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3 Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES 14 avenue Edouard Belin,

31400 Toulouse, France

Received 17 January 2020 / Accepted 11 March 2020

ABSTRACT

Context. We studied the dynamics of the solar atmosphere in the region of a large quiet-Sun filament, which erupted on 21 October
2010. The filament eruption started at its northern end and disappeared from the Hα line-core filtergrams line within a few hours. The
very fast motions of the northern leg were recorded in ultraviolet light by the Atmospheric Imaging Assembly (AIA) imager.
Aims. We aim to study a wide range of available datasets describing the dynamics of the solar atmosphere for five days around the
filament eruption. This interval covers three days of the filament evolution, one day before the filament growth and one day after the
eruption. We search for possible triggers that lead to the eruption of the filament.
Methods. The surface velocity field in the region of the filament were measured by means of time–distance helioseismology and
coherent structure tracking. The apparent velocities in the higher atmosphere were estimated by tracking the features in the 30.4 nm
AIA observations. To capture the evolution of the magnetic field, we extrapolated the photospheric line-of-sight magnetograms and
also computed the decay index of the magnetic field.
Results. We found that photospheric velocity fields showed some peculiarities. Before the filament activation, we observed a temporal
increase of the converging flows towards the filament’s spine. In addition, the mean squared velocity increased temporarily before the
activation and peaked just before it, followed by a steep decrease. We further see an increase in the average shear of the zonal flow
component in the filament’s region, followed by a steep decrease. The photospheric line-of-sight magnetic field shows a persistent
increase of induction eastward from the filament spine. The decay index of the magnetic field at heights around 10 Mm shows a value
larger than critical one at the connecting point of the northern filament end. The value of the decay index increases monotonically
there until the filament activation. Then, it decreased sharply.
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1. Introduction

The Sun constitutes a dynamical system, where magnetic and
velocity fields couple. Due to the magnetic field instabilities, var-
ious forms of phenomena of solar activity emerge. Among them,
prominences or filaments are very intriguing features.

Solar filaments are large regions of very dense, cool gas,
held in place by a magnetic field. They often have a loop-like
shape (see a review by Parenti 2014). It is commonly believed
that the dense plasma is held in the dips of the magnetic arcades,
where the equilibrium established between the Lorentz and grav-
ity forces (Kippenhahn & Schlüter 1957; Mackay et al. 2010).
The stability of the filament then entirely depends on the stabil-
ity or lability of this equilibrium. Filaments are embedded in the
vicinity of the neutral line, and their legs are rooted in the chro-
mosphere (Schmieder et al. 2013; Li & Zhang 2013). Fibrils in
the chromosphere around the polarity inversion line form a spe-
cific channel, which is arranged along the filament axis (Martin
1998) contrary to fibrils in the undisturbed chromosphere. The
channel type filament body consists of a spine, barbs, and two
ends. The spine usually has an inner fine structure, which con-

? AIA30.4 nm movie is available at https://www.aanda.org

tains threads that are oriented predominantly in the spinal direc-
tion of the filament (Aulanier & Demoulin 1998).

The solar atmosphere, starting from the photosphere through
the chromosphere and all the way towards the corona, is not
static. The gas dynamics in the atmosphere and also below, in
the upper layers of the solar convection zone, influence the sta-
bility of the structures of the magnetic field, thereby leading
to the evolution of these structures. In the photosphere, mag-
netic field is subject to diffusion due to supergranular flows and
the large-scale motions of differential rotation and meridional
circulation. The magnetic field elements that are transported
across the solar surface can be sheared by dynamic near-surface
motions, which in turn cause the shearing of the chromospheric
and coronal magnetic field. This process corresponds to the
formation of coronal flux ropes (Mackay & Gaizauskas 2003;
Mackay & van Ballegooijen 2006). It is believed that flux ropes
are important ingredients of the filaments’ configuration. Dur-
ing their existence, filaments undergo both quiescent and active
periods. Numerical models show that the magnetic flux rope
involved in solar filament formation may be stable for many days
and then suddenly become unstable, resulting in a filament erup-
tion. The mechanisms driving the filament eruption and disap-
pearance are still uncertain.
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Fig. 1. Context images of the line-of-sight magnetic field from SDO/HMI before (left) and after (right) the filament eruption. The black line
indicates the true position of the solar limb (as indicated by keywords in FITS headers), the white lines indicate the boundaries of the region of
interest.

