phase shift for 3-fold clus-
ters is even more drastically influenced by the NPs arrange-
ment. The evolution of the phase shift as a function of distance

is very abrupt in the case of compact Tr1, i.e. the generated
magnetic force field has the steepest gradient. The slope of
the signal gradually decreases for Tr2 and Tr3, becoming the
lowest for Tr4. In others words, as the trimers evolve from
a compact triangular configuration to a linear-like chain, the
magnitude of the generated magnetic force field decreases. In
turn, the force field for Tr5 becomes again comparable with
the one of Tr2 and Tr3, effect which is due to the partial over-
lapping of outer NPs. Hence, we can conclude that the assem-
blage of NPs in linear-like chains generates reduced magnetic
force fields above the center of the chain, whereas compact
or overlapping NPs geometries yield gradient fields of greater
magnitudes.

The phase shift signals on the trimers have also been nor-
malized by the phase signal of a single NP. Again, the latter
were estimated by averaging the diameters of the NPs consti-
tuting the respective trimers (Fig. SI7). The magnetic mo-
ments of the trimers were evaluated by applying the same pro-
cedure as previously used for the dimers. Assuming for in-
stance that the compact Tr1 trimer has a magnetic moment
three times larger than the one of a single NP, it is expected
that the phase shifts ratio reaches a value of 3 over the entire
range of distance. As shown in Fig. 4(b), the ratio is largely
below 3 and only tends to this value for distances above 85 nm.
For Tr1, the extracted magnetic moment almost equals the sum
of the magnetic moments of the individual monomers - 90%
recovery (Sec. SI5). In the case of Tr2 and Tr3 - where the
apparent surface area increases as a result of the larger spac-
ing of the NPs - the recovery percentages are 85.5% and 80%,
respectively. The phase shift ratios for Tr2/S3 and Tr3/S2 are
close to 3 only for large distances (85 - 95 nm), and steeply
fall to 1.7 when the distance decreases to 50 nm [Fig. 4(b)].
The recovering percentage reduces significantly to 66% and
70% for Tr4 and Tr5 clusters, respectively. Accordingly, the
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Fig. 5 Phase shift of several clusters divided by the phase shift of
a single NP. The NP has been chosen with a diameter close to the
mean diameter of those composing the cluster. Insets are topographic
images of the analyzed clusters.
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Tr4/S2 ratio varies very rapidly from 1.3 to 2.6, while Tr5/S5
ratio has a smooth linear trend between 1.5 and 2.

The magnitude of the detected magnetic moment of a clus-
ter therefore significantly depends on the degree of compact-
ness and on the tip-sample distance. For compact triangular
clusters the tip detects a full magnetic moment only at dis-
tances exceeding 80 nm. As the separation between NPs in-
creases, the recorded magnetic force field decreases, affecting
the overall magnitude of the magnetic moment of clusters.

We have expanded our study to larger clusters formed by the
assembly of four and five NPs. In the case of the ”tetramers”
(Te), the NPs are spatially arranged in such way that they are
located in the corner of a slightly distorted square, while NPs
in ”pentamers” (Pe) form a almost regular pentagon (Fig. 5
& Fig. SI7). The phase shift of the pentamer has a slightly
larger magnitude than that given by the tetramer (Fig. SI8). In
general, we find that the less compact geometries have a great
impact on the magnitude of the extracted magnetic moment.
The recovery percentage is 64% and 67% for tetramer and
pentamer, respectively (Table SI2). This indicates that a larger
2D spatial extension of NPs results in a magnetic force field
of a smaller magnitude and a shorter decay length. As can be
seen in Fig. 5, where phase shift ratios are plotted for clusters
with increasing connectivity, the Te/S4 and Pe/S4 phase shift
ratios only approach values of 3.5 and 4.6, respectively, at the
largest distances. Only the smaller compact clusters have the
tendency to reach a phase shift ratio identical to the number of
NPs. These findings again cannot be understood in the frame-
work of the two-dipole model where the clusters are described
by point-like magnetic dipole moments.