The activation of a quiescent filament may be triggered by the
emergence of the new magnetic flux near a neutral line (Feynman
& Martin 1995; Mackay et al. 2010). Other studies suggest that
also the filament destabilisation may also be connected to oscilla-
tions (Pouget et al. 2006; Jing et al. 2003; Luna & Karpen 2012;
Schrijver & Title 2011; Schrijver et al. 2013).

Studies also point out the importance of peculiarities in the
photospheric flows. For instance, Rondi et al. (2007) measured
horizontal velocities in the vicinity of and beneath a filament
before and during the filament’s eruptive phases by tracking
granules in white-light images. They showed that both para-
sitic and normal magnetic polarities were continuously swept
into the filament gap by the diverging supergranular flow. They
also observed the interaction of opposite polarities in the same
region, which could be a reason for initiating the destabilisation
of the filament by triggering a reorganisation of the magnetic
field. Roudier et al. (2008) showed peculiar velocity features
in the photosphere during the eruption of a quiescent filament.
The horizontal velocities were determined by tracking doppler
features in full-disc dopplergrams and by tracking magnetic ele-
ments in full-disc magnetograms. They found evidence for a par-
allel flow along the filament prior to its eruption, which disap-
peared after the filament vanished. They also found that the shear
in zonal velocities near the ignition point of the filament erup-
tion increased monotonically before the eruption and dropped
suddenly immediately after it. They concluded that the shear
pumped the energy to magnetic structures thereby triggering the
instability and eruption of the filament. Schmieder et al. (2014)
computed the vector velocity maps by tracking granules in inten-
sity maps for a single filament using different spatial resolutions.
The velocity field did not show the presence of large-scale flows.
They found that the diverging flows inside the supergranules
were similar in and out of the filament channel. The converg-
ing flows were identified around the filament footpoints and at
the edges of the filament channel. Hindman et al. (2006) used
helioseismic inversions to determine velocity fields in the vicin-
ity of the filament over four days. A time-averaged velocity field
showed signs of a significant shear current parallel to the polar-
ity inversion line. Ambrož & Pötzi (2018) performed a statistical
study of 64 quiescent filaments, for which they studied velocity
fields obtained by tracking supergranules represented in dopp-

lergrams in their vicinity. For a large fraction of the sample, they
indeed found evidence for shearing motions along the filament
spines. On the other hand, they did not find compelling evidence
for converging motions towards polarity inversion lines. They
also pointed out that filament barbs are mostly anchored in the
places with significantly convergent flows. Perhaps a dispersed
magnetic flux concentrates here giving rise to a new magnetic-
field structure that connects with the filament with a barb later.

When the filament activates, various phenomena may be
observed. Gosain et al. (2009) investigated the disappearance of
filaments at various levels in the solar atmosphere using both
ground-based and space-bourne data. They found that vortical
motions below the filament were observed a day before the fil-
ament’s disappearance. The authors suggested that the photo-
spheric shear motions around lateral barbs caused magnetic flux
cancellation and led to the destabilisation of the magnetic sys-
tem in the filament. The filament then expanded and gradually
disappeared.

2. Observations

A large filament was observed east from active regions
NOAA 11113 in October 2010. The filament was visible above
the eastern solar limb between latitudes of 10 and 30◦ on 13
October in Atmospheric Imaging Assembly (AIA; Lemen et al.
2012; Boerner et al. 2012) 30.4 nm filter and it moved towards
the central solar meridian in the following week. Its visibility
was increasing gradually in AIA 30.4 nm until 21 October, prob-
ably due to the increasing opacity caused by filling the filament
with plasma. The filament disappeared suddenly in the afternoon
of 21 October and was not visible any longer in the following
days.

According to the Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012; Scherrer et al. 2012) line-of-sight context
magnetograms (see Fig. 1), the investigated filament was placed
roughly above a polarity inversion line (PIL) separating the
trailing polarity (positive) of NOAA 11113 and the dispersed
(its negative part) magnetic field located west of active region
NOAA 11118. This dispersed negative field was probably the
leftover of an active region that dispersed there before. Within
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Fig. 2. Evolution of the filament’s field of view in Hα filtergrams (greyish panels) in comparison with corresponding views in AIA 30.4 nm
filtergrams (orangish panels). A corresponding Hα image for the first frame is not available, thus the panel is empty. We note that for display
purposes, a histogram equalisation was used to improve the visibility of structures.

the negative part of this dispersed field, a new active region
NOAA 11119 emerged on 24 October.

In the Global Oscillations Network Group (GONG; Harvey
et al. 1996) Hα context images (line-core filtergrams) the fila-
ment extended roughly between latitudes 18 and 33◦ north of
the solar equator. Until 19 October the filament evolved slowly,
then during the days of 20 and 21 October, it grew significantly
in area, visible as absorption in the Hα line, and dropped sud-
denly within a few hours in the afternoon of 21 October.

2.1. Analysed datasets

The evolution of the filament was captured by instruments both
in space, namely with the HMI and AIA aboard the Solar
Dynamics Observatory (SDO; Pesnell et al. 2012), and on the
Earth. In our study, we mainly used the following data series:

SDO/HMI dopplergrams. The 45 s cadence full-disc dopp-
lergrams were used as a primary source for measuring the travel
times of helioseismic waves to measure the near-surface flow
field. We studied, in total, five days around the filament disap-
pearance, that is from 18 to 22 October.

SDO/HMI magnetograms. Line-of-sight magnetograms
measured by SDO/HMI were used firstly to check the con-
text of the field of view and to discuss the possible connec-

tivity of the filament. In the following, the magnetograms at a
reduced cadence of one hour were obtained by averaging avail-
able frames over one hour. They were used in the linear extrapo-
lation of the magnetic field to study the structures of the potential
magnetic field components.

SDO/HMI intensitygrams and dopplergrams. For the day
of the eruption, we tracked the granules visible in the HMI
intensitygrams to obtain a high-resolution high-cadence hori-
zontal velocity field utilising coherent structure tracking (CST;
Rieutord et al. 2007; Rincon et al. 2017). The CST velocities
are complemented by HMI dopplergrams to form full velocity
vectors. The pipeline running at Institut de Recherche en Astro-
physique & Planétologie (IRAP) resulted in full-disc maps of
the zonal, meridional, and radial components of the surface flow
with a cadence of 30 min.

GONG Hα filtergrams. The full-cadence filtergrams mea-
sured in the Hα line by the ground-based GONG network were
used mainly to study the filament evolution and to determine the
various phases of the filament dynamical behaviour.

Context data. We used several other contextual data (such as
the already mentioned SDO/AIA 30.4 nm filtergrams) to follow
the filament evolution.
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Fig. 3. Evolution of filament area in Hα filtergram in time. The greenish
box indicates the activation and eruptive phases of the filament’s life.

All SDO datasets were processed using standard JSOC web-
based interface. That included the tracking of the patch of the
solar surface projected to Postel coordinates. The patch was cen-
tred at Carrington coordinates of l = 122◦ and b = 25◦ with a
pixel size of 0.12◦ and a square field of view of 512 × 512 pixel.
Similar tracking with the same projection and pixel size was per-
formed using our IDL code for ground-based GONG Hα data.
Using this procedure, we automatically ensured the mutual co-
alignment of all the series.