4 Numerical simulations

Calculations of the magnetostatic interactions between the mi-
croscope tip and the NPs were modeled by using the config-
urations found experimentally. A detailed description of the
method can be found in Sec. SI6. The interaction between
the magnetic tip and the sample has been simulated by plac-
ing the tip apex above the center of mass of the studied clus-
ters. In Fig. 6 (a), we show the computed magnetic forces
as a function of distance for three isolated NPs of different
diameters: D = 26 nm, 30 nm and 34 nm. As expected, the
magnetic force increases with the size of the NPs while the to-
tal magnetic moment scales with the volume. In Fig. 6 (b) are
plotted the theoretical force gradient values (which are pro-
portional to the experimental phase shift) with respect to the
tip-sample distance. Comparison with the experimental re-
sults presented in Fig. 2 reveals that the simulated force gradi-
ents exhibit the same trend as in experiments. Indeed, in both
simulated and experimental cases, the force gradient increases
for larger NPs. The difference between the force gradients
however shrinks as the distance between the tip and the NP
increases.

Due to the finite element modeling used here, the numeri-
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Fig. 6 (a) Variation of the magnetic force between the tip and three
single NPs of different diameters (D = 26 nm, 30 nm and 34 nm) as
a function of tip-NP distance. (b) Variation of the force gradient as a
function of distance for the three different single NPs. Inset exhibits
the variation of the gradient force ratio between the larger singles
NPs (D = 30 and 34 nm) and the smallest single NP (D = 26 nm) as a
function of distance by using our simulation method (full curve) and
an equivalent two-dipole model (dashed curve).

cal analyses do not need to take into account a change in the
tip magnetization or any modification in the localization of
tip moment, as required in the two-dipole model. Deviations
from the two-dipole model can be quantified by comparing
the simulated force gradient ratio between two different NPs
with respect to the two-dipole model. In the latter case, the
force gradient ratio between two different NPs is constant as
a function of distance, as shown for instance in the inset of
Fig. 6 (b). The simulations indicate that the ratios depend on
the tip-sample distance, progressively converging to the value
given by the two-dipole model. The simulations are therefore
expected to give details about why the fitting of experimental
phase shifts with the two-dipole model required a change of
both the tip magnetic moment and its location within the tip
volume.

4.1 Influence of compactness

To study the influence of the in-plane compactness of the clus-
ters on the generated magnetic field, we calculated the force
gradients for four configurations where the in-plane arrange-
ment of the NPs has been changed. Since the most relevant
experimental results concerning the modification of the mag-
netic force field have been obtained on 3-fold clusters, we
chose to work with clusters formed by NPs of the same di-
ameter (D = 30 nm). Their configurations are shown in Fig.
7. The 3-fold clusters can be differentiated by the parameter θ
which represents the angle between the central NP and the two
outer NPs [Fig. 7 (c)]. The first trimer has a linear-like chain
configuration, which corresponds to an angle θ = 0. In the
next two configurations, the outer NPs are symmetrically dis-
placed with respect to the central NP, while keeping the NPs in
the same plane, i.e. the one perpendicular to the tip axis. This
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gives rise to triangular clusters labeled: θ = π /8 and θ = π /4,
respectively. The latter cluster has a more compact structure
with the three NPs forming an equilateral triangle θ = π /3.

From Fig. 7 (a), it can be seen that the magnetic force ex-
erted on the tip gradually increases as the cluster changes from
a linear to a triangular configuration. The differences between
the four configurations are as expected more visible at small
distances. The more compact the trimer, the stronger the mag-
netic force. The magnitude of the magnetic force field there-
fore depends on the geometrical configuration of the trimer.
The slope of the force gradient vs. distance is also signifi-
cantly reduced for low compactness [Fig. 7(b)]. The com-
puted force gradients are consequently in very good agreement
with the experimental phase shifts plotted in Fig. 4. Moreover,
at large distances (≫ D), the force gradients converge to the
same value because all four computed configurations have the
same total magnetic moment. In the case of the most com-
pact trimer (θ = π /3), the force gradient shows the greatest
variation, as also found experimentally (Tr1 in Fig. 4).

The force gradients shown in Fig. 7 (b) are divided by the
force gradient obtained for a single NP. The resulting curves
are shown with solid lines in Fig. 8 (a). It is seen that the
ratios display a smoother variation as the trimers adopt a less
compact geometry. It is worth recalling that these ratios indi-
cate how the magnetic fields generated by a cluster deviates
from the fields generated by a single NP. As a matter of fact,
the ratio cannot be larger than three for a trimer.

When the Tr/S ratio reaches the maximal value of three, it
means that the magnetic force field is not any more dependent
on the spatial arrangement in the trimer. In our numerical anal-
yses, we found a maximum value of 2.8 at 95 nm in the case
of the most compact trimer (θ=π /3). This maximum value
decreases considerably at the same distance for less compact
trimers. It means that, even at distances larger than 2-3 times
the NPs diameter, the tip is still sensitive to the 2D spatial ar-
rangement of the NPs in the trimer.