2.2. Velocity fields

To study the dynamics of the photosphere in the vicinity of the
filament, we further used vector flow maps derived by time–
distance helioseismology. By inverting the travel times of the
waves, we inferred estimates of components of plasma flow near
the surface in a pseudo-Cartesian coordinate system (X,Y,Z),
where X indicates the horizontal east–west direction along solar
equator, Y the horizontal south-north meridional direction and
Z indicates the vertical (radial) coordinate. The methodology is
thoroughly described elsewhere, the maps we have at our dis-
posal are principally (by methodology) analogous to the maps
carefully tested by Švanda et al. (2013).

We focused on the analysis of the maps of three compo-
nents of the vector flows co-spatial with Hα and AIA 30.4 nm
frames. These maps have an effective resolution of about 10 Mm
and are averaged over 6, 12, and 24 h with a critical sampling.
The levels of random noises in the maps are 18 m s−1 for the
horizontal components, and 3 m s−1 for the vertical component,
respectively, when considering averaging over 24 h. The noise
estimates strictly apply only to quiet-Sun regions and are based
on statistical properties of solar oscillations. Our region of inter-
est near the filament shows only weak dispersed magnetic field,
thus, noise estimates there are also representative here. For the
shorter time averaging, the random-noise levels scale as 1/

√
T ,

where T is the length of averaging.
In the flow maps, the structure of supergranules is clearly vis-

ible. The divergent centres of supergranular cells coincide with
upflows in the maps of vertical velocity. In the following, we
ignore the distortions caused by Postel projection, because we
focus on the region close to the centre of the map, where the
distortions are negligible. The differentiable nature of the flow

maps allowed us to compute the flow field derivatives, namely
the horizontal divergence ∇h · uh, and the vertical component of
vorticity (∇ × u)Z defined by

∇h · uh =
∂vX

∂X
+
∂vY

∂Y
and (∇ × u)Z =

∂vY

∂X
−
∂vX

∂Y
· (1)

3. Results

Various observations allowed us to describe particular aspects of
the process of filament destabilisation.

3.1. Filament in Hα

In order to study the changes in the photosphere underlying the
filament, we first need to identify various phases of the filament’s
life. In order to do so, we mainly used a 5 day series of GONG
Hα images. The sequence was processed as described in the pre-
vious section. The tracking ensured that the datacube remained
centred on the position of the filament (see examples in Fig. 2).

The filament pixels were identified by the thresholding
method. The threshold was empirically set to 0.92 Imean, where
Imean represents the mean intensity of all pixels in the datacube.
We then measured the total area taken by the filament in the
frames for each frame separately. When measuring the area in
physical units we neglected the distortions caused by the Postel
projection, because the filament was very close to the centre of
the field of view.

The evolution of the area is plotted in Fig. 3. We plot all
the measurements even in the case when the measured area is
an obvious outlier. These points have an origin mostly in frames
when the solar disc was not entirely clear of clouds.

We see that at the beginning, the area of the filament
remained almost constant at a value of about 1000 Mm2. At the
end of the day on 18 October, the area started to grow and con-
tinued to do so until midday of 21 October. This is the growth
phase of the filament. Plasma is fed into the structures of the
filament’s magnetic field.

At around 11:00 UT on 21 October, the area started to
decrease because of filament activation. The plasma is no longer
fed to the filament’s magnetic field and slowly disappears. In the
online movie, the shape of the filament starts to change. This is
the activation phase of the filament.

Finally, between about 19:00 UT and 20:15 UT, the filament
rapidly vanished from the Hα filtergrams. The filament erupted
and disappeared.

3.2. Evolution in the ultraviolet images

In the online movie of AIA 30.4 nm frames tracked with the rate
of the Carrington rotation the absorbing plasma in the filament
was first clearly visible on 17 October at roughly 04:00 UT as
a very narrow linear structure stretching diagonally through the
field of view. Its thickness started to grow rapidly on 18 October
at roughly 15:00 UT, a few hours earlier than the growth of the
area of the absorption in Hα was observed.