For the sake of comparison, we also calculated the force
gradient ratios for θ = 0 and θ = π /3 trimers using the two-
dipole model. The results are shown with dashed lines in Fig.
8(a). A full analysis performed with the two-dipole model is
presented in Sec. SI7. At large distances > 2 D, the ratio
for the compact trimer is greater than the ratio of linear trimer,
which is qualitatively in agreement with both previous simula-
tions and experiments. For small distances (< 2D), the ratios
show a completely different variation as compared with the
respective curves obtained with our finite element model and
with the experiments. For instane, at distances of the order
of D, the two dipole model predicts a ratio for the linear-like
chain cluster higher than the one for the compact trimer, as-
pect which is not observed in our finite-element modeling nor
in the experiments. The ratio even becomes negative at very
short distances (< D), meaning that the force between tip and
clusters is attractive. This happens because the tip dipole mo-
ment is so close to the dipole moment of NPs that there is an
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Fig. 7 (a) Force and (b) force gradient between the tip and the four
clusters depicted in (c). (c) Top view of four trimers of different
compactness. The red crosses represent the lateral position of the tip.

angle where the sign of the magnetic force changes. This is
not the case in our finite element modeling neither in the ex-
periments, because of the finite size of the NPs and of the tip.
Altogether, these results already show that two-dipole model
cannot capture a reliable magnetostatic interaction at separa-
tion distances < 2D.

The force gradients of several clusters ranging from two
to five NPs divided by the force gradient of a single NP are
shown in Fig. 8(b). These theoretical ratios can be compared
with the experimental curves presented in Fig. 5. As seen, the
numerical results support the experimental findings. Depend-
ing on the number of NPs composing the clusters, the ratios
progressively increase as the distance increases, approaching
a saturation value. Above approximately 70 nm, the ratios are
almost 2 and 3 for dimers and trimers, respectively. Instead,
at the same 70 nm separation distance, the ratios for tetramer
and pentamer are only 3.6 and 4.5, saturating at 3.9 and 4.8
only for very large distances. This is due to the fact that the
tip senses differently the magnetic force fields depending on
the 2D organization of the NPs in the cluster, as also observed
experimentally.
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Fig. 8 (a) Force gradients for the four trimers divided by the force
gradient of a single NP (30 nm in diameter). For comparison, the re-
sults for θ = 0 and θ = π /3 as computed with the two-dipole model
are shown with dashed lines. (b) Force gradients for clusters com-
posed from two to five NPs divided by the force gradient of a NP.

5 Summary and conclusions

We presented a combined experimental and theoretical study
on a quantitative evaluation of the magnetic force fields gen-
erated by clusters of NPs formed by associations of single
magnetic NPs on a solid non-magnetic substrate. The exper-
imental results obtained under a saturation magnetic field of
0.5 T have shown that the magnetic force fields do not in-
crease proportionally with the number of NPs in the clusters.
Furthermore, for dimeric and trimeric clusters, minute modi-
fications of the 2D spatial arrangement of NPs in the clusters
drastically modify the surrounding magnetic field. For these
clusters, the magnitude of the generated force field follows
the prediction of the two-dipole model, but only at distances
exceeding some critical values (about twice the diameter of
a NP). For tetramers and pentamers the two-dipole model is
found to overestimate the value of the magnetic moments in
the whole range of the experimental distances. The largest
the in-plane lateral expansion of the cluster the less accurate
is the two-dipole model in extracting quantitative information.
This is because the principal condition for the use of a two-
dipole model is related to the lateral extension the clusters
which should be smaller than the distance at which the mag-
netic force field is evaluated.

A good agreement with the experimental results, in the en-
tire range of tip-sample distance, was obtained by considering
the real geometry of the system, namely by splitting both tip
and sample in a finite number of microscopic elements and
performing a full pairwise integration of magnetostatic poten-
tials. The numerical calculations conducted with this finite-
element model brought unprecedented insights into the quanti-
tative evaluation of the magnetic field generated by assemblies
of NPs, and put forward the importance of the spatial organi-
zation. The magnetic force field in the proximity of clusters
has a complex distance-dependent structure, being driven sig-
nificantly by the exact number of NPs. Compact clusters have

a general tendency to generate an enhanced force field able to
extend at larger distances, which is the result of interparticle
magnetic interactions and cooperative effects. Our results may
have an impact on the chemical design of NPs-based clusters
for various applications, including biomedical and therapeutic
strategies or magnetic information technologies.
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