Throughout the whole period, the spine of the filament in
AIA 30.4 nm moved westwards with respect to the Carrington
rotation with a speed of about 100 m s−1, as if the whole struc-
ture was pushed away by the monotonic growth of dispersed
magnetic field west of NOAA 11118 (see Figs. 4 and 5) and by
differential rotation.

From the AIA 30.4 nm movie, it is also visible that the whole
diagonal filament is connected to the footpoint north from the
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Fig. 4. Field of view in the 30.4 nm spectral band to indicate the posi-
tions of the horizontal cuts, in which the time–distance diagrams are
plotted in Fig. 5. With a green dotted line, the position of the hook con-
necting the filament to a northern footpoint is outlined, together with
the spine of the filament.

filament spine by a large hook. This hook is barely visible in
still frames, however, it is recognisable in the online time-lapse
movie. The position of the hook is indicated in Fig. 4.

A fast evolution at the northern and southern filament foot-
points starts to be observed on 21 October at around 12:00 UT.
The filament ends, visible in Hα at both sides, are moving very
fast (at speeds of several kilometers per second) westwards and
they disappear at roughly 20:00 UT on the same day. In the
northern part, the filament seems to remain connected to the
footpoint by the large hook, when the hook shortens and sweeps
west. After the filament disappearance, especially in the lower
part of the field of view in the quiet-Sun region between the
magnetised regions, a quickly extending brightening band is
observed parallel to the spine of the former filament. This very
fast transition is also visible in Fig. 5. The brightening may be
either explained by a decrease in the absorption coefficient per-
haps due to the decrease of the density in the arcade loops or by
local heating, possibly caused by filament plasma falling down
along the arcade loops.

3.3. Evolution of photospheric flows

We studied the near-surface vector flow field in the vicin-
ity of the filament evolving over five days from 18 October
to 22 October. Namely, we focused on maps averaged over
6 hours with a critical sampling. Firstly, we studied a general
appearance of the vector velocity field and its derivatives com-
puted according to Eq. (1), but we did not find any peculiarities
indicating a trigger for the filament eruption. The dominant fea-
tures over the whole field of view are the supergranular cells.
In consecutive frames, most of the supergranular cells are repro-
duced at the same place, thereby increasing the credibility of the
flow maps.

We realise that useful information may be hidden in the
large-amplitude local flows. In addition, a number of studies
show the importance of large-scale components of the flow that
appeared only after the smaller-scale components were filtered
out from the full flow field (e.g. Roudier et al. 2008; Ambrož &
Pötzi 2018).

Inspired by this approach, we studied the integrated flow
components in the close vicinity of the filament. Namely, we

were interested in the mean flows along the filament spine 〈v‖〉
and in the perpendicular direction 〈v⊥〉. Thus, we averaged the
two above mentioned components in a rectangle having a length
of 150 Mm and width of 70 Mm just above and just below the in
the Hα line, as indicated in Fig. 6. Then, we computed

∆〈v‖〉 = 〈v‖〉above − 〈v‖〉below and (2)
∆〈v⊥〉 = 〈v⊥〉above − 〈v⊥〉below. (3)

The differences of the parallel velocity components ∆〈v‖〉 then
evaluate the velocity shear along the filament axis, whereas the
differences in the perpendicular velocities ∆〈v⊥〉 indicate the
prevalence of divergent flows from or convergent flows towards
the filament axis.

The time evolution of these differences is given in the left
panel of Fig. 7. The period of the filament activation and erup-
tion is indicated by the greenish rectangle. It would seem that
in the period before the filament activation the shear in the par-
allel components did not show a secular trend, except for the
oscillations, but in the perpendicular direction, we see a trend of
the growing converging (negative sign) large-scale flows towards
the filament axis before the onset of the activation phase. Then,
the convergent flows weakened.

The mean squared velocity 〈v2〉,

〈v2〉 = 〈v2
X + v2

Y + v2
Z〉box, (4)

averaged over the same region, also demonstrates peculiar
behaviour, when we see an increase before the activation phase
and a continuous decrease during the activation phase and the fil-
ament eruption (see the lower panel of Fig. 7). This change has
mostly to do with the trend in the perpendicular velocity compo-
nent.

We studied the distribution of the mean squared velocity over
the field of view. Thus, we computed 〈v2〉 according to (4) in a
sliding window having a radius of 15 Mm. Such physical quan-
tity evaluates the width of the local velocity distribution. The size
of the sliding window is chosen to suppress the contribution from
the supergranules that dominate the velocity field and also from
velocity structures having even larger scales (such as the differ-
ential rotation). A sequence of the maps of mean square velocity
is given in Fig. 8. Again, a large reproducibility of the veloc-
ity structures between consecutive maps serves as evidence that
these structures are real. Moreover, an evolution of the veloc-
ity field in the region around the filament shows some intriguing
behaviour. Namely, a linear structure of an increased squared
horizontal velocity in the diagonal direction crossing the middle
of the filament starts to form in the panel representing the six-
hour interval centred on 20 October at 21:00 UT, which prevails
for around a day. It grows in magnitude, reaching its maximum
in the frame indicated by the time 09:00 UT on 21 October with
a significant increase of mean squared velocity near the north-
ern end and starts to decay there after. The filament started to
disperse soon after.

The filament disintegration started rather abruptly at the
northern end. Therefore, studying the fast evolution of the mag-
netic field is not possible by using helioseismic datasets. Thus,
we used the advantage of tracking the granules using the CST
code, which yielded the full-disc surface velocity field with a
cadence of 30 min and an effective spatial resolution of 2.5 Mm.
The pipeline provided us with the velocity components projected
to the spherical coordinates, that is the zonal, meridional, and
radial components.

Over the day of the filament eruption, that is 21 October, we
noticed a faster evolution only in the zonal component. To quan-
tify these changes, we computed the longitudinal average of the
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Fig. 5. Time–distance diagrams for the cuts indicated in Fig. 4. Left-most panel: the transition from the darker filament to the brighter band is
marked by an ellipse. In the remaining panels we indicate the position of the filament and add also an estimate of the velocity, with which the
structure propagates along the horizontal axis.
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Fig. 6. Filament field of view reoriented so that the filament spine
is parallel to the horizontal axis. The boxes indicate the regions
over which the difference of the parallel and perpendicular veloci-
ties respectively where evaluated “above” and “below” the filament.
Upper panel: 15:00 UT on 21 October, lower panel: 21:00 UT on
21 October.

zonal velocity (representing the local differential rotation pro-
file) in the region of the filament and fitted a linear dependence
with latitude to the zonal velocity profile. The slope of the linear
fit indicated the average latitudinal shear in the zonal velocity
component.

Fig. 7. Upper panel: evolution of ∆〈v‖〉 (red) and ∆〈v⊥〉 (blue). Lower
panel: evolution of the mean squared velocity 〈v2〉 in the region of the
filament. The greenish bar indicates the filament activation and eruption.

It turned out (see Fig. 9) that the average zonal shear was
increasing from the beginning of the day of the eruption until
about noon, when it decreased suddenly. This corresponds to a
beginning of the very fast evolution of the filament seen in Hα
and 30.4 nm lines when the filament legs moved westwards very
fast. The average zonal shear reached the minimum at around
15:00 UT and then increased again. The average zonal shear
in the region of the former filament grew again until almost
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Fig. 8. Maps of mean squared velocity in the region of the filament. The corresponding shape of the filament is overplotted in red. The semitrans-
parent rectangle represents the area over which the square velocity was computed to be plotted in Fig. 7 bottom panel.

Fig. 9. Evolution of the zonal shear around the filament determined from
the granule tracking.

midnight on 21 October and then dropped again. By that time,
the filament did not exist in Hα and AIA 30.4 nm images any-
more.

3.4. Evolution of the magnetic field

The filament structure is fully locked in the structure of the
chromospheric and coronal magnetic field. Unfortunately, direct
measurements of this magnetic field are not available. Only mea-
surements of the line-of-sight component of the magnetic field in
photospheric layers are routinely available from SDO/HMI. We
used a sequence of the 45 s magnetograms to study the temporal
changes of the magnetic field in the region of the filament.

The region of interest is located mainly in the weak-field
regions, where the photon noise indicated by the random error

in the magnetic field determination is significant. Thus, we aver-
aged the line-of-sight magnetograms over one hour and sampled
the series with a critical sampling rate to increase the signal-
to-noise ratio. Such movies do not indicate changes that could
possibly be responsible for the filament’s eruption.

To get an understanding of how the structures of the atmo-
spheric magnetic field behave with time, we performed a
magnetic-field extrapolation using the potential approximation.
Potential extrapolation reconstructs only the large-scale features
of the magnetic field, and by no means could it catch the details
that are expected in the plasma-field coupling in the filament
structures, where a detailed MHD modelling would be a proper
approach. On the other hand, for instance, the motions of the
filament legs observed in the eruptive phase in 30.4 nm channel
of SDO/AIA are so large that is it reasonable to expect to see
some changes even in the potential component of the magnetic
field.

Our expectations were confirmed by computing the evolu-
tion of the magnetic field structures, namely in the higher atmo-
sphere, say 10 Mm and above. While below this boundary the
structures are obviously dominated by small-scale features that
do not evolve significantly (see Fig. 10), the upper field changes
significantly (see Fig. 11). There, we see the filament spine
located between the two stronger polarities, closer to the west-
ern one. It is a bit stronger than the eastern polarity at the begin-
ning of the filament evolution, that is during its increasing phase.
Later, the western polarity weakens, whereas the eastern grows
in intensity. Also after the filament eruption, the western part
gains a different shape, it disperses a bit towards the east.

When investigating the stability of the magnetic features, a
decay index n of the magnetic field, defined as n = d ln B/d ln Z,
where B is the induction of the magnetic field and Z the height
(positive from the photosphere towards corona), proves useful.
Many previous studies (such as Li et al. 2016; Wang et al. 2017)
showed that when n > ncrit, where ncrit is usually about 1.5,
the magnetic field is prone to torus instability. For instance,
filaments usually erupt in the regions, where this condition is
fulfilled. For the computation of the decay index, the potential
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Fig. 10. Extrapolated total magnetic induction at a height of 7.5 Mm displayed for a few points in time. One can see a slow evolution without
abrupt changes.

Fig. 11. Magnitude of the magnetic induction at a height of 22.5 Mm. One sees changes in the evolution of the potential component of the coronal
magnetic field that may have to do with the changes in the filament. Namely, the eastern part strengthens with time, whereas the western part,
closer to the filament, weakens.
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Fig. 12. Decay index n of the magnetic field at a height of 15 Mm displayed for a set of moments in the evolution of the filament. All panels bear
the same colour scale, with black indicating value n = −1.5 and white the value n = +1.5. A particular feature is visible roughly at coordinates
(440, 580), where the filament hook is connected (compare to Fig. 4).

extrapolation is sufficient, as the properties of the “external”
magnetic field are important.

In Fig. 12, we give a sequence of decay-index maps at a
height of 15 Mm. At positions, where the filament is located
(see Fig. 11), the value of n is around zero. A significantly
positive horizontal feature is seen in a row at Y ∼ 550 Mm,
along which the northern footpoint of the filament seems to have
slipped in the sequence of AIA 30.4 nm images. A very bright
feature within this structure, which remains isolated later in the
sequence, is cospatial with the anchor of the filament hook as
indicated in Fig. 4. The value of the decay index increases to the
point immediately before the filament activation and eruption
and decreases afterwards. Such an evolution is consistent with
the filament activation starting at this point in the late morning
of 21 October.

4. Conclusions

We performed a thorough analysis of the observational data of a
quiet-Sun filament, which erupted in the late afternoon on 21
October 2010. The filament eruption was not followed by an
X-ray flare according to the GOES and RHESSI archives.

The filament evolved slowly in a few days preceding the
eruption, with a rapid change and disappearance on that day. We
found the following:

– In Hα filtergrams, the filament area was continuously grow-
ing in the days before the eruption. The area dropped signif-
icantly as the filament activated within a few hours and the
filament completely disappeared from the Hα filtergrams in
the following hours.

– The filament was visible earlier in 30.4 nm AIA channel than
in Hα line-core filtergrams. It also extended to a greater
length in the 30.4 nm channel. In the north, it was connected
to a particular location with a large hook. As the filament
activated, the filament’s leg swept westward with an apparent
velocity of a few kilometers per second, whereas the location
of the footpoint did not change. After the disappearance of
the filament, we observed a bright band in AIA 30.4 nm spec-
tral range extending to both sides from the former location of
the filament’s spine.

– Photospheric flows show a few peculiarities. Before the fila-
ment activation, we observed a temporal increase of the con-
verging flows towards the filament’s spine. In addition, the
squared velocity increased temporarily before the activation
and peaked just before it, followed by a steep decrease. In the
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maps of squared velocities, we see a formation of a large-
velocity linear pattern, magnitude of which peaked before
the filament activation.

– In the flows from granular tracking, we see an increase of
average shear of the zonal velocity component in the fil-
ament’s region before its activation, followed by the steep
decrease.

– The photospheric line-of-sight magnetic field shows a mono-
tonic increase of induction eastward from the filament spine,
in the region where, three days later, a new active region
emerged. We performed a potential magnetic field extrap-
olation. The change agreeing with that at the photospheric
levels is much more evident at larger heights. The decay
index of the magnetic field at heights around 10 Mm shows a
value larger than critical at the connecting point of the north-
ern filament hook. The value of the decay index increased
there monotonically until the filament activation. Then, it
decreased sharply.

From the observations, it is evident that the filament eruption
started at its northern leg, where it connected to the northern
footpoint via large hook. The location of the hook, mainly its
east-west component, agrees with the region in the potential
magnetic field at height larger than 10 Mm, where the decay
index is large, possibly larger than critical. It was shown that
those are the conditions for the torus instability or a critical loss
of equilibrium, which are equivalent formulations for triggers
of flux-rope eruptions (Démoulin & Aulanier 2010; Kliem et al.
2014). Such an instability zone is thus prone to rapid reconfigu-
ration of the magnetic field, causing the fast motion of the fila-
ment flux rope westwards, as seen in online AIA 30.4 nm movie.
After the reorganisation the values of the decay index in the
instability zone decrease.

A strong coupling between the velocity and magnetic fields
in the photosphere and near-surface layers of the convection
zone probably contributed to the increase of the non-potential
component of the coronal magnetic field within the filament
region beyond the threshold of instability onset. Namely, the
observed increase of convergent flows towards PIL about a
day before the filament eruption transported magnetic elements
towards PIL. We also observe an overall increase of the width of
local velocity distribution in the filament region, forming pecu-
liar aligned high-velocity features. The rate of transport of the
magnetic elements before the eruption in the PIL region thus
increased temporarily, likely forming small loops and arcades
that further sheared, possibly twisted and reconnected, and con-
tributed to the unstable configuration of the field in the filament
flux rope. This is seen, for instance, in Fig. 8, where two bright
spots of locally increased velocity at 09:00 on 21 October cor-
respond to large swirls seen in Fig. 6 at coordinates X′ ∼ 300,
Y ′ ∼ 350. After reaching the instability threshold, the filament
erupted. We observed this local increase of squared velocity
mainly in the northern half of the filament, where also the erup-
tion started.

Our study shows the importance of flows in the upper lay-
ers of the convection zone for influencing the stability of the
structures of the magnetic field in upper layers of the solar atmo-
sphere. A detailed investigation and confirmation of our scenario
is not possible without proper MHD modelling, which is beyond
scope of this paper. Our findings are consistent with those of
Roudier et al. (2018), who concluded that the filament destabili-
sation was caused by the joined action of the differential rotation
shear and convergent flows towards the filament.
